
HAL Id: hal-02927445
https://hal.science/hal-02927445v1

Submitted on 7 Sep 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Bayesian inference of a parametric random ellipsoid
from its orthogonal projections

Mathieu de Langlard, Fabrice Lamadie, Sophie Charton, Johan Debayle

To cite this version:
Mathieu de Langlard, Fabrice Lamadie, Sophie Charton, Johan Debayle. Bayesian inference of a
parametric random ellipsoid from its orthogonal projections. Methodology and Computing in Applied
Probability, 2021, 23, pp.549 à 567. �10.1007/s11009-020-09806-w�. �hal-02927445�

https://hal.science/hal-02927445v1
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Bayesian inference of a parametric random spheroid
from its orthogonal projections

Mathieu de Langlard* · Fabrice Lamadie ·
Sophie Charton · Johan Debayle

Received: date / Accepted: date

Abstract The paper focuses on a new method for the inference of a parametric
random spheroid from the observations of its 2D orthogonal projections. Such a
stereological problem is well-known from the literature when the projections come
from only one deterministic spheroid. Nevertheless, when the spheroid is random
itself, the estimation of its distribution is not straightforward. From a theoretical
viewpoint, it is shown that the semi-axes of the spheroid and the ones of the
projected ellipses are linked through a random polynomial of degree two which
admits two real random positive roots. The likelihood can be formulated in terms
of the coefficients of the random polynomial, but is not analytically tractable.
Assuming that the random spheroid is parameterized by a set of parameters θreal,
an approximation of the maximum a posteriori is used to estimate θreal. The
estimator is based on the so-called approximate Bayesian computation method and
a kernel density technique. As an illustration, the case of a spheroids population,
whose semi-major axis follows a gamma distribution and the flattening coefficient a
truncated normal distribution, is studied. The numerical results demonstrate that
the bias of the estimator is very low, with a reasonable variance, both for the first
and the second order moments of the semi-axes. The proposed method enables to
recover some 3D morphological characteristics of a population of independent and
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identically distributed spheroids thanks to the only observations of its projected
ellipses.

Keywords Bayesian inference · random spheroid · orthogonal projection ·
stereology · morphological characterization · approximate Bayesian computation ·
Markov Chain Monte Carlo method

1 Introduction

In many situations, ellipsoids arise as a simple, but realistic, model for given ob-
jects. For example, ellipsoidal models are frequently encountered in medical areas
(Fessler and Macovski 1991; Jaggi et al. 1995; Noumeir 1999), and they are also
used as generalized model for droplets and/or bubbles in the field of chemical
engineering (de Langlard et al. 2018b; Kracht et al. 2013). More generally, they
are fundamental in 3D imaging (Merola et al. 2013; Liu et al. 2006; Ozturk-Isik
et al. 2009) for which morphological characteristics (volume, surface, eccentricity,
etc.) of the ellipsoids are essential as they inform on the behavior/properties of
the system.

Regardless of the application, the modeled ellipsoidal objects are usually ob-
served only through sections (Launeau and Robin 2005; Sahagian and Proussevitch
1998) or projections (de Langlard et al. 2018a). In this paper, the focus is on or-
thogonal projection, sometimes called silhouette projection (Karl et al. 1994), for
which solely the elliptical shadow resulting from the orthographic projection is ob-
served. Methods to reconstruct a single ellipsoidal object from its projections are
available in the literature (Bresler and Macovski 1987; Noumeir 1999). Karl et al.
(1994) reported an important results, in particular that three projections on differ-
ent angles are sufficient to uniquely reconstruct the underlying ellipsoid. However,
this type of reconstruction methods can hardly be implemented for a population
of ellipsoids for which various projections at different angles are observed. It then
becomes necessary to match the projections with their original ellipsoids, which
may prove difficult or even impossible in some applications (de Langlard et al.
2018a). The proposed method aims at addressing such situation by adopting a
probabilistic approach.

We consider a population of ellipsoidal objects which are independent and
identically distributed (i.i.d) realizations of a random spheroid, meaning that the
axes and the orientation of each spheroid realization follow the same probability
laws. The observed projections, called projected ellipses, can be viewed as i.i.d
realizations of the projected random spheroid. In such probabilistic setting, the
problem is not a reconstruction problem from the projections, but rather an in-
ference problem on the probability laws of the random spheroid characteristics.
Interestingly, the link between the 3D properties of the random spheroid and those
2D of the projected ellipses is established by a random polynomial of degree two.
Assuming the random spheroid is parametrized by the vector θreal, the inference
is made with a Bayesian approach. An estimator of an approximation of the max-
imum a posteriori (MAP), called approximate maximum a posteriori (AMAP), is
proposed. The estimation procedure is based on the approximate Bayesian compu-
tation (ABC) method to provide samples from an approximation of the posterior
density, and then on a kernel density method applied on these samples. The AMAP
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estimator is compared to the approximate posterior mean (APM) estimator which
consists of averaging the samples from the approximation of the posterior density.
The computation of the AMAP estimator is theoretically justified by the work
of Rubio et al. (2013), and its direct relationship with the maximum likelihood
estimator, while the APM estimator is only used here as a benchmark.

The proposed inference procedure allows for the estimation of the 3D mor-
phological characteristics of a population of spheroids, assuming that they are
independent and identically distributed. We have not encountered other methods
which try to fill the gap between the observed 2D projected ellipses semi-axes and
the 3D geometrical properties of the population of spheroids. A direct application
is the morphological characterization of multiphase flows using image processing,
where the images of particles (bubbles or droplets) are often 2D projections coming
from 3D spheroid-like particles (see de Langlard et al. (2018a)).

This paper is divided in five sections. Section 2 formulates mathematically
the problem and establishes the form of the likelihood. Section 3 focuses on the
sampling scheme from the approximation of the posterior distribution, and on
the computation of the APM estimator. The AMAP estimator is introduced in
Section 4. Finally, some numerical results and a comparison between the APM and
the AMAP estimators are presented in Section 5, before drawing the conclusion
in Section 6.

2 Probabilistic relationship between a random spheroid and its
projections

2.1 Problem formulation

We consider a random ellipsoid of revolution around its semi-major axis a, called
random spheroid, which is centered at the origin O in R3 and whose major axis is
oriented along (Oz), where z is the point of coordinates (0, 0, 1). The semi-axes, a
and b, are random variables with b = εa where ε, the random flattening coefficient,
takes values in the unit interval [0, 1]. Moreover, it is assumed that a ∼ F1(θ1)
and ε ∼ F2(θ2), where F1 and F2 are probability laws which depend respectively
on the parameter vector θ1 ∈ Rp1 and θ2 ∈ Rp2 , p1 and p2 being their respective
number of parameters. Let Z = (Z1,Z2, ...,Zk) be the random vector such that
Zi = (ai, εi) where ai ∼ F1 and εi ∼ F2 for all i ∈ J0, kK. The Zi are assumed
to be independent and identically distributed (i.i.d) and their realizations are not
observed: they are hidden states.

Besides, it is assumed that a set of ellipses y = (y1,y2, ...,yk) is observed. Each
ellipse corresponds to an orthogonal projection of a realization of the spheroid
in an Euclidean plane. The projection plane is orthogonal to a random vector
u uniformly distributed on the unit sphere S2. The observations can then be
rewritten as yi = (a′i, b

′
i), where a′i and b′i are the semi-major and semi-minor axis

of the corresponding ellipse. We denote by Yi’s the associated random variables
that are also i.i.d.

The aim of the proposed method is to recover the parameter vector θreal =
(θ1, θ2) ∈ Rd, with d = p1 + p2, from y, the observations of the projected ellipses.
A schematic representation of the problem is shown in Figure 1.
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Fig. 1: Representation of the inference problem: the projected ellipses are observed
and the goal is to recover the vector of parameters θreal.

A Bayesian framework is adopted, in which the parameter vector to be recov-
ered θreal is considered as a realization of a random variable Θ. The method then
consists in finding the maximum a posteriori (MAP), i.e. the point value θMAP at
which the posterior density function f(·|y) is maximal. This θMAP value is then
used as an estimator of θreal. According to the Bayes formula, we have

f(θ|y) ∝ l(y|θ)f(θ), (1)

where l(·|θ) is the probability density function of the sample y = (y1, · · · ,yk)
given a realization of the set of parameters θ, and f(·) the a priori marginal prob-
ability density function, called the prior density, of the random parameter vector
Θ. We denote by L(θ;y) =

∏k
i=1 l(yi|θ) the corresponding likelihood function.

The marginal distribution, f , and its support, D, are fixed according to prior in-
formation on the set of parameters, while the likelihood is problem specific, and
has to be determined.

2.2 Likelihood determination

Vickers (1996) proved that the orthogonal projection of a revolution ellipsoid of
Cartesian equation

a ≥ c ≥ b > 0,
x2

c2
+
y2

b2
+
z2

a2
= 1 (2)

on the plane orthogonal to the unit vector u = (ux, uy, uz) is an ellipse whose
squared semi-axes (a′2, b′2) are the roots of the polynomial

X (λ) = λ2 − αλ+ β, (3)

where the coefficients α and β are defined by{
α = u2x(b2 + a2) + u2y(a2 + c2) + u2z(c

2 + b2)
β = u2xb

2a2 + u2yc
2a2 + u2zc

2b2.
(4)

Here, the unit vector u is uniformly distributed on the unit sphere S2 of R3,
thus guaranteeing the random nature of the projection plane. Note that it is equiv-
alent to assuming either that the random spheroid is uniformly oriented, with the
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projections belonging to a fixed plane, or that the random spheroid is fixed and
the projection plane is uniformly oriented. Moreover, the coefficients α and β are
random variables, as they are measurable as a product and sum of measurable
functions of the random variables a, ε and u. X is therefore called a random
polynomial.

With the assumption b = c = εa where ε ∈ [0, 1], the set of equations simplifies
to {

α = a2(1 + ε2 + u2z(ε
2 − 1))

β = ε2a2(α− ε2a2).
(5)

The roots λ1 and λ2 of X are also random variables because they are measur-
able as continuous functions of α and β. In the next proposition, it is shown that
the roots of X (λ) are real random variables.

Proposition 1 Let ∆ = α2 − 4β be the real random variable where α and β are
the random variables defined in Eq. (5). Then, ∆ is positive almost surely.

Proof We have

∆ ≥ 0⇔ α2 ≥ 4β

⇔ a4(1 + ε2 + u2z(ε
2 − 1))2 ≥ 4ε2a2(a2(1 + ε2 + u2z(ε

2 − 1))− ε2a2)

⇔ (ε2 + 1 + u2z(ε
2 − 1))2 ≥ 4ε2(1 + u2z(ε

2 − 1)).

All inequalities are true almost surely. It then suffices to note that the last in-
equality is true because

∀(x, y) ∈ R2, (x+ y)2 ≥ 4xy.

Choosing x = ε2 and y = 1 + u2z(ε
2 − 1) leads to the result.

ut

From this proposition, we deduce that the roots can be expressed as

λ1 =
α+

√
α2 − 4β

2
and λ2 = α− λ1. (6)

Moreover, λ1 is clearly positive almost surely. And, it is easy to show that λ2 also
is.

We note S = {(v, w) ∈ R2
+, v ≥ w} and T = {(v, w) ∈ R2

+, v ≥ 2
√
w} two

subsets of R2
+. Let gθa′b′ : S → R+ be the joint probability density function of

the semi-major axis a′ and semi-minor axis b′ of the random projected ellipse,
gθλ1λ2

: S → R+ the joint probability density function of the roots λ1 and λ2 of

the random polynomial X (λ), and gθαβ : T → R+ the one of the X coefficients in

Eq. (3). In Proposition 2 below, we express the analytical link between gθa′b′ and
gθαβ .

Proposition 2 Let X (λ) be the random polynomial defined in Eq. (3) whose roots
(λ1, λ2) correspond to the squared semi-axes (a′2, b′2) of the random projected el-
lipse from the random spheroid defined in Section 2.1. Then, the joint density
function gθa′b′ of (a′, b′) is given by

gθa′b′(v, w) = gθαβ(v2 + w2, v2w2)(v2 − w2)4vw, ∀(v, w) ∈ S, (7)

where S = {(v, w) ∈ R2
+, v ≥ w}.
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Proof By definition, the support of the random vectors (λ1, λ2) and (a′, b′) is the
set S = {(v, w) ∈ R2

+, v ≥ w}. Let h1 : S → S be the function defined as

h1 : (v, w) 7→ (
√
v,
√
w). (8)

Note that (a′, b′) = h1(λ1, λ2). Moreover, the function h1 is a C1-diffeomorphism.
The inverse function h−1

1 : S → S is given by

h−1
1 : (v, w) 7→ (v2, w2). (9)

By applying a change of variables (see Cramér (1946), page 293) we have

gθa′b′(v, w) = gθλ1λ2
(h−1

1 (v, w))× | det(J1)|, ∀(v, w) ∈ S, (10)

where J1 is the Jacobian matrix of the inverse transformation given by(
2v 0
0 2w

)
and det(J1) is its determinant. As det(J1) = 4vw, it reads

gθa′b′(v, w) = gθλ1λ2
(v2, w2)4vw, ∀(v, w) ∈ S. (11)

From Proposition 1, we notice that the support of the random vector (α, β) is
the set T = {(v, w) ∈ R2

+, 1 v ≥ 2
√
w}. Let h2 : T → S be the function defined as

h2 : (v, w) 7→
(
v +
√
v2 − 4w

2
,
v −
√
v2 − 4w

2

)
. (12)

Note that (λ1, λ2) = h2(α, β). The inverse function h−1
2 : S → T is given by

h−1
2 : (v, w) 7→ (v + w, vw). (13)

Again, following the change of variables defined by the function h2, it comes

gθλ1λ2
(v, w) = gθαβ(h−1

2 (v, w))× | det(J2)|, ∀(v, w) ∈ S, (14)

where J2 is the Jacobian matrix of the transformation h−1
2 . Its determinant is

det(J2) = (v − w), and thus

gθλ1λ2
(v, w) = gθαβ(v + w, vw)(v − w), ∀(v, w) ∈ S. (15)

The result is obtained by replacing Eq. (15) in Eq. (11).
ut

This result demonstrates the equivalence between the joint probability law of a′

and b′ and that of the coefficients of the random polynomial X defined in Eq. (3).
The following corollary specifies the likelihood L(θ;y).

Corollary 1 Let y = (y1, ...,yk) be the set of observed orthogonal projections of
the random spheroid with parameter vector θ. Then, the likelihood L(θ;y) is given
by

L(θ;y) =

k∏
i=1

gθαβ(a′i
2

+ b′i
2
, a′i

2
b′i

2
)(a′i

2 − b′i
2
)4a′ib

′
i. (16)

where gθαβ is the joint probability density function of the coefficients of the random
polynomial X defined by Eq. (3).
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Proof Let θ ∈ Rd be a realization of the parameter vector Θ. By definition, we
have

l(yi|θ) = gθa′b′(a
′
i, b
′
i). (17)

From Proposition 2, it comes

l(yi|θ) = gθαβ(a′i
2

+ b′i
2
, a′i

2
b′i

2
)(a′i

2 − b′i
2
)4a′ib

′
i. (18)

As the observations Yi are i.i.d, the likelihood L(θ;y) is then given by

L(θ;y) =
k∏
i=1

l(yi|θ) (19)

=
k∏
i=1

gθαβ(a′i
2

+ b′i
2
, a′i

2
b′i

2
)(a′i

2 − b′i
2
)4a′ib

′
i. (20)

ut

Consequently, the likelihood L(θ;y) is completely determined by the joint
probability density gθαβ of the coefficients of the random polynomial of Eq. (3).
However, the joint law of α and β is not explicitly known. These coefficients are
non-linear functions of both the semi-major axis, the flattening coefficient of the
random spheroid, and on the projection plane’s orientation (see Eq. (5)). There-
fore, analytical expression of their joint probability density function is difficult to
obtain. The posterior density is therefore not analytically tractable.

3 The approximate posterior mean estimator

Pritchard et al. (1999); Tavaré et al. (1997) were first to introduce the ABC meth-
ods when the likelihood is not available in analytical form in order to sample from
an approximation of the posterior distribution. The simplest approach of ABC is
based on a rejection technique by bypassing the calculation of the likelihood func-
tion. Only samples according to the conditional distribution of the observations
given the set of parameters are required.

If y ∼ l(·|θ) and if f(·) is the prior density then the proposed rejection method
follows the three steps below:

1. sample θ′ ∼ f(·) ;
2. sample y′ ∼ l(·|θ′) ;
3. accept θ′ if ρ(S(y′), S(y)) ≤ δ.

In the third step, S : R2×k → Rs+ is a function that calculates a set of s statistics on
the y data (e.g. mean, standard deviation, etc.) and the function ρ : Rs×Rs → R+

measures the difference between the statistics of the simulated data y′ and those
observed y. In other words, θ′ is considered as a representative sample if the dis-
tance between the statistics of the simulated data according to the likelihood and
the observed ones is small enough (i.e. smaller than a chosen tolerance value δ).
If θ′ is accepted, then it is a sample from the posterior distribution conditionally
to ρ(S(y′), S(y)) ≤ δ, i.e. from f(·|ρ(S(y′), S(y)) ≤ δ). When δ → 0, we sample
conditionally to the summary statistics of the observed data, i.e. from f(·|S(y)).
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Moreover, when the summary statistics S is Bayes sufficient (see Sisson et al.
(2018), page 128), the approximate posterior density f(·|ρ(S(y′), S(y)) ≤ δ) con-
verges to the true posterior f(·|y) when δ → 0. However, the algorithm becomes
ineffective in practice if δ is too small, resulting in a systematic rejection of all the
proposals θ′.

The three-step acceptance-rejection procedure is a very general method, but
naive in the multidimensional case as it is really inefficient due to the curse of
dimensionality. Other sampling methods were proposed to circumvent this prob-
lem. Beaumont et al. (2002) considered a conditional density estimate based on a
regression technique (Ruppert and Wand 1994), Marjoram et al. (2003); Ratmann
et al. (2007); Becquet and Przeworski (2007) adopted a Markov chain Monte Carlo
(MCMC) version, and similarly, Sisson et al. (2007); Beaumont et al. (2009); Toni
et al. (2009) implemented a sequential Monte Carlo version. An exhaustive sum-
mary of these developments falls outside the scope of the present paper. We refer
to Beaumont (2010); Sisson et al. (2018) for more details about ABC methods.

In this study, the MCMC-version is used to sample from f(·|ρ(S(y′), S(y)) ≤
δ). The algorithm (see Algorithm 1) is the following: first, an initial set of param-
eters is considered (for example, a sample from the prior distribution). A Markov
chain Θ1, Θ2, . . . is then built according to a random walk: at each iteration t,
a new set of parameters, θ′, is proposed from an independent perturbation q of
the previous state θ. The search space D is assumed to be a bounded set of
Rd which contains θreal. The perturbation q is chosen to be a uniform random
vector belonging to an appropriate subset P centered at the origin. Then, θ′ is
uniformly generated over Pθ, where Pθ is the translation of P by the vector θ.
Note that for states θ close to the boundary of D, the new proposal θ′ can fall
outside of D and must therefore be corrected to belong to the space of all possible
states, while preserving the symetry of the propsal density. Then, a set of projected
axes y′ is sampled from l(·|θ′). Two scenarios are then possible: i) if the distance
ρ(S(y′), S(y)) is lower than the chosen tolerance δ, the proposition θ′ is accepted

as a new sample from f(·|ρ(S(y′), S(y)) ≤ δ) with probability min
{
f(θ′)
f(θ) , 1

}
, ii)

otherwise, the previous state θ is considered as a new sample. As shown by Mar-
joram et al. (2003), the stationary distribution of the Markov chain Θ1, Θ2, . . . in
Algorithm 1 is f(·|ρ(S(y′), S(y)) ≤ δ).

Note that a new proposal of parameter vector is obtained from the current
state θ by an independent uniform perturbation within Pθ. This enables to not be
too restrictive on the part of the space to explore providing that the size of Pθ is
not too small. However, it is difficult to give a general rule of thumb for the choice
of P as it may influence the autocorrelation and the mixing of the chain. Regarding
the domain D of all possible states, it should be fixed as small as possible while
ensuring θreal ∈ D. This will lead to a better convergence of the chain, see also
Rubio et al. (2013).

The APM estimator is computed by averaging the samples from the approxi-
mation of the posterior density. Note that other statistics such as the approximate
posterior median could also be computed directly from these samples. The APM
estimator is only used here as a reference with respect to the AMAP which requires
two additional calculation steps described below.
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Algorithm 1 The APM estimator.

Initialization:
Choose a vector of initial parameters θ0.

Repeat: At iteration t ≥ 1, Θt = θ,
1) Sample the parameters according to a random walk:

θ′ = θ + q

where q is random number uniformly distributed over P . A correction is made if θ′ /∈ D.
2) Sample y′ ∼ l(.|θ′) using Eq. (5) and (6).
3) If ρ(S(y′), S(y)) ≤ δ then:

– generate u ∼ U(0, 1),

– compute h =
f(θ′)
f(θ)

and accept θ′ if u ≤ h, i.e. Θt+1 = θ′. Otherwise, stay at θ, i.e.

Θt+1 = θ.

4) If ρ(S(y′), S(y)) ≥ δ, keep θ, i.e. Θt+1 = θ.
Return: the APM estimator is obtained by averaging these samples.

4 The approximate maximum a posteriori estimator

We recall that the MAP, θMAP, is the value which maximizes the posterior density
for the realized data, i.e. f(.|y). Rubio et al. (2013) proposed a natural approach
to compute an approximation of the MAP which consists of using a kernel density
with previous samples to get a parametric approximation of the posterior density
and then maximizing this kernel density estimator. Note that if the prior f(.) is
chosen to be uniform on a compact set D, then the MAP estimator coincides with
the maximum likelihood estimator. Therefore, the following approach can also
serve as a method to get an approximation of the maximum likelihood estimate.

A kernel density estimator f̂n(·|ρ(S(y′), S(y)) ≤ δ) of f(·|ρ(S(y′), S(y)) ≤ δ)
can be defined from the n samples θ1, · · · , θn by

f̂n(θ|ρ(S(y′), S(y)) ≤ δ) =
1

n
|det(H)|−1/2

n∑
i=1

K
(
H−1/2(θ − θi)

)
,∀θ ∈ D,

(21)
where K is a kernel (a symmetric non-negative real-valued integrable function
whose integral equals 1 on Rd) and H is a 4 × 4 symmetric and positive definite
matrix. H is called the bandwidth matrix of the kernel density estimator. Note that

it is assumed for simplicity that H is diagonal, i.e. H = diag
(
h(1), · · · , h(4)

)
. The

estimator f̂n(·|ρ(S(y′), S(y)) ≤ δ) in Eq. (21) is only an approximation of the true

posterior density. However, as it will be explained thereafter, f̂n(·|ρ(S(y′), S(y)) ≤
δ), under certain conditions, is an appropriate approximation of the true posterior
density.

The non-parametric estimator in Eq. (21) can be maximized. Its maximum,
θAMAP, is the approximate maximum a posteriori (AMAP). It serves as an approx-
imation of θMAP. In practice, the maximization of the kernel density is achieved
numerically to obtain an estimator θ̂AMAP of θAMAP. Indeed, as shown by Ru-
bio et al. (2013) (Corollary 2), for a set of sufficient statistics S, and any level of
precision γ > 0, there exists δ such that, almost surely,

lim
n→∞

∣∣∣f̂n(θ̂AMAP|ρ(S(y′), S(y)) ≤ δ)− f(θMAP|y)
∣∣∣ ≤ γ. (22)
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This result holds if θ̂AMAP −→
n→∞

θAMAP almost surely and under some mild

continuity assumptions of the approximate posterior distribution. Obviously, one
crucial assumption is that θMAP exists, meaning that the posterior density has
a unique maximizer. Here, the existence is guaranteed as the posterior density is
assumed to be continuous on the compact set D. However, uniqueness is not en-
sured in general. Under these conditions, θ̂AMAP is close to θMAP for an increasing
number of samples n and sufficiently small δ. This result justifies the use of such
an estimator θ̂AMAP for the MAP.

The estimation of the AMAP is detailed in Algorithm 2. Step 1) has been
described in Algorithm 1. Regarding step 2), a fundamental parameter to be de-
termined is the bandwidth matrix H (see Eq. (21)). H accounts for the degree
of smoothing: the higher the value of the diagonal elements, the smoother the
function determined by the kernel density estimation. Several methods exist for
bandwidth selection (Duong and Hazelton 2003; Zhang et al. 2006; Zougab et al.
2014). Among them, the Silverman’s rule of thumb (Silverman 2018) gives

h(i) =

(
4

(d+ 2)n

) 1
d+4

σ(i), (23)

where σ(i) stands for the standard deviation of the ith element of θ. In practice,
σ(i) is the empirical standard deviation estimated from the samples. This model
is especially relevant when the true probability distribution is close to Gaussian.
In more general cases, the Silverman rule of thumb may lead to a poor kernel
density estimator, and a more general method has to be chosen such as the so-
called likelihood cross-validation (Brewer 2000; Zhang et al. 2006; Sugiyama 2015).
The later consists in maximizing the pseudo-likelihood given by

L(x1, · · · ,xn|H) =
n∑
i=1

log

 1

n

n∑
j=1

|H|−1/2K
(
H−1/2(xi − xj)

) . (24)

It is worth noting that the maximization of L in Eq. (24) leads to a zero band-
width matrix H, as xi can be equal to xj . To overcome this problem, the k-fold
cross-validation estimator of the pseudo-likelihood is preferred (Sugiyama 2015;
Goodfellow et al. 2016), that also helps reducing the bias. Note that the correla-
tion of the Markov chain may affect the estimation of the bandwidth matrix. In
practice, it is not as problematic as might be expected, especially if the sample
set is large enough (Rubio et al. 2013; Sköld and Roberts 2003). The choice of the
kernel type is in general not crucial. Therefore, in the following, a multivariate
Gaussian kernel is chosen. The last step of Algorithm 2 is also achieved by a di-
rect search optimization algorithm called pattern search (Davidon 1991; Abramson
2002).

5 Numerical Validation

Rubio et al. (2013) performed numerical experiments in simple cases to highlight
the use of the AMAP estimator when the likelihood is intractable. Additional
numerical experiments are introduced to further emphasize the performances of
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Algorithm 2 Estimation of the AMAP

1) Obtain n samples θ1, . . . , θn from f(·|ρ(S(y′), S(y)) ≤ δ) (see Algorithm 1).
2) Compute the optimal bandwidth matrix H0 using a likelihood cross-validation procedure

and construct the kernel density estimator f̂n(·|ρ(S(y′), S(y)) ≤ δ) using Eq. (21).

3) Compute the maximum θ̂AMAP of f̂n(·|ρ(S(y′), S(y)) ≤ δ) using an optimization algo-
rithm.

the AMAP estimator in our setting. Comparison with the APM estimator perfor-
mances is also provided in a specific case study. The influence of three parameters
is considered: the tolerance δ, the number of samples n, and the number of obser-
vations k. Finally, a numerical experiment is performed to asses the influence of
the set of statistics.

5.1 Assumptions and ground truth data

We consider a random spheroid with a semi-major axis following a gamma law
a ∼ Γ (4, 0.05) and a semi-minor axis b = εa, where the flattening coefficient
ε follows a truncated normal law trN (0.85, 0.1; 1/2, 1) restricted to the interval
[1/2, 1], of mean 0.85 and standard deviation 0.1. The true set of parameters is
θreal = (µ1, σ1, µ2, σ2) where µ1 = 0.2, σ1 = 0.1, µ2 = 0.85 and σ2 = 0.1. Note
that, the choice of a gamma probability law can be used to describe the diameter
distribution of spherical particles or the semi-major axis of spheroid-like particles
with low elongation in the context of multiphase flows description.

A number of k realizations of the oriented random spheroid are sampled. For
each realization, the semi-axes of the projected ellipses, a′ = (a′1, · · · , a′k) and b′ =
(b′1, · · · , b′k), are obtained from Eq. (6). The set of k projected ellipses constitutes
the observations from which the AMAP estimator is constructed.

The vector of initial parameters θ0 for the ABC sampler is calculated from the
observations of the projected ellipses as follows:

θ0 =
(
µ̂(a′), σ̂(a′), µ̂(b′/a′), σ̂(b′/a′)

)
, (25)

where µ̂ and σ̂ are the empirical mean and standard deviation, i.e.
µ̂(a′) =

1

k

k∑
i=1

a′i, σ̂(a′) =

√√√√ 1

k − 1

k∑
i=1

(a′i − µ̂(a′))2,

µ̂(b′/a′) =
1

k

k∑
i=1

b′i
a′i

et σ̂(b′/a′) =

√√√√ 1

k − 1

k∑
i=1

(
b′i
a′i
− µ̂(b′/a′)

)2

.

(26)

As it is a numerical study, the prior density f : D → R+ is chosen as the probability
density function of a continuous multivariate uniform distribution for convenience.
A burn-in period of 100 steps is used to mitigate the choice of the vector of initial
parameters. It is not necessary to have longer burn-in period as the initial state
θ0 defined in Eq. (25) is more likely to bring the Markov chain directly into a
high probability region than a vector sampled from the multivariate uniform prior



12 Mathieu de Langlard* et al.

over D. The support D of the parameters vector Θ is defined, with respect to the
observations, by

D = (0,max
i

(a′i))× (0, 3σ̂(a′))× (0.5,max
i

(b′i/a
′
i))× (0, 3σ̂(b′/a′)). (27)

It is better to consider a small support D, while ensuring that the estimated
parameter vector θreal belongs to D. Note that, with a uniform prior, the ratio
h in Algorithm 1 is always equal to 1, and the new state θ′ is automatically
accepted if ρ(S(y′), S(y)) ≤ δ. However, this setting (uniform prior and uniform
perturbation) is not equivalent to the three-step acceptance-rejection procedure
described in Section 3 as the perturbation is made in the neighborhood Pθ of the
current state θ. We denote l1, . . . , l4 the four lengths of D, i.e.

l1 = max
i

(a′i),

l2 = 3σ̂(a′),

l3 = max
i

(b′i/a
′
i)− 0.5,

l4 = 3σ̂(b′/a′).

Then, the set P which defines the support of the perturbation is here fixed as

P =
1

8

4∏
i=1

(−li, li). (28)

Note that no sub-sampling procedure has been used for the Markov chain.
The ρ function which measures the deviation between the statistics of the

sampled semi-axes and the observations is defined as the following

ρ : Rs × Rs −→ R+

(x, y) 7−→ max
1≤i≤s

(∣∣∣xi

yi
− 1
∣∣∣) ,

where s ∈ N∗ is the number of statistics. This function was initially proposed by
Pritchard et al. (1999). Although the semi-major axis and the flattening coefficient
of the random spheroid realizations are not observed, a natural choice of statistics
S is their counterparts for the projected ellipses. Therefore, four statistics are first
considered: the mean and standard deviation of the semi-major axis, and those of
the flattening coefficient of the projected ellipses, as defined in Eq. (26).

5.2 Results

5.2.1 Influence of the tolerance δ

The tolerance δ has been shown to have an impact on the quality of the approxima-
tion of the posterior density approximation. Therefore, different values of δ were
tested: 0.8, 0.6, 0.4 and 0.2. In each case, we sampled 20 times from the approxi-
mate posterior distribution f(·|ρ(S(y′), S(y) ≤ δ), and computed the AMAP and
APM estimators for each sample. The sample size is n = 50, 000 and the number
of observed ellipses is k = 4, 000. Fig. 2 gives the violin plots of both the AMAP
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estimator (in blue) and the APM estimator (in green) for the four parameters. In
each graph, the solid black line within the various violin plots corresponds to the
median of the 20 estimates, while the 25th and 75th percentiles are highlighted
with dashed black lines, and the target values with red lines.

 APM

Fig. 2: Performances of the AMAP estimator (blue) and the APM estimator
(green) with respect to the tolerance δ for n=50,000 and k=4,000. The median,
the 25th and 75th percentiles are highlighted in solid black line and dashed black
lines, respectively. The red lines correspond to the target values.

A decrease of the dispersion of the distribution is evidenced as δ decreases for
the two estimators. The distributions tend to be more concentrated around the
corresponding theoretical values. This is not surprising as f(·|ρ(S(y′), S(y)) is a
better approximation of f(·|y) when δ decreases, as indicated in Section 3. How-
ever, it can be noted that the 25th-75th percentile interval of the APM estimator
does not systematically include the target value.

The mean absolute percentage error (mape) is given by

mapej =
1

20

20∑
i=1

|θ̂i,j − θ(j)theo|
θ
(j)
theo

× 100, j ∈ {1, . . . , 4}, (29)

where θ̂i,j is the estimator of parameter j for simulation i, and θ
(j)
theo its target

value. In the case δ = 0.2, and for both estimators, the mape is very low (≤ 9%)
for the parameters µ1, σ1 and µ2, while it is higher (lower than 25% and 20%
for the AMAP and APM respectively) for the standard deviation of the flattening
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coefficient σ2, see Table 1. One explanation is that the chosen summary statistics
are not fully informative for the posterior distribution, see Section 5.2.4. Also, the
tolerance δ may still be too high, leading to a too coarse approximation of the
posterior distribution to allow the parameter σ2 to be found precisely. The trend
of the violin plots suggests that the bias and dispersion should decrease for smaller
δ. However, for such low δ values, the computation time of the AMAP estimator
rises significantly. One can expect that the AMAP estimator is even more efficient
for lower value of δ, but at the price of computation time.

The APM estimator has a slightly higher bias than the AMAP estimator for
µ1, µ2 and σ2, but its variance is much lower. This leads to a root mean square
error (rmse) which is lower for the APM estimator, see Table 1. The higher vari-
ance of the AMAP is due to the implementation of a kernel density method for
approximating the posterior density surface, which is known to be less robust for
high dimension (typically d ≥ 3). Note that the computation time of the AMAP
estimator is higher as it requires the estimation of the bandwidth matrix H with a
k-fold cross-validation procedure and the use of a numerical optimization method.

Table 1: Bias, rmse and mape criteria of both AMAP and APM estimators for
tolerance parameter δ = 0.2.

µ1 σ1 µ2 σ2

Bias
AMAP 0.0055 0.0070 -0.0320 -0.0141
APM 0.0059 0.0009 -0.0355 -0.0196

rmse
AMAP 0.0158 0.0112 0.0713 0.0340
APM 0.0059 0.0009 0.0358 0.0197

mape
AMAP 5.9 8.6 6.4 26.9
APM 3 0.9 4.2 19.6

5.2.2 Influence of the number of samples n

To assess the influence of the sample size, five increasing values of n were tested:
10, 000, 20, 000, 30, 000, 40, 000 and 50, 000. The tolerance δ was fixed to 0.2,
and the number of observations k to 4, 000. Fig. 3 gives the violin plots of the
estimations for each parameter and number of samples n.

No clear improvement of the performance of the estimators is highlighted when
n increases. For the given tolerance value (δ = 0.2), 10, 000 samples may be enough
to reach such levels of bias. For both estimators, the mape, see Eq. (29), is similar
to that of the previous numerical test for all parameters, regardless of the number
of samples.

5.2.3 Influence of the number of observations k

The number of observations influences the quality of the information contained in
the summary statistics. In practice, to assess this effects, a database of kmax =
4, 000 observations has been created, and subdivided into six shuffled parts of 100,
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Fig. 3: Performances of the AMAP estimator (blue) and the APM estimator
(green) with respect to the number of samples n for δ = 0.2 and k = 4, 000.
The median, the 25th and 75th percentiles are highlighted in solid black line and
dashed black lines, respectively. The red lines correspond to the target values.

500, 1000, 2, 000, 3, 000 and 4, 000 observations. The tolerance δ is fixed to 0.2 and
n = 50, 000.

As evidenced by Fig. 4, there is a clear reduction of the bias between k = 100
and k = 500, especially for the mean and standard deviation of the semi-major
axis µ1 and σ1. For a higher number of observations, the gain in reducing the bias
is less obvious. For the AMAP estimator, a decrease of the dispersion of µ1, µ2

and σ2 can be observed in Fig. 4, as suggested by the relative interquartile ranges
reported in Table 2. The relative interquartile ranges IQRj , for the parameter

θ
(j)
theo and depending on the numbers of samples, is defined as

IQRj =
Q3 −Q1

mj
× 100, j ∈ {1, · · · , 4}, (30)

where Q3 and Q1 are respectively the 75- and 25-percentile, and mi is the median

of the estimations for the parameter θ
(j)
theo.

The effect of an increasing number of observations is not significant beyond
k > 500. This is not really surprising, given the considered summary statistics
(means and standard deviations of the ellipses semi-axes), several hundreds of
observations are sufficient to summarize the information.
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Fig. 4: Performances of the AMAP estimator (blue) and the APM estimator
(green) with respect to the number of observations k for δ = 0.2 and n = 50, 000.
The median, the 25th and 75th percentiles are highlighted in solid black line and
dashed black lines, respectively. The red lines correspond to the target values.

Table 2: Interquartile range of the estimations with respect to the number of
observations k for the AMAP estimator.

100 500 1000 2000 3000 4000
µ̂1 11 4 3 3 3 3
σ̂1 4 6 14 8 11 7
µ̂2 18 7 15 9 8 9
σ̂2 83 27 54 37 29 34

5.2.4 Influence of the summary statistics

As mentioned in Section 3, the choice of summary statistics is crucial for the
approximation of the posterior distribution. However, there is no general rule for
determining the number or even the form of these statistics. The choice is often
suggested by the problem itself and its underlying application. On the one hand,
an insufficient number of statistics may not contain enough information to reliably
infer on the random spheroid. The problem is said to be sub-determined. On the
other hand, a large number of statistics with respect to the number of parameters
to be determined, can interfere with important information and misconduct the
sampler’s convergence in Algorithm 1. The problem is in this case over-determined.
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In order to highlight the effect of the number of statistics, two additional tests
were carried out:

1. test 1: three statistics, instead of the four previously used, are selected:

S =
(
µ̂(a′), σ̂(a′), µ̂(b′/a′)

)
;

2. test 2: five statistics are taken into account:

S =
(
µ̂(a′), σ̂(a′), µ̂(b′/a′), σ̂(b′/a′), µ̂aire

)
where µ̂aire is the average area of the projected ellipses.

The AMAP estimators were computed for k = 4, 000, δ = 0.2 and n = 50, 000
for the two tests. The violin plots, obtained for 20 optimizations for each test, are
compared in Fig. 5. The test 0 is the results of the ”reference” case study (i.e.
with the 4 statistics considered so far).

 APM
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Fig. 5: Performances of the AMAP estimator (blue) and the APM estimator
(green) with respect to the choice of statistics for δ = 0.2, k = 4, 000 and
n = 50, 000. The median, the 25- and 75-percentiles are highlighted in solid black
line and dashed black lines, respectively. The red lines correspond to the target
values.

It can be seen that both the AMAP and the APM estimators exhibit higher
performances for test 2. The addition of the information on the average area of the
projected ellipses enables to reduce the bias for all estimated parameters compared
to the ”reference” test 0, without impact on the dispersion as highlighted by the



18 Mathieu de Langlard* et al.

rmse reported in Table 3. The mean absolute percentage error is also decreased
with less than 10% for all parameters in the case of the APM estimator. For the
AMAP estimator, the mape of σ2 has also decreased compared to test 0, but is
still higher (around 20%) than the mape of the other parameters, see Table 3.
Note also that the bias of the AMAP estimator is lower than the APM estimator,
and that the 25th and 75th percentile interval of the APM estimator does not
systematically include its target value as previously mentioned.

On the other hand, we can clearly observe from Fig. 5 that the reduction in
the number of statistics (test 1 ) leads to a higher bias and dispersion, especially
for the parameters µ̂2 and σ̂2 of the AMAP estimator. This can be explained by
a lack of information, as the standard deviation of the flattening coefficient of the
projected ellipses has been removed.

Table 3: Bias, rmse and mape criteria of both AMAP and APM estimators for test
2.

µ1 σ1 µ2 σ2

Bias
AMAP 0.0051 -0.0003 0.0062 0.0069
APM 0.0076 0.0005 -0.0129 -0.0089

rmse
AMAP 0.0137 0.0102 0.0743 0.0281
APM 0.0076 0.0005 0.0140 0.0093

mape
AMAP 5 8.1 6.8 22
APM 3.8 0.5 1.5 9
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6 Conclusion

In this study, a Bayesian approach is proposed to estimate the parameters of
the semi-axis probability laws of a random spheroid, using its observed orthog-
onal projections. This method enables to infer 3D geometrical characteristics of
ellipsoid-like particle systems, from 2D projection image, for which the particles
are independent and identical distributed realizations of the considered random
spheroid. The main assumption is on the probability laws of the semi-axes, which
requires some a priori information in practical application. Two estimators are
compared, an approximation of the maximum a posteriori and an approximation
of the posterior mean, called respectively the AMAP and APM. Both estimators
require a Markov chain Monte Carlo procedure to sample from an approximation
of the posterior distribution (the ABC algorithm). Besides, an optimization algo-
rithm is implemented to maximize a kernel density estimator of the approximate
posterior density in the case of the AMAP estimator.

One important result is Eq. (16), which establishes the relationship between
the observed projected ellipses and the random spheroid parameters. This new
stereological result can be implemented (for example, with a maximum likelihood
estimation technique) if the joint probability of α and β are available in analyt-
ical form, or can be approximated. Moreover, the algorithms 1 and 2 provide an
approximation of the spheroid parameters with the APM and AMAP estimators,
respectively. Furthermore, the AMAP estimator can provide an approximation of
the maximum likelihood if the prior is chosen to be uniform.

This algorithm has been numerically validated in the case of a gamma dis-
tribution and a truncated normal distribution for the semi-major axis and the
flattening coefficient, respectively. Satisfying results were achieved with less than
10% of maximum absolute percentage error for most of the parameters in the
case of the five statistics for both estimators (except for σ2 of the AMAP esti-
mator). It has been shown that reducing the tolerance δ results in a much more
statistically efficient estimators. Simulations have also shown that, for δ = 0.2, a
number of 10, 000 samples seems to be enough to achieve relatively low bias. Be-
sides, the number of observations does not impact significantly the performances
of both estimators for the chosen summary statistics. The numerical experiments
suggest that between 500-1, 000 observed ellipses may be enough for the proposed
”reference” summary statistics. Furthermore, the comparison between the AMAP
and the APM estimators highlights the good performances of the relatively sim-
ple APM estimator for all numerical tests. It has been highlighted that the APM
estimator generally has a much lower variance and a slightly higher bias than the
AMAP estimator. In addition, the 25-75th percentile interval of the APM estima-
tor does not systematically include its target value. This point must be taken into
account in a metrological use of this approach, especially in the context of multi-
phase flows characterization, notably if the systematic bias is not directly known.
Note that other performances of the estimators may be expected for very different
choice of distribution type of the semi-major axis and flattening coefficient, like
for heavy-tail distributions for example.

One important consideration, and possible limitation, of the ABC algorithm
is the selection of sufficient statistics. It is in general difficult to ensure that the
chosen statistics are Bayes sufficient. However, the simulation results show that
relatively low bias and dispersion can be achieved for both estimators when choos-
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ing the means and the standard deviations of the projected semi-axes as set of
statistics, and even lower root mean squared error is achieved if the average area
of the projected ellipses is added. Besides, four parameters were recovered in these
simulations. For higher dimension d, a representative sample set of the posterior
distribution can be more difficult to obtain as it would require a significant number
of samples, hence increasing the computation time.
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