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Due to technology scaling and harsh environments, a wide range of fault tolerant techniques exists to deal
with the error occurrences. Selecting a fault tolerant technique is not trivial, whereas more than the necessary
overhead is usually inserted during the system design. To avoid over-designing, it is necessary to in-depth
understand the available design options. However, an exhaustive listing is neither possible to create nor
efficient to use due to its prohibited size. In this work, we present a top-down binary tree classification
for error detection and correction techniques. At each split, the design space is clearly divided into two
complementary parts using one single attribute, compared with existing classifications that use splits with
multiple attributes. A leaf inherits all the attributes of its ancestors from the root to the leaf. A technique
is decomposed into primitive components, each one belonging to a different leaf. The single attribute splits
can be used to efficiently compare the techniques and to prune the incompatible parts of the design space
during the design of a technique. This essential single attribute division of the design space is required for the
improvement of the techniques and for novel contributions to the fault tolerance domain.
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ory architectures; • Hardware → Error detection and error correction; Redundancy; Self-checking
mechanisms; System-level fault tolerance; Hardware reliability;
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1 INTRODUCTION
The demand for reliability in modern systems has been significantly increased, especially the last
years that technology downscales, making electronics more susceptible to errors [23]. More and
more the systems suffer from reliability disturbances, such as Process, Voltage, and Temperature
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(PVT) variations [46], circuit aging-wearout induced by failure mechanisms, such as Negative-
Bias Temperature Instability (NBTI), Hot Carrier Injection (HCI) [28], radiation-induced Single-
Event Effects (SEEs), such as Single-Event Upsets (SEUs) and Single Event Transients (SETs) [2],
clock skews [38], thermal stress [48], electromagnetic interference, such as cross-talk and ground
bounce [49], etc. These sources can cause errors which can harm systems temporarily (soft errors),
permanently (hard errors) and semi-permanently (intermittent errors). To satisfy the increasing
demand for reliability, the systems are designed with error detection and/or error correction abilities.
Error detection is responsible for identifying the existence of an error during the system execution,
whereas error correction is responsible for taking immediately actions to correct the error, so as
the system to have an error-free output.
At the same time, the systems have to meet the increasing demands in performance, energy,

and area efficiency [21]. Within thirty years, the code size of automotive, space and avionics
applications has significantly increased [6]. As the system design complexity significantly grows
and performance, power and area requirements have to be preserved, reliable solutions are required
to meet the system requirements, without inserting unnecessary overhead [5]. A wide range of
error detection and correction techniques have been proposed by engineers and researchers. But in
order to decide the most suitable techniques for a given design, an in-depth understanding of the
available design options is required. However, an exhaustive list of all the possible design options
is not possible due to the prohibited size of the design space, and thus, hierarchical structures (a.k.a.
classifications) are required in order to group approaches with similar attributes.

Existing classifications of error detection and correction techniques are usually created bottom-
up by studying the published work and grouping the techniques with similar characteristics. As a
result, the structure of the proposed classifications is usually a wide tree with multi-way splits. A
multi-way split is driven by several attributes at the same time. Such classifications can provide a
quick overview of the main existing approaches. However, they suffer from some limitations, when
a more detailed and in-depth understanding of the available design options is required. First of all,
due to the nature of multiple-way splits, several attributes are repeated in different classes, and
clear bounds, that explicitly separate the classes, are missing. As a result, the classification of error
detection and correction approaches can be ambiguous. For instance, a very common used split in
existing multiple-way classifications is between redundancy and coding, such as in [18]. However,
this split has no clear bounds among its classes. Error Correction Code (ECC) approaches, such
as [3], belong to the coding class, but at the same time require redundancy in space in order to store
the extra bits. REcomputed with Shifted Operands (RESO) [29] approach classified as temporal
redundancy. However, the shifting operations perform an encoding and decoding of the operands,
it has also a part of encoding. Further illustration is provided in Section 3. Another restriction of
existing approaches is related to the fact that multi-way splits are obtained by analyzing a set of
specific techniques. An ad-hoc selection does not imply that the complete design space is covered,
whereas systematically sampling such a set of techniques is not straightforward. Therefore, a
classification with clear bounds among classes, that unambiguously structure the available options
of the design space, is essential.

The purpose of this work is to present such a classification for the design space of error detection
and correction techniques, i.e., approaches able to either only detect an error or to detect and
reconstruct the correct value from incorrect data during execution. The proposed classification is
created by applying a top-down recursive partitioning methodology. Each split is i) univariate, i.e.
it is driven by a single attribute, and ii) binary, i.e. it partitions the parent class into two non-empty
and non-overlapping subclasses that are complementary. With this top-down binary split the
design space is divided into two subclasses, each one describing a unique part: one class includes
the part of the design space that has the attribute and the other class includes the part of the
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design space that does not have the attribute. The attribute defines the most important subclass
to be explored first during the exploration of the design space. To continue the partition process,
the subclass that does not include the attribute (described by a negative attribute expression) is
transformed to an affirmative one and the process is reapplied for each of the subclasses. At the
end, a leaf describes a class that inherits all the characteristics progressing from the root node to
the leaf node. Therefore, the obtained binary tree classification divides the design space into a set
of non-overlapping and complementary classes, removing the limitations of existing multi-way
classifications. For instance, the proposed binary classification resolves the aforementioned problem
of redundant and encoding classes. It applies a binary split between the type of the additional
information to be used for comparison (left branch) and the way this information is created (right
branch). Hence, based on the left branch, hardware duplication approaches [10] create identical
information as the original system, ECC approaches [3] create compressed information, and RESO
approach [29] creates encoding information. Then, based on the right branch, a second identical
hardware circuit is inserted in [10] and an extra cache [3] (similar to spatial redundancy), whereas
approach [29] re-computes encoded information using the original hardware (similar to temporal
redundancy). The proposed classification describes a technique as a combination of primitive
components which belong to different classes. We provide examples of techniques that belong at
each class in order to provide in-depth understanding of the classes and the attributes. To further
support our contribution and to evaluate our classification, we decompose a set of representative
and diverse existing error detection and correction techniques, which largely cover the exploration
space. From the obtained result, we can extract a number of observations, that indicate which of
the design options have been highly explored by existing approaches and which classes remain still
unexplored. In this work, we focus on rigid techniques, i.e. static or dynamic techniques without
self-adaptation capabilities. This means that the approach output depends on information obtained
during execution, but its functionality, i.e., the principle followed to take decisions, cannot be
modified during execution.

The rest of this study is organized as follows. Section 2 presents the target domain and formulates
the problem under study. Section 3 provides the related work on classifications and surveys on fault
tolerance. Section 4 gives the top-down partitioning methodology. Section 5 analyses the binary
tree classification, presents the attributes of each split and provides examples of each class using
existing techniques. Section 6 presents the decomposition of a set of representative techniques
in the proposed classes and provides examples on how the proposed classification highlights the
differences and the similarities of the techniques. Finally, Section 7 concludes this study. The annex 1
presents the details of the complete decomposition of all the studied techniques.

2 TARGET DOMAIN AND PROBLEM FORMULATION
Our target domain is systems implemented as Systems-on-Chips (SoC), i.e. an integrated circuit that
includes processors and numerous digital peripherals packaged into a single chip. Our target domain
includes platforms that i) have hardware components that are programmable using instructions and
ii) implemented by mapping directly the algorithm operations to hardware. The first case includes
typical platforms that are programmable using an Instruction Set Architecture (ISA), such as a RISC
processor. This category also covers platforms with flexible hardware components, that can be
programmed using a set of control bits, such as a Coarse-Grained Reconfigurable Arrays (CGRAs).
The second case refers to fine grained configurable platforms, where the algorithm operations are
directly mapped to hardware operators, such as Field-Programmable Gate Arrays (FPGAs), where
the Control Logic Blocks (CLB) are configured to implement the hardware operation.
To make a system reliable, fault tolerant mechanisms have to be designed and added to the

system. We are focusing on the techniques that are: 1) rigid, i.e. without self-adaptation capabilities
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during execution and 2) capable of detecting an error and potentially also correcting it during
execution. Rigid techniques include static or dynamic approaches, whose output depends on the
information and the system state, obtained during execution. However, the principle followed
in order to take decisions, during execution, is defined at design time and cannot be modified
during execution. Approaches with self-adaptation capabilities change the principle followed to
take decisions during execution, and thus, they have additional characteristics considering how to
decide the self-adaptation and how to implement it during execution. Therefore, the classification of
approaches with self-adaptation capabilities is an extension of the classification of rigid approaches,
and we will cover it in our future work. Our work focuses on error correction approaches that have
as goal to reconstruct immediately the correct value during execution. Error mitigation approaches,
that have as goal to over-write the impact of the error, are excluded from the proposed classification.
Such approaches are usually based on excluding the faulty hardware components from execution
(e.g., task re-mapping approaches) or keeping intermediate correct states, that can be used to roll
back to a known correct state and continue execution (e.g., check-pointing approaches). The work
of [33] presents such a classification for the error mitigation approaches under functional errors,
being orthogonal to the proposed classification for error detection and correction approaches. The
error detection and correction techniques under study are dedicated to faults occurring on the
hardware of the SoC and they may manifest themselves as errors and failures at the software part.
It excludes the errors whose source is the inconsistent code of the software part, i.e. software flaws.
The classification is not restricted with respect to the type of the fault occurring on the systems,
i.e. it includes techniques for both parametric and functional errors [40]. The classification does
not focus on separating the techniques to different abstraction levels of the digital system design,
as each class can be further instantiated to the appropriate abstraction levels depending on the
requirements of the design. With respect to the top-down classification for reliability modeling [40],
the proposed classification further projects the lower layers of [40] focusing on error detection and
correction techniques.
The goal of this work is to provide a binary classification which divides the design space into

classes describing “how to” perform error detection and correction, so as to support the design of
reliable systems under our target domain. The classification is described by a set of complementary
and non-overlapping classes. Hence, a technique is divided to a set of primitive components and
each component is classified into one of the proposed classes.

3 RELATEDWORK
The large literature in fault tolerant approaches clearly shows the importance of protecting the
system from faults. Several works exist that present a classification of fault tolerant approaches.
However, most of these classifications are usually based on tree structures with multi-way splits,
i.e. splits driven by several attributes, and independent classes, i.e., classes that cannot be combined
with each other. Although a multi-way tree reduces the depth of the classification tree, the use of
several attributes to characterize a single class may lead to partially overlapping classes and an
ambiguous categorization of the approaches. Other existing works are surveys addressing the new
advances and challenges of fault tolerant techniques, without having as a goal to propose a new
classification scheme.

One example of existing classifications with multi-way split is the classification of [7], which is a
taxonomy of on-line error detection mechanisms focusing on multicore processors. The schematic
representation is depicted in Fig. 1. This taxonomy is restricted to a smaller scope than the proposed
classification, as it focuses only on techniques applied on the core level for multicore processors.
Therefore, several error detection techniques are excluded, such as methods which extend the
hardware, like double sampling techniques [27] and error correction approaches.
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Fig. 1. Error detection taxonomy for multi-core architectures of [7].
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Fig. 2. The classification of soft error detection and mitigation techniques in [18].

Another classification is the work presented in [18] for mitigation techniques against soft errors
at processor architectures. The classification is mainly performed based on the abstraction level
of the mitigation techniques, i.e. transistor-level up to program-level approaches, as depicted in
Fig. 2. A specific distinction is made for the architecture level between error detection and recovery.
However, inside each category a survey-like presentation of the state of the art approaches is given,
without further systematic classification. The architecture level is further categorized into storage
and processor architecture. The storage branch describes mainly error detection and correction
codes. The processor branch is divided into redundancy (spatial and temporal), coding and others.
However, as the splits are multi-way, driven by several attributes at the same time, ambiguities
in the categorization of the techniques can rise. Such an example is the RESO approach [29]. The
technique shifts the operands and re-executes the instruction. Although this approach is classified
under the temporal redundancy due to the instruction re-execution, the shifting operations are
performing encoding and decoding, and, thus, this technique has also coding aspects. On the other
hand, the proposed binary tree classification based on univariate splits resolves this ambiguity.
As shown in section 6, RESO is categorized by combining the "encoded information” and the
"postponed” execution classes.
Another error detection classification is presented in [16]. The schematic representation of the

classification is depicted in Fig. 3. The main goal is to classify the techniques based on the platform
hierarchy where they are applied to, i.e. circuit level, architecture level, software system, application
level and hybrid between different levels. As the provided splits are multi-way, several categories
presented in each level can include redundant information. For instance, the approaches using any
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Fig. 3. The classification of error detection and mitigation techniques in [16].

type of coding, such as error detection codes, belong to all the categories presented for the memory
detection, i.e. information redundancy, cache memory error protection and main memory error
protection. Another example is the code-based approaches and the execution redundancy of the
architecture-level. As the code-based redundancy techniques require a parallel execution of part of
the instruction to create the redundant information, they describe a part of the design space that
overlaps with the execution redundancy class. On the contrary, the binary splits of the proposed
classification tree describe these code-based approaches by combining the “compressed value” class
and the classes that represent the modifications in the computational functionality of the data path
and the storage, as explained in Section 4.
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Fig. 4. Error mitigation classification for soft-core processors [22].

The survey of [11] focuses on checker architectures for error detection. It classifies the architec-
tures based on: 1) their abstraction layer (specialized circuits/pipeline functional units, spare cores,
spare threads and software modules), 2) the application (single thread or multi-thread), 3) the fault
type and coverage and 4) the checker structure. In each of the categories, a set or architectures is
listed and categorized based on the fault type and fault coverage. Complementary to this survey, the
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proposed classification focuses on further refining the classes with respect to the implementation
of the techniques.
The classification of [22] focus on soft-error mitigation approaches in soft-core processors and

it is depicted in Fig. 4. Most of the classes focus on some kind of redundancy, either in software
or hardware, in space or in time. Partial hybrid solutions are enabled by allowing to combine
hardware and software approaches. However, techniques based on monitoring, such as hardware
fault screeners [34], are left outside of this classification scheme.

A classification of variability mitigation techniques on timing faults in modern integrated systems
is presented in [36]. The classification is based on the Y-chart model, where the techniques are
categorized into three axis based on when and how the timing errors are manipulated: 1) error
prediction and prevention techniques, 2) error detection and correction techniques, and 3) error
acceptance techniques. Each axis is divided into different abstraction levels, i.e. circuit, hardware,
software and application/algorithm. The main classified error detection methods are sensing at
the circuit level, whereas the architecture level is based on these sensors to provide mitigation.
This work allows two hybrids to exist between the axes of Y-chart model: 1) error prediction and
prevention with error detection and correction, and 2) error detection and correction with error
acceptance. In addition, cross-layer approaches are allowed by combining techniques in different
abstraction levels. On the other hand, the proposed classification uses single attributes to refine the
implementation of the error detection and correction techniques.
Another classification of fault management techniques for SRAM-based FPGAs is presented

in [47]. The techniques are categorized to failure prevention (including design time fault avoidance
and operational failure avoidance) and failure tolerance (including failure masking, failure recovery
and goal change). However, no error detection classification is presented and classes based on
monitoring are excluded, such as hardware fault screeners [34].
The goal of [1] is to provide the main definitions with respect to dependability and to explain

general concepts. According to the fault tolerant techniques classification, the error detection
techniques are divided into concurrent techniques, which take place during normal service delivery,
and preemptive techniques, which are applied when the normal service is suspended. This catego-
rization describes only a part of the techniques, mainly the part relevant to “when” the detection
technique is applied.

Survey studies also exist, which, however, present the new advances of the error detection and
correction techniques or the future challenges. They do not expand the previous classifications
to include the new approaches or provide a new complete classification scheme. A paradigm of
this category is the work presented in [39], where various techniques for different electronic
systems and their components are discussed and listed. Another example is the work [8]. The
mitigation techniques are presented into the following classes: 1) hardware-level, 2) software-level,
3) operating system (thermal management), and 4) application-level. However, no claim is made
that this work presents a classification approach, as the main contribution is the presentation of
the future perspectives and trends in the reliability domain.

The existing related work on classification of error detection and correction techniques is based
on multi-way splits, that take into account several attributes each time, usually leading to categories
describing overlapping parts of the design space. Consequently, the existing classifications have
limited usage, when researcher and engineers need to select the most suitable error detection
and correction techniques for a given design under study. In this work, we provide a binary tree
classification that divides the design space into complementary and non-overlapping parts, using a
single attribute at each split, supporting a clear distinction of the techniques’ characteristics, that
can drive the design of error detection and correction techniques.
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4 TOP-DOWN PARTITIONING METHODOLOGY
In this work, we present a binary tree classification structure based on a top-down recursive
partitioning methodology. The root of our classification tree is the design space describing the
error detection and correction techniques for the target domain under study described in Section 2.
Initially, the parent class (root) is divided by applying a top-down split.

Definition 4.1 (Top-down split). A top-down split (Fig. 5(a)) is univariate, i.e. is driven by a single
attribute Q , and binary, i.e divides the design space of a class P into two primitive subclasses S1
and S2, that are i) non-empty, ii) complementary, iii) non-overlapping and iv) complete 1.

P 

S2 = {X :Q = 0}S1= {X :Q =1}

Q 

(a)

S2 S1 

P 

(b)

Fig. 5. a) Top-down split and b) design space division. Arrows show the subclasses unidirectional propagation.

Through a top-down split, the parent design space is divided in two sub-spaces, either including
the attribute or not. In order to enable the repetition of applying top-down splits to both created
subclasses, the subclass that describes the negative part of the attribute has to be reformulated:

Definition 4.2 (Negative attribute reformulation). During reformulation, the negative part of the
attribute is rephrased into an equivalent affirmative description in order both subclasses to be
positive2.

A top-down split instantiates the parent class by projecting it to the dimension of the attribute
that drives the split. Both subclasses inherit the attributes of the parent class, whereas each subclass
adds the characteristic of satisfying or not the attribute that drove the split. Therefore, we define
the top-down split type based on the attribute that drives the split:

Definition 4.3 (Top-down split types). A top-down split can be one of the following types:
• What type: The “what” top-down split instantiates the parent class into two subclasses that
describe the different functionalities of the parent class.

• How type: The “how” top-down split instantiates the parent class into two subclasses that describe
the different ways to implement the functionality of the parent class.

During the refinement of the classification, the more general splits are applied close to the root
of the classification tree, i.e. in the higher levels, whereas in the lower levels the splits become
more specific, due to the restriction coming from the attributes inherited from the higher levels. A
desired, but not strictly required, feature of the top-down split is balance. A balanced split supports
an approximately equal search of the different characteristics of parent space, i.e. the characteristics
are approximately equally distributed over the subclasses3. The top-down partitioning methodology
can stop when the distinctive aspects, that are desired to be present in the classification, have
1S1, S2 ⊂ P , where i) S1, S2 , ∅, ii) S1 = {X : Q = 1} and S2 = {X : Q = 0}, iii) S1 ∩ S2 = ∅, and iv) S1 ∪ S2 = P
2Y = X =⇒ S2 = {Y : Q = 0}
3 |S1 | ≈ |S2 |
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been expressed. At the end of the top-down partitioning methodology, a leaf has all the attributes
progressing from the root node to the leaf node accumulated by conjunction, i.e. using an operation
of AND type.
Few binary tree classifications exist based on a similar methodology, but applied in different

contexts: design-time scheduling approaches [13], reliability violations [40] and error mitigation for
functional errors [33]. In contrast to these earlier works, we apply the top-down methodology for
error detection and correction techniques. In addition, we further refine this methodology in order
to structure the design space (i.e. through the proposed classification) in such a way that can be used
for the design of an error detection and correction technique, i.e. design space exploration. To do so,
the top-down split definition is extended to provide an ordering between the two subclasses. This
ordering can be used during design space exploration, when both subclasses of a split are eligible
to be part of the technique. The ordering implies which part of the design space (the one related
to S1 or the one related to S2) should be explored first. This ordering is important, because the
design decisions taken during the exploration of the first subclass are becoming design constraints
during the exploration of the second subclass. For instance, the decision on “what type of additional
information will be used for detection and correction” becomes a constraint during the decision of
“how this additional information will be created”. The propagation flows from the decision over
the type towards the implementation, since this information is required in order to decide how to
create it. The attributeQ , which drives each split, defines the ordering of the subclasses. It should be
noted that the ordering presented in this classification is based only on the principles deriving from
the structure of the design space itself, as described in Definition 4.5. The approach could be further
extended by inserting potential constraints from the application and the platform specifications.

Definition 4.4 (Subclasses unidirectional propagation). During design space exploration, when both
subclasses S1 and S2 of a parent class P are eligible to be part of the technique, the unidirectional
propagation shows the order of exploration between two subclasses4. This ordering is depicted by
the horizontal arrows of Fig. 5(b). The direction depends on the attribute Q , driving the top-down
split. When no combination of the S1 and S2 is possible, no propagation exists.

Definition 4.5 (Principles of structure-based constraints). The principles applied over the attribute
Q , to define the propagation direction, are based on constraints from the design space structure:
(1) Search space restriction: This principle is mainly related to the “how” top-down split type. As

subclasses of a “how” split describe the different possible implementations of the parent class,
propagating the design choices of one subclass, e.g. S2, may unnecessary restrict the options in
the design space of the other subclass, e.g. S1. This unnecessary restriction refers to the pruning
of potentially promising design options of S1 design space, only due to the propagation of the
early design choices of S2, and not due to the real constraints of the problem under study. In
order to avoid that, the constraint propagation has to flow from S1 to S2.5 This principle is
schematically depicted in Fig. 6(a), where the propagation of the early design choices of S2
prunes a large part of the design space of S1 (gray part). However, in Fig. 6(b) the decisions
of S1 are propagated to the S2 and the space of S2 is lightly restricted. In the remainder of
this paper, the term R_SPACE is used to annotate the classification splits that follow the search
space restriction principle.

(2) Implied decision: This principle is related to both the “what” and the “how” type of top-down
splits. The design choices of one subclass S1 are required in order to select meaningful options
in the design space of the second subclass S2. To avoid random and ad-hoc decisions for S2,

4The unidirectional order can be expressed as S1 → S2
5S2 → S1 =⇒ |S1 | ≈ 0, while S1→ S2 =⇒ |S2 | > 0
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the propagation has to flow from S1 to S2. This principle is depicted in Fig. 6(c), where the
decisions for S2 cannot be taken, as essential information coming from S1 is missing. However,
in Fig. 6(d) meaningful decisions in both subclasses can be made. The decisions in S1 do not
require information of S2 and for S2 all required information is available, after the propagation
of the information from S1 to S2. In the remainder of this paper, the term IMPL is used to
annotate the classification splits that follow the implied decision principle.

To illustrate the above principles, we present two examples:
• Search space restriction: Based on the previous example relevant to the split of “How to obtain
the additional value to be compared with the original one in order to detect/correct a fault” the
two subclasses are “a golden reference” (S1) and “online produced value” (S2). Assume that the
ordering between the two subclasses, when they are combined, is to first explore the options
in the design space of the online produced value and, then, explore the options in the golden
reference. Exploring the online produced value first, propagating the selected design options to
the golden reference, removes promising options from the design space. As long as it has already
been decided how to online produce the value to compare with, the golden reference decision
cannot be of any assistance. However, exploring first the design space of the golden reference, it
is possible to combine it with the design options in the online value creation. The choice on the
golden reference can provide information to drive the choices on the online produced value.

• Implied decision: Assume the split between the “additional information” (S1)– what is the type
of the additional information to be used so as to perform error detection/correction – and the
creation of this additional information (S2). We cannot make a meaningful decision on how to
create the additional information if we are not aware of which type of information we want to
create.
However, some splits are not linked to the aforementioned structure-based constraints. Instead,

several objectives exist that can be traded-off in an N-dimensional cost space, e.g., execution time,
area, energy etc. For these cases, we group these objectives under a high-level trade-off principle,
that has as goal to keep low the overhead inserted by an error detection and correction approach at
any of these objectives.

Definition 4.6 (Trade-off principle). Reduce modifications: Our assumption is that the more modi-
fications are inserted to the original system by the error detection and correction approach, the
higher is the overhead. This is a relatively crude approximation, but sufficient for our context,
where only relative orderings matter at the higher layer top-down splits. Therefore, one subclass S2
can imply significantly more modifications than the other class S1. In order to reduce the number
of modifications, the constraint propagation flows from S1 to S2. In the remainder of this paper, we
link this principle to the term R_MOD and we use this term to annotate the relevant classification
splits.

Here is an example based on the trade-off principle:
• Reduce modifications: Assume the split with respect to “Which online produced values can be
used to acquire the additional value to be used for comparison”. The two subclasses are “reuse
already existing values”, produced due to other computations reasons and not for fault tolerance
(S1), and explicitly “create new values to be used for fault tolerance” (S2). The creation of new
values requires higher modifications than reusing values that already exist in the system.

5 BINARY CLASSIFICATION TREE
By applying the methodology provided in Section 4 at the target domain and the problem under
study, we derive the proposed binary classification tree for rigid error detection and correction
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Fig. 6. Schematic of constraint propagation principles.

techniques. We present the classification tree in a way such that the unidirectional propagation is
always from the left branch to the right branch of each split. In this section, we use parts of existing
approaches in order to provide existing examples that illustrate each class. The full description
and categorization of these approaches is provided in Section 6, while the description and the
categorization of the complete set of analyzed techniques is given in the Appendix 1.
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Fig. 7. High layers of the proposed binary tree classification.

Fig. 7 depicts the higher layers of the proposed classification. A split is applied to the design
space, described by the attributes of the parent class. As the split is applied in the parent context,
the attributes of the parent class are inherited to both subclasses. The split provides a further
division of this design space, based on the single attribute that drives the split. The result is a
subclass related to the part of the design space that includes the attribute, and a subclass referred
to the remaining design space that does not include the attribute. The positive attribute and its
complementary attribute of each split are presented in Table 1. We use the first split to illustrate
in details the proposed top-down methodology. The initial parent class is the root of the binary
tree and refers to the design space describing the conceptual aspects of any error detection and
correction technique, as defined by the target domain under study. The root is further refined to
the additional information (positive branch), i.e. the part of the design space dedicated to describe
whatever is relevant with the generation of the additional information to be used in the error
detection and correction technique. This attribute is related to the question “What is required to
define an error detection and correction technique”. The complementary branch of the attribute
refers to the design space part that is left, if we exclude the part that is related to the generation of
the additional information. So, the complementary branch has to be affirmatively reformulated to
“what is still required to define an error detection and correction technique once the generation
of the additional information is finalized and that information is available”. The answer is given
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Table 1. Characteristics of high layer splits

Split Type Question Attribute
Affirmative branch Complementary branch

1 What What is required to define an error
detection and correction technique

Additional information Additional information → Compari-
son with the original information

2 How How to obtain the additional infor-
mation to be compared with the orig-
inal value

Through a golden reference golden reference → Through online
produced values

3 How How to obtain the additional infor-
mation through online produced val-
ues

Reuse already existing values Reuse existing values → Explicitly
create the additional value

by the comparison branch, referring to the part of the design space related to what remains to be
done in order to compare the original value and the generated additional information. During the
exploration of the design space, we have to know the additional information that is generated by
the technique in order to efficiently decide on how we can compare it with the original value (IMPL).
The specific decisions over the lower layer branches of both the additional information branch and
the comparison branch depend on the requirements of the technique to be designed. For instance,
assume that the requirements are to design a technique that performs error correction for single
errors with a success ratio of 100%. The decisions in the lower layers of the additional information
branch have to be compatible with this design constraint. An example is to select as additional
information two values that are identical with the original value (e.g. Triple Modular Redundancy
- TMR). In a similar way, the decisions in the comparison branch must fulfill the need to always
correct single errors. Due to the unidirectional propagation between the additional information
branch and the comparison branch, the decisions taken in the additional information (left branch),
e.g. value triplication, are also propagated as design constraints to the comparison branch. Due to
this propagation, when the decisions are taken in the comparison branch, we already know that
two additional values, identical to the original one are generated.
The additional information branch is refined by answering to the question “How to obtain the

additional information to be compared with the original value”. The result is to compare with a
golden reference and to compare with a value that is online produced. The golden reference branch
refers to the techniques that read an original value from the system and compare it with a reference,
as schematically depicted in Fig. 8(a). The most common approach in this branch is to use monitors
and compare the observed value with a predefined threshold. On the other hand, the techniques
belonging to the online produced value branch compare the original value with a value produced
during execution, as schematically depicted in Fig. 8(b). The most common approach in this branch
is the creation of duplicated information used for error detection.
During the design space exploration, the golden reference is explored first, due to the space

restriction principle (R_SPACE). To illustrate the reasoning, assume that the online produced value
is explored first. Then, by propagating this decision to the golden reference, a part of the design
space is unnecessarily removed. The way to produce the online value used for comparison has
been already decided, so the use of a golden reference cannot further help. On the other hand,
deciding first the golden reference can allow the combination with the online produced value, as
the knowledge of the golden reference can be used to decide the online produced value.

By answering to the question “How to obtain the additional information through online produced
values”, the branch of the online produced value is refined into reuse of already existing values and
the explicit creation of the additional information to perform error detection/correction. In the reuse
category, the value to be compared with the original value already exists in the system, for other
reasons than for error detection/correction. The error detection and correction technique has to
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Fig. 8. Schematic of the difference between a) golden reference branch and b) online produced value branch.

slightly modify the existing system in order to be able to extract it and use it, e.g. using the redundant
data already stored in the memory hierarchy, due to caches, to perform error correction [3]. On the
other hand, in the explicit creation branch the value does not pro-exist by default in the system.
It is explicitly created to perform error detection/correction. Examples of explicit creation are
the insertion of a second function unit to compute a second value, such as reduced precision
techniques [31], or the insertion of an additional register to store twice the output of a function
unit, such as double sampling methods [27]. The hardware modifications of reusing the existing
information are fewer than modifying the system to explicitly create the redundant value (M_MOD).
The following sections further refine these higher layers of the proposed classification.

5.1 Golden reference

Table 2. Characteristics of golden reference splits

Split Type Question Attribute
Affirmative branch Complementary branch

4 What What is required to obtain the golden
reference

Type of information to be used as
golden reference

How to generate this information

5 How How an information can be used as
golden reference

Use info relevant to transition (tim-
ing aspects)

Use info relevant to value (numerical
aspects)

6 How How the timing aspects can be used
as golden reference

Use the moment that transition oc-
curs

Use the duration that transition lasts

7 How How the numerical aspects can be
used as golden reference

Use the type of the value Use the arithmetic value

8 How How an arithmetic value can be de-
scribed

Lossless Lossy

9 How How to obtain lossless information Use value as it is (identical) Encode the value
10 How How to obtain lossy information Approximate the value Compress the value
11 What What is required to generate the

golden reference
Static computation Further Processing

The golden reference subclasses are depicted in Fig. 9 and the characteristics of the splits are
presented in Table 2. The annotation below each leaf correspond to existing error detection and
correction techniques classified in Section 6. Through a first split, that replies to the question “What
is required to obtain the golden reference”, the golden reference branch is divided into what type
of information is the golden reference and the generation of the golden reference. The knowledge
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Fig. 9. Refinement of the golden reference branch annotated with the classified techniques.

about the type of information is required in order to decide on how to generate such information
(IMPL). By answering to the question “How an information can be used as golden reference”, the
information branch is refined into using information relevant to timing aspects, i.e. transitions ,
and use information relevant to values. In the case of design space exploration, the monitoring
of the transition is explored first. The combination of the branches in the other way around, i.e.
monitoring first the value and, then, the transition, is not possible. The transition has to take place
first in order to obtain the related value (R_SPACE). Exploring how the timing aspects can be used
as golden reference, the transitions branch is further refined into the moment the transition takes
place and how long it lasts, i.e. the duration. The moment is explored first, because the other way
around, i.e. monitoring first the duration, and, then, the moment, is not possible. The first thing
that occurs is the moment of the transition, and, then, the duration can have a meaning. A similar
question on how the numerical aspects can be used as golden reference, the value branch is divided
into the type of the value to be monitored, such as a circuit state characteristic (e.g. voltage supply
rail), and the arithmetic value. The type is explored first, as it implies less modifications than using
a specific arithmetic value.

Finally, the arithmetic value branch is further refined, based on the question “How an arithmetic
value can be described”, into lossless and lossy type. The lossless type describes the exact information,
whereas in the lossy type some less essential information is lost and, thus only a part of the
information is used. Although some information is lost, this leads to smaller values that can be used
to potentially reduce the overhead of the fault tolerant approaches. The lossless way is explored
first because the selections of the lossless can be combined with the selections of the lossy. The
other way around is not possible. If the lossy has been selected first, we cannot undo this decision in
the lossless class because the lost information cannot be retrieved. However, a lossless information
can still become a lossy one (R_SPACE). A further refinement to the lossless information is if the
information is identical or encoded. The identical information is explored first, as it does not insert
additional modifications to the system, compared with the encoded class, that requires potentially
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dedicated hardware to perform the encoding (R_MOD). A further refinement is performed by
exploring the ways of implementing lossy information. The result is by approximation and by
compression. In both cases, the obtained value is narrower than the original one. To achieve that,
the approximation reduces the information by removing less important bits of the value. The
compression leads to lossy information by combining the bits of the value in a more compact form.
The approximation is explored first, as it adequately modifies the value, and, then, the compression
can be applied on top of the approximation to further reduce the size. The other way around restricts
the search space (R_SPACE), as no meaningful approximation can be applied over compressed
values.

The generation branch is further split by answering to the question “What is required to generate
the golden reference”. The result is the part that is relevant to the static computation of the golden
reference, before the execution of the application, and the potential further processing of the
computed golden reference during execution. During the design space exploration, the static
computation of the golden reference is explored first, since the processing requires to know this
information in order to decide on how it could further process it (R_MOD). It should be stressed
that this processing class refers only to the part of the design space that is responsible for any
further processing applied only on the golden reference, and not any general processing applied by
the error detection and correction approach. This branch can be further refined by applying similar
splits to the implementation class of the explicit value creation, as described in Section 5.3. However,
these splits are still different, as they depict only the part of the design space that describes how
the additional value is online created.

To support the proposed classification, we classify a wide set of existing error detection and cor-
rection techniques, by decomposing them to primitive components and classifying the components
using our classification. The complete decomposition of these techniques and the explication of the
classification of a large subset of the studied techniques is presented in Section 6. In the following
sections, we use the relevant part of some of these techniques to provide illustration examples for
each of the presented classes.
T1: The transition detector with time-borrowing latch presented in [4] senses the input data

transition, when the clock is logically high, and reports an error, when the input arrives late.
Therefore, it has a primitive component that belongs to the transition/moment class.

T2: The approach of [17] uses fatal hardware traps to detect errors. More specifically the watchdog
reset trap is thrown, when no instruction retires within a given number of ticks, and thus, it has a
primitive component that belongs to the transition/duration class.

T9: The technique of [25] monitors the supply rail, and thus, the potential disturbance caused by
a particle strike. Therefore, it has a primitive component that belongs to the value/type class.
T4: The detection approach of [37] monitors the target address of the branch instructions and

compares it with the value estimated during compilation. Hence, it has a component that belongs
to the identical class.
T10: ReStore framework [51] detects memory access and alignment exceptions by using the

lower and upper bounds of the address space, which are determined before execution. Therefore, it
has a component that belongs to the approximation class.

T5: The technique of [35] creates checksums during execution and compares them with a golden
reference computed at design-time. Hence, it has a component that belongs to the compression
class. In addition, it has a component that belongs to the computation/static, as the golden reference
is computed before the execution.
T41: An Algorithmic Based Fault Tolerant (ABFT) approach [14] performs mathematical oper-

ations, during execution, on the initial encoded data (row and column checksums of the initial
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matrix), thus it has a component that belongs to the generation/process, as the initial checksums
are further processed during execution.

5.2 Reuse already existing values
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Fig. 10. Refinement of the reuse branch with the corresponding examples

The reuse subclasses are depicted in Fig. 10 and the characteristics of the splits are described
in the Table 3. Similar to the previous section, the numbers below each leaf correspond to the
techniques that have a primitive component that belongs to this leaf. The root is further refined
through a split that replies to the question “What is required to generate the additional information
by reusing already existing values”. The result is the branch related to what type of data can be
reused so as to serve as additional information and the enabling required to reuse this data. The
knowledge about what type of the data is reused is needed in order to decide how to implement
the reuse of this data (IMPL). The data branch refers to the design space part described by the
complementary attribute of split 2 (use a online produced value) and the positive attribute of split 3
(a value that has been already created for other reasons). It is this inheritance of attributes from the
ancestors that restricts the design space. The fact that we are reusing existing values for comparison
prunes part of the options in the reuse/value branch. We are constrained by the fact that we can
only use data values produced by the system execution, and not whatever value we may want,
compared to the golden reference branch and the explicit creation branch. The options in reusing
the existing data values are either to use the data value as it is created by the system (identical) or
reuse only a part of it (reduced). The identical branch is explored first, because the design options
under the identical branch can be combined with the design options under the reduced branch.

Table 3. Characteristics of reuse splits

Split Type Question Attribute
Affirmative branch Complementary branch

12 What What is required to generate the addi-
tional information by reusing already
existing values

The type of the data value that can be
reused

From where the reuse can happen
(Enable)

13 How How a data value can be reused As it is (identical) Reuse only a part of it (Reduced)
14 How How an identical value can be pre-

sented
Original format Format modification

15 How How a reduced value can be reused Reuse a part of the format Reuse a compressed format
16 How How the reuse can be enabled From current execution From previous execution
17 How How we reuse the values from the

current execution
Stored values Calculated values
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The other way around is not possible. If the reduced design options have been selected first, we
cannot undo this decision in the identical branch because the lost part cannot be retrieved. However,
selecting first to reuse the identical data of the system, they can still be reduced due to a later
decision (R_SPACE). A further refinement to the identical data is the reuse of the original format or
a modified format provided already by the application execution. The original format is explored
first since it does not require additional processing for the error detection and correction compared
to the modified format (R_MOD). The reduced data is split into reusing a subset of the format and
reusing a compressed format of the data. Similar to before, reusing only a subset of the format does
not require modifications to the system for error detection and correction (R_MOD).
The enabling branch is further defined by answering to the question “How the reuse can be

enabled”. The result is to reuse the data from the current execution and from the previous execution.
The current execution is explored first, as it describes a part of the design space with less modifi-
cations (R_MOD). By answering to the question “Which ways exist to reuse existing values from
the current execution”, the current execution is refined into reuse of stored values and reuse of
calculated values. Exploring first the reuse of the calculated information and, then, the reuse of the
stored information restricts the design space. The calculated info may affect the stored values, and,
thus, removes a part of the design space (R_SPACE).

We provide one illustration example for most of the presented classes. In the best of our knowl-
edge, we have not identified error detection and correction techniques that are reusing other data
from the system than the original one.

T14: The extended history fault screener [34] verifies if the original value of an instruction is one of
the 64 previously observed values. Hence, it has a component that belongs to data/identical/original
format class and also a component that belong to enable/previous execution class.

T11: The technique [50] performs error detection by directly comparing the data at the input and
at the output of a flip-flop. Therefore, one component belongs to the enable/calculated value class.
T15: Nostradamus [26], for errors in the execution stage, creates a signature by observing the

registers at the decode stage and compares it with the real impact computed at the execute stage.
Therefore, it has a component that belongs to the enable/stored value.

5.3 Explicit value creation
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Fig. 11. Refinement of the explicit value creation branch

The higher layers of the explicit value creation branches are depicted in Fig. 11 and the corre-
sponding splits in Table 4. By applying a split to the explicit value creation branch, it is further
refined into two subclasses, i.e. the part that describes the type of the value to be created and the
implementation on how to create this value. Although the split is similar to the reuse case, it is not
the same, due to the inheritance of the parents attributes. The explicit creation/value refers to the
part of the design space where the value, used for comparison, is created for fault tolerance, whereas
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Fig. 12. Schematic representation of a) original instruction and circuit, b) instruction sequence extension and
b) circuit expansion.

the reuse/value refers to the part of the design space, where already existing values are used for fault
tolerance. What is the type of the value to be created is required to be known during the decision on
how to implement the creation of this value (IMPL). The implementation branch is further refined
into the creation of the value by inserting instructions and modifying the software-related part, i.e.
the instruction sequence extension (which can include from one up to several instructions), and by
inserting hardware components modifying the hardware-related part, i.e. the circuit expansion. The
instruction sequence branch describes the case where the platform hardware components of the
system are not modified in order to create the values, but the modifications are applied only to
the software, which normally means changing the instruction sequence stored in the instruction
memory. The right complementary branch describes the creation of the values by only modifying
the hardware components of the system. The modifications in the instruction sequence are less
than the modifications due to the extensions of the hardware (R_MOD). This difference can be
schematically illustrated in Fig. 12, where Fig. 12(a) shows the original software, i.e. one instruction
ADD, and the original hardware, i.e. one adder. In Fig. 12(b), a new instruction ADD is inserted in
the program stored in the instruction memory to create the value to be used for the comparison,
whereas the hardware is not modified. In Fig. 12(c) only one instruction exists, but it is used twice
to control two different adders.

Table 4. Characteristics of higher layer of explicit value creation splits

Split Type Question Attribute
Affirmative branch Complementary branch

18 What What is required to generate addi-
tional information by explicit online
creation

Type of value to be created Implementation of value creation

19 How How we can create this value Modify the instructions sequence Modify the underlying hardware
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5.3.1 Value. The value branches are depicted in Fig. 13 and the corresponding splits in Table 5.
The splits are similar, but not the same, to the reuse branch. The differences derive from split 3. The
value branch (split 18) inherits the complementary attribute of split 3, i.e. the value to be used for
comparison is created during execution. On the contrary, the value branch of the reuse branch (split
12) inherits the positive attribute of split 3, i.e. reuse the values that have been already produced
due to the other computations.

Table 5. Characteristics of explicit creation/value splits

Split Type Question Attribute
Affirmative branch Complementary branch

20 How How a value can be described Lossless Lossy
21 How How to create lossless information Create identical value as original Create encoded value compared to

original
22 How How to create lossy information Create approximated value compared

to original
Create compressed value compared
to the original

T25: Double Modular Redundancy (DMR) in logic level [10] creates the same information with
the original one and, thus, it has a primitive component that belongs to the identical class.

T31: The fault detection of shared directory entries in [15] reads the entry and stores it to a new
register. The value is negated and stored back to the directory. Then, it is read again and compared
with the initial value. Therefore, it has a primitive component that belongs to the encoded class.

T28: The Reduced Precision Redundancy (RPR) technique creates reduced precision values by
truncation or rounding to be processed by arithmetic circuits [31]. Hence, the technique has a
primitive component that belongs to the approximation class.

T16: The execution fingerprinting [19] compresses the architectural state of two processors into
one fixed-size word using cyclic redundancy codes and compares them to detect potential changes.
Hence, it has a primitive component that belongs to the compression class.

5.3.2 Instruction sequence extension. This branch refers to how the additional instructions are
executed in order to create the values used for comparison. The splits are presented in Fig. 14 and
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Fig. 14. Refinement of the instruction sequence extension branch
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Table 6. The result of the first split is the case where the execution of the additional instructions
occurs on the same component as the original ones, i.e. regenerate, and the case where the execution
occurs on a different existing component of the system. As the attributes are inherited from the
parents, the instruction sequence extension branch refers to the part of the design space, where
the redundant values are created without modifying the hardware (positive attribute of split 19).
Therefore, the execution on the same component has inherited this characteristic, and, thus, we
know already that the additional instructions will be executed in the exact same way as the original
instructions, since no hardware modification takes place. Therefore, this leaf can be better described
by the term regenerate. The regenerate option is explored first as it implies less modifications on
the original system (R_MOD). The different component branch is further refined through a split
relevant to “what is required to define the execution of the additional instructions on another
component”. The result is the time-wise information, which describes the timing characteristics of
the execution of the additional instructions on a different component with respect to the execution
of the original instructions, and the resource selection, which describes how to select a component
among the available ones. The time-wise information provides the timing aspects required in order
to identify which components are available at the moment when the execution of the additional
instructions takes place (IMPL).

Fig. 15 schematically depicts the differences between the subclasses of the time-wise information
branch, where the black box is the original sequence and the blue box is the additional instruc-
tion sequence, which creates the redundant values. The A inside each box refers to one specific
instruction. Based on the question “How the additional instructions can be executed in time with
respect to the original execution”, the time-wise information branch is further refined into overlap
or non-overlap the execution of the additional and the original instructions. The propagation of
the overlapping to the non-overlapping is motivated because the combination of these two op-
tions in the opposite way is not possible. If the non-overlapping option has been decided first, it
cannot allow any overlapping of the individual instructions of the two sequences (R_SPACE), as
depicted in Fig. 15(d) and Fig. 15(c). On the other hand, if the additional instruction sequence and
the original sequence are overlapping, then some of the additional instructions can be executed
in a non-overlapping way with the instructions of the original sequence, as depicted in Fig. 15(f)
and Fig. 15(g). The overlapping branch is further refined into the branch where execution of the

Table 6. Characteristics of instruction sequence extension splits

Split Type Question Attribute
Affirmative branch Complementary branch

23 How How the additional instructions (re-
quired to create the additional infor-
mation) can be executed

On the same component as the origi-
nal instructions (regenerate)

On a different existing component

24 What What is required to define the execu-
tion of the additional instructions on
another component

Define the time-wise execution of the
additional instructions (relevant to
the original execution)

Select on which component the addi-
tional instructions are executed

25 How How the additional instructions can
be executed (related to the original
execution)

Additional execution overlaps with
original one

Additional execution does not over-
lap with the original one

26 How How the additional and the original
instructions can be executed in an
overlapped way

Additional execution is skewed com-
pared to the original one

Additional and original instructions
are executed in an aligned way

27 How How the additional and the original
instructions can be executed in an
non-overlapped way

Additional execution is before the
original one (Prepone)

Additional execution is after the orig-
inal one (Postpone)

28 How How to select a different component
for the additional instruction execu-
tion

Select a component that is not cur-
rently used (unoccupied)

Select a component where slack can
be created
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Fig. 15. Schematic of the difference of the classes of the time-wise information branch and their combinations.

additional instructions is skewed with respect to the original execution and the branch where both
executions are aligned. The skew subclass is explored first as it restricts less the options in the
aligned class. The propagation in the opposite way cannot lead to a valid combination, because if
it is already decided that the sequence is aligned, no skewing can be performed. However, when
skewing is decided first, some instructions can still be aligned inside the instruction sequence
(Fig. 15(e)). The non-overlapping branch is divided into the case where the additional instructions
are executed before the original ones (prepone class) and the case where the additional instruction
are executed after the original ones (postpone class). The prepone is expected to have less impact in
the scheduling of the instructions.
The branch of resource selection is further refined into the resources that are not used at the

given time moment, i.e. unoccupied ( which includes either idle resources after the scheduling or
available resources during the scheduling), and the resources that can have a time slack. As the use
of the unoccupied resources imply less modifications (R_MOD), they are explored first.

T10: The approach in [51] uses symptom detectors to trigger re-execution of the instructions for
error detection in situations that are likely to occur in the presence of an error. Hence, they have a
primitive component that belongs to the regenerate class.
T20: The approach of [41] executes with a delay a redundantly generated instruction stream

after the start of the execution of the active stream on the same architecture. Hence, the technique
has a component that belongs to the time-wise information/skew class.
T18: The technique of [12] has two processor units fully synchronized executing identical

instruction streams. Therefore, the technique has a component that belongs to time-wise/align
class and a component that belongs to resource selection/unoccupied class.

T16: The distributed temporal redundancy approach [19] allows the duplicated task to be executed
on another core, without the fully synchronization requirement. Therefore, the technique has
components that belong to the time-wise information/align class, time-wise information/skew
class, time-wise information/prepone class and time-wise information/postpone class.

T19: The instruction duplication on VLIW datapaths can be performed by the compiler [9]. The
compiler is aware of the configuration of the VLIW, in terms of number of issues and function units,
and it can insert a new time slot, when no available function unit exists for the scheduling of the
duplicated instructions. Therefore, it has a component that belongs to the resource selection/slack
class.

5.3.3 Circuit expansion. The subclasses are depicted in Fig. 16 and the corresponding splits in
Table 7. The branch is refined into the time-wise information, which defines when the additional
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Fig. 16. Refinement of the circuit expansion branch

value is created with respect to the creation of the original value, and the hardware information
required to describe the hardware expansion. The time-wise information is required in order to
identify how the hardware expansion takes place (IMPL). The splits of the time-wise information are
similar to the instruction sequence/time-wise information, but not the same, due to the inheritance
of the complementary attribute of split 19, which implies modifications only in the hardware part.
Therefore, the hardware is allowed to be modified for the creation of the additional values, which is
not the case for the instruction sequence branch. The time-wise information is split into overlapping
the creation of the additional values with the creation of the original ones (overlap branch) and
creating the additional values without overlapping with the execution of the original instructions
(non-overlap branch). The overlapping is further refined into skew or align and the non-overlapping
branch into prepone class and the postpone class.
The hardware information is further refined into expanding the circuit by extending existing

components and by inserting a new component, dedicated to the creation of the additional values.
The expansion of an existing component has less hardware modifications than adding a completely
new component to the platform (R_MOD). Further refinement of the existing component branch
is the selection among the existing components and the potential component modifications. The
selection of which component to extend is required to decide which modifications can be applied
on this component (IMPL). The selected component can be the same component, as the one used for
the original value creation, or another different component. The expansion of the same component
implies less modifications to the original system, especially due to the required communications
(R_MOD). The different components can be an idle component (including either a component of
the platform that is currently not used by the application or spare resources already added to
the platform for potential future workload increase), and a component with time slack. The use
of a spare component implies less hardware modifications to the original system (R_MOD). The
possible ways to extend the hardware of the selected component are by modifying the control
plane and by modifying the data plane. The control plane decides how the data plane is used,
and, thus, it is explored first. Modifying first the data plane may remove some of the promising
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Table 7. Characteristics of circuit expansion splits

Split Type Question Attribute
Affirmative branch Complementary branch

29 What What is required to define the exten-
sion of the circuit

Time-wise information of the cre-
ation of the additional values with re-
spect to the original value

Hardware information with respect
to the extension of the circuit

30 How How the creation of additional values
can occur in time (with respect to the
creation of the original value)

Additional value creation overlaps
with original one

Additional value creation does not
overlap with the original one

31 How How the additional values and origi-
nal values can be created in an over-
lapping way

Additional value creation is skewed
compared to the original one

Additional and original values are
created in an aligned way

32 How How the additional values and orig-
inal values can be created in a non-
overlapping way

Additional value is created before to
the original one

Additional value is created after the
original one

33 How How the hardware can be expanded Extend components already existing
in the system

Explicitly add a component only for
the creation of the additional values

34 What What information is required to de-
fine the component expansion

Selection among the existing compo-
nents

Potential modifications in the se-
lected component hardware charac-
teristics

35 How How to select, among the existing
components, which component to ex-
tend

Extend the same component where
the original values are created

Extend a different component

36 How How to select among the available
different components

Components that are not currently
used (Idle)

Components where slack can be cre-
ated

37 How How the selected component’s hard-
ware can be extended

By modifying the control plane By modifying the data plane

38 How How the control plane can be ex-
tended

Modify the usage of the data plane Modify the timing aspects of the data
plane

39 How How the data plane can be extended Extending functionality Extending storage

options in the design space of the control plane (R_SPACE). The control plane can change the action
that the data plane performs, i.e., usage class, and when the data plane performs this action, i.e.,
timing class. The way of using the existing functionalities of the data plane is required in order to
define the timing aspect on when to perform this action (R_SPACE). For instance, using a part of
the component that has longer delay prunes the use of specific frequencies. The data plane can
be modified with respect to the computational functionality and the storage characteristics. The
computational functionality includes the computation units and the relative interconnection of the
computation units and the storage. The modification of the functionality is explored first because
the other way around may unnecessary restrict the design space. If the storage characteristics
are decided first, then the decision on the storage characteristics may prohibit some promising
functionalities to be implemented, for instance due to the lack of storage means (R_SPACE). The
schematic representation of the aforementioned modifications is depicted in Fig. 17.

Control	plane	 Data	plane	

Func/onality	

St
or
ag
e	Usage	

Timing	

Fig. 17. Schematic of the difference possibilities to extend the component hardware.

T27: The Razor flip-flop [4] double-samples the input data by adding a shadow latch to the original
data path that samples the input data at the falling clock edge. Therefore, it has a component that
belongs to time-wise information/skew class (falling clock edge), a component that belongs to
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select component/same class (extension of original data path), component modifications/timing
class (falling clock edge) and component modifications/storage class (shadow latch).
T34: The triple modular redundancy, implemented by additional hardware, executes the same

circuit three times in parallel [20]. Therefore, it has a component that belongs to time-wise infor-
mation/align class and to the hardware information/new component class.

T12: The invariance-based fault screener [34] calculates and keeps a bitmask with the continually
invariant bits across the instruction executions. Therefore, it has a component that belongs to the
time-wise information/preprone class, as each time a value is produced, the bitmask is updated
in order to be used for the next value, a component that belongs to the component modifica-
tions/functionality class and component modifications/storage class, as the original hardware is
extended to include the hardware to compute the invariant bitmask and to store it.

T23: The hardware mechanism of [45] couples the pipelines of the VLIW processor. The second
pipeline executes an original instruction, if it exists, otherwise it executes the duplicated instruction
of the first pipeline. Hence, this technique has a component that belongs to select component/idle
and component modifications/usage, as the use of the second pipeline is modified to execute the
duplicated instructions. In case there are not enough idle slots, an additional time slot is inserted to
create slack and accommodate the remaining replicated instructions. Therefore, it has components
from time-wise information/postpone class and select component/slack class.

5.4 Comparison

Comparison 

Compatibility Matching 

Detect Reconstruct 
T1-T40 T7, T8, T10, T11, T17, 

T21-T23, T25-T28, T30, 
T32, T34, T35-T37

IMPL

IMPL

40	

43	

Extract	Sample	

Monitor	 Process	

T1, T7, T8, 
T15, T19, 

T5-T8, T15-T17, T24, 
T30, T35, T38, T39

R_MOD

R_MOD

41	

42	

T1, T4-T8, T12-T17, T19-
T21, T31, T35, T39, T40


Fig. 18. Refinement of the comparison branch

The classes are depicted in Fig. 18 and the corresponding splits in Table 8. The comparison branch
is refined based on what is required to define the comparison between the generated additional
information and the original value. The left branch refers to the design space part that is relevant to
making the original value compatible with the generated additional information. The right branch
refers to the design space relevant to the matching between the generated additional information
and the compatible original information. The compatibility is explored first, as first the additional
information and the original information have to be made compatible before the real comparison
(IMPL). The compatibility branch is further split by answering to the question “what is required
to make the additional information and the original information compatible”. The result are the
branches of monitoring the compatible information and applying further processing to make the
original information compatible. The monitoring refers to the case of obtaining the compatible
information by performing simple modifications at the system, e.g. using probes to monitor the
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voltage, and it incorporates the notion of sampling the compatible info. The processing class
refers to the additional processing of the original information of the system. This processing class
incorporates only the design space describing any further processing required to be applied in the
original information, in order to be able to compare it with the additional information, and not any
general processing applied by the error detection and correction approach. This class can be further
refined through splits similar to the splits of the implementation class of the explicit value creation.
One such example is the case where a checksum is created for each basic block of instructions.

The processing calculates the checksum, whereas the monitoring part samples the checksum by
storing it into a register, whose value will be compared with a golden reference. The monitoring
part is explored first, because the modifications of the monitoring part are fewer than the system
modifications required for the processing (R_MOD). The monitoring branch is further divided into
the sampling of the compatible information and the potential extraction, that must take place for
the original value in order to enable the sampling. The sampling class refers to the use of the clock
signal in order to sample the value either by storing it or by propagating it based on the clock.
The extracting class refers to the potential combinational logic added to extract the original value
from the system hardware. The class with the least modifications is the monitoring (R_MOD). The
matching branch is further refined based on the question “What can be obtained by matching
compatible additional information and original information”. The result is to perform matching
only to detect inconsistencies and to restore them to the correct value, i.e. recontruct class. First,
the detection has to take place and this information is required to perform the replacement of the
faulty value (IMPL).
T1: The transition detector with time-borrowing latch of [4] passes the signal through a small

logic to detect if the signal changes (extract class, detect class) and it verifies if the change takes
place when the clock is high (sample class).

T10: The symptom-based methods [51] create exceptions when an attempt is made to access an
inappropriate address (detect class), whereas re-execution occurs for correction (reconstruct class).

T13: The dynamic range fault screener [34] verifies if the original value of an instruction belongs
into a given range (detect class). As no further processing takes place to the original value, the
component of this technique for the implementation branch belongs to the sampling leaf.
T16: The execution fingerprinting [19] requires further processing of the monitored original

value, and thus, they have also a primitive component that belongs to the process class.
T7: The scrubbing techniques using the Cyclic Redundancy Code (CRC) [42, 43] require also a

component that belongs to the process class for the re-calculation of the syndrome value.

Table 8. Characteristics of comparison splits

Split Type Question Attribute
Affirmative branch Complementary branch

40 What What is required to define the com-
parison between the generated addi-
tional information and the original
information

Make them compatible Matching

41 What What is required to make the addi-
tional and original information com-
patible

Monitor the original value Apply further processing

42 What What is required to implement a
monitor of the original value

Hardware that samples the value Hardware that extracts the value to
enable monitoring

43 What What can be obtained by matching
the additional and original informa-
tion

Detection of inconsistencies Reconstruction of correct values
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6 DECOMPOSITION OF EXISTING APPROACHES
The error detection and correction techniques are usually hybrid schemes, that combine more than
one primitive class of the proposed classification. This occurs because designers aim at satisfying a
variety of specifications, that usually cannot be met in an efficient way by following only one design
direction. A technique always consists of several classes of the additional information branch and
classes from the comparison branch. In this section, we provide the complete decomposition of 43
different techniques, by showing in which main branches they belong to. The techniques annotated
with a “*” are hybrids of the main branches of the proposed classification. The decomposition of
all the techniques is summarized in Fig. 20, where the lines correspond to the techniques and the
columns correspond to classes of the proposed classification. The primitive components of each
technique are marked with gray color in the corresponding column. Due to page limitations, in
the following sections we describe a set of representative examples from the studied approaches,
whereas the full decomposition of all studied techniques is provided as supplementary material
in Annex 1. The complete classification is presented in Fig. 19. The main branches are shown in
different colors and named using capital letters, whereas the classes are named using numbers.

6.1 Golden reference
T1: The Transition Detector with Time-Borrowing latch (TDTB) presented in [4] senses input data
transitions, when the clock is logically high. As the input data transitions, a pulse is generated at the
output of a XOR gate. If the input data arrives late during the logically high clock period, the pulse
discharges the output node voltage of a dynamic gate, which reports the error. During the logically
low clock cycle, the output node is precharged. The technique belongs to the golden reference
branch. It is categorized as: 1) transition/moment, as TDTB senses transitions, 2) computation/static,
as the golden reference is the upfront clock period, 3) compatibility/extract, for the part inserted to
identify the transition, 4) compatibility/sample, as the dynamic gate verifies if the change takes
place when the clock is high, and 5) matching/detect, as the technique performs only detection.
T2: One of the approaches presented in [17] uses fatal hardware traps to detect errors. More
specifically, the approach uses a watchdog, where a reset trap is thrown when no instruction retires
within an upfront given number of ticks. The technique belongs to the golden reference branch. It
is categorized as: 1) transition/duration, as it is based on the number of ticks, 2) computation/static,
as the threshold is the upfront given, and 3) matching/detect, as only detection occurs.
T4: The Control Flow Checking by Execution Tracing [37] monitors the target address of branch
instructions and compares it with the address estimated during compilation. The technique belongs
to the golden reference branch. It is categorized as: 1) value/identical and 2) computation/static, as
an address is estimated before execution, 3) compatibility/sample, due to execution tracing, and 4)
matching/detect, as only detection occurs.
T5: The Integrated Monitoring for Processor REliability and Security (IMPRES) [35] calculates
a checksum for each basic block at compile time. It re-calculates the checksums at runtime to
be compared with the value computed at compile time. The technique belongs to the golden
reference branch. It is categorized as: 1) value/compression, as checksums are used as golden
reference, 2) computation/static, as the checksums are upfront calculated, 3) compatibility/process
and 4) compatibility/sample, as the checksums are run-time re-recomputed and stored, and 5)
matching/detect class.
T9: The detection technique of [25] is based on monitoring the supply rail and, thus, the potential
disturbance caused by a particle strike. The technique belongs to the golden reference branch. It is
categorized as: 1) information/value/type, as the disturbance is monitored, 2) computation/static,
as the decision of to detect an error is made if the disturbance exist or not, and 3) matching/detect.
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T41: The Algorithmic Based Fault Tolerant (ABFT) approach [14] extends the input matrix with
supplementary columns and rows containing checksums. Then, the matrix multiplication algorithm
applies similar mathematical operations to both the original data and the checksum during execu-
tion to keep the checksum relationship invariant. Then, the new checksum is computed based on
the original data, enabling error detection and error correction. Hence, this approach is categorized
as: 1) golden reference/information/arithmetic value/lossy/compression class, as checksums are
computed, 2) golden reference/generation/static class, as initial checksums are computed before
execution, 3) golden reference/generation/process class, as the ABFT applies mathematical oper-
ations during execution that process the initial checksums, 4) comparison/compatibility/sample
class and 5) comparison/compatibility/process class, as a new checksum has to be computed based
on the original data, 6) comparison/detect and comparison/reconstruct, as the checksums allow to
detect and also correct some errors.

T42: Capability checking approaches aim at the detection of malfunctions that cause illegal access
to the memory system [24]. The capability of an object includes address, type and access rights.
This information is used to pre-calculate offline a table with the access rights of each object towards
another object. During execution, a low-cost processor translates the physical addresses of a specific
memory reference and the physical address of the object it wants to access. Then, it verifies if
the access rights from the main processor are compatible with the access-rights provided by the
table. If they are not compatible, an error is signaled. Therefore, this approach belongs to: i) golden
reference/arithmetic value/identical class and ii) golden reference/generation static class, as the
exact access rights are computed offline for each pair of objects, iii) comparison/compatibility/sample
class and iv) comparison/compatibility/process class, as memory accesses have to be translated
in order to obtain the corresponding access rights from the table, and v) comparison/matching
detect class, as an error is signaled when the access rights from the main processor and the golden
reference do not match.
T43*: Consistency check methods use the knowledge of a transformation, which relates the

inputs to the outputs of an algorithm, to perform error detection and correction. Consider an
algorithm that computes the inverse matrix A−1 of the input matrix A and it uses the expression
A × A−1 = I , where I is the identity matrix [30], as consistency check. Therefore, this approach
belongs to: i) golden reference/arithmetic value/identical class and ii) golden reference/generation
static class, as the matrix I is used as a golden reference, with which we will compare the output of
the algorithm and it is offline defined, iii) reuse/data/original format and reuse/enable/previous
execution class, as the input matrix A is reused, iv) comparison/compatibility/sample class and
v) comparison/compatibility/process class, as after the computation of the output matrix A−1, it
has to be processed through A ×A−1 in order to be compared with the golden reference, and vi)
comparison/matching detect class, as errors are detected.

6.2 Reuse existing values
T12*: A fault screener reports an error if the program’s current behavior is inconsistent with
the expected behavior given by a valid value space. The way to compute the valid value space
determines the components of the technique. The invariance-based fault screener [34] calculates
and keeps a bitmask for each static instruction representing which bits are continually invariant
across the instruction executions. The technique belongs to the reuse (reuses the history of the
instructions) and explicit creation (computation of invariant mask) branches. The technique is
categorizes as: 1) data/identical/original format, since the complete value of the static instruction is
re-used for the creation of the invariant, 2) enable/previous execution, since the values previously
observed are re-used for the creation of the mask, 3) value/approximate, as the online computed
value is an invariant mask, 4) time-wise information/preprone, as each time a value is produced, the
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bitmask is updated in order to be used for the next value, 5) select component/same, 6) component
modifications/functionality and 7) component modifications/storage, as the original hardware is
extended with the hardware to compute and store the invariant, 8) compatibility/sample, for the
original value, and 9) matching/detect, as only detection takes place.
T15*: Nostradamus [26] compares the instruction’s expected impact on the architectural state

with the actual impact that has the instruction execution. An expectation unit operates in parallel
with the normal instruction decode logic to determine the instruction expectation, i.e. how the
instruction will modify the architectural state compressed in a signature. The modification of the
architectural state is expressed as the instruction expectation signature, which is a hashed value.
During the execution stage, the real impact of the instruction execution is computed and compared
with the expected one in order to detect an error. Therefore, the technique belongs to the reuse
(reuse the information from the decode stage) and explicit creation branch (compute the signature
mask). The technique categorized as: 1) data/value/original format, the value reused is the original
value of the registers, 2) enable/current execution/stored value, as the same instruction is executed
only in different pipeline stages and the value reused is stored in the registers, 3) value/compression,
as a signature is created, 4) time-wise info/skew, as the signature is created at the decode stage
during the execution of the original instruction, 5) select component/same, as the original pipeline
is modified, 6) component modifications/functionality and 7) component modifications/storage, for
the additional hardware for the calculation of the signature and the additional register to store it, 8)
compatibility/extract, to observe the history of the instruction execution, 9) compatibility/process,
to compute the real signature and 10) compatibility/sample, to store it, and 11) matching/detect, as
the technique performs error detection.

6.3 Instruction sequence extension
T16*: The Execution Fingerprinting (EX) State Checkpointing [19] allows tasks to be executed
at different times on redundant cores and compresses the changes into an external state, called
fingerprint. EX is enabled periodically and pushes all register state to the fingerprinting unit. The
technique belongs to the instruction sequence extension branch (redundant task execution) and to
the circuit expansion (fingerprint computation). The technique categorized as: 1) value/identical, as
the redundant task is the same as the original task, 2) time-wise information/skew, 3) time-wise
information/align, 4) time-wise information/prepone and 5) time-wise information/postpone, as
the redundant task is executed without time restrictions, 6) resource selection/unoccupied, as
the second task is executed on a different core, 7) value/compression, as the register states are
hashed to create the fingerprint, 8) time-wise information/align, as the fingerprint is created when
the register state is pushed to the fingerprint unit, 9) new component, as a new core has been
inserted for the execution of the redundant task,with the capabilities of creating the fingerprint, 10)
compatibility/process, in order to create the original fingerprint, 11) compatibility/sample, to store
the original fingerprint, 12) matching/detect, as the technique performs error detection.

T19*: The instructions are duplicated on VLIW datapaths by the compiler in [9]. The scheduling
of the duplicated instructions is done along at a different function unit of the VLIW or after the
original instructions. When this is not possible, a new time slot is added to create slack. The original
values are stored to a register value queue and the addresses to the load/store queue. To find with
which original value from the queue a duplicated value has to be compared to, the technique uses
the output register address. The technique belongs to the instruction sequence extension as the
duplication is performed in the instruction memory by the compiler. The technique is categorized
as: 1) value/identical, as the same instructions are duplicated, and, thus, the same values are created,
2) time-wise information/align, and 3) resource selection/unoccupied, when the execution is done at
the same time with the original instructions, 4) regenerate and 5) time-wise information/postpone,
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when it the duplicated instructions are executed after the original ones, 6) resource selection/slack,
when a new time slot is added, 7) compatibility/extract, to find out with which instruction to
compare to, 8) compatibility/sample, due to the storing of the original values to the queue, and
9) matching/detect. In addition, the store/load queue is protected by a parity bit. This part of the
approach belongs to: 10) value/compression, due to the parity, 11) time-wise align, as the parity is
computed at the same time as the original value, 12) select component/same and 13) component
modifications/storage, as the component where the original value is store is extended to keep the
parity, and 14) component modifications/functionality, to compute the parity.
T20: The approach of [41] executes with a delay a redundantly generated instruction stream

(R-steam) after the start of the execution of the active stream (A-stream) on a simultaneous multi-
threaded architecture. Then, the execution of the individual instructions is decided based on a
dynamic scheduler. The technique belongs to the instruction sequence extension. The technique is
categorized as: 1) value/identical, as the streams are the same, 2) instruction sequence/time-wise
information/skew, for the execution of the R-stream, 3) time-wise information/align, 4) time-
wise information/prepone, 5) time-wise information/postpone, for the execution of the individual
instructions of the R-stream, 6) resource selection/unoccupied FU, when the execution is performed
on different FU than the ones used by the corresponding instructions of the A-stream, 7) regenerate,
when the R-stream instructions are executed just after the corresponding A-stream instructions, 8)
matching/sample, as the A-stream results are pushed onto the Delay Buffer, and 9) matching/detect.

6.4 Circuit expansion
T21: The technique of [32] uses a hardware mechanism that duplicates or triplicates the instructions
inside the execution and decoding stages in order to take advantage of the idle slots in the current and
next instruction bundle. The replicated instructions can be executed in the same time slot in another
idle FU or in the next time slot in an idle FU (either same FU as the original or another FU). When
there are not enough idle resources to exploit, the pipeline is stalled to add one or more additional
time slots to create time slack. The technique belongs to the explicit creation branch. It is categorized
as: 1) value/identical, as the same instructions are executed and, thus, the same values, 2) time-wise
information/align and 3) select component/idle, when the replicated instructions are executed in
the same slot as the original, 4) time-wise information/postpone and 5) select component/same,
when the replicated instructions are executed in the next slot, 6) select component/slack, due to the
inserted new time slot, 7) component modifications/usage, as the usage of the FUs is modified due to
the run-time scheduling of instructions, 8) component modifications/timing, as stalls are inserted, 9)
component modifications/data plane/storage, as additional registers are inserted to keep the values
due to misaligned execution of the original and replicated instructions, 10) compatibility/sample, as
the original result may be stored when needed due to the misaligned execution, 11) matching/detect,
when duplication is used, 12) matching/reconstruct, when triplication is used.

T22: The phase-configurable VLIW processor [44] uses idle issue slots during a whole given
program phase to execute duplicated instructions from the corresponding coupled pipeline and
check their results. When a mismatch is found, the pipeline is flushed and the last instruction
bundle is executed again. The technique belongs to the explicit creation branch. It is categorized as:
1) value/identical, as the coupled pipeline executes the same instructions as the original one, 2)
circuit expansion/time-wise information/align and 3) select component/idle, as both duplicated and
original values are executed at the same slot for error detection, 4) time-wise information/postpone
and 5) select component/same, due to the re-execution of the original instruction for the error
correction, 6) component modifications/usage, as the pipelines now executes original or duplicated
instructions, 7) matching/detect, and 8) matching/reconstruct.
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T24: Nostradamus [26] to deal with errors in functional units uses residue coding implemented
in hardware. The technique belongs to the explicit creation branch. It is categorized as: 1) value/
approximation, as the additional value is obtained by additional residue code operands, 2) time-
wise information/align, as original and additional values are created at the same time, 3) select
component/same and 4) component modifications/functionality, due to the additional residue
code operand in the original data-path, 5) compatibility/process, to apply modulo operation to the
original value, and 6) matching/detect.
T26: Double sampling methods [27] create the information in a moment that is skewed with

respect to the original value. Therefore, the technique belongs to the circuit expansion branch. It is
categorized as: 1) value/identical, as the same signal is latched by the shadow flip-flop, 2) time-wise
information/skew, due to the delayed clock signal, 3) select component/same, since the extra shadow
latch is introduced in parallel with the original flip-flop, 4) component modifications/timing, as the
shadow latch is triggered by a delayed clock, 5) component modifications/storage, due to the use of
the shadow latch, 6) matching/detect and 7) matching/reconstruct.

T28: The Reduced Precision Redundancy (RPR) creates additional values with reduced precision
computed by two additional arithmetic circuits [31]. The technique belongs to the explicit creation
branch. It is categorized as: 1) value/approximation, since the reduced precision values can be
produced either by truncation or rounding, 2) time-wise information/align, as the additional values
are created at the same time with the original one, 3) select component/same, as the original
component is extended to include the RPR hardware, 4) component modifications/functionality,
as the additional arithmetic circuits are inserted, 5) matching/detect, at the approach performs
detection and 6) matching/reconstruct, for correction.
T31: The fault technique for shared directory entries [15] is as follows: the entry is read once

and stored to a new register, then it is negated and stored back to the directory. Then, it is read
again and stored to another register. The two registers are compared. The technique belongs to the
explicit creation branch. It is categorized as: 1) value/encoded, as the information is negated, 2)
time-wise information/prepone, as the original value is read after the creation of the additional
information, 3) select component/same, as the original directory is modified to create the additional
value, 4) component modifications/functionality, as the negation circuit is inserted, 5) component
modifications/storage, for the new register to store the negated value, 6) component modifica-
tions/usage, as the way of using the data plane is modified to support the negation and storing back,
7) compatibility/sample, as the original value is stored to another register, and 8) matching/detect.

T40: The REcomputed with Shifted Operands (RESO) [29] shift the inputs of the ALU, reperforms
the same instruction and the output is shifted back and compared with the original value. The
technique belongs to the circuit expansion. It is categorized as: 1) value/encoded, since the operands
and the result are shifted, 2) circuit expansion/time-wise information/postpone, as the execution of
the second instruction is performed after the original one, 3) select component/same, as the original
ALU is modified to support the RESO operation, 4) component modifications/usage, to modify the
use of the ALU during the additional information creation, 5) componentmodifications/functionality,
and 6) component modifications/storage, as the original ALU data-path is extended with shifters
and one register, 7) compatibility/sample, for storing the original value and 8) matching/detect.

6.5 Observations
The proposed classification, combined with the categorization of the above techniques, provide
several insights for the existing fault tolerance techniques The most crowded classes are the ones
that have been more explored by the literature, whereas less crowded classes indicate design options
that have been less used in the current state-of-the-art. By observing Fig. 20:
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Fig. 20. Complete technique decomposition. * : hybrids of the main classification branches.
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• A high majority of the classified techniques (69.77%) produce online (during execution) the
additional information to be used for comparison.

• All studied reuse techniques are hybrids with other classes. Reuse techniques are usually combined
with classes from the circuit expansion branch. In this way, the reused value is further processed
through hardware in order to provide the value to be used for comparison.

• Many golden reference techniques (46.15%) use a lossy value, so as to reduce the overhead.
• A high majority of the classified techniques (60.44%) of the explicit creation branch use an
additional information that is the same as the original one.

• Most of the instruction sequence extension techniques are exploring the use of components
different than the original one (83.3%).

• Several circuit expansion techniques create the redundant information at the same time (62.07%)
or at the same component (79.31%) or both at the same time and at the same component (44.83%)
used by the original value.

• The second most popular option in the explicit creation branch is to create a lossy value for
comparison, so as to reduce the overhead (46.67%).

• Several approaches require to process the original value, before performing the comparison
(34.88%).

• Usually, the extraction of the original data is straightforward, as most of the approaches do not
require any specific extraction component (81.40%).

• Few techniques use encoded information (4.65%) and they belong to the circuit expansion branch.
• Few techniques perform online processing of the golden reference (2.33%).

The proposed classification provides to the readers insight on the existing techniques and supports
the design of new error detection and correction approaches. Due to its single attribute splits, the
differences and the similarities of the techniques can be pointed out compared with traditional
classifications that are driven by multi-way splits. We provide a few illustrative examples based on
the presented techniques to illustrate how the proposed classification is capable of providing such
a comparison. Fig. 20 presents the similarities and differences among all studied techniques.

The first example is between the techniques T21 and T22. Both approaches duplicate the instruc-
tions at run-time through a hardware mechanism and execute the duplicated instructions on the
idle FUs of a VLIW processor. In traditional classifications both techniques belong to the same class.
For instance, in the classification presented in [18], both approaches are classified under spatial
redundancy, as the instructions are executed in parallel in idle FUs. Though, as an additional time
slot is inserted in T21, that could be also considered as temporal redundancy. For the classification
of [16], T21 and T22 belong to the execution redundancy class and for the classification of [22],
they belong to the RTL level. Using the proposed binary tree classification, we can point out the
relevant information for the similarities and the differences of these techniques. The similarities of
the technique T21 and T22 are that they are using the same value type as the original instructions,
redundant and original instruction can be executed in an aligned way, the redundant instructions
can be executed after the original ones, the extension of the circuit is applied to the component
where the original instructions are executed and the usage of the FU is modified to support the
execution of the redundant instructions. In contrast to T22, the technique T21 also modifies the
timing aspects of the execution by inserting a new time slot and requires to modify the storage
part of the component in order to store the results of misaligned executions.

Another example is between the T12 [34] (similar for T13 and T14) and T15 [26]. Both techniques
create a signature with which the original value is compared to. T12 calculates and keeps a bitmask
for each static instruction representing which bits are continually invariant across the instruction
executions. T15 computes the expected impact of an instruction execution on the architectural
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state, when the instruction is at the decode stage. In traditional classifications both techniques
belong to the same class. The classification of [18] could classify the approaches under redundant
circuit design class due to the signature creation. The classification of [16], T12 and T15 can belong
to the execution redundancy class and for the classification of [22], they belong to the RTL level.
The proposed classification can identify both the similar and the different parts between T12
and T15. The similarities are that both approaches reuse data in order to generate the additional
information (reuse branch) and they reuse the complete data from the system in order to create a
signature. However, the T12 uses values observed during previous executions, whereas T15 uses
values observed during the current instruction execution. In addition, the signature of T12 is an
approximation of the expected value, whereas the signature of T15 is a compression of the expected
impact. T12 creates the signature upfront (before the execution of the original information) whereas
T15 during the execution of the original instruction. Both techniques modify the original component
where the original value is created in order to compute the signature and store it.

7 CONCLUSIONS
In this work we proposed a binary tree classification for error detection and correction techniques
without adaptation of their functionality during execution. The creation of our classification relies
on top-down splits driven by single attributes coming from the main characteristics of the design
space. The top-down split creates two complementary and non-overlapping subbranches clearly
dividing the design space in two parts. In contrast with previous works, the proposed classification
allows the combinations of the classes. Hence, the proposed classification categorizes a technique
by decomposing it into a set of primitive components, where each component belongs to one of
the proposed classes. During the design space exploration, the proposed classification follows a
unidirectional propagation of design constraints from the left subbranch to the right subbranch.
To validate our classification and to provide further insight, we present illustration examples for
each of the proposed classes. Last, but not least, we present the decomposition of 43 different error
detection and correction techniques using the proposed binary classification. The obtained results
highlight which classes are highly populated, indicating that this part of the design space has been
largely studied by the literature (such as classes in circuit expansion branch), and which classes
have less members, which tends to indicate that this part of the design space remains to be further
explored (such as classes in the reuse branch).
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1 FULL DECOMPOSITION OF THE TECHNIQUES UNDER STUDY
In this annex, we provide the complete explanation of the decomposition of the techniques presented
in Table 20 ofmanuscript entitled “Binary Tree Classification of Rigid Error Detection andCorrection
Techniques”.

1.1 Golden reference
Technique 1: The Transition Detector with Time-Borrowing latch (TDTB) presented in [2] senses
input data transitions when the clock is logically high. As the input data transitions, a pulse is
generated at the output of a XOR gate. If the input data arrives late during the logically high clock
period, the pulse discharges the output node voltage of a dynamic gate, which reports the error.
During the logically low clock cycle, the output node is precharged. Therefore, the technique belongs
to the golden reference branch and it is categorized in the following classes: 1) transition/moment,
as TDTB senses the transitions, 2) computation/static, as the golden reference is determined by the
upfront clock period, 3) compatibility/extract, for the XOR gate that detects if the signal changes, 4)
compatibility/sample, as the dynamic gate verifies if the change takes place when the clock is high,
and 5) matching/detect, as the technique performs only detection.
Technique 2 and 3: One of the approaches presented in [10] (T2) uses fatal hardware traps to

detect errors. More specifically, the approach uses a watchdog, where a reset trap is thrown when
no instruction retires within an upfront given number of ticks. Therefore, the technique belongs to
the golden reference branch and it is categorized in the following classes: 1) transition/duration, as
it is based on the number of ticks, 2) computation/static, as the threshold on the number of ticks is
given upfront, and 3) matching/detect, as only detection occurs. Similar is the classification for the
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Nostradamus [17] (T3) for the errors that cause the core to hang. A watchdog timer considers that
an error has occurred, if no instruction has committed in the past ten thousand cycles.

Technique 4: The Control Flow Checking by Execution Tracing [28] monitors the target address
of branch instructions and compares it with the address estimated during compilation. There-
fore, the technique belongs to the golden reference branch and it is categorized in the following
classes: 1) value/identical and 2) computation/static, as an address is estimated before execution, 3)
compatibility/sample, due to execution tracing, and 4) matching/detect, as only detection occurs.

Technique 5 and 6: The IntegratedMonitoring for Processor REliability and Security (IMPRES) [27]
(T5) calculates a checksum for each basic block at compile time and re-calculates the checksums at
runtime to be compared with the value computed at compile time. Therefore, the technique belongs
to the golden reference branch and it is categorized in the following classes: 1) value/compression,
as checksums are used as golden reference, 2) computation/static, as the checksums are calculated
at compilation, 3) compatibility/process and 4) compatibility/sample, as the checksums are run-time
recomputed and stored 5) matching/detect, as error detection is performed. Similar classification
has the technique of [4] (T6), which observes the processor’s execution trace through hashed values
of basic blocks at run-time, checks whether the execution trace aligns with the expected program
behavior produced at compile time.
Technique 7 and 8: The scrubbing techniques for the configuration memory belong also to the

golden reference branch. More precisely, the technique of [30, 31] (T7) uses Error Correction
Code (ECC) for the configuration memory frames and Cyclic Redundancy Check (CRC) for the
entire memory. An each read-back, the corresponding syndrome is calculated and compared with
the golden pre-calculated value. If a damaged frame is found, it is corrected. Therefore, the tech-
nique belongs to the golden reference branch and it is categorized in the following classes: 1)
value/compression and 2) computation/static, due to the pre-calculated ECC and CRC, 3) compat-
ibility/extract, as a readback has to occur, 4) compatibility/process and 5) compatibility/sample,
to recompute and store the ECC and CRC, 6) matching/detect, 7) matching/reconstruct, as both
detection and correction occur. A similar classification has the technique of [36] (T8), which uses
a hamming code based error detection and correction. A syndrome memory holds the upfront
calculated syndromes. During execution, the original syndrome is calculated and compared for
error detection and correction.

Technique 9: The detection technique of [16] is based on monitoring the supply rail and, thus, the
potential disturbance caused by a particle strike. Therefore, the technique belongs to the golden
reference branch and it is categorized in the following classes: 1) information/value/type, as the
disturbance is monitored, 2) computation/static, as the decision of to detect an error is made if the
disturbance exist or not, and 3) matching/detect, as only error detection takes place.

Technique 10*: ReStore framework [35] is based on symptom-based methods that take advantage
of inherent states of the processor architecture in order to detect the presence of soft errors, such
as the ISA-defined exceptions. When a symptom occurs, re-execution takes place. The detection of
memory access and alignment exceptions is performed by using the lower and upper bounds of the
address space, which is determined before execution. Therefore, the technique belongs to the golden
reference branch and it is categorized in the following classes: 1) information/value/approximation,
due to the use of upper and lower bounds, 2) computation/static, as the address space is defined
compile time, 3) matching/detect, the technique performs detection. The part related to the detection
of incorrect control flow is based on confidence predictors. When a mis-speculation is discovered, it
is considered that the predictor is correct and the mispeculation implies an error. Therefore, this part
of the technique belongs also to the golden reference branch and it is categorized in the following
classes: 4) value/identical, as an error is detected if mispeculation takes place, 2) computation/static,
as it is upfront decided that a mispeculation means an error, and 5) matching/detect, as this part of
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the technique performs detection. The part of the technique relevant to the event logs, re-executes
the task on the same core and tracks and records events during the original and the redundant
execution . In case an error is detected, a third execution takes place to identify if the error was on
the original execution. Therefore, this part of the technique belongs to the explicit creation branch
and it is categorized in the following classes: 6) value/identical, as the same sequence of instructions
is executed, 7) instruction sequence/regenerate, as the sequence of instructions is re-executed on the
same component andwith the sameway as the original sequence, 8) compatibility/sample, due to the
creation of the log file for the original execution, 9) matching/detect, and 10) matching/reconstruct,
as both detection and correction occur.

Technique 41: The Algorithmic Based Fault Tolerant (ABFT) approach [8] extends the input matrix
with supplementary columns and rows containing checksums. Then, the matrix multiplication al-
gorithm applies similar mathematical operations to both the original data and the checksum during
execution to keep the checksum relationship invariant. Then, the new checksum is computed based
on the original data, enabling error detection and error correction. Hence, this approach is catego-
rized as: 1) golden reference/information/arithmetic value/lossy/compression class, as checksums
are computed, 2) golden reference/generation/static class, as initial checksums are computed before
execution, 3) golden reference/generation/process class, as the ABFT applies mathematical opera-
tions during execution that processes the initial checksums, 4) comparison/compatibility/sample
class and 5) comparison/compatibility/process class, as a new checksum has to be computed based
on the original data, 6) comparison/detect and comparison/reconstruct, as the checksums allow to
detect and also correct some errors.
Technique 42: Capability checking approaches aim at the detection of malfunctions that cause

illegal access to thememory system [15]. The capability of an object includes address, type and access
rights. This information is used to pre-calculate offline a table with the access rights of each object
towards another object. During execution, a low-cost processor translates the physical addresses of
a specific memory reference and the physical address of the object it wants to access. Then, it verifies
if the access rights from the main processor are compatible with the access-rights provided by the
table. If they are not compatible, an error is signaled. Therefore, this approach belongs to: i) golden
reference/arithmetic value/identical class and ii) golden reference/generation static class, as the
exact access rights are computed offline for each pair of objects, iii) comparison/compatibility/sample
class and iv) comparison/compatibility/process class, as memory accesses have to be translated
in order to obtain the corresponding access rights from the table, and v) comparison/matching
detect class, as an error is signaled when the access rights from the main processor and the golden
reference do not match.

Technique 43*: Consistency check methods use the knowledge of a transformation, which relates
the inputs to the outputs of an algorithm, to perform error detection and correction. Consider an
algorithm that computes the inverse matrix A−1 of the input matrix A and it uses the expression
A × A−1 = I , where I is the identity matrix [23], as consistency check. Therefore, this approach
belongs to: i) golden reference/arithmetic value/identical class and ii) golden reference/generation
static class, as the matrix I is used as a golden reference, with which we will compare the output of
the algorithm and it is offline defined, iii) reuse/data/original format and reuse/enable/previous
execution class, as the input matrix A is reused, iv) comparison/compatibility/sample class and
v) comparison/compatibility/process class, as after the computation of the output matrix A−1, it
has to be processed through A ×A−1 in order to be compared with the golden reference, and vi)
comparison/matching detect class, as errors are detected.
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1.2 Reuse existing values
Technique 11*: The technique of [34] performs error detection by directly comparing the input and
output data of a flip-flop. After error detection the logic evaluation time is extended by a clock
cycle for error correction. A multiplexer (MUX) with a feedback configuration to capture delayed
valid data is inserted to the original data path. Correction is done by re-feeding the flip-flop with
the correct data of the MUX-latch. Therefore, the technique belongs to the explicit creation branch.
The error detection part belongs to the reuse branch, as no new value is explicitly created, and it
is categorized in the following classes: 1) data/identical/original format and 2) enable/calculated
value, as the same original value is reused for detection coming from the input of the flip-flop, and
3) matching/detect. For the error correction, the technique modifies the hardware, so it belongs to
the circuit expansion branch. This part is categorized in the following classes: 4) value/identical, as
the same data are captured, 5) select component/same, as the hardware modifications take place at
around the original flip-flop, 6) component modifications/functionality, due to the inserted MUX, 7)
component modifications/control plane/timing and 8) time-wise information/skew, as the MUX is
controlled by an error flip-flop driven by a delayed clock, and 9) matching/reconstruct.
Technique 12*, 13* and 14*: A fault screener reports an error if the program’s current behavior

is inconsistent with the expected behavior given by a valid value space. The way to compute
the valid value space determines the components of the technique. The invariance-based fault
screener [26] (T12) calculates and keeps a bitmask for each static instruction representing which
bits are continually invariant across the instruction executions. Therefore, the technique belongs
to the explicit creation branch and it has a part that belongs to reuse branch, since it reuses the
history of the instructions to compute the invariant mask, and to the circuit expansion, as the
invariant mask is calculated by the hardware. The technique categorized in the following classes:
1) data/identical/original format, since the complete value of the static instruction is re-used for
the creation of the invariant, 2) enable/previous execution, since the values previously observed
are re-used for the creation of the mask, 3) value/approximate, as the online computed value
is an invariant mask, 4) time-wise information/preprone, as each time a value is produced, the
bitmask is updated in order to be used for the next value, 5) select component/same, 6) component
modifications/functionality, and 7) component modifications/storage, as the original hardware is
extended to include the hardware to compute the invariant and to store it, 8) compatibility/sample,
as the original value is sampled, and 9) matching/detect. The same classification has the dynamic-
range fault screener [26] (T13) that detects an error when a static instruction gives a value that
it is outside of its normal range, computed run-time based on the observed values. Similarly, the
extended history fault screener [26] is decomposed in the same way since it keeps a history of 64
unique values and 64 unique deltas between successive values for each static instruction.
Technique 15*: Nostradamus [17] for each instruction, it compares the instruction’s expected

impact on the architectural state with the actual impact that has the instruction’s execution. An
expectation unit operates in parallel with the normal instruction decode logic to determine the
instruction expectation, i.e. how the instruction will modify the architectural state compressed in a
signature. The modification of the architectural state is expressed as the instruction expectation
signature, which is a hashed value. During the execution stage, the real impact of the instruction
execution is computed and compared with the expected one in order to define an error. Therefore,
the technique belongs to the explicit creation branch and it has a part that belongs to reuse branch,
since it reuses the information from the decode stage to compute the signature mask, and to the
circuit expansion, as the signature is calculated by the hardware. The technique categorized in
the following classes: 1) data/value/original format, the value reused is the original value of the
registers, 2) enable/current execution/stored value, as the same instruction is executed only in
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different pipeline stages and the value reused is stored in the registers, 3) value/compression, as a
signature is created, 4) time-wise info/skew, as the signature is created at the decode stage during
the execution of the original instruction, 5) select component/same, as the original pipeline is
modified, 6) component modifications/functionality and 7) component modifications/storage, for
the additional hardware for the calculation of the signature and the additional register to store it, 8)
compatibility/extract, to observe the history of the instruction execution, 9) compatibility/process,
to compute the real signature and 10) compatibility/sample, to store it, and 11) matching/detect, as
the technique performs error detection.

1.3 Instruction sequence extension
Technique 16*: The Execution Fingerprinting (EX) allows tasks to be executed at different times on
redundant cores and compresses the changes into an external state, called fingerprint. At regular
intervals, the original and redundant fingerprints are compared. EX State Checkpointing [11] is
enabled periodically and pushes all register state to the fingerprinting unit. Therefore, the technique
belongs to the explicit creation branch and it has a part that belongs to instruction sequence
extension branch, since a redundant task is executed, and to the circuit expansion, as the fingerprint
is calculated by the hardware. The technique categorized in the following classes: 1) value/identical,
as the redundant task is the same as the original task, 2) time-wise information/skew, 3) time-wise
information/align, 4) time-wise information/prepone and 5) time-wise information/postpone, as
the redundant task is executed without time restrictions, 6) resource selection/unoccupied, as
the second task is executed on a different core, 7) value/compression, as the register states are
hashed to create the fingerprint, 8) time-wise information/align, as the fingerprint is created when
the register state is pushed to the fingerprint unit, 9) new component, as a new core has been
inserted for the execution of the redundant task,with the capabilities of creating the fingerprint, 10)
compatibility/process, in order to create the original fingerprint, 11) compatibility/sample, to store
the original fingerprint, 12) matching/detect, as the technique performs error detection.
Technique 17*: The distributed temporal redundancy technique [14] is similar to the technique

16. The main difference is 1) matching/reconstruct, if the fingerprints do not match, a third copy is
executed on a third resource to determine the correct value.
Technique 18: The technique of [7] proposes a lock-step processor pair architecture, where the

two processor units are fully synchronized executing identical instruction streams. Therefore, the
technique belongs to the explicit creation branch, and more precisely to the instruction sequence
extension as two identical streams are used, and it is categorized in the following classes: 1)
time-wise information/align, as the cores are executed in lock-step so the task execution is fully
synchronized, 2) resource selection/unoccupied class, as an idle core of the platform is used for the
duplicated instruction stream, 3) matching/detect.
Technique 19*: The instructions are duplicated on VLIW datapaths by the compiler in [5]. The

scheduling of the duplicated instructions is done along at a different function unit of the VLIW or
after the original instructions. When this is not possible, a new time slot is added to create slack.
The original values are stored to a register value queue and the addresses to the load/store queue.
To find with which original value from the queue a duplicated value has to be compared with, the
technique uses the output register address. Therefore, the technique belongs to the explicit creation
branch, and more precisely to the instruction sequence extension as the duplication is performed
in the instruction memory by the compiler. The technique is categorized in the following classes: 1)
value/identical, as the same instructions are duplicated, and, thus, the same values are created, 2)
time-wise information/align, and 3) resource selection/unoccupied, when the execution is done at
the same time with the original instructions, 4) regenerate and 5) time-wise information/postpone,
when it the duplicated instructions are executed after the original ones, 6) resource selection/slack,
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when a new time slot is added, 7) compatibility/extract, to find out with which instruction to
compare to, 8) compatibility/sample, due to the storing of the original values to the queue, and
9) matching/detect. In addition, the store/load queue is protected by a parity bit. This part of the
approach belongs to: 10) value/compression, due to the parity, 11) time-wise align, as the parity is
computed at the same time as the original value, 12) select component/same and 13) component
modifications/storage, as the component where the original value is store is extended to keep the
parity, and 14) component modifications/functionality, to compute the parity.
Technique 20: The approach of [29] executes with a delay a redundantly generated instruction

stream (R-steam) after the start of the execution of the active stream (A-stream) on a Simultaneous
Multi-Threaded (SMT) architecture. Then, the execution of the individual instructions is decided
based on a dynamic scheduler. Therefore, the technique belongs to the explicit creation branch, and
more precisely to the instruction sequence extension as two streams are executed. The technique is
categorized in the following classes: 1) value/identical, as the streams are the same, 2) instruction
sequence/time-wise information/skew, for the execution of the R-stream, 3) time-wise informa-
tion/align, 4) time-wise information/prepone, 5) time-wise information/postpone, for the execution
of the individual instructions of the R-stream, 6) resource selection/unoccupied FU, when the
execution is performed on different FU than the ones used by the corresponding instructions of the
A-stream, 7) regenerate, when the R-stream instructions are executed just after the corresponding
A-stream instructions, 8) matching/sample, as the results of each A-stream instruction are also
pushed onto the Delay Buffer, and 9) matching/detect.

1.4 Circuit expansion
Technique 21: The technique of [25] a hardware mechanism that duplicates or triplicates the
instructions inside the execution and decoding stages in order to take advantage of the idle slots in
the current and next instruction bundle. The replicated instructions can be executed in the same
time slot in another idle FU or in the next time slot in an idle FU (either same FU as the original or
another FU). When there are not enough idle resources to exploit, the pipeline is stalled to add
one or more additional time slots to create time slack. Therefore, the technique belongs to the
explicit creation branch and it is categorized in the following classes: 1) value/identical, as the
same instructions are executed and, thus, the same values, 2) time-wise information/align and
3) select component/idle, when the replicated instructions are executed in the same slot as the
original, 4) time-wise information/postpone and 5) select component/same, when the replicated
instructions are executed in the next slot, 6) select component/slack, due to the inserted new time
slot, 7) component modifications/usage, as the usage of the FUs is modified due to the run-time
scheduling of instructions, 8) component modifications/timing, as stalls are inserted, 9) component
modifications/data plane/storage, as additional registers are inserted to keep the values due to
misaligned execution of the original and replicated instructions, 10) compatibility/sample, as the
original result may be stored when needed due to the misaligned execution, 11) matching/detect,
when duplication is used, 12) matching/reconstruct, when triplication is used.

Technique 22: The phase-configurable VLIW processor [32] uses idle issue slots during a whole
given program phase to execute duplicated instructions from the corresponding coupled pipeline
and check their results. When a mismatch is found, the pipeline is flushed and the last instruction
bundle is executed again. Therefore, the technique belongs to the explicit creation branch and it is
categorized in the following classes: 1) value/identical, as the coupled pipeline executes the same
instructions as the original one, 2) circuit expansion/time-wise information/align and 3) select com-
ponent/idle, as both duplicated and original values are executed at the same slot for error detection,
4) time-wise information/postpone and 5) select component/same, due to the re-execution of the
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original instruction for the error correction, 6) component modifications/usage, as the pipelines
now executes original or duplicated instructions, 7) matching/detect, and 8) matching/reconstruct.
Technique 23: An improved version of [32] is presented in [33]. In case there are not enough

idle slots, an additional time slot is inserted to create slack and accommodate the remaining
replicated instructions. Hence, this technique has a similar categorization to the previous technique
except that: 1) time-wise information/postpone, 2) select component/slack, and 3) component
modifications/timing are included, due to the inserted additional time slot.
Technique 24: Nostradamus [17] to deal with errors in functional units uses residue coding

implemented in hardware. Therefore, the technique belongs to the explicit creation branch and it is
categorized in the following classes: 1) value/approximation, as the additional value created during
the execution is obtained by additional residue code operands, 2) time-wise information/align,
as original and additional values are created at the same time, 3) select component/same and 4)
component modifications/functionality, due to the inserted additional residue code operand in the
original data-path, 5) compatibility/process, since the original value has also to be reduced to the
modulo operation before comparing with the additional value, and 6) matching/detect.

Technique 25, 26 and 27: Double sampling methods [19] (T23) create the information in a moment
that is skewed with respect to the original value. In Razor [3] (T24) the pipeline flip-flop is modified
by inserting a shadow latch triggered by a delayed clock signal and latches the same signal as the
main flip-flop. The value in the shadow latch, which is guaranteed to be correct, is utilized to correct
the delay failure, when an error is detected. A similar approach is the simplified Razor Flip-Flop
(RFF) [2] (T25), where the metastability detector is omitted. Therefore, these techniques belong to
the explicit creation branch, and more precisely to circuit expansion branch. They are categorized in
the following classes: 1) value/identical, as the same signal is latched by the shadow flip-flop, 2) time-
wise information/skew, due to the delayed clock signal, 3) select component/same, since the extra
shadow latch is introduced in parallel with the original flip-flop, 4) component modifications/timing,
as the shadow latch is triggered by a delayed clock, 5) component modifications/storage, due to the
use of the shadow latch, 6) matching/detect and 7) matching/reconstruct.
Technique 28: The Reduced Precision Redundancy (RPR) technique creates additional values

with reduced precision computed by two additional arithmetic circuits [24]. Therefore, the tech-
nique belongs to the explicit creation branch and it is categorized in the following classes: 1)
value/approximation, since the reduced precision values can be produced either by truncation or
rounding, 2) time-wise information/align, as the additional values are created at the same time
with the original one, 3) select component/same, as the original component is extended to include
the RPR hardware, 4) component modifications/functionality, as the additional arithmetic circuits
are inserted, 5) matching/detect, at the approach performs detection and 6) matching/reconstruct,
as the approach performs correction.

Technique 29: Duplication with comparison inserts an identical copy of a circuit and compares its
output with the original one [6]. Therefore, the technique belongs to the explicit creation branch and
it is categorized in the following classes: 1) value/identical, as exactly the same circuit is used and,
thus, the same values are created, 2) time-wise information/align, as it creates the duplicated value
at the same time with the original, 3) hardware information/new component, as a new identical
circuit is inserted, 4) matching/detect, as the approach performs detection.

Technique 30: The fault technique for exclusive directory entries in a cache coherency directory
of [9] modifies the original sharer field to a binary representation to include Single Error Correction
Double Error Detection (SECDED). Therefore, the technique belongs to the explicit creation branch
and it is categorized in the following classes: 1) value/compression, due to the SECDED used, 2)
time-wise information/align, as SECDED and original value are stored at the same time, 3) hardware
information/select component/same, as SECDED and original value are stored at the same entry, 4)
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component modifications/usage, as the original entry is modified to binary representation to create
space for the SECDED, 5) component modifications/functionality, so as to compute the SECDED,
6) compatibility/process, to compute the SECDED for the original value, 7) matching/detect, as
double error detection is possible, and 8) matching/reconstruct, due to single error correction.

Technique 31: The fault technique for shared directory entries [9] is as follows: the entry is read
once and stored to a new register, then it is negated and stored back to the directory. Then, it is read
again and stored to another register. The two registers are compared for error detection. Therefore,
the technique belongs to the explicit creation branch and it is categorized in the following classes:
1) value/encoded, as the information to perform the comparison is negated, 2) time-wise informa-
tion/prepone, as the original value is read after the creation of the additional information, 3) select
component/same, as the original directory is modified to create the additional value, 4) component
modifications/functionality, as the negation circuit is inserted, 5) component modifications/storage,
for the new register to store the negated value, 6) component modifications/usage, as the way of
using the data plane is modified to support the negation and storing back, 7) compatibility/sample,
as the original value is stored to another register, and 8) matching/detect.
Technique 32*: The hardware technique of [1] multi-bit errors are detected using simple Error

Detection Codes (EDC), like hamming distance or cyclic redundancy codes (CRC) for the cache
lines. When an error is detected, it is corrected using the data redundancy in the memory hierarchy,
i.e. between the write-through L1 cache and the L2 cache and the clean data lines of the L2 cache
and the main memory. Errors become affective when a L2 cache line is replaced, and, thus, written
back to the memory. So, in a L2 cache replacement, the entry has to checked for soft errors. In
case an error exist, the correct data are fetched from L1 cache. Errors in clean L2 cache lines can
be corrected by re-fetching them from the main memory. Therefore, the technique belongs to the
explicit creation branch, and more precisely to the reuse branch (for the error correction) and the
circuit expansion (for the error detection codes). The technique is categorized in the following
classes: 1) reuse/data/original format, as the same data is reused from L1 cache (main memory),
2) enable/previous execution, as the values have been written to L1 cache (main memory) before
the L2 cache replacement. The second part is the error detection codes applied to the cache lines
and it belongs to: 3) explicit creation/value/compression, for the EDC, 4) circuit expansion/time-
wise information/align, as the EDC are created at the same time with the original value, 5) select
component/same, as the EDC is stored at the same cache line with the original value, 6) component
modifications/functionality, for the computation of EDC, 7) component modifications/storage, to
store the EDC bits. The approach performs both 8) matching/detect and 9) matching/reconstruct.

Technique 33: The technique of fine-grained error detection with carry propagation chains of [18]
uses the carry chain already included in FPGA slices to generate an error indication signal. The
duplicated information is stored in currently unused LUTs. Therefore, the technique belongs to
the explicit creation branch and it is categorized in the following classes: 1) value/identical, as the
same value as the original one is created, 2) circuit expansion/time-wise information/align, as the
duplicated value is computed at the same time as the original, 3) select component/idle, as unused
LUTs are used for the duplication, 4) matching/detect.
Technique 34: Triple modular redundancy where the same circuit is executed three times in

parallel [12] belongs to circuit expansion branch: 1) value/identical, 2) circuit expansion/time-wise
information/align, 3) hardware information/new, 4) matching/detect and 5) matching/reconstruct.

Technique 35*: The technique in [21] explores the effect that has the enabling of the error detec-
tion technique only for a small period of time to the number of undetected errors. The execution
time is divided into epochs, and each epoch to a singular period and a DMR period. When an error
occurs, it is detected in a DMR period and the system rolls back to the previous checkpoint. For
the detection, each core is enhanced with a reliability manager with control logic and two buffers.
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Two cores are coupled for the DMR period to execute the duplicated instructions. At commit-time,
the architectural state updates are sent to the checker core in a form of fingerprint. If an error is
detected, the application is re-executed. Therefore, the technique belongs to the explicit creation
branch, more precisely in the instruction sequence extension (instructions running on two different
cores) and in the circuit expansion (fingerprint and synchronization). The technique is categorized
in the following classes: 1) value/identical, as the same instructions are required, 2) instruction
sequence/postpone and 3) resource selection/unoccupied, when an error is found, 4) instruction
sequence/time-wise information/skew, 5) instruction sequence/time-wise information/align, 6)
instruction sequence/time-wise information/prepone, 6) instruction sequence/time-wise informa-
tion/postpone, as the duplicated instructions are executed without time restriction and the cores may
not be synchronized, 7) resource selection/unoccupied, for the coupled core, 8) value/compression,
for the use of fingerprint, 9) circuit expansion/time-wise information/align, as the fingerprint is
created at the commit stage of the original instruction, 10) select component/same, as the core is
modified with the manager to create the fingerprint, 11) component modifications/timing, for the
synchronization performed by the manager, 12) component modifications/functionality, for the com-
putation of the fingerprint, 13) component modifications/storage, for the use of the buffers to store
the fingerprint, 14) compatibility/process and 15) compatibility/sample, for the computation and
storage of the fingerprint of the original value, 16) matching/detect, and 17) matching/reconstruct.

Technique 36: The hardware mechanism of [1] identifies small data values, which can fit in the half
of the word in the memory. Then, the upper half of the memory word is used for duplicating the data
value. Multi-bit errors in the lower half of the word is corrected using the duplicate copy in the upper
half. The multi-bit errors which cannot be corrected using the inherent redundancy are corrected by
using a small Error Correction Code (ECC) cache. Therefore, the technique belongs to the explicit
creation branch, andmore precisely to the circuit expansion. It is categorized in the following classes:
1) explicit creation/identical, for the small data values as duplication is applied in this case, 2) circuit
expansion/time-wise information/align, as both original small value and duplicated small value are
stored at the same time, 3) select component/same, as both original small value and duplicated small
value are stored in same word in the memory, 4) component modifications/usage, to use the same
word for the original and the duplicated value, 5) component modifications/functionality, to identify
the small data values. The part related to the error correction codes and it is categorized in: 6) explicit
creation/value/compression, for the ECC, 7) circuit expansion/time-wise information/align, as they
are created at the same time with the original value, 8) select component/new, as a new cache is
inserted for the ECC. The approach performs both 9) matching/detect and 10) matching/reconstruct.

Technique 37: The check-on-write approach in caches [20] performs error detection and correc-
tion of a value before it is overwritten based on Error Correction Codes. Therefore, the technique
belongs to the explicit creation branch, and more precisely to the circuit expansion. It is categorized
in the following classes: 1) value/compression, for the ECC, 4) circuit expansion/time-wise informa-
tion/align, as the ECC is created when the value is created, 5) select component/same, as the ECC is
stored at the same cache line with the original value, 6) component modifications/functionality, for
the computation of ECC, 7) component modifications/storage, to store the ECC bits. The approach
performs both 8) matching/detect and 9) matching/reconstruct.
Technique 38: For the errors in storage, Nostradamus [17] uses error detection codes, such as

parity based on XOR among the bits. Therefore, the technique belongs to the circuit expansion. It is
categorized in the following classes: 1) value/compression, for the parity, 2) circuit expansion/time-
wise information/align, as the parity is created when the value is created, 3) select component/same,
as the parity is stored with the original value, 4) component modifications/functionality, for the
computation of parity, 5) component modifications/storage, as the size is extended to include the
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parity bit. The approach belongs to 6) compatibility/process, since the parity of the original value
has to be recomputed, and 7) matching/detect, as only error detection occurs.

Technique 39*: The token coherence signature checker [13] checks for errors in cache coherency.
It is based on computing signatures that represent recent histories of coherence events at memory
and cache controllers. Periodically, these signatures are sent to a verifier to check for errors. There-
fore, the technique belongs to the reuse branch (observing the events) and in the circuit expansion
(signature creation). The technique is categorized in the following classes: 1) data/original and 2)
enable/previous execution, since recent history of occurring events during execution are observed,
3) value/compression, since signatures are used, 4) circuit expansion/time-wise information align,
as the signatures are updated every time an event occurs, 5) select component/same, as the memory
controller is extended to compute the signature, 6) component modifications/functionality, and
7) component modifications/storage, for the signature computation and storage, 8) compatibil-
ity/process and 9) compatibility/sample, for the second signature, and 10) matching/detect.
Technique 40: The REcomputed with Shifted Operands (RESO) [22] shift the inputs of the ALU,

reperforms the same instruction and the output is shifted back and compared with the original
value. Therefore, the technique belongs to the circuit expansion. The technique is categorized in
the following classes: 1) value/encoded, since the operands and the result are shifted, 2) circuit
expansion/time-wise information/postpone, as the execution of the second instruction is performed
after the original one, 3) select component/same, as the original ALU is modified to support the
RESO operation, 4) component modifications/usage, to modify the use of the ALU during the
additional information creation, 5) component modifications/functionality, and 6) component
modifications/storage, as the original ALU data-path is extended with shifters and one register, 7)
compatibility/sample, for storing the original value and 8) matching/detect.

REFERENCES
[1] K. Bhattacharya, N. Ranganathan, and S. Kim. 2009. A Framework for Correction of Multi-Bit Soft Errors in L2 Caches

Based on Redundancy. IEEE Transactions on Very Large Scale Integration (VLSI) Systems 17, 2 (Feb 2009), 194–206.
https://doi.org/10.1109/TVLSI.2008.2003236

[2] K. A. Bowman, J. W. Tschanz, Nam Sung Kim, J. C. Lee, C. B. Wilkerson, S. L. L. Lu, T. Karnik, and V. K. De. 2009. Energy-
efficient and metastability-immune timing-error detection and recovery circuits for dynamic variation tolerance. In
Proceedings of the 2008 IEEE International Conference on Integrated Circuit Design and Technology and Tutorial. 155–158.
https://doi.org/10.1109/ICICDT.2008.4567268

[3] D. Ernst, N. S. Kim, S. Das, S. Pant, R. Rao, T. Pham, C. Ziesler, D. Blaauw, T. Austin, K. Flautner, and T. Mudge.
2003. Razor: A Low-Power Pipeline Based on Circuit-Level Timing Speculation. In Proceedings of the 36th Annual
IEEE/ACM International Symposium on Microarchitecture (MICRO 36). IEEE Computer Society, Washington, DC, USA,
7–. http://dl.acm.org/citation.cfm?id=956417.956571

[4] Y. Fei and Z. J. Shi. 2007. Microarchitectural Support for Program Code Integrity Monitoring in Application-specific
Instruction Set Processors. In Proceedings of the 2007 Design, Automation Test Exhibition. 1–6. https://doi.org/10.1109/
DATE.2007.364391

[5] J. Hu, F. Li, V. Degalahal, M. Kandemir, N. Vijaykrishnan, and M. J. Irwin. 2009. Compiler-assisted Soft Error Detection
Under Performance and Energy Constraints in Embedded Systems. ACM Transactions on Embedded Computing Systems
8, 4, Article 27 (July 2009), 30 pages. https://doi.org/10.1145/1550987.1550990

[6] J. Johnson, W. Howes, M. Wirthlin, D. L. McMurtrey, M. Caffrey, P. Graham, and K. Morgan. 2008. Using Duplication
with Compare for On-line Error Detection in FPGA-based Designs. In Proceedings of the 2008 IEEE Aerospace Conference.
1–11.

[7] J.S. Klecka, W.F. Bruckert, and R.L. Jardine. 2002. Error self-checking and recovery using lock-step processor pair
architecture. (May 21 2002). http://www.google.ch/patents/US6393582 US Patent 6,393,582.

[8] Kuang-Hua Huang and J. A. Abraham. 1984. Algorithm-Based Fault Tolerance for Matrix Operations. IEEE Trans.
Comput. C-33, 6 (June 1984), 518–528.

[9] H. Lee, S. Cho, and B. R. Childers. 2010. PERFECTORY: A Fault-Tolerant Directory Memory Architecture. IEEE Trans.
Comput. 59, 5 (May 2010), 638–650. https://doi.org/10.1109/TC.2009.138

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1109/TVLSI.2008.2003236
https://doi.org/10.1109/ICICDT.2008.4567268
http://dl.acm.org/citation.cfm?id=956417.956571
https://doi.org/10.1109/DATE.2007.364391
https://doi.org/10.1109/DATE.2007.364391
https://doi.org/10.1145/1550987.1550990
http://www.google.ch/patents/US6393582
https://doi.org/10.1109/TC.2009.138


Appendix of “Binary Classification Tree of Rigid Error Detection and Correction Techniques”1:11

[10] M. L. Li, P. Ramachandran, S. K. Sahoo, S. V. Adve, V. S. Adve, and Y. Zhou. 2008. Understanding the Propagation
of Hard Errors to Software and Implications for Resilient System Design. In Proceedings of the 13th International
Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS XIII). ACM, New York,
NY, USA, 265–276. https://doi.org/10.1145/1346281.1346315

[11] M. Liu and B. H. Meyer. 2016. Bounding error detection latency in safety critical systems with enhanced Execution
Fingerprinting. In Proceedings of the 2016 IEEE International Symposium on Defect and Fault Tolerance in VLSI and
Nanotechnology Systems (DFT). 47–52. https://doi.org/10.1109/DFT.2016.7684068

[12] R. E. Lyons and W. Vanderkulk. 1962. The Use of Triple-modular Redundancy to Improve Computer Reliability. IBM J.
Res. Dev. 6, 2 (April 1962), 200–209. https://doi.org/10.1147/rd.62.0200

[13] A. Meixner and D. J. Sorin. 2007. Error Detection via Online Checking of Cache Coherence with Token Coherence
Signatures. In Proceedings of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture.
145–156. https://doi.org/10.1109/HPCA.2007.346193

[14] B. H. Meyer, B. H. Calhoun, J. Lach, and K. Skadron. 2011. Cost-effective safety and fault localization using distributed
temporal redundancy. In Proceedings of the 14th International Conference on Compilers, Architectures and Synthesis for
Embedded Systems (CASES). 125–134. https://doi.org/10.1145/2038698.2038719

[15] M. Namjoo and E. HcCluskey. 1995. WATCHDOG PROCESSORS AND CAPABILITY CHECKING. In Twenty-Fifth
International Symposium on Fault-Tolerant Computing, 1995, ’ Highlights from Twenty-Five Years’. IEEE Computer
Society, Los Alamitos, CA, USA, 94.

[16] A. Narsale and M. C. Huang. 2009. Variation-tolerant hierarchical voltage monitoring circuit for soft error detection.
In Proceedings of the 2009 10th International Symposium on Quality Electronic Design. 799–805. https://doi.org/10.1109/
ISQED.2009.4810395

[17] R. Nathan andD. J. Sorin. 2014. Nostradamus: Low-cost hardware-only error detection for processor cores. In Proceedings
of the 2014 Design, Automation Test in Europe Conference Exhibition (DATE). 1–6. https://doi.org/10.7873/DATE.2014.173

[18] G. L. Nazar, P. Rech, C. Frost, and L. Carro. 2013. Radiation and Fault Injection Testing of a Fine-Grained Error Detection
Technique for FPGAs. IEEE Transactions on Nuclear Science 60, 4 (Aug 2013), 2742–2749. https://doi.org/10.1109/TNS.
2013.2261319

[19] M. Nicolaidis. 2015. Double-Sampling Design Paradigm- A Compendium of Architectures. IEEE Transactions on Device
and Materials Reliability 15, 1 (March 2015), 10–23. https://doi.org/10.1109/TDMR.2014.2388358

[20] P. Nikolaou, Y. Sazeides, L. Ndreu, E.Ozer, and S. Idgunji. 2013. Memory array protection: Check on read or Check
on Write?. In Proceedings of the 2013 Design, Automation Test in Europe Conference Exhibition (DATE). 214–219.
https://doi.org/10.7873/DATE.2013.057

[21] S. Nomura, M. D. Sinclair, Chen-Han Ho, V. Govindaraju, M. de Kruijf, and K. Sankaralingam. 2011. Sampling + DMR:
Practical and Low-overhead Permanent Fault Detection. In Proceedings of the 38th Annual International Symposium on
Computer Architecture (ISCA ’11). ACM, New York, NY, USA, 201–212. https://doi.org/10.1145/2000064.2000089

[22] J. H. Patel and L. Y. Fung. 1982. Concurrent Error Detection in ALU’s by Recomputing with Shifted Operands. IEEE
Trans. Comput. 31, 7 (July 1982), 589–595. https://doi.org/10.1109/TC.1982.1676055

[23] P. Prata and J. G. Silva. 1999. Algorithm based fault tolerance versus result-checking for matrix computations. In
Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing (Cat. No.99CB36352). 4–11.
https://doi.org/10.1109/FTCS.1999.781028

[24] B. Pratt, M. Fuller, and M. Wirthlin. 2011. Reduced-precision redundancy on FPGAs. International Journal of Reconfig-
urable Computing 2011 (2011), 12. https://doi.org/10.1155/2011/897189

[25] R. Psiakis, A. Kritikakou, and O. Sentieys. 2017. Run-time Instruction Replication for permanent and soft error
mitigation in VLIW processors. In Proceedings of the 2017 15th IEEE International New Circuits and Systems Conference
(NEWCAS). 321–324. https://doi.org/10.1109/NEWCAS.2017.8010170

[26] P. Racunas, K. Constantinides, S. Manne, and S. S. Mukherjee. 2007. Perturbation-based Fault Screening. In Proceedings
of the 2007 IEEE 13th International Symposium on High Performance Computer Architecture. 169–180. https://doi.org/10.
1109/HPCA.2007.346195

[27] R. G. Ragel and S. Parameswaran. 2006. IMPRES: integrated monitoring for processor reliability and security. In
Proceedings of the 2006 43rd ACM/IEEE Design Automation Conference. 502–505. https://doi.org/10.1145/1146909.1147041

[28] A. Rajabzadeh and S. G. Miremadi. 2005. A hardware approach to concurrent error detection capability enhancement in
COTS processors. In Proceedings of the 11th Pacific Rim International Symposium on Dependable Computing (PRDC’05).
8 pp.–. https://doi.org/10.1109/PRDC.2005.7

[29] E. Rotenberg. 1999. AR-SMT: a microarchitectural approach to fault tolerance in microprocessors. In Proceedings of
the Digest of Papers. Twenty-Ninth Annual International Symposium on Fault-Tolerant Computing (Cat. No.99CB36352).
84–91. https://doi.org/10.1109/FTCS.1999.781037

[30] A. Sari and M. Psarakis. 2011. Scrubbing-based SEU mitigation approach for Systems-on-Programmable-Chips. In
Proceedings of the 2011 International Conference on Field-Programmable Technology. 1–8. https://doi.org/10.1109/FPT.

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1145/1346281.1346315
https://doi.org/10.1109/DFT.2016.7684068
https://doi.org/10.1147/rd.62.0200
https://doi.org/10.1109/HPCA.2007.346193
https://doi.org/10.1145/2038698.2038719
https://doi.org/10.1109/ISQED.2009.4810395
https://doi.org/10.1109/ISQED.2009.4810395
https://doi.org/10.7873/DATE.2014.173
https://doi.org/10.1109/TNS.2013.2261319
https://doi.org/10.1109/TNS.2013.2261319
https://doi.org/10.1109/TDMR.2014.2388358
https://doi.org/10.7873/DATE.2013.057
https://doi.org/10.1145/2000064.2000089
https://doi.org/10.1109/TC.1982.1676055
https://doi.org/10.1109/FTCS.1999.781028
https://doi.org/10.1155/2011/897189
https://doi.org/10.1109/NEWCAS.2017.8010170
https://doi.org/10.1109/HPCA.2007.346195
https://doi.org/10.1109/HPCA.2007.346195
https://doi.org/10.1145/1146909.1147041
https://doi.org/10.1109/PRDC.2005.7
https://doi.org/10.1109/FTCS.1999.781037
https://doi.org/10.1109/FPT.2011.6132703
https://doi.org/10.1109/FPT.2011.6132703


1:12 A. Kritikakou et al.

2011.6132703
[31] A. Sari, M. Psarakis, and D. Gizopoulos. 2013. Combining checkpointing and scrubbing in FPGA-based real-time

systems. In Proceedings of the 2013 IEEE 31st VLSI Test Symposium (VTS). 1–6. https://doi.org/10.1109/VTS.2013.6548910
[32] A. L. Sartor, A. F. Lorenzon, L. Carro, F. Kastensmidt, S. Wong, and A. C. S. Beck. 2015. A Novel Phase-Based Low

Overhead Fault Tolerance Approach for VLIW Processors. In Proceedings of the 2015 IEEE Computer Society Annual
Symposium on VLSI. 485–490. https://doi.org/10.1109/ISVLSI.2015.19

[33] A. L. Sartor, S. Wong, and A. C. S. Beck. 2016. Adaptive ILP control to increase fault tolerance for VLIW processors. In
Proceedings of the 2016 IEEE 27th International Conference on Application-specific Systems, Architectures and Processors
(ASAP). 9–16. https://doi.org/10.1109/ASAP.2016.7760767

[34] S. Valadimas, A. Floros, Y. Tsiatouhas, A. Arapoyanni, and X. Kavousianos. 2014. The Time Dilation Technique for
Timing Error Tolerance. IEEE Trans. Comput. 63, 5 (May 2014), 1277–1286. https://doi.org/10.1109/TC.2012.289

[35] N. J. Wang and S. J. Patel. 2006. ReStore: Symptom-Based Soft Error Detection in Microprocessors. IEEE Transactions
on Dependable and Secure Computing 3, 3 (July 2006), 188–201. https://doi.org/10.1109/TDSC.2006.40

[36] Q. Zhao, Y. Ichinomiya, M. Amagasaki, M. Iida, and T. Sueyoshi. 2011. A Novel Soft Error Detection and Correction
Circuit for Embedded Reconfigurable Systems. IEEE Embedded Systems Letters 3, 3 (Sept 2011), 89–92. https:
//doi.org/10.1109/LES.2011.2167213

Received September 2018

ACM Computing Surveys, Vol. 1, No. 1, Article 1. Publication date: January 2020.

https://doi.org/10.1109/FPT.2011.6132703
https://doi.org/10.1109/FPT.2011.6132703
https://doi.org/10.1109/VTS.2013.6548910
https://doi.org/10.1109/ISVLSI.2015.19
https://doi.org/10.1109/ASAP.2016.7760767
https://doi.org/10.1109/TC.2012.289
https://doi.org/10.1109/TDSC.2006.40
https://doi.org/10.1109/LES.2011.2167213
https://doi.org/10.1109/LES.2011.2167213

	error_classification_final.pdf
	Abstract
	1 Introduction
	2 Target Domain and Problem Formulation
	3 Related Work
	4 Top-down partitioning methodology
	5 Binary Classification Tree
	5.1 Golden reference
	5.2 Reuse already existing values
	5.3 Explicit value creation
	5.4 Comparison

	6 Decomposition of existing approaches
	6.1 Golden reference
	6.2 Reuse existing values
	6.3 Instruction sequence extension
	6.4 Circuit expansion
	6.5 Observations

	7 Conclusions
	Acknowledgments
	References

	appendix.pdf
	1 Full decomposition of the techniques under study
	1.1 Golden reference
	1.2 Reuse existing values
	1.3 Instruction sequence extension
	1.4 Circuit expansion

	References


