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Abstract
Acyl coenzyme A binding protein (ACBP), also known as diazepam binding inhibitor (DBI) is a multifunctional protein
with an intracellular action (as ACBP), as well as with an extracellular role (as DBI). The plasma levels of soluble ACBP/DBI
are elevated in human obesity and reduced in anorexia nervosa. Accumulating evidence indicates that genetic or
antibody-mediated neutralization of ACBP/DBI has anorexigenic effects, thus inhibiting food intake and inducing lipo-
catabolic reactions in mice. A number of anorexiants have been withdrawn from clinical development because of their
side effects including an increase in depression and suicide. For this reason, we investigated the psychiatric impact of
ACBP/DBI in mouse models and patient cohorts. Intravenously (i.v.) injected ACBP/DBI protein conserved its orexigenic
function when the protein was mutated to abolish acyl coenzyme A binding, but lost its appetite-stimulatory effect in
mice bearing a mutation in the γ2 subunit of the γ-aminobutyric acid (GABA) A receptor (GABAAR). ACBP/DBI
neutralization by intraperitoneal (i.p.) injection of a specific mAb blunted excessive food intake in starved and leptin-
deficient mice, but not in ghrelin-treated animals. Neither i.v. nor i.p. injected anti-ACBP/DBI antibody affected the
behavior of mice in the dark–light box and open-field test. In contrast, ACBP/DBI increased immobility in the forced
swim test, while anti-ACBP/DBI antibody counteracted this sign of depression. In patients diagnosed with therapy-
resistant bipolar disorder or schizophrenia, ACBP/DBI similarly correlated with body mass index (BMI), not with the
psychiatric diagnosis. Patients with high levels of ACBP/DBI were at risk of dyslipidemia and this effect was independent
from BMI, as indicated by multivariate analysis. In summary, it appears that ACBP/DBI neutralization has no negative
impact on mood and that human depression is not associated with alterations in ACBP/DBI concentrations.

Introduction
Acyl coenzyme A (CoA) binding protein (ACBP) has

been identified as an ubiquitously expressed 86 amino
acid polypeptide that binds medium-sized (C14–C22) acyl
CoA chains in the cytoplasm of multiple (if not all) cell
types1. In addition, this protein acts as an “endozepine”
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and displaces benzodiazepines such as tritium-labeled
diazepam from its receptors, hence acting as diazepam
binding inhibitor (DBI)1. There are two benzodiazepine
receptors, the peripheral receptor, a mitochondrion-
located translocator protein (TSPO), and a central
receptor, which is the γ-aminobutyric acid (GABA) A
receptor (GABAAR), the major inhibitory neuro-
transmitter receptor in the central nervous system. Full
length ACBP/DBI displaces diazepam from both TSPO
and GABAAR. In the central nervous system, ACBP/DBI
produced by astrocytes and other cell types can be sub-
jected to endoproteolytic cleavage to generate neuropep-
tides such as triakontatetraneuropeptide (residues 17–50)
that acts as a selective ligand of TSPO and octadeca-
neuropeptide (residues 33–50) that acts as an allosteric
modulator of GABAAR activity1.
Recently, we reported that ACBP/DBI plasma con-

centration is abnormally high in obese individuals, cor-
relating with the fact that the periumbilical fat from obese
persons expresses high levels of ACBP/DBI mRNA that
diminish upon dietary intervention2. Similarly, in mice,
obesity induced by a high-fat diet or a genetic deficiency
of leptin results into increased expression of ACBP/DBI
mRNA and protein in the liver and in adipose tissue,
accompanied by an increase in circulating ACBP/DBI
protein levels2. Conversely, anorexia nervosa is associated
with a reduction in ACBP/DBI plasma level2,3. A prior
study had shown that in patients with acute inflammatory
disease, ACBP/DBI plasma levels increase, positively
correlating with tumor necrosis factor-α (TNFα) levels4.
Intriguingly, obesity is coupled to a state of chronic
inflammation in which TNFα is elevated, contributing to
the development of insulin-resistant (type-2) diabetes5,6.
This points to a relationship between metabolic inflam-
mation and the elevation of mediators such as ACBP/DBI
and TNFα.
Experiments in mice revealed that intravenous (i.v.)

injection of ACBP/DBI protein or transgenic expression of
ACBP/DBI in the liver caused hyperphagy and weight gain.
Conversely, neutralization of ACBP/DBI by an inducible
whole-body knockout or intraperitoneal (i.p.) injection of
neutralizing antibodies had anorexigenic effects, reducing
food intake and lipo-anabolic reactions, while increasing
lipo-catabolism (such as lipolysis and fatty acid oxidation),
thus reducing weight gain in the context of a high-fat diet
or leptin deficiency or enhancing weight loss upon a
switch from a high-fat diet to a normal diet2. These find-
ings, combined with the fact that ACBP/DBI, an evolu-
tionarily ancient gene/protein, can stimulate sporulation in
unicellular yeast species7,8 and in slime moldsan9, phar-
yngeal pumping in nematodes8, and mouse hook move-
ment (the equivalent of mastication) in flies10 let us to
postulate that ACBP/DBI is the elusive phylogenetically
conserved appetite stimulator or “hunger factor”11,12.

Eating disorders such as anorexia nervosa and morbid
obesity are metabolic diseases with a psychiatric compo-
nent. Importantly, prototypic psychiatric diseases including
treatment-resistant depression and severe schizophrenia
are coupled to major derangements in appetite and body
weight and often lead to a state of metabolic syndrome that
negatively affects life expectancy13–15. Obviously, the
GABAergic system composed by GABA and its receptors
plays a major role in the central nervous system16,17 as well
as in the regulation of metabolism18 and inflammation19.
Intrigued by these premises, we decided to investigate

the possible impact of ACBP/DBI on psychiatric condi-
tions. For this, we addressed the questions as to whether
ACBP/DBI stimulates appetite through its binding to acyl
CoA or an action on GABAAR and whether ACBP/DBI
affects the behavior of mice upon its artificial elevation or
neutralization in peripheral tissues. We also measured
ACBP/DBI concentration in the plasma of psychiatric
patients to understand its potential impact on mental vs.
metabolic disease.

Materials and methods
Mouse experiments
Eight- to ten-week-old male C57BL/6 mice, Wild-type

(WT, Envigo, Gannat, France and Janvier, Le Genest-Saint-
Islen, France), B6.Cg-Lepob/J ob/obmice, S/B6.V-LEP+/Ob
(JAX™ Mice Strain, Charles River Laboratory, Lentilly,
France) or Gabrg2tm1Wul/J, containing the point mutation
F77I in the gamma-aminobutyric acid (GABA) A receptor
γ2 subunit20 (JAX™ Mice Strain, Charles River Laboratory,
Lentilly, France) were bred and maintained according to
the FELASA guidelines and local guidelines from the
Animal Experimental Ethics Committee (#04447.02,
#2315-2015101617138161v1, #8530-2017011216394941v2,
#10862-2017080217568517v3, #25032, 19144-2018050412
55279v2, France).

Treatments
Mice were housed in a temperature-controlled envir-

onment with 12 h light/dark cycles and received normal
diet and water ad libitum. Mice were subjected to 24 h
starvation (Unfed), injected intraperitoneally or intrave-
nously and cumulative food intake was analyzed. The
mAb 7A antibody against ACBP/DBI or the isotype
IgG2a control were used in vivo (5 µg/g body weight
(BW), i.p, in total volume 200 μL) (Fred Hutch Antibody
Technology, Seattle, WA, USA). Recombinant mouse
ACBP/DBI (i.v., in total volume of 200 μL, 0.5 mg/kg BW)
(recACBP/DBI, from Institute of Psychiatry and Neu-
roscience of Paris, France) or the vehicle control (phos-
phate-buffered saline) were used in vivo. Moreover, two
mutant forms of mouse recombinant ACBP/DBI were
used in which two conserved residues were substituted
(Y29F and K33A), reducing the affinity of ACBP/DBI for
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the acyl-CoAs21. Recombinant mouse Ghrelin (purchased
by Merk Millipore) was administered by i.p. injection at
10 µg/25 g BW.

Food intake analysis
Food intake was monitored as previously described2. In

brief, food was removed 2 h prior to experimentation
followed by individual housing and acclimatization in
individual cages. Different treatments were administered
and the accumulated food intake was monitored.

Light-to-dark transition test (D/LT)
Test based on the innate aversion of rodents to brightly

illuminated areas and on their spontaneous exploratory
behavior in response to the stressor that light repre-
sents22. The test apparatus consists of a dark, safe com-
partment and an illuminated, aversive one (43 × 43 cm
chamber). The lit compartment was brightly illuminated
with an 8W fluorescent tube (1000 lx). Naive mice were
placed individually in the testing chamber in the middle of
the dark area facing away from the doorway to the light
compartment. Mice were tested for 10min, and four
parameters were recorded: time spent in the lit com-
partment, the number of transitions between compart-
ments, the speed of the mice and the distance spent in the
lit compartment indices of anxiety-related behavior and
exploratory activity. Behavior was scored using an infrared
light beam activity monitor using actiMot2 Software
(PhenoMaster Software, TSE) and it was statistically
analyzed using Prism program.

Open-field test (OFT)
Test takes advantage of the aversion of rodents to

brightly lit areas22. Each mouse is placed in the center of
the OFT chamber (43 × 43 cm chamber) and allowed to
explore for 30min. Mice were monitored throughout
each test session by infrared light beam activity monitor
using actiMot2 Software (PhenoMaster Software, TSE).
The overall motor activity was quantified as the total
distance travelled (ambulation). Anxiety was quantified by
measuring the time and distance spent in the center
versus periphery of the open-field chamber. Behavior was
scored using an infrared light beam activity monitor using
actiMot2 Software (PhenoMaster Software, TSE) and it
was statistically analyzed using Prism program.

Forced swim test (FST)
Test based on the observation that rodents, after initial

escape-oriented movements, develop an immobile pos-
ture when placed in an inescapable stressful situation23.
Each mouse is placed in a cylinder (height: 25 cm and
diameter: 10 cm) filled with water (23–25 °C). Mice were
tested for 5 min, and the time spent immobile (behavioral
despair) was quantified.

ACBP/DBI detection in human plasma samples
Plasma ACBP/DBI levels were measured in two differ-

ent cohorts of bipolar and schizophrenic patients, by
means of the KA0532 ACBP (Human) ELISA kit. The
subjects (n= 271) were participants of the FACE-BD and
FACE-SZ studies13–15. Dyslipidaemia and type 2 diabetes
were extracted from patient’s medical history. Hyperten-
sion was defined as systolic blood pressure ≥ 140 and/or
diastolic blood pressure ≥ 90mmHg. Abdominal obesity
was defined as waist circumference ≥ 94 cm or 37 in.
(male) or ≥80 cm or 31.5 in. (female). Metabolic syndrome
was defined according to the International Diabetes
Foundation definition24.

Statistical analysis
Data are reported as Box and whisker plots (mean, first

and third quartiles, and maximum and minimum values).
The number of independent data points (n) is indicated in
the corresponding graphs or in the legends. For statistical
analyses, p values were calculated by two-way ANOVA,
one-way ANOVA with Tukey’s multiple comparisons test
or two-tailed unpaired Student’s t test as indicated (Prism
version 7, GraphPad Software). Differences were con-
sidered statistically significant when p values *(p < 0.05),
**(p < 0.01), ***(p < 0.001), and n.s.= not significant (p >
0.05). For the analysis of human samples, means (±stan-
dard deviation or standard error of the mean) were
compared with two-tailed unpaired Student’s t test and
Pearson’s correlation coefficients with their 95% con-
fidence interval were calculated. A generalized linear
model was constructed to calculate odds ratios between
ACBP/DBI (per 1 ng/mL increase) and categorical meta-
bolic variables in a univariate model and in a multivariate
model incorporating body mass index (BMI).

Results
Appetite stimulation by ACBP/DBI in mice through an
action on GABAA receptors
As indicated by its dual name, ACBP/DBI has two fun-

damentally distinct functions, as a protein that binds acyl
coenzyme A (CoA) and as a protein that binds to
GABAAR. The interaction with acyl-CoA is reduced by 3
orders of magnitude upon mutation of tyrosine residue 29
to phenylalanine, Y29F, or mutation of lysine residue 33 to
alanine, K33A (Supplementary Fig. S1a)21,25. I.v. injection
of such mutated Y29F or K33A ACBP/DBI recombinant
proteins induced a similar hyperphagic response as did the
WT protein (Fig. 1a), indicating that appetite stimulation
by ACBP/DBI does not rely exclusively on the binding
of acyl-CoA-related metabolites. The action of ACBP/
DBI on GABAA receptor is lost in mice in which the
γ2 subunit bears a point mutation substituting the phe-
nylalanine residue 77 to isoleucine, F77I) (Supplementary
Fig. S1b)20,26. Mice bearing this knockin (KI) mutation
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failed to mount a hyperphagic response upon injection
of WT ACBP/DBI in conditions in which age- and sex-
matched WT control mice did increase their food intake
(Fig. 1b), indicating that ACBP/DBI indeed acts on
GABAA receptors to stimulate appetite.
Of note, i.p. injection of a neutralizing ACBP/DBI-

specific monoclonal antibody (mAb) was able to inhibit
food intake in mice that had been rendered hyperphagic
(Supplementary Fig. S1c) by a 24-h starvation period (Fig.
1c). Similarly, anti-ACBP/DBI mAb reduced food intake
in mice homozygous for the Lepob mutation (often
referred to as ob/ob mice) that are rendered hyperphagic
due to a mutation in the gene encoding for the appetite
inhibitor leptin (Fig. 1d). In contrast, ACBP/DBI neu-
tralization was unable to interfere with hyperphagy
induced by ghrelin injection (Fig. 1e), indicating that anti-
ACBP/DBI mAb has a specific rather than general effect
on food intake. Thus, the possibility that anti-ACBP/DBI
mAb would simply induce a general lethargy that com-
promises food intake can be excluded.

Effects of ACBP/DBI on the behavior of mice
Pharmacological agents acting on GABAA receptors

(which include anesthetics, barbiturates, benzodiazepines,

and zolpidem) have major effects on human behavior16,27,
and several appetite-inhibitory agents have been rejected or
withdrawn by either the FDA or EMA (or both) due to an
increase in depression and suicide28,29, prompting us to
assess the behavioral effects of ACBP/DBI neutralization in
mouse models. In the light–dark box test, which measures
unconditioned anxiety and that accurately reflects the
anxiolytic effects of benzodiazepines30,31, mice receiving the
neutralizing anti-ACBP/DBI antibody exhibited a similar
behavior as control mice injected with an isotype control
antibody (Fig. 2). Similarly, ACBP/DBI injection had no
impact on this behavioral test (Supplementary Fig. S2). The
open-field test, which measures general locomotor activity
levels, anxiety, and willingness to explore, is known to be
sensitive to benzodiazepines32–34. ACBP/DBI neutralization
had no major effects on the open-field test, except for a
longer distance spent in the center of the box, suggesting a
mild anxiolytic activity for the anti-ACBP/DBI antibody
(Fig. 3). However, recombinant ACBP/DBI did not affect
the open-field test (Supplementary Fig. S3).
Next, we took advantage of the Porsolt forced swim test

(also called “behavioral despair test”) (Supplementary Fig.
S4a), which is used to detect a depression-like behavior,
reflected by a premature switch from swimming to

Fig. 1 Analysis of feeding behavior modulated by ACBP/DBI. a Cumulative food intake was measured after 60 min in WT mice injected with
recombinant ACBP/DBI (recACBP/DBI) protein, its mutant forms Y29F or K33A (i.v., 0.5 mg/kg BW) or a vehicle control (a), in GABRA WT or GABRA
knock-in (KI) mice upon recACBP/DBI i.v. injection (b), in WT mice after 24 h of starvation (Unfed) (c), in obese Ob/Ob or lean Ob/T mice (d), and in WT
mice after Ghrelin injection (i.p., 10 µg/25 g BW) (e), all of them either alone or in combination with the i.p injection of an antibody against ACBP/DBI
(anti-ACBP/DBI, i.p., 5 µg/g BW). Quantitative results are reported as box and whisker plots (mean, first and third quartiles, and maximum and
minimum values). For statistical analyses, p values were calculated by two-way ANOVA (b) or one-way ANOVA with Tukey’s multiple comparisons test
(a, c–e). Differences were considered statistically significant when p values *(p < 0.05), **(p < 0.01), ***(p < 0.001) and n.s. not significant (p > 0.05).
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immobile floating23. Benzodiazepines are well known to
enhance the immobile behavior in this test in a dose-
dependent fashion35,36. Of note, the anti-ACBP/DBI anti-
body reduced the immobile behavior of mice (Fig. 4a), while

injection of recombinant ACBP/DBI protein enhanced the
floating behavior (Fig. 4b), in line with the interpretation
that ACBP/DBI neutralization has an antidepressant effect.
Of note, the effects of ACBP/DBI on depression were lost

Fig. 2 Dark–light test. a Examples of trajectories during the test by untreated (isotype) (upper panels) or anti-ACBP/DBI-treated mice (lower panels).
b Percentage of time spent in the light (%), c number of accesses to light, d percentage of distance travelled in the light, and e latency to enter light
in seconds were measured for 10 min. Quantitative results are reported as Box and whisker plots (mean, first and third quartiles, and maximum and
minimum values) (n= 17). Symbols indicate statistical (Student’s t test) comparisons with isotype control (n.s not significant).

Fig. 3 Open-field test. a Examples of trajectories during the test by untreated (isotype) (upper panels) or anti-ACBP/DBI-treated mice (lower panels).
b Total distance, c percentage of time spent in center (%), d speed, and e percentage of distance spent in center were measured during 30 min.
Quantitative results are reported as Box and whisker plots (mean, first and third quartiles, and maximum and minimum values) (n= 8). Symbols
indicate statistical (Student’s t test) comparisons with isotype control (n.s not significant and *p < 0.05).
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when the protein was mutated to suppress its acyl CoA
binding ability (Supplementary Fig. S4b).

Plasma ACBP/DBI levels in patients diagnosed with severe
depression or schizophrenia
In the next step, we measured the circulating ACBP/

DBI concentration in patients with bipolar disorder or
schizophrenia. No difference in the plasma ACBP/DBI
levels was detectable between depressive and schizo-
phrenic patients (Fig. 5a, Supplementary Fig. S5a). In both
groups, ACBP/DBI levels similarly correlated with the
BMI, body weight or waist circumference (Supplementary
Fig. S5d), as previously described for a series of patients
with eating disorders including anorexia nervosa and
morbid obesity2. ACBP/DBI concentrations did not cor-
relate with subsequent weight variations, meaning that
there were no significant variations in ACBP/DBI con-
centration between patients with minor weight oscilla-
tions (by <5), significant weight loss (≥5%) or weight gain
(≥5%) within the 6 months following the ACBP/DBI
measurement (Fig. 5b, Supplementary Fig. S5b).
Nonetheless, patients with metabolic syndrome tended

to exhibit a higher ACBP/DBI concentration than patients
without metabolic syndrome (p= 0.097) (Fig. 6a, Sup-
plementary Fig. S5c). However, multivariate analysis
indicated that ACBP/DBI was not associated with meta-
bolic syndrome, independently of BMI. In contrast, var-
iations in ACBP/DBI plasma levels were associated with
dyslipidemia (p= 0.003) (but not with diabetes nor
arterial hypertension), and this association was indepen-
dent of BMI (p= 0.055) (Fig. 6b, c).
Altogether, these results suggest that ACBP/DBI

levels are well correlated with BMI, irrespective of their

psychiatric diagnosis, do not predict later changes in
BMI, yet are associated with dyslipidemia.

Discussion
ACBP/DBI is a phylogenetically ancient protein that

stimulates appetite and lipo-anabolism in animals, ranging
from nematodes and insects to rodents8,12. It is also ele-
vated in human obesity but reduced in anorexia nervosa2.
For this reason, neutralization of ACBP/DBI by suitable
antibodies might constitute a valid strategy for combating
obesity and its co-morbidities12,37,38. Given the fact that
several anorexigenic drugs have been withdrawn from the
clinics due to their psychiatric side effects27,28, we eval-
uated the behavioral effect of ACBP/DBI and ACBP/DBI
neutralizing antibodies in rodent models and attempted to
establish a correlation between mental disease and circu-
lating ACBP/DBI concentrations in psychiatric patients.
Mouse experiments detailed in this paper revealed that

the orexigenic effect of systemically (i.v.) injected ACBP/
DBI protein did not rely on its interaction with acyl-CoA
but apparently involved an action on GABAAR, alerting
about the possibility that ACBP/DBI might indeed affect
GABA-regulated mood control. However, at odds with
this possibility, neither the systemic (i.v.) injection of
ACBP/DBI nor the systemic (i.p.) administration of a
neutralizing ACBP/DBI antibody did affect the behavior
of mice in the light–dark test and in the open-field tests.
In contrast, ACBP/DBI injection caused a “depression-
like” behavior in the forced swim test, meaning that the
mice ceased active swimming and switched toward pas-
sive floating earlier than sham-injected mice. Conversely,
neutralization of ACBP/DBI resulted into an “anti-
depressant” effect, prolonging the active combat of mice
for survival. The effects of ACBP/DBI on depression
depend on its acyl CoA binding ability, while induction of
hyperphagy by ACBP/DBI did not require acyl CoA
binding. These discrepant findings underscore that (some
of) the metabolic and mood-modulating effect of ACBP/
DBI can be uncoupled from each other.
Mice that are constitutively knockout for ACBP/DBI

(meaning that the gene is even expressed during embry-
ogenesis) exhibit a stereotyped self-grooming behavior,
reduced social interest, but normal social recognition39,
pointing to a minor behavioral phenotype. In contrast, we
have not noted any evident changes in mouse behavior
after the inducible knockout of ACBP/DBI in adult mice2,
suggesting that these effects might be linked to neuro-
development. Intracerebroventricular administration of
recombinant ACBP/DBI or that of ACBP/DBI-derived
neuropeptides induces proconflict behavior40, stimulates
anxiety41, and reduces food intake42, causing a loss in
bodyweight in long-term experiments43. When micro-
injected into the swallowing pattern generator located in
the nucleus tractus solitarius, the octadecaneuropeptide

Fig. 4 Immobility time in the forced swim test. Time spent
immobile in seconds after anti-ACBP/DBI (n= 18) (b) or recACBP/DBI
(n= 10) (c) treatments were measured for 5 min. Quantitative results
are reported as Box and whisker plots (mean, first and third quartiles,
and maximum and minimum values). Symbols indicate statistical
(Student’s t test) comparisons with controls (*p < 0.05 and ***p <
0.001).
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derived from ACBP/DBI inhibits the swallowing reflex42.
Of note, the anorexigenic effects of octadecaneuropetide
do not depend on an action on TSPO or GABAAR but
rather on a G protein coupled receptor44,45. Thus, the
central (i.c.v.) injection of ACBP/DBI causes GABAAR-
independent anorexigenic effects that are diametrically
opposed to the GABAAR-dependent orexigenic effects
observed after its peripheral (i.v.) administration2. Of
note, it appears plausible that i.v. administered ACBP/DBI
mediates its effects through an action on peripheral
metabolism, causing a hypoglycemic response that then
activates orexigenic neurons in the hypothalamus. Indeed,
artificial maintenance of glucose concentrations by a
glucose clamp prevents the activation of such orexigenic
neurons as well as the hyperphagic response of mice2.
Obviously, it will be interesting to investigate the impact

of ACBP/DBI on the expression of its receptors (in par-
ticular GABAAR subunits and the mitochondrial TSPO
protein), the expression level of other neuroendocrine
factors, as well as bioenergetic parameters in multiple
different peripheral and central nervous tissue to

understand the full range of its physiological effects. Thus
a single-cell multi-omics approach (including but not
limited to transcriptomics, proteomics and metabolomics)
should be envisaged in the future to explore the effects of
ACBP/DBI in further detail.
In line with the idea that the peripheral pool of ACBP/

DBI has little impact on mental operations, we did not
observe any difference between schizophrenic and bipolar
patients with respect to their plasma ACBP/DBI con-
centrations, which however strongly correlated with BMI
in both groups. The levels of ACBP/DBI concentrations
measured at diagnosis did not allow predicting the sub-
sequent trajectory of BMI (gain, loss, or stability) and
rather correlated with the actual state of the BMI. How-
ever, a high ACBP/DBI plasma concentration constitutes
a risk factor for dyslipidemia, independently from BMI, as
indicated by multivariate analysis. This result strongly
pleads in favor of a role of ACBP/DBI in metabolism that
is more important than its putative role in mental disease.
As a final note, it appears important that ACBP/DBI

neutralization, which might constitute a novel treatment

Fig. 5 No impact of pychiatric disease or weight evolution on the correlation between ACBP/DBI plasma concentration and body mass
index. Scatter plot with regression line between ACBP/DBI (ng/mL) and body mass index (kg/m2) in bipolar and schizophrenic patients (a) and
patients who lose weight (≥5%), gain weight (≥5%), or remain stable (variations < 5%) (b). Pearson’s correlation coefficient (R) and their p value are
shown on top of each panel.
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for obesity and its comorbidities such as type-2 diabetes
and non-alcoholic steatohepatitis, has no unwarranted
(depression- or anxiety-inducing) effects on mice. This
preclinical finding may facilitate the development of a
novel type of antiobesity medication that targets ACBP/
DBI or its interaction with peripheral GABAAR.
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