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ABSTRACT
We use covariant density functional theory to obtain the equation of state (EoS) of matter in compact stars at non-zero temperature,
including the full baryon octet as well as the �(1232) resonance states. Global properties of hot �-admixed hypernuclear stars
are computed for fixed values of entropy per baryon (S/A) and lepton fraction (YL). Universal relations between the moment of
inertia, quadrupole moment, tidal deformability, and compactness of compact stars are established for fixed values of S/A and
YL that are analogous to those known for cold catalyzed compact stars. We also verify that the I–Love–Q relations hold at finite
temperature for constant values of S/A and YL.

Key words: dense matter – equation of state – stars: neutron.

1 IN T RO D U C T I O N

Cold, mature compact stars are well described by a one-parameter
equation of state (EoS) relating pressure to (energy) density. In
contrast, the studies of the dynamics of core-collapse supernovae
(CCSNe, Janka et al. 2007; Mezzacappa et al. 2015; O’Connor &
Couch 2018; Burrows et al. 2020), proto-neutron star (PNS) evolu-
tion (Pons et al. 1999; Sumiyoshi, Ibáñez & Romero 1999), stellar
black hole (BH) formation (Sumiyoshi, Yamada & Suzuki 2007;
Fischer et al. 2009; O’Connor & Ott 2011; Hempel et al. 2012),
and binary neutron star (BNS) mergers (Shibata & Taniguchi 2011;
Rosswog 2015; Baiotti & Rezzolla 2017; Ruiz, Tsokaros & Shapiro
2020) require as an input an EoS at non-zero temperature and out
of (weak) β-equilibrium, that is, the pressure becomes a function of
three thermodynamic parameters. For describing all of the above-
mentioned astrophysical scenarios one needs to consider baryon
number densities, nB, ranging from subsaturation densities up to sev-
eral times the nuclear saturation density ns � 0.16 fm−3, temperatures
up to 100 MeV and charge fractions 0 ≤ YQ = nQ/nB ≤ 0.6, where
nQ is defined as the total hadronic charge density (Oertel et al. 2017).

In recent years, the EoS of cold compact stars has been con-
siderably constraint due to several new astrophysical observations
(compact star masses, and radii and tidal deformability), information
coming from experimental nuclear physics and the progress in ab
initio calculations of pure neutron matter. The new data has, in par-
ticular, narrowed the possible parameter space of EoS derived from
density functional theory (DFT). There exist a large number of DFT-
based EoS which are applicable to cold β-equilibrated neutron stars,
see for example, Chen, Guo & Liu (2007), Weissenborn, Chatterjee &
Schaffner-Bielich (2012, 2013), Colucci & Sedrakian (2013), van
Dalen, Colucci & Sedrakian (2014), Drago et al. (2014), Cai et al.

� E-mail: araduta@nipne.ro (ARR); micaela.oertel@obspm.fr (MO);
sedrakian@fias.uni-frankfurt.de (AS)

(2015), Oertel et al. (2015), Chatterjee & Vidana (2016), Fortin et al.
(2016), Zhu et al. (2016), Kolomeitsev, Maslov & Voskresensky
(2017), Sahoo et al. (2018), Li, Sedrakian & Weber (2018), Li &
Sedrakian (2019b), Ribes et al. (2019), and Li, Sedrakian & Alford
(2020). The latter works address, in particular, the problem of hyper-
onization of dense matter (the hyperon puzzle) and the possible emer-
gence of �-degrees of freedom in dense matter at zero temperature.
Models of finite-temperature dense matter with heavy baryon degrees
of freedom, applicable to CCSN and BNS mergers, which are consis-
tent with the constraints imposed by modern data are less numerous,
see (Oertel, Fantina & Novak 2012; Colucci & Sedrakian 2013;
Oertel et al. 2016; Marques et al. 2017; Dexheimer 2017; Fortin,
Oertel & Providência 2018; Malfatti et al. 2019; Stone et al. 2019).

The first aim of this work is to obtain an EoS of non-zero-
temperature matter, which is well constrained by astrophysics
and laboratory data, on the basis of the DDME2 parametrisa-
tion (Lalazissis et al. 2005) extended to hypernuclear matter by
Fortin et al. (2016).1 We include additionally the � degrees of
freedom as they add an important feature: they soften the EoS in
an intermediate-density range, reduce the compact star radii for
intermediate masses (Drago et al. 2014; Li et al. 2018) which
improves the agreement between theoretical models and observa-
tions. The resulting finite-temperature EoS is relevant for the variety
of above-mentioned astrophysical scenarios, which are known to
depend sensitively on the EoS (Pons et al. 1999; Sekiguchi et al.
2011; Bauswein et al. 2012; Peres, Oertel & Novak 2013; Fischer
et al. 2014; Perego, Bernuzzi & Radice 2019; Schneider et al. 2019;
Bauswein 2019; Schneider et al. 2020; Yasin et al. 2020).

1Similar extensions of the DDME2 parametrisation to the hyperonic sector,
which differ in the way the parameters in the vector-meson sector are fixed,
can be found in Colucci & Sedrakian (2013), van Dalen et al. (2014), and Li
et al. (2018).
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To illustrate the properties of the EoS and the impact of heavy
baryons, we make calculations for constant values of entropy per
baryon S/A (0 ≤ S/A ≤ 4) either assuming constant lepton fraction
YL (0.1 ≤ YL ≤ 0.4) in the neutrino-trapped regime or freely streaming
neutrinos and matter in β-equilibrium. Some of the considered
thermodynamic conditions are relevant for different stages in the
evolution from a PNS to a compact star (Burrows & Lattimer 1986;
Prakash et al. 1997; Pons et al. 1999). Broad coverage of all the
astrophysics relevant parameter space will be given elsewhere. Under
the conditions of PNS, the neutrinos are trapped and the lepton
fraction is thus given by the sum of charged leptons and neutrinos
fractions. For each set of thermodynamic conditions, we will discuss
properties of the EoS and matter composition as well as maximum
mass and radii of hot stars. Possible instability windows of non-
accreting PNS with respect to collapse to a BH are investigated
following Bombaci (1996). The maximum gravitational mass at
constant S/A, assuming neutrino-transparent β-equilibrated matter,
is related to the collapse to a BH during in failed CCSNe (Schneider
et al. 2020). We study here the influence of heavy baryons on this
maximum mass.

The second motivation of this study is to test the universal relations
among the global properties of stationary, slowly, and rigidly rotating
compact stars at finite temperature. In essence, universality means
that these relations, well established at zero temperature, are inde-
pendent of the underlying EoS (Yagi & Yunes 2013a; Maselli et al.
2013; Breu & Rezzolla 2016; Yagi & Yunes 2017; Paschalidis et al.
2018) and are thus very helpful for the interpretation of observational
data since they allow to mitigate the uncertainties related to the EoS.
Given the importance of such relations, it is interesting to investigate
them under new conditions, such as finite temperatures and out-of-
equilibrium with respect to weak interactions.

The possibility of some of these relations being universal at
finite temperature has been studied before (Martinon et al. 2014;
Marques et al. 2017; Lenka, Char & Banik 2019). The moment of
inertia as a function of compactness was studied by Lenka et al.
(2019), who concluded that thermal effects lead to deviations from
the universal relations obtained for β-equilibrated matter at zero
temperature. Similar conclusions have been reached for the so-called
I−Love−Q relations, where again it was claimed that at finite-
temperature deviations from the zero-temperature universality are
found (Martinon et al. 2014; Marques et al. 2017). Below we show
that, if one considers fixed values of (S/A, YL, e), where YL, e is the
electron fraction, the Ī − λ̄ and Ī − Q̄ relations are universal to
accuracy comparable to that obtained for cold compact stars. The
same is true for several global properties of compact stars, such as
the moment of inertia, quadrupole moment, tidal deformability as
a function of compactness. Only the binding energy per unit of the
gravitational mass shows deviations from universality.

This paper is organized as follows. In Section 2, we describe the
details of the parametrisation that has been used in modelling the EoS
from relativistic DFT. Section 3 is devoted to the discussion of the
results for the mass and radius of hot compact stars. In Section 4.1, we
investigate the behaviour of different (normalized) global properties
as a function of the star’s compactness. Section 4.2 focuses on I
−Love−Q relations. We conclude in Section 5. Throughout this
paper, we use the natural units with c = � = kB = G = 1.

2 TH E MO D EL

We consider matter at non-zero temperature as it occurs in CCSN,
PNS, and BNS mergers. Leptons (electrons, muons, and neutrinos)
and photons are considered as non-interacting gases, whereas under

the relevant conditions, the tau lepton can safely be neglected. The
partition function of the system thus factorizes into a product of
baryonic (index B), leptonic (index L), and photonic (γ ) partition
functions:Z = ZBZLZγ . In thermodynamic equilibrium, within the
grand-canonical ensemble,

1

V
lnZL =

∑
j

gj

∫
d3k

(2π)3

k2

εj (k)[
fFD(εj (k) − μj ) + fFD(εj (k) + μj )

]
, (1)

1

V
lnZγ = gγ

∫
d3k

(2π)3

k2

εγ (k)
fBE(εγ (k)), (2)

where fFD and fBE are the Fermi-Dirac and Bose-Einstein distribution
functions at temperature T, respectively. In equation (1), gj = (2sj +
1) is the spin degeneracy factor with sj being the lepton’s spin [gj = 2
for charged leptons and gj = 1 for (left-handed) neutrinos] and εj(k)
and μj are the single-particle energy and the chemical potential of
the lepton j. In equation (2), gγ = 2 and εγ (k) is the photon energy.
The partition function of the strongly interacting baryons requires a
model of the strong nuclear interaction. Within the relativistic DFT,
it is given by a sum of a kinetic part (which has a form analogous to
that of an ideal gas) and a potential term. We write it as

1

V
lnZB = 1

V
ln Zm +

∑
i∈baryons

2Ji + 1

3

∫
d3k

(2π)3

k2

Ei(k)

· [
fFD(Ei(k) − μ∗

i ) + fFD(Ei(k) + μ∗
i )

]
, (3)

where (2Ji + 1) denotes the spin degeneracy factor, Ei =√
k2 + M∗2

i is the single-particle energy. Interactions enter via the
effective masses M∗

i and effective chemical potentials μ∗
i . The

potential term is given by

T

V
ln Zm = −1

2
m2

σ σ̄ 2 + 1

2
m2

ωω̄2 + 1

2
m2

ρ ρ̄
2 + 1

2
m2

φφ̄2 . (4)

The values of the mean fields having the quantum numbers of the
corresponding mesons, are determined by

m2
σ σ̄ =

∑
i

gσ in
s
i , (5a)

m2
ωω̄ =

∑
i

gωini, (5b)

m2
φφ̄ =

∑
i

gφini, (5c)

m2
ρρ̄ =

∑
i

gρi t3ini , (5d)

where t3i is the third component of isospin of baryon i, ns
i , and ni are

the scalar and the number density. These are given by

ns
i = 1

π2

∫ k2M∗
i

Ei (k)

[
fFD(Ei(k) − μ∗

i ) + fFD(Ei(k) + μ∗
i )

]
dk, (6)

ni = 1
π2

∫
k2

[
fFD(Ei(k) − μ∗

i ) − fFD(Ei(k) + μ∗
i )

]
dk. (7)

Note that equation (4) does not contain mesonic self-interactions, as
is the case of many DFT models. Here, we employ instead a model
belonging to the subclass of DFTs which allow for density-dependent
couplings, gm, B(nB) = gm, B(ns)hm(x) with x = nB/ns, where ns is the
nuclear saturation density. We will further assume that the couplings
of mesons to hyperons and �-resonances have the same density
dependence as those to nucleons. The effective chemical potentials
are given by

μ∗
i = μi − gωiω̄ − gρi t3i ρ̄ − gφi φ̄ − 
R

0 , (8)
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Table 1. Key nuclear matter properties of the DDME2 model (Lalazissis
et al. 2005): the binding energy per nucleon (Es) and compression modulus
(Kinf) of symmetric nuclear matter at saturation density (ns) together with the
symmetry energy (J), its slope (L) and curvature (Ksym).

Model ns Es Kinf J L Ksym

(fm−3) (MeV) (MeV) (MeV) (MeV) (MeV)

DDME2 0.152 −16.1 250.9 32.3 51.2 −87.1

where


R
0 =

∑
i

(
∂gωi

∂ni

ω̄ni + t3i

∂gρi

∂ni

ρ̄ni + ∂gφi

∂ni

φ̄ni − ∂gσi

∂ni

σ̄ ns
i

)
, (9)

is the re-arrangement term. The effective baryon masses depend on
the scalar mean field according to

M∗
i = Mi − gσi σ̄ . (10)

From the partition function one obtains pressure, entropy density,
energy density, and particle number densities in a standard fashion

P = T

V
lnZ, (11)

s = 1

V

∂ (T lnZ)

∂T

∣∣∣
V ,{μi }

, (12)

e = − T

V
lnZ +

∑
i

μini + T s, (13)

ni = 1

V

∂ (T lnZ)

∂μi

∣∣∣
V ,T

. (14)

Note that each component contributes additively to the net thermo-
dynamic quantity of interest, which is easy to see by substituting
equations (1)–(3) in equations (11)–(13).

In this work, we use the density-dependent DDME2 parametri-
sation for the nucleonic sector (Lalazissis et al. 2005) and its
extension to the hyperonic sector by Fortin et al. (2016), which fixes
the hyperonic couplings in the vector meson sector to the values
implied by the SU(6) symmetric quark model and adjusts the scalar
couplings to the depth of the hyperon potentials in nuclear matter
at saturation. Alternative extensions of the DDME2 model to the
baryonic octet have been carried out and applied to compact stars
elsewhere (Colucci & Sedrakian 2013; van Dalen et al. 2014; Fortin
et al. 2017; Li et al. 2018). The differences between the models
reside in the choice of the different hyperonic couplings, which are
not well constrained. In addition to hyperons, we include the �(1232)
resonance states of the baryon J3/2-decouplet, which were brought
recently into focus in the context of compact stars by several groups
(Chen et al. 2007; Drago et al. 2014; Cai et al. 2015; Zhu et al. 2016;
Kolomeitsev et al. 2017; Li et al. 2018, 2020; Sahoo et al. 2018; Li &
Sedrakian 2019b; Ribes et al. 2019).

Our choice of the nucleonic DDME2 EoS is motivated by the
following factors: (i) the parameters of isospin symmetric (i.e. equal
numbers of protons and neutrons) nuclear matter around saturation
density are in good agreement with present experimental constraints
(Lalazissis et al. 2005, see Table 1); (ii) the properties of atomic
nuclei, such as binding energies, rms radii of charge distribution,
neutron skin thickness, quadrupole and hexadecupole moments of
heavy and superheavy nuclei, excitation energies of the iso-scalar
giant monopole- and iso-vector giant dipole-resonances in spherical
nuclei, are in good agreement with experimental values (Lalazissis
et al. 2005); (iii) the energy per baryon of low-density neutron matter
predicted by the DDME2 functional is in good agreement with
that from ab initio calculations (Gandolfi, Carlson & Reddy 2012;

Figure 1. Relative abundances in β-equilibrated, neutrino-transparent, cold
compact star matter as predicted by the DDME2Y (bottom panel) and
DDME2Y� (top panel) models as a function of baryon number density.
Note that the nucleation of �− resonances leads to a suppression of 
−
abundance. Thin vertical lines mark the central baryon number densities
corresponding to a 1.44 M� star (dotted–dashed) and the maximum mass star
(dotted), respectively.

Hebeler et al. 2013) [see fig.12 in (Fortin et al. 2016) and Fig. 1 in
Li & Sedrakian (2019a)]. Point (iii) implies that the model predicts
a relatively low value for the slope of the symmetry energy L, which
lies within the domains 40 � L � 62 MeV (Lattimer & Steiner 2014)
or 30 � L � 86 MeV (Oertel et al. 2017) deduced from experiments
[see fig. 13 in Fortin et al. (2016)]. The curvature of the symmetry
energy falls in the intervals Ksym = −111.8 ± 71.3 MeV (Mondal
et al. 2017), Ksym = −85+82

−70 MeV (Baillot d’Etivaux et al. 2019),
and Ksym = −102 ± 71 MeV (Zimmerman et al. 2020), which
were obtained from the analyses of different nuclear and compact
star properties. This implies that the DDME2 parametrisation has a
reasonable behaviour in the isovector channel.

The extension of DDME2 to the hyperonic sector by Fortin et al.
(2016) – labelled hereafter ‘DDME2Y’– assumes SU(6) flavour
symmetry for the vector meson-hyperonic couplings and adjusts
the couplings of the scalar σ -meson to hyperons to reproduce the
empirical depths of the hyperon potentials in symmetric nuclear
matter at saturation. The potential for particle j in k-particle matter
is thereby defined via the effective masses and chemical potentials
as

U
(k)
j (nk) = M∗

j − Mj + μj − μ∗
j . (15)

The DDME2Y parametrisation uses the values U
(N)
� ≈ −28 MeV,

U
(N)
� ≈ −14 MeV, U

(N)

 ≈ 30 MeV in isospin symmetric nuclear

matter (Gal, Hungerford & Millener 2016). Coupling constants of
the hyperons Y to the meson fields are customarily expressed in
terms of the coupling constants of the nucleons N to the meson
fields, xm, Y = gm, Y/gm, N, where m ∈ σ , ρ, ω, etc., labels the meson.

MNRAS 499, 914–931 (2020)
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Table 2. Properties of non-rotating spherically symmetric cold β-equilibrated, neutrino-transparent, compact stars based on the EoS
models considered in this work. nc, max stands for the central baryon number density of the maximum gravitational mass (MG, max)
configuration. Columns 4, 7, and 10 specify the heavy baryon species that nucleate in stable stars. ni represents the threshold density
at which the species i is produced, while Mi gives the corresponding gravitational mass of the star. R1.44 M� indicates the radius of a
fiducial 1.44 M� star; and �1.4 represents the tidal deformability of a canonical 1.4 M� star.

Model MG, max nc, max Y1 nY1 MY1 Y2 nY2 MY2 Y3 nY3 MY3 R1.44 M� �1.4

( M�) (fm−3) (fm−3) ( M�) (fm−3) ( M�) (fm−3) ( M�) (km)

DDME2Y 2.113 0.93 � 0.34 1.39 �− 0.37 1.54 
− 0.39 1.60 13.25 712
DDME2Y� 2.111 0.96 �− 0.28 0.96 � 0.36 1.33 �− 0.52 1.82 13.09 653

Adopting this convention, DDME2Y parametrisation is defined by
the following coupling constants: xσ� = 0.615, xσ� = 0.3225, xσ
 =
0.47, xω� = 2/3, xω� = 1/3, xω
 = 2/3, xρ� = 0, xρ� = 1, and xρ
 =
2. The coupling constants of the hidden strangeness meson φ to the
baryons are gφN = 0, gφ� = −√

2/3gωN , gφ� = −2
√

2/3gωN , and
gφ
 = −√

2/3gωN .
The DDME2Y parametrisation above fulfills not only the existing

constraints from terrestrial experiments and ab initio calculations,
but it is in agreement with existing compact star observations as well
(see Section 3 and Table 2). Specifically, the predicted value of the
compact star maximum mass exceeds the observational lower bound
on the maximum mass of a compact star 2 M� (Demorest et al. 2010;
Antoniadis et al. 2013; Arzoumanian et al. 2018). Furthermore, the
predicted value of the radius of the canonical 1.4 M� compact star is
in agreement with the recent inferences R = 13.02+1.24

−1.06 km (Miller
et al. 2019) and R = 12.71+1.14

−1.19 km (Riley et al. 2019) from the
data obtained by the NICER mission. The tidal deformability for
a 1.4 M� compact star is �1.4 = 712. This value lies outside the
range �1.4 = 190+390

−120 (Abbott et al. 2018) and at the upper limit of
the interval 300+420

−230 (Abbott et al. 2019) extracted, at a 90 per cent
confidence level, from the analysis of the GW170817 event. Note
that the values of tidal deformability in Abbott et al. (2018) have
been obtained assuming that both compact objects are NSs obeying
a common EoS; on the other hand, the values in Abbott et al. (2019)
have been obtained, as in the initial analysis of GW170817 event
(Abbott et al. 2017), by making minimal assumptions about the
nature of the compact objects and allowing the tidal deformability of
each object to vary independently.

The masses of �-resonances, which form an isospin quadruplet,
lie between those of 
 and � hyperons, therefore they are expected
to nucleate in dense stellar matter according to the same energetic
arguments employed for the nucleation of hyperons (Glendenning
1985). While in the vacuum �s are broad resonances which decay
into nucleons with emission of a pion, in stellar matter they are
thought to be stabilized by the Pauli blocking of the final nucleon
states. Apart from the narrowing the quasi-particle width of the
�s, matter effects may shift the quasi-particle energy to larger
values (Sawyer 1972; Ouellette 2011), which would suppress the
� degrees of freedom. Below, we will assume that the �s retain
their vacuum masses and have negligible width, as has been done
in the recent literature (Chen et al. 2007; Drago et al. 2014; Cai
et al. 2015; Zhu et al. 2016; Kolomeitsev et al. 2017; Sahoo et al.
2018; Li et al. 2018, 2020; Li & Sedrakian 2019b; Ribes et al.
2019).

The information about nucleon-� interaction is extracted from
pion-nucleus scattering and pion photo-production (Nakamura et al.
2010), electron scattering on nuclei (Koch & Ohtsuka 1985), and
electromagnetic excitations of the �-baryons (Wehrberger, Bedau &
Beck 1989). As reviewed by Drago et al. (2014) and Kolomeitsev
et al. (2017), (i) the potential of the � in the nuclear medium is
slightly more attractive than the nucleon potential −30 MeV +

U
(N)
N � U

(N)
� � U

(N)
N , which translates in values of xσ� slightly larger

than 1, (ii) 0 � xσ� − xω� � 0.2, and (iii) no experimental constraints
exist for the value of xρ�.

Since there remain large uncertainties on the values of the �

couplings, they are commonly varied in a certain plausible range.
Previous works employed the ranges 0.85 � xσ� � 1.15, 0.6 � xω�

� 1.2, and 0.5 � xρ� � 3 (Chen et al. 2007; Drago et al. 2014; Cai
et al. 2015; Zhu et al. 2016; Kolomeitsev et al. 2017; Sahoo et al.
2018; Li et al. 2018, 2020; Li & Sedrakian 2019b; Ribes et al. 2019).
Furthermore, it was shown that:

(i) small values of xσ� (which lead to small values U
(N)
� ) result in

larger values of compact star radii (Zhu et al. 2016; Kolomeitsev et al.
2017; Spinella 2017; Li et al. 2018); the effect on the maximum mass
is small and dependent on the high-density part of the nucleonic EoS,

(ii) small values of xω� and xρ� imply lower values of compact
star radii and maximum masses (Drago et al. 2014; Cai et al. 2015;
Sahoo et al. 2018; Li & Sedrakian 2019b; Ribes et al. 2019; Li et al.
2020),

(iii) the threshold density for the onset of � is correlated with xσ�

(Zhu et al. 2016; Kolomeitsev et al. 2017; Spinella 2017; Li et al.
2018), xρ� (Cai et al. 2015; Zhu et al. 2016; Sahoo et al. 2018), xω�

(Ribes et al. 2019), and the �-effective mass (Cai et al. 2015; Sahoo
et al. 2018),

(iv) the effective mass of �s significantly impacts compact star
radii and maximum masses (Cai et al. 2015; Sahoo et al. 2018),

(v) the threshold density for the onset of � strongly depends on
the slope of the symmetry energy at saturation (Drago et al. 2014;
Cai et al. 2015). Cai et al. (2015) also showed that it is less sensitive
to the other parameters of symmetric saturated nuclear matter.

The appearance of � resonances in hot stellar matter with fixed
lepton fraction was investigated only recently by Malfatti et al.
(2019). It was found that: (i) the lower the lepton fraction, the higher
the � abundances; (ii) at high enough temperatures and densities
the four isobars are populated in addition to all hyperonic degrees of
freedom; and (iii) the most abundant of the �-isobars is �−.

In this work, we use the following values of the couplings of
mesons to �s: xσ� = 1.1, which corresponds to a � potential at the
saturation U

(N)
� ≈ −83 MeV, xω� = 1.1, and xρ� = 1.0 and xφ� =

0. In the following, this model will be referred to as DDME2Y�.
We assume strangeness changing weak equilibrium leading to the

following equilibrium conditions,

μ� = μ
0 = μ�0 = μ�0 = μn = μB ; (16)

μ
− = μ�− = μ�− = μB − μQ; (17)

μ
+ = μ�+ = μB + μQ; (18)

μ�++ = μB + 2μQ, (19)
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918 A. R. Raduta, M. Oertel and A. Sedrakian

where μB is the baryon number chemical potential and μQ =
μp − μn is the charge chemical potential. The equilibrium
conditions, equations (16)–(19), together with the total baryonic
charge np + n
+ + 2n�++ + n�+ − (n
− + n�− + n�− ) = nQ de-
termine the composition of baryonic matter for a given (nB, T, YQ =
nQ/nB) set. The requirement of global electrical charge neutrality of
stellar matter then fixes the charged lepton density YQ = Ye + Yμ

where Ye = (ne− − ne+ )/nB and Yμ = (nμ− − nμ+ )/nB . For free-
streaming neutrinos μe = μμ = −μQ, whereas for trapped neutrinos
μe/μ = μL, e/μ − μQ, where μL, e/μ denotes the (electron/muon) lepton
number chemical potential. The lepton YL, e/μ fractions, which are
conserved separately, are then defined via the total lepton number
density divided by nB. Throughout this paper ‘β-equilibrium’ refers
to β-equilibrated matter which, in addition, is transparent to neu-
trinos. This means that the corresponding lepton number chemical
potentials vanish μL, e = μL, μ = 0.

At densities below nuclear saturation density and not too high
temperature, the matter becomes unstable towards density fluctu-
ations, because of the competition between nuclear and Coulomb
interactions. As a consequence, a large variety of clusters are formed,
all of which are in chemical and thermal equilibrium with the
unbound baryons. If the temperature is high enough, hyperons and �s
are in principle expected to nucleate within the clusters and unbound
components as well, but for simplicity, we neglect this possibility
here. The theoretical framework suitable under these conditions is
the Nuclear Statistical Equilibrium (NSE, Hempel & Schaffner-
Bielich 2010; Raduta & Gulminelli 2010; Gulminelli & Raduta
2015). Interactions among unbound particles and clusters are usually
accounted for in the excluded volume approximation, while those in
the homogeneous matter within a chosen mean-field approach. The
transition between the inhomogeneous and homogeneous phases is
in principle realized by minimizing, for equal values of the intensive
thermodynamic observables, the relevant thermodynamic potential.
The EoS used in our work are obtained by smoothly merging
the uniform matter EoS to the NSE model HS(DD2) (Hempel &
Schaffner-Bielich 2010) for inhomogeneous matter. The latter is
publicly available on the Compose data base2 (Typel, Oertel &
Klähn 2015). In principle, the transition density depends on the EoS,
temperature, and charge fraction, see for example, the discussion in
Ducoin et al. (2008), Ducoin, Chomaz & Gulminelli (2007), and Pais
et al. (2010), but for simplicity, the matching is performed here at a
fixed transition density nt = ns/2. Inhomogeneous and homogeneous
matter are considered at the same S/A and YL, e/μL, e. The similarity
between the effective interactions of DDME2 (Lalazissis et al. 2005)
and DD2 (Typel et al. 2010) leads to a coherent treatment of the EoS
over the whole density regime and the fixed transition density only
induces very small thermodynamic inconsistencies with little impact
on the EoS and the global star properties studied here.

3 EQUAT I O N O F STAT E A N D C O M P O S I T I O N

A PNS is born in the aftermath of a successful supernova explosion,
when the stellar remnant and the expanding ejecta get gravitation-
ally decoupled. The evolutionary epoch during which the remnant
changes from a hot and lepton-rich PNS to a cold and deleptonized
compact star lasts for several tens of seconds and consists of two
major evolutionary stages (Prakash et al. 1997; Pons et al. 1999):
the deleptonization stage and the cooling stage. The deleptonization
stage is characterized by a gradual decrease of the net lepton and

2https://compose.obspm.fr/

proton fractions and the heat-up of the core, due to the diffusion
of trapped electron neutrinos from the central region outward. The
cooling stage is characterized by a simultaneous decrease of both
entropy and lepton content. The structure and composition of the
PNS during this epoch will be investigated here in a schematic way,
assuming entropy per baryon and lepton fraction with typical values
(Prakash et al. 1997; Pons et al. 1999): (S/A = 1, YL, e = 0.4), (S/A =
2, YL, e = 0.2), (S/A = 1, μL, e/μ = 0), and (S/A = 0, μL, e/μ = 0).

3.1 Composition

Fig. 1 shows relative particle abundances as a function of baryon
number density in cold β-equilibrated compact star matter. Results
corresponding to baryonic matter composed of NY� (top panel)
are compared with those corresponding to NY (bottom panel). In
both cases, the net charge neutrality is guaranteed by electrons and
muons. In the case of NY matter, the only non-nucleonic baryonic
degrees of freedom that nucleate in stable stars are �, �−, and 
−, as
already discussed elsewhere (Fortin et al. 2016; Raduta, Sedrakian &
Weber 2018). This can be explained by the large negative charge
chemical potential in matter featuring low charge fractions favouring
negatively charged particles. Under the considered conditions, the
�-hyperons remain nevertheless the most abundant non-nucleonic
species. Their lower mass compared with those of 
−- and �−-
hyperons and more attractive potential in nuclear matter compensate
the effect of the charge chemical potential.

In the case of NY� matter, �− is the first heavy baryon to appear.
Its onset strongly affects the hyperonic abundances: the threshold
densities for the appearance of � and �− hyperons are shifted
to higher densities and the 
− hyperon is completely suppressed.
Nucleation of �−s also modifies the neutron and proton abundances:
neutron (proton) abundance in NY� matter is smaller (larger) than
in NY matter. The proton fraction remains below the threshold for
the nucleonic dUrca process.3 Recall that, due to the relatively low
L-value, neither purely nucleonic nor hyperon admixed compact
stars based on DDME2(Y) EoS allow for a nucleonic dUrca process
(Fortin et al. 2016). Finally, we observe that the onset of �− leads to
a fast drop of lepton densities, as they compensate for the charge of
leptons and are more energetically favourable than the electrons and
muons.

The properties of non-rotating spherically symmetric cold β-
equilibrated compact stars based on the DDME2Y(�) models are
summarized in Table 2. Listed are the maximum gravitational mass
MG, max, the corresponding central baryon number density nc, max,
the threshold densities for nucleation of heavy baryons and the
corresponding minimal compact star masses, the radius of a compact
star with a canonical mass of 1.44 M� and the tidal deformability of
a canonical 1.4 M� star. We note that (i) with MG,max = 2.1 M�, the
DDME2Y and DDME2Y� models both fulfill the 2 M� constraint
on the lower limit of maximum mass of a compact star (Demorest
et al. 2010; Antoniadis et al. 2013; Arzoumanian et al. 2018);
(ii) the radii, R

(NY )
1.44 M� = 13.25 km and R

(NY�)
1.44 M� = 13.09 km, are

in agreement with recent Neutron Star Interior Composition Ex-
plorer Mission (NICER) results giving 13.02+1.24

−1.06 km (Miller et al.
2019) and, respectively, 12.71+1.14

−1.19 km (Riley et al. 2019) for PSR
J0030 + 0451 with a mass of MG = 1.44+0.15

−0.14 (Miller et al. 2019) and
MG = 1.34+0.15

−0.16 M� (Riley et al. 2019); (iii) �1.4 = 653 is in better

3Note that in several models, for example, SWL (Spinella 2017) and FSU2H
(Tolos, Centelles & Ramos 2017a, 2017b), the nucleation of �− opens up
nucleonic dUrca process or shifts its threshold to much lower densities.
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Figure 2. Relative particle abundances in hot NY� matter with (S/A =
1, YL, e = 0.4) (bottom), (S/A = 2, YL, e = 0.2) (middle), and (S/A = 1,
μL, e = 0) (top), as predicted by the DDME2Y� model. Muons are not
considered. Thin vertical lines mark the central baryon number densities
corresponding to a 1.44 M� star (dotted–dashed) and a maximum mass star
(dotted), respectively.

agreement with Abbott et al. (2018); and (iv) the 1.44 M� stars will
have a tiny fraction of �-hyperons, and, within the DDME2Y�

model, a core which is rich in � − resonances.
The composition of matter at non-zero temperature is modified

because of the thermal excitation of new degrees of freedom.
Possible neutrino trapping additionally modifies the composition.
Fig. 2 illustrates, as a function of baryon number density, the
relative particle abundances of hot NY� matter under thermodynamic
conditions relevant for different stages in the evolution of PNS (Pons
et al. 1999). Each panel corresponds to a set of constant values of
total entropy per baryon and electron lepton fraction. In all cases,
a vanishing muon lepton fraction YL, μ = 0 is assumed. The bottom
panel corresponds to a moment shortly after core bounce, when the
star is hot and lepton rich (S/A = 1, YL, e = 0.4); the middle panel
corresponds to a later time, when the star is partially deleptonized
and hotter (S/A = 2, YL, e = 0.2); finally the top panel corresponds to
fully deleptonized matter which cools down (S/A = 1, μL, e = 0).

At high enough temperatures and low-YL, e values heavy baryons
can nucleate already at subsaturation densities. Moreover, the heavy
baryon fractions increase with temperature, and eventually, all
allowed particle degrees of freedom can be populated. As visible

from Fig. 2, the dependence on nB is not always monotonic, due to the
competition among different species. Still, due to the large negative
charge chemical potential in matter with low charge fractions,
negatively charged baryons nucleate at lower densities and are more
abundant than their neutral and positive counterparts. The charge
chemical potential decreases with the charge fraction, such that the
effect becomes more pronounced at low values of YL, e. Thus, �-
hyperons are the most abundant non-nucleonic species, except for
low values of YL, e, where the �− abundance can exceed the � one.
Our results qualitatively agree with the findings by Oertel et al.
(2012, 2016), where a large number of EoS models with hyperons
was considered, and by Malfatti et al. (2019) concerning the �s.

3.2 Equation of state

Fig. 3 shows the temperature as a function of baryon number density
for matter composed of nucleons (N), nucleons and hyperons (NY),
and nucleons, hyperons and � (NY�), as predicted by the DDME2,
DDME2Y, and DDME2Y� model, respectively. The top panel
compares different values of S/A for the same YL, e = 0.2 whereas the
middle panel compares different values of YL, e for the same S/A =
1. For purely nucleonic matter, a strong increase of temperature
with density is observed over the entire density range, whereas the
increase is much less steep as soon as additional particles appear.
Temperature can even decrease with the density over a certain range,
see for example, the curves for S/A = 1 for the DDME2Y and
DDME2Y� models. The change of slope is due to the sequential
onset of heavy baryons (see Fig. 2). A comparison between the
results obtained for N, NY and, respectively, NY� matter proves that
for fixed values of (nB, YL, e, S/A), lower values of temperature are
reached in systems with more particle degrees of freedom. This can
be explained by the fact that, at a given temperature, the entropy of a
system increases with the number of constituent particles. The effect
was already discussed by Oertel et al. (2016), who confronted the
behaviour of matter composed of nucleons and hyperons to that of
purely nucleonic matter and, respectively, nucleons and �-hyperons.
They also showed that, for fixed nB and S/A, the uncertainties in
the modelling of the nucleonic sector, especially in the isovector
channel, induce larger variations in temperature than those arising
from modelling hyperonic matter, see the results corresponding to
the purely nucleonic EoS of Lattimer & Swesty (1991), labelled
‘LS220’, the IUFSU (Fattoyev et al. 2010) version of Fischer et al.
(2014) labelled ‘HS(IUF)’ as well as the hyperonic EoS ‘SFHoY’
(Fortin et al. 2018) at S/A = 2 and YL, e = 0.2,4 plotted in the bottom
panel.

The middle panel of Fig. 3 demonstrates that, for given baryon
content of matter (i.e. N versus NY versus NY�) and fixed values of
S/A and nB, the temperature depends on YL, e. In all cases, for a given
S/A, the temperature decreases with increasing YL, e. The amplitude
of this effect depends on the available particle degrees of freedom
via the overall isospin asymmetry of matter, shown in Fig. 4. The
smaller this asymmetry, the smaller the temperature variation as a
function of YL, e. In particular, in the presence of hyperons, isospin
asymmetry becomes reduced for a given YL, e, reflecting the fact that
some neutrons are replaced by �-hyperons, such that the temperature
variation is weaker.

Fig. 5 shows the dependence of total pressure on the total energy
density. Predictions for purely nucleonic matter (top) are confronted
with those corresponding to matter composed of nucleons and

4These EoS are available on the Compose data base.
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920 A. R. Raduta, M. Oertel and A. Sedrakian

Figure 3. Temperature versus baryon number density for hot star matter
whose baryonic sector allows for nucleons (N), NY, and NY�. Top panel:
predictions of the DDME2(Y�) model for different values of S/A and YL, e =
0.2, as given in the legend in the format S/A, YL, e. Middle panel: the same
for S/A = 1 and varying YL, e as well as μL, e = 0. Bottom panel: predictions
of the purely nucleonic EoS models LS220 (Lattimer & Swesty 1991) and
HS(IUF) (Fischer et al. 2014) as well as the hyperonic SFHoY EoS (Fortin
et al. 2018), for different values of S/A, YL, e. In all cases YL, μ = 0.

hyperons (middle panel) for S/A = 1 and 4, at μL, e = 0 and YL, e =
0.4. The lower panel shows the impact of the onset of �s at μL, e =
0 and S/A = 0 and 4. We find that (i) for low energy densities e
� 300 MeV fm−3, the pressure increases with (S/A), whereas the
opposite is true at higher energy densities; (ii) the dependence of

Figure 4. Isospin asymmetry
∑

it3, ini as a function of particle number
density for β-equilibrated, neutrino-transparent, matter and matter with
constant (electron) lepton fractions at S/A = 1, as predicted by the DDME2,
DDME2Y, and DDME2Y� models.

Figure 5. EoS for different values of S/A and YL, e (or μL, e = 0), as given in
the legend according to the DDME2(Y�) model. The inset in the top panel
illustrates the behaviour of the nucleonic matter EoS in the intermediate
energy density range. The modifications of the EoS due to the onset of �s
are illustrated in the bottom panel for the case of β-equilibrated, neutrino-
transparent matter. The onset of heavy baryons is marked, in each case, by a
symbol.
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the pressure on YL, e is complex; for purely nucleonic matter at high
e, pressure is higher for lower YL, e-values, whereas the opposite
is observed for matter containing hyperons; (iii) for intermediate
energy densities lower YL, e-values lead to lower values of pressure,
no difference between nucleonic and hyperonic EoS are observed
here since hyperons have not yet nucleated; and (iv) the nucleation
of �s softens P(e) over intermediate energy densities and stiffens
it for high e; the magnitude of the modification increases with �

abundances and, thus, with (S/A). These results are in agreement
with (Li et al. 2018), who discussed in detail the effect of �s on the
EoS of cold β-equilibrated matter.

3.3 Global properties of hot compact stars

Now we turn to the discussion of global properties of hot compact
stars using as input the EoS models presented in the previous sections.
Before discussing our detailed findings for hot stars, let us recall some
general relations observed in older, β-equilibrated stars.

(i) The maximum mass of a compact star is sensitive to the
interactions in the high-density domain and serves as a useful
diagnostics of the composition of matter, in particular, nucleation of
heavy baryons and/or quark matter (Weissenborn et al. 2012, 2013;
Bonanno & Sedrakian 2012; Colucci & Sedrakian 2013; Miyatsu,
Cheoun & Saito 2013; van Dalen et al. 2014; Gusakov, Haensel &
Kantor 2014; Oertel et al. 2015; Fortin et al. 2016, 2017),

(ii) The radius of a canonical mass MG � 1.44 M� compact star
significantly constrain the intermediate-density domain, where the
value of the symmetry energy and its slope play an important role
(Steiner, Lattimer & Brown 2010; Lattimer & Steiner 2014).

(iii) The tidal deformabilities of compact stars are strongly cor-
related with the radius of the star (Postnikov, Prakash & Lattimer
2010) and put constraint(s) on the intermediate-density range of the
EoS (Raaijmakers et al. 2020). Their measurement in the GW170817
event (Abbott et al. 2017) has already ruled out stiff EoS (Most et al.
2018; Paschalidis et al. 2018).

(iv) The compact star moment of inertia depends sensitively to
the EoS in the intermediate- to low-density regime (Ravenhall &
Pethick 1994; Lattimer & Prakash 2001; Bejger, Bulik & Haensel
2005; Lattimer & Schutz 2005). The difference between the moments
of inertia of hypernuclear and nucleonic stars and the amount
of strangeness supported by the hypernuclear star are strongly
correlated (Fortin et al. 2020).

(v) The thermal evolution of compact stars is a sensitive probe
of their interior physics and depends on the EoS mostly via the
composition of matter in the dense interiors and occurrence of various
direct Urca processes at high densities. Other uncertainties include
the composition of the atmosphere and pairing gaps of various
baryonic species that experience attractive interactions (Sedrakian &
Clark 2019). Conservative models based on the ‘minimal cooling
paradigm’ which assumes nucleonic stars and absence of dUrca
processes are so far consistent with the data (Page et al. 2004, 2009).
Recent studies of the thermal evolution of hypernuclear compact stars
with modern EoS (Raduta et al. 2018, 2019; Negreiros et al. 2018;
Grigorian, Voskresensky & Maslov 2018) show that agreement with
the data can be achieved in this case as well due to a combination
of accelerated cooling via various dUrca processes and suppression
of their rates by superfluidity of heavy baryons. Still, any evidence
for accelerated cooling cannot be attributed to heavy baryonic cores
of compact stars, as models which feature nucleonic dUrca (see e.g.
Beznogov & Yakovlev 2015; Wei, Burgio & Schulze 2019) or quark
matter (Hess & Sedrakian 2011; de Carvalho et al. 2015; Sedrakian

Figure 6. Gravitational mass MG versus radius for non-rotating spherically
symmetric stars for the DDME2(Y�) EoS models. Top panel: β-equilibrated,
neutrino-transparent stars for different values of S/A. Bottom panel: stars with
constant electron lepton fraction for different values of S/A as indicated in the
legend in the format S/A, YL, e.

2016a; Wei, Burgio & Schulze 2020) in the centres of compact stars
predict accelerated cooling as well. An accelerated cooling can also
result from the emission of particles beyond the standard model,
such as means Quantum Cromodynamics (QCD) axions or axion-
like particles (Sedrakian 2016b, 2019; Beznogov et al. 2018; Leinson
2019).

Fig. 6 illustrates the dependence of the star’s gravitational mass
on the circumferential radius. β-equilibrated stars and stars with
constant electron lepton fraction are considered for different values
of entropy per baryon. The results for baryonic matter composed of
N, NY, NY� are compared assuming YL, μ = 0.

Let us start the discussion with the results at zero temperature,
depicted in the top panel of Fig. 6. Naturally, the population of
additional degrees of freedom such as hyperons or �s modifies both
compact star masses and radii. Nucleation of hyperons entails a
significant reduction of the maximum mass; if in addition �s are
accounted for, the maximum mass is only slightly modified; see
Table 2, too.

Both the population of hyperons and �s reduce the star’s radius.
Since the critical density for the onset of �s is lower than that for
hyperons, the effect on the radius is visible for the DDME2Y�

parametrisation at lower masses than for the DDME2Y parametrisa-
tion, see Table 2 for the respective onset masses. Since for a canonical
mass star 1.44 M�, hyperons are present only in a very small amount,
the impact on the radius is small, whereas, within DDME2Y�, the
reduction is noticeable (0.16 km), see Table 2. This finding is in
agreement with the results by Spinella (2017), Li et al. (2018, 2020),
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Li & Sedrakian (2019b), and Ribes et al. (2019), where different
underlying nucleonic EoS models have been employed.

Let us now turn to the case of hot compact stars. Top and bottom
panels respectively depict results corresponding to β-equilibrated
stars and stars with constant (electron) lepton fraction. A word of
caution is necessary here which concerns, in particular, the shown
radii. For cold compact stars, it is well known that radii are sensitive
to the crust EoS and the matching of core and crust (Fortin et al.
2016). Good experimental constraints on the compact star outer
crust composed of stable nuclei combined with a thermodynami-
cally consistent treatment employing the same interaction over the
whole density range, limit these uncertainties to ≈ 5 per cent (Fortin
et al. 2016). Finite-temperature EoS are expected to be affected by
consistency issues related to the transition to a clustered matter close
to the surface, too. An additional problem arises since in general the
tabulated finite-temperature EoS contain entries for T ≥ 0.1 MeV. For
the EoS studied in this work, the lowest density at which a solution
for the desired S/A can be found in the tables lies in the range nll

≈ 10−8–10−7 fm−3, the exact values depending on the EoS and the
S/A and YL, e values. To define the surface in a coherent way for
all models and (S/A, YL, e) conditions, we choose a common nmin ≈
10−15 fm−3 and extrapolate all EoS for nmin ≤ nB < nll with linear
dependencies log (nB) − log (e) and, respectively, log (nB) − log (P).
This extrapolation together with the arbitrarily chosen transition
density nt = ns/2 between the homogeneous and inhomogeneous
matter lead to some uncertainties in compact star radii and radius-
dependent quantities, for example, compactness C = MG/R, the
moment of inertia, quadrupole moment, and tidal deformability.
Masses are not affected. For S/A � 2, the uncertainties on the radii
are smaller than a few per cents and those on other quantities even
smaller, see Appendix A. As such this somewhat arbitrary treatment
of the compact star surface affects neither the properties of hot stars
discussed in this section nor the conclusions of Sections 4.1 and 4.2,
where universal relations between different compact star properties
are addressed.

The dependence of the maximum gravitational mass MG, max on the
star’s entropy per baryon is shown in Fig. 7. Note that the maximum
masses in Fig. 7 have been determined at constant total entropy
(S/A)MB, where MB denotes the star’s baryonic mass following the
turning point criterion for a configuration to be secularly stable; see
(Sorkin 1982; Goussard, Haensel & Zdunik 1998; Marques et al.
2017) for a detailed discussion. The following features are observed
in Figs 6 and 7:

(i) for purely nucleonic stars thermal effects increase the gravita-
tional mass and, thus, MG,max, whereas stars with an admixture of
heavy baryons manifest a non-monotonic dependence of MG,max on
S/A. The reason is that as long as thermal effects favour nucleation of
new species, the maximum mass decreases with S/A; as soon as all
available degrees of freedom are populated, we recover the behaviour
observed for purely nucleonic stars, that is MG,max increases with S/A.

(ii) for purely nucleonic stars at fixed S/AMG,max(μL,e = 0) >

MG,max(YL,e = 0.2) > MG,max(YL,e = 0.4) with the exception of
LS220 at S/A > 3.5. Compact stars with an admixture of heavy
baryons most frequently show the opposite effect, that is MG,max

increases with YL, e; the reason lies in the fact that a lepton-rich
environment with large YL, e disfavors heavy baryons, such that they
become less populated and the maximum mass can thus increase with
YL, e for given S/A; out of the considered cases the only exception
to this rule is the case of SFHoY EoS with S/A ≤ 1 for which
MG,max(YL,e = 0.4) < MG,max(YL,e = 0.2).

(iii) higher values of YL, e reduce the star’s compactness, see Fig. 6;

Figure 7. Maximum gravitational mass MG, max versus entropy per baryon
S/A for non-rotating spherically symmetric compact stars based on the
DDME2(Y�), HS(IUF) (Fischer et al. 2014), LS220 (Lattimer & Swesty
1991), SFHo (Steiner, Hempel & Fischer 2013), and SFHoY (Fortin et al.
2018) models for μL, e = 0 (bottom) as well as YL, e = 0.2 (middle) and 0.4
(top panel). Results for purely nucleonic stars and stars with admixtures of
heavy baryons are considered.

(iv) for a given mass and composition, radii increase with S/A, that
is, thermal effects reduce the star’s compactness, see Fig. 6;

(v) the magnitude of thermal effects depends on the EoS; for
DDME2 thermal effects are smaller than those due to YL, e and the
number of allowed degrees of freedom; for LS220 thermal effects
dominate over those related to YL, e.

(vi) nucleation of �s reduces the gravitational mass, including
MG,max. Since the effect scales with the � abundance, it increases
with S/A and decreases with YL, e.

The maximum gravitational mass of isentropic compact stars in
β-equilibrium is relevant for BH formation in a failed CCSN. By
performing many simulations, Schneider et al. (2020) have recently
shown that BH formation occurs soon after the PNS’s gravitational
mass overcomes MG,max corresponding to its most common entropy
value. The trajectory is thereby essentially determined by the pro-
genitor compactness, such that the EoS dependence enters mainly
via the behaviour of MG,max as a function of S/A.
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The maximum baryon mass is an interesting quantity in the context
of stability against collapse to a BH during PNS and BNS merger
evolution. In the absence of accretion, MB is a conserved quantity
during evolution, such that if it exceeds the maximum baryon mass of
the cold β-equilibrated configuration, the star necessarily becomes
unstable against collapse to a BH at some point independently of the
mechanism stabilizing it temporarily, be it strong differential rota-
tion (Baumgarte, Shapiro & Shibata 2000; Morrison, Baumgarte &
Shapiro 2004; Kastaun & Galeazzi 2015), the lepton rich environ-
ment in PNS (Prakash et al. 1997) or thermal effects (Prakash et al.
1997; Kaplan et al. 2014). Following this reasoning, Bombaci (1996)
and Prakash et al. (1997) conjectured that thermally populated non-
nucleonic degrees of freedom lead to the existence of meta-stable ob-
jects, that is, stars which during the PNS evolution have a larger max-
imum baryonic mass than their cold, β-equilibrated counterparts and
which upon deleptonization and cooling necessarily collapse to a BH.

Our results for the maximum baryonic mass, shown as a function
of entropy per baryon S/A for constant (electron) lepton fractions are
plotted in Fig. 8 together with results corresponding to the LS220,
HS(IUF), SFHoY, and SFHo (Steiner et al. 2013) EoS models. The
chosen values of the (electron) lepton fraction, YL, e = 0.1 (bottom),
0.2 (middle), and 0.4 (top panel), are relevant for the Kelvin–
Helmholtz epoch (Pons et al. 1999). Again, the maximum mass has
been determined at a fixed total entropy (S/A)MB, see Goussard et al.
(1998) and Marques et al. (2017). Table 3 gives, for all models, the
values of MB, max(0, μL, e = 0); also we give, for the considered YL, e

values, the instability domains defined according to Bombaci (1996).
The values of S/A where MB, max(S/A, YL, e) = MB, max(0, μL, e = 0)
are marked with symbols in Fig. 8. The DDME2Y(�) models show
an instability for relatively low S/A, whereas the nucleonic version
DDME2 stays stable over the entire range of considered values for
S/A. In simulations, during the Kelvin–Helmholtz phase, S/A stays
around 1–2, such that within DDME2 the population of hyperons
and/or � might indeed lead to the formation of a meta-stable object.
However, this does not seem to be possible exclusively in models with
non-nucleonic degrees of freedom. The purely nucleonic HS(IUF)
and LS220 show instabilities too. Although it is not clear whether
they will be experienced in the stellar evolution without performing
simulations, it cannot be excluded that meta-stable nucleonic stars
could form. These results show the importance of the nuclear
interaction in understanding the properties of the high-density EoS.

4 U N I V E R S A L R E L AT I O N S

Although NS properties depend sensitively on the EoS, several
‘universal’ relations have been found between global quantities. The
term ‘universality’ refers here to very weak dependence on the EoS
which holds well for cold β-equilibrated stars. Although so far the
reason for this universal behaviour is not well understood, it may be
exploited to constrain quantities difficult to access observationally,
eliminate the uncertainties related to the EoS in the analysis of the
data, or break degeneracies between integral quantities (e.g. the
quadrupole moment and the neutron-star spins in binary in-spiral
waveforms).

In this section, we shall investigate to what extent this universality
remains valid for hot and lepton-rich stars, allowing for various
particle degrees of freedom in the EoS. Section 4.1 will address
relations between the normalized moment of inertia, quadrupole
moment, tidal deformability and binding energy, and the star’s
compactness, and Section 4.2 will address the I–Love–Q relations.
Binding energies and tidal deformabilities will be calculated for
non-rotating spherically symmetric stars; moments of inertia and

Figure 8. Maximum baryonic mass MB, max versus entropy per baryon
S/A for non-rotating spherically symmetric compact stars based on the
DDME2(Y�), HS(IUF) (Fischer et al. 2014), LS220 (Lattimer & Swesty
1991), SFHo (Steiner et al. 2013), and SFHoY (Fortin et al. 2018) EoS models
for YL, e = 0.1 (bottom), 0.2 (middle), and 0.4 (top panel). Results for purely
nucleonic stars and stars with admixtures of heavy baryons are considered.
The value of S/A where the maximum baryonic mass at YL, e = const.
equals the maximum baryonic mass of the corresponding cold β-equilibrated,
neutrino-transparent star is marked by a solid square (DDME2(NY)), solid
triangle (DDME2(NY�), open triangle (IUF(HS)), and diamond (LS220).

quadrupole deformations will be calculated for rigidly and slowly
rotating stars.

4.1 Dependence on the compactness

For cold, β-equilibrated stars in the slow-rotation approximation,
several authors have established relations between the compactness
of a star C = MG/R and normalized moment of inertia, quadrupole
moment, tidal deformability, and binding energy, which show uni-
versal character, that is are almost EoS independent.

First, by considering different EoS for cold β-equilibrated neutron
star matter Ravenhall & Pethick (1994) noted that, except for very
low mass stars, the normalized moment of inertia Ĩ = I/

(
MGR2

)
behaves as a universal function of the star’s mass and radius,

Ĩ ≈ 0.21
1

1 − 2C
. (20)
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924 A. R. Raduta, M. Oertel and A. Sedrakian

Table 3. Maximum baryonic masses of cold catalyzed neutrino-transparent compact stars based on different EoS models and domains of
instability with respect to collapse to BH (Bombaci 1996), for YL, e = 0.1, 0.2, and 0.4.

Model MB,max/ M� YL, e Instability domain YL, e Instability domain YL, e Instability domain

HS(IUF) 2.26 0.4 S/A ≥ 3.28 0.2 S/A ≥ 2.13
LS 220 2.40 0.1 S/A ≤ 1.57
SFHo 2.45
SFHoY 2.36
DDME2 3.02
DDME2Y 2.48 0.4 S/A ≤ 1.82 0.2 S/A ≤ 1.67 0.1 S/A ≤ 1.16
DDME2Y� 2.49 0.4 S/A ≤ 1.64 0.2 S/A ≤ 1.60 0.1 S/A ≤ 1.19

Later, Lattimer & Schutz (2005) proved that Ĩ can be expressed as a
polynomial in compactness:

Ĩ = c0 + c1C + c2C
2 + c3C

3 + c4C
4. (21)

The issue was recently reconsidered by Breu & Rezzolla (2016) who
showed that the dispersion between different EoS in equation (21)
is reduced if only models which fulfill the 2 M� maximum mass
constraint are considered. Furthermore, they found another universal
relation, relating alternatively normalized moment of inertia Ī =
I/M3

G [note the different normalization with respect to equation (21)]
to compactness

Ī = a1C
−1 + a2C

−2 + a3C
−3 + a4C

−4. (22)

Maselli et al. (2013) introduced a universal expression relating
compactness to the normalized tidal deformability λ̄ = λ/M5

G

C = b1 + b2 ln λ̄ + b3

(
ln λ̄

)2
. (23)

Earlier, by considering a collection of different EoS models,
Yagi & Yunes (2013a) have shown that the scaled quadrupole
moment Q̄ = QMG/J 2, where J stands for the angular momentum,
as a function of compactness is only weakly dependent on the EoS.
Our results suggest that Q̄ can be expressed as a polynomial of C−1

Q̄ = e0 + e1C
−1 + e2C

−2 + e3C
−3. (24)

which is analogous to equation (22) for Ī . The neutron star binding
energy, defined as the difference between baryonic and gravitational
masses EB = MB − MG, shows little sensitivity on the underlying EoS
model if normalized by the gravitational mass (Lattimer & Prakash
2001; Breu & Rezzolla 2016). According to Lattimer & Prakash
(2001), it behaves as

EB

MG

= d1C

1 − d2C
. (25)

Again, as in the case of Ĩ (C), limiting the considered EoS models to
those which are consistent with the 2 M� mass constraint improves
the quality of the fit (Breu & Rezzolla 2016). The values of the dif-
ferent fitting parameters, ai, bi, ci, di, and ei, entering equations (21)–
(25) are provided in Table 4.

Let us now turn to the discussion of universality at non-zero
entropy. The top panels of Figs 9–12 illustrate, respectively, the
behaviour of Ĩ , Ī , Q̄, λ̄, and EB/MG as a function of compactness for
different combinations of constant S/A and YL, e, as obtained from the
DDME2(Y�) model. The moment of inertia is thereby calculated to
leading order in the slow, rigid rotation approximation (Hartle 1967)
and the tidal deformability λ is computed following Hinderer (2008)
and Hinderer et al. (2010). The quadrupole moment is computed for a
rotation frequency of 100 Hz using the public domain code LORENE5

5https://lorene.obspm.fr

(Gourgoulhon et al. 2016). For comparison, for cold, β-equilibrated
matter the results obtained from the DDME2(Y�) model as well as
the predictions of equations (21)–(25) are shown, see Table 4 for the
parameter values.

For all these quantities, a significant scatter of the results for
different values of S/A and YL, e is observed. The deviation from the
results corresponding to cold catalyzed matter increases with S/A
and/or YL, e. This indicates that universality does not hold when stars
with different entropies and lepton contents are compared. For Ĩ and
Ī this conclusion has recently been reached by Lenka et al. (2019).
However, one needs in fact to compare quantities under identical
thermodynamic conditions. To illustrate this point, we display in the
middle panels of Figs 9, 10, and 12 and the bottom panel of Fig. 11
the results for different EoS models and compositions, for the case
(S/A = 2, YL, e = 0.2). In addition to matter made of N, NY, or NY�

based on the DDME2(Y�) models, we show results corresponding
to the purely nucleonic LS220 and HS(IUF) EoS models (Lattimer &
Swesty 1991; Fischer et al. 2014) as well as the hyperonic SFHoY
EoS (Fortin et al. 2018). The agreement between the different EoS
models is very good, except for Ĩ , Q̄, and EB at large values of
C � 0.2, where some deviations can be seen. This confirms that
indeed universality holds well for all these relations if the same
thermodynamic conditions are considered.

To quantify this universality, we have performed fits to the
nucleonic DDME2 results following equations (21)–(25), indicated
in the figures by the green open circles. The corresponding parameter
values are listed in Table 4. Overall, the good description of the
results indicates that the functional relations proposed for cold
β-equilibrated matter hold for hot matter with trapped neutrinos,
too. Only for Ĩ (C), the data are better described by a third-order
polynomial, see Table 4. For Ĩ (C), Ī (C), Q̄, and C(λ̄) the deviations
from the fits are of the order of a few per cents, as illustrated in
the bottom panels of Figs 9 and 10 and, respectively, the inset in
the bottom panel of Fig. 11, where the relative residual errors with
respect to the fit functions are depicted. We conclude that for these
quantities universality holds with a precision only slightly inferior to
that for the cold β-equilibrated case. For EB/MG(C), the deviations
from the fit are larger, up to 20 per cent, see the bottom panel of
Fig. 12.

4.2 I–Love–Q universal relations

Yagi & Yunes (2013a,b) identified universal relations among the pairs
of quantities Ī - Q̄, Ī - λ̄, and Q̄ - λ̄. Numerically, these relations can
be cast in a polynomial form on a log–log scale,

ln Yi = ai + bi ln Xi + ci (ln Xi)
2 + di (ln Xi)

3 + ei (ln Xi)
4 , (26)

with the pairs (Yi, Xi) corresponding to (Ī , λ̄); (Ī , Q̄); (Q̄, λ̄). Origi-
nally established in the slow rotation limit, these relations remain EoS
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Table 4. Fitting parameters entering equations (21)–(25) under different indicated thermodynamic conditions.

Thermodynamic p0 p1 p2 p3 p4 References
conditions

c0 c1 c2 c3 c4

T = 0, β-eq. 0.244 0.638 0 0 3.202 Breu & Rezzolla (2016)
S/A = 2, YL, e = 0.2 5.965 × 10−2 2.35082 −6.7077 10.6489 0 This work

a1 a2 a3 a4

T = 0, β-eq. 8.134 × 10−1 2.101 × 10−1 3.175 × 10−3 −2.717 × 10−4 Breu & Rezzolla (2016)
S/A = 2, YL, e = 0.2 9.447 × 10−1 1.815 × 10−1 −4.049 × 10−3 4.339 × 10−5 This work

b1 b2 b3

T = 0, β-eq. 3.71 × 10−1 −3.91 × 10−2 1.056 × 10−3 Maselli et al. (2013)
S/A = 2, YL, e = 0.2 3.632 × 10−1 −4.216 × 10−2 1.288 × 10−3 This work

e0 e1 e2 e3

T = 0, β-eq. −2.7157 0.7017 0.1611 −6.4977 × 10−3 This work
S/A = 2, YL, e = 0.2 −1.8410 0.5829 0.1081 −4.3085 × 10−3 This work

d1 d2

T = 0, β-eq. 0.6213 0.1941 Breu & Rezzolla (2016)
S/A = 2, YL, e = 0.2 0.4733 0.9232 This work

Figure 9. Normalized moments of inertia Ĩ = I/
(
MGR2

)
(left-hand panels) and Ī = I/M3

G (right-hand panels) as a function of compactness C = MG/R. Top
panels: results corresponding to different thermodynamic conditions and matter compositions, as obtained from the DDME2(Y�) model. At finite temperatures,
the thermodynamic conditions are indicated in terms of constant S/A and YL, e; the label ‘0, β-equil.’ corresponds to cold catalyzed neutrino-transparent matter.
Middle panels: results corresponding to (S/A = 2, YL, e = 0.2) for different matter compositions and EoS models. The long dotted–dashed curves correspond to
the fits in equations (21) and (22), respectively, with parameters from Table 4. Bottom panels: relative residual errors with respect to the fits in equations (21,
left-hand panel) and (22, right-hand panel) for the cases considered in the middle panels.
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926 A. R. Raduta, M. Oertel and A. Sedrakian

Figure 10. Normalized quadrupole moment Q̄ of slowly and rigidly rotating
stars as a function of compactness, C. Top panel: results corresponding to
different thermodynamic conditions (mentioned in the legend) and matter
compositions derived from the DDME2(Y�) model. At finite temperatures,
the thermodynamic conditions are specified in terms of constant S/A and YL, e;
the label ‘0, β-equil.’ corresponds to cold catalyzed neutrino-transparent
matter. Middle panel: results corresponding to (S/A = 2, YL, e = 0.2) for
different EoS models and for different matter compositions. The red dotted–
dashed curves correspond to fits in equation (24) with parameters values
from Table 4. Bottom panel: relative residual errors with respect to the fit in
equation (24) for the cases considered in the middle panels.

independent for fast rotating stars with rotation frequency-dependent
fit parameters (Doneva et al. 2013).

Let us now consider I −Love−Q universality at non-zero temper-
ature. We will focus here on Ī − λ̄ and Ī − Q̄. If universality holds
for these two pairs of quantities, it is very likely that it will hold for
the third pair as well. In Fig. 13, we plot Ī as a function of λ̄ (left) and
Q̄ (right). Again, in the top panels, we compare results for different
values of S/A and YL, e employing the DDME2(Y�) models with
those for cold β-equilibrated stars. The dotted–dashed line indicates
the result of equation (26) with fitting parameters obtained for cold
β-equilibrated stars according to the DDME2Y model, see Table 5.
As can be seen from the middle panels, the residual errors become
an order of magnitude larger than those obtained when considering
only cold β-equilibrated stars (Yagi & Yunes 2013a). This deviation
of the I −Love−Q-relations from universality due to thermal effects
have already been noted by Martinon et al. (2014) and Marques et al.
(2017).

Figure 11. Normalized tidal deformability λ̄ of non-rotating spherically
symmetric stars as a function of compactness C. Top panels: results cor-
responding to different thermodynamic conditions (mentioned in the legend)
and matter compositions, as obtained from the DDME2(Y�) model. At finite
temperatures, the thermodynamic conditions are specified in terms of constant
S/A and YL, e; the label ‘0, β-equil.’ corresponds to cold catalyzed neutrino-
transparent matter. Bottom panels: results corresponding to (S/A = 2, YL, e =
0.2) for different EoS models for different matter compositions. The red
dotted–dashed curves correspond to fit in equation (23) with parameters
values from Table 4. Relative residual errors with respect to the fit in
equation (23) are shown in the inset.

The discussion in Section 4.1 suggests that universality at non-zero
entropy can be recovered under identical thermodynamic conditions.
The bottom panels of Fig. 13 show the relative error of the results
with respect to equation (26) with refitted parameters at S/A = 2 and
YL, e = 0.2, see Table 5. Results corresponding to the DDME2(Y�)
model are confronted with those of LS220 (Lattimer & Swesty 1991),
HS(IUF) (Fischer et al. 2014), and SFHoY (Fortin et al. 2018).
The quality of the fit by equation (26) is considerably improved
reaching the accuracy of zero temperature, β-equilibrated case. Thus,
universality again holds under the same thermodynamic conditions.

This phenomenologically observed universality is not yet under-
stood. Analytical solutions in the Newtonian limit (Yagi & Yunes
2013a) as well as those obtained using an expansion around this
limit (Jiang & Yagi 2020) corroborate the EoS independence, but
without providing a definitive insight into their origin. Yagi & Yunes
(2013a) advanced two possible explanations. First, these dimension-
less quantities mainly depend on the outermost shells of the core and
on the crust, where, by construction, ‘realistic’ EoS, that is, nuclear
EoS with parameters fitted to nuclear data and/or astrophysical
observations, agree with each other. As in Yagi & Yunes (2013a)
the term ‘realistic’ is meant here to distinguish nuclear EoS from
polytropic EoS. If this was the case, finite-temperature EoS should
necessarily violate universality as their low-density behaviours differ
from each other, and from that of cold β-equilibrated matter, see the
discussion in Section 3. Second, Yagi & Yunes (2013a) suggested
that this universality could be a reminiscence of no-hair theorems
as the neutron star’s compactness approaches the BH limit. In this
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Figure 12. Binding energy per unit of gravitational mass EB/MG of non-
rotating spherically symmetric stars as a function of compactness C. Top
panel: results corresponding to different thermodynamic conditions (indicated
in the legend) and matter compositions, as obtained from the DDME2(Y�)
model. At finite temperatures, the thermodynamic conditions are specified in
terms of constant S/A and YL, e; the label ‘0, β-equil.’ corresponds to cold
catalyzed neutrino-transparent matter. Middle panel: results corresponding
to (S/A = 2, YL, e = 0.2) for different EoS models and for different
matter compositions. The red dotted–dashed curves correspond to fits in
equation (25) with parameters values from Table 4. Bottom panel: relative
residual errors with respect to the fit for the cases considered in the middle
panel.

case, too, since hot stars are less compact, see Section 3, universality
should be less well satisfied for hot stars.

Yagi & Yunes (2013a) corroborated their guess about the origin of
universality by investigating the radial dependence of the integrands
entering the calculation of moment of inertia, quadrupole moment,
and tidal deformability in the Newtonian limit, normalized by their
values at the star’s centre, showing that they are peaked around
0.7 � r/R � 0.9, where r is the radial distance from the star’s
centre. The main contribution to these quantities thus indeed comes
from the outer core and crust. In Fig. 14, we show for stars with
compactness C = 0.17 the radial profiles of the quantities (er4/ecR4)
and

[
epc (de/dp) /e2

c

]
, where (er4) corresponds to the integrand of

the moment of inertia and quadrupole moment in the Newtonian
limit (top panel), and (ede/dr) to the EoS-dependent contribution to
the tidal deformability in the Newtonian limit (bottom panel); here

index c indicates corresponding values at the star’s centre. Comparing
results for different S/A and YL, e (left) we note that with increasing
temperature and, slightly more pronounced, increasing YL, e, the
maximum of the integrands migrate to lower r/R values and smear
out. For the highest considered value S/A = 4, [er4/ecR4] manifests
a wide peak centred at r/R ≈ 0.6, while

(
epc (de/dp) /e2

c

)
shows a

plateau over r/R � 0.6 followed by a shoulder-like decrease. Overall,
an important dispersion is obtained among the curves corresponding
to different thermodynamic conditions. This is in agreement with
the breakdown of universality due to thermal effects if different
thermodynamic conditions are compared. Considering again fixed
S/A = 2 and YL, e = 0.2 (right), the predictions of the different
models agree very well over the whole star’s volume. We, therefore,
conclude that the explanation for I −Love−Q universality does not
lie in the similar behaviour of ‘realistic’ EoS in the outer core and
the crust but rather in the similar behaviour of EoS over the density
domains which, under the considered thermodynamic condition, play
the most important role.

5 C O N C L U S I O N S

In this work, we constructed EoS of dense matter with heavy baryons
(hyperons and �-resonances) at non-zero temperature and for differ-
ent lepton fractions within the covariant DFT. This extends models
of EoS for cold β-equilibrated matter (as it occurs in older compact
stars) to finite temperatures and matter out of β-equilibrium as needed
for the description of CCSN, PNS evolution, and BNS mergers. In
particular, our finite-temperature EoS models include heavy baryon
degrees freedom – the full baryon octet and �-resonances. Our
EoS model is consistent with available constraints from nuclear
physics experiments, ab initio calculations of low-density neutron
matter, and observations of compact stars, specifically, massive
neutron stars, radius and mass inferences by NICER experiment
and tidal deformability derived from GW170817 event. We plan
to make tables of the EoS publicly available on the Compose data
base.

As discussed previously for cold compact stars (Drago et al. 2014;
Li et al. 2018), the population of �s at intermediate densities, before
the onset of most hyperons, leads to smaller radii for intermediate-
mass stars. The impact on the maximum mass compared with
hypernuclear models is nevertheless negligible since at high densities
anyway many different states are populated and the additional �

degree of freedom only leads to a re-arrangement of particle abun-
dances. As long as no additional degrees of freedom are populated,
thermal effects lead to an increase of the maximum gravitational mass
with S/A. This is particularly the case of purely nucleonic stars and
hypernuclear stars at high temperatures. The population of additional
particle degrees of freedom by thermal excitation can, on the other
hand, reduce the maximum gravitational mass with increasing S/A.
The lepton fraction modifies the star’s maximum gravitational mass,
too. Depending on the EoS, S/A, and particle degrees of freedom,
compact star’s maximum gravitational mass may increase or decrease
with the lepton fraction. Most frequently, the gravitational mass of
a compact star with an admixture of heavy baryons increases with
the lepton fraction, while the opposite effect is obtained for purely
nucleonic stars. The reason is that an increasing charge fraction
decreases the charge chemical potential and thus disfavours the
appearance of, in particular negatively charged, hyperons and �s.
Because of an extended surface, stars at finite-temperature and/or
high lepton fractions are less compact and less bound than their
counterparts at zero temperature. The maximum baryonic mass of a
hot star determines the stability against collapse to a BH. We have
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928 A. R. Raduta, M. Oertel and A. Sedrakian

Figure 13. Left: Ī versus λ̄ (top) and relative residual errors |�Ī |/Īf it (λ̄) with respect to the fit by equation (26) (middle, bottom). Right: Ī versus Q̄ (top) and
relative residual errors |�Ī |/Īf it (Q̄) with respect to the fit by equation (26) (middle, bottom). Top: results for different thermodynamic conditions and matter
compositions (indicated in the legend), as obtained from the DDME2(Y�) model. The dotted–dashed red line indicates the fit to the cold β-equilibrated results,
see Table 5. Middle: relative error with respect to the fit at zero temperature. Bottom panels: results corresponding to S/A = 2 and YL, e = 0.2. The relative error
with respect to refitted values under these thermodynamic conditions, see Table 5, is shown for different matter compositions and EoS models.

Table 5. Fitting parameters of equation (26) for different thermodynamic conditions.

Y X Thermodynamic a b c d e References
conditions

Ī λ̄ T = 0, β-eq. 1.47 7.19 × 10−2 2.00 × 10−2 −5.00 × 10−4 2.39 × 10−6 This work
Ī Q̄ T = 0, β-eq. 1.50 4.66 × 10−1 6.11 × 10−2 1.30 × 10−2 1.20 × 10−3 This work
Ī λ̄ S/A = 2, YL, e = 0.2 1.49 6.55 × 10−2 2.06 × 10−2 −4.47 × 10−4 −2.96 × 10−6 This work
Ī Q̄ S/A = 2, YL, e = 0.2 1.53 3.81 × 10−1 1.36 × 10−1 −1.21 × 10−2 3.45 × 10−3 This work

shown that, depending on the nuclear EoS, both purely nucleonic
stars, and hypernuclear stars may be stable (unstable) within the
considered domain of entropy per baryon.

Several authors (Martinon et al. 2014; Marques et al. 2017; Lenka
et al. 2019) have argued that thermal effects induce deviations from
the universal relations. These findings were confirmed by comparing
the relations between various global properties of compact stars at
finite S/A with those at zero temperature. As a byproduct, we have
shown that the � degrees of freedom do not alter universal relations
for cold compact stars. Finally, we have demonstrated that when

the universal relations are studied at the same entropy per baryon
and the same lepton fraction, universality is recovered. We have
illustrated this by establishing universal relations between compact
star’s compactness and several other global properties as well as by
testing the validity of universality for the I −Love−Q relations. This
EoS independence could be helpful for the analysis of observational
data from hot, transient states of compact stars, in full analogy to
the zero temperature case discussed extensively in the literature. Our
findings may also give new hints for the understanding of the origin(s)
of universality.
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Figure 14. Normalized radial profiles of (e/ec)(r/R)4 (top panels) and e (de/dp) /
(
e2
c /pc

)
(bottom panels) for stars with compactness C = 0.17, as predicted

by various EoS models. Left-hand panels illustrate results corresponding to the DDME2(Y�) model for various thermodynamic conditions specified in
the legend in terms of ( S/A, YL, e); the label ‘0, β-equil.’ corresponds to cold catalyzed neutrino-transparent matter. Right-hand panels illustrate results
corresponding to different EoS models and matter compositions (N, NY, NY�) for (S/A = 2, YL, e = 0.2). The crust-core transition is indicated, in each case, by a
symbol.
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Oertel M., Hempel M., Klähn T., Typel S., 2017, Rev. Mod. Phys., 89, 015007
Ouellette S. M., 2011, PhD thesis, Caltech, preprint (arXiv:hep-ph/0101055)
Page D., Lattimer J. M., Prakash M., Steiner A. W., 2004, ApJS, 155,

623
Page D., Lattimer J. M., Prakash M., Steiner A. W., 2009, ApJ, 707,

1131
Pais H., Santos A., Brito L., Providencia C., 2010, Phys. Rev. C, 82,

025801
Paschalidis V., Yagi K., Alvarez-Castillo D., Blaschke D. B., Sedrakian A.,

2018, Phys. Rev. D, 97, 084038
Perego A., Bernuzzi S., Radice D., 2019, Eur. Phys. J. A, 55, 124
Peres B., Oertel M., Novak J., 2013, Phys. Rev. D, 87, 043006
Pons J. A., Reddy S., Prakash M., Lattimer J. M., Miralles J. A., 1999, ApJ,

513, 780
Postnikov S., Prakash M., Lattimer J. M., 2010, Phys. Rev. D, 82, 024016
Prakash M., Bombaci I., Prakash M., Ellis P. J., Lattimer J. M., Knorren R.,

1997, Phys. Rep., 280, 1
Raaijmakers G. et al., 2020, ApJ, 887, L22
Raduta A. R., Gulminelli F., 2010, Phys. Rev. C, 82, 065801
Raduta A. R., Sedrakian A., Weber F., 2018, MNRAS, 475, 4347
Raduta A. R., Li J. J., Sedrakian A., Weber F., 2019, MNRAS, 487,

2639
Ravenhall D. G., Pethick C. J., 1994, ApJ, 424, 846
Ribes P., Ramos A., Tolos L., Gonzalez-Boquera C., Centelles M., 2019, ApJ,

883, 168
Riley T. E. et al., 2019, ApJ, 887, L21
Rosswog S., 2015, Int. J. Mod. Phys. D, 24, 30012
Ruiz M., Tsokaros A., Shapiro S. L., 2020, Phys. Rev. D, 101, 064042
Sahoo H. S., Mitra G., Mishra R., Panda P. K., Li B.-A., 2018, Phys. Rev. C,

98, 045801
Sawyer R. F., 1972, ApJ, 176, 205
Schneider A., Roberts L., Ott C., O’connor E., 2019, Phys. Rev. C, 100,

055802
Schneider A. S., O’Connor E., Granqvist E., Betranhandy A., Couch S. M.,

2020, ApJ, 894, 4
Sedrakian A., 2016a, Eur. Phys. J. A, 52, 44
Sedrakian A., 2016b, Phys. Rev. D, 93, 065044
Sedrakian A., 2019, Phys. Rev. D, 99, 043011
Sedrakian A., Clark J. W., 2019, Eur. Phys. J. A, 55, 167
Sekiguchi Y., Kiuchi K., Kyutoku K., Shibata M., 2011, Phys. Rev. Lett., 107,

211101
Shibata M., Taniguchi K., 2011, Living Rev.Rel., 14, 6
Sorkin R. D., 1982, ApJ, 257, 847
Spinella W., 2017, PhD thesis, Claremont Graduate University/San Diego

State University
Steiner A. W., Lattimer J. M., Brown E. F., 2010, ApJ, 722, 33
Steiner A. W., Hempel M., Fischer T., 2013, ApJ, 774, 17
Stone J. R., Dexheimer V., Guichon P. A. M., Thomas A. W., 2019, preprint

(arXiv:1906.11100)
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APPEN D IX A : UNCERTAINTIES IN RADII O F
C O M PAC T STA R S

To quantify the uncertainties related to the surface definition and
the crust-core transition we consider four different scenarios, see
Table A1. We thereby vary on the one hand the (fixed) transition
density from the core to the crust and on the other hand the density at
which we define the surface of the star, implying an EoS extrapolation
for cases (3) and (4). The top panels of Fig. A1 illustrate, for each
scenario, the total pressure as a function of the total energy density
together with the EoS data from the Compose data base. For this
example, the DD2Y EoS (Marques et al. 2017) has been chosen.
The other panels respectively depict the mass–radius relation, the
tidal deformability as a function of gravitational mass and moment
of inertia as a function of gravitational mass The cases (S/A =
2, YL, e = 0.2) (left) and (S/A = 4, YL, e = 0.2) (right) have been
considered.

As indicated in the main text, we find that: (i) the uncertainties
related to the arbitrarily chosen value of the crust-core transition
density nt are negligible, (ii) the uncertainties related to the surface
definition are sizeable only for stars with high values of S/A �
3. For the shown example, at S/A = 4, and YL, e = 0.2, the
uncertainty in the radius of a 1.4 M� star amounts to 20 per cent.
This indicates an upper limit on the uncertainty; for all other studied
star properties, the uncertainty is smaller. Similar uncertainties
are found for other EoS models, showing that our results are
robust.

Table A1. Definition of NS surface and matching between crust and core.
nmin defines the baryon number density at the star’s surface, nt the transition
density from core to crust, nll the lowest density in the EoS data tables for the
given conditions, and nLIN the maximum density for which log (e) − log (nB)
and log (P) − log (nB) show a linear behaviour to a very good precision
between nll and nLIN; ns stands for the saturation density of symmetric nuclear
matter.

Case nmin nt nB fit domain

(1) nll ns/3 –
(2) nll 2ns/3 –
(3) 10−15 (fm−3) ns/2 (nll, nt)
(4) 10−15 (fm−3) ns/2 (nll, nLIN)

Figure A1. EoS (first row) and relations between gravitational mass and
radius (second row), tidal deformability and gravitational mass (third row),
and moment of inertia and gravitational mass (fourth row) for non-rotating
(slowly rotating) stars comparing different definitions of NS’s surface and the
crust-core transition as listed in Table A1. For the thermodynamic conditions,
(S/A = 2, YL, e = 0.2) (left-hand panels) and (S/A = 4, YL, e = 0.2) (right-hand
panels) have been chosen. The open circles marked as ‘data’ indicate the EoS
data from the Compose data base corresponding to the DD2Y EoS (Marques
et al. 2017).
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