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Abstract. An inverse model using atmospheric CO2 obser-
vations from a European network of stations to reconstruct
daily CO2 fluxes and their uncertainties over Europe at 40 km
resolution has been developed within a Bayesian framework.
In this first part, a pseudo-data experiment is performed to as-
sess the potential of continuous measurements over Europe
using a network of 10 stations of the AEROCARB project
such as in 2001 (http://www.aerocarb.cnrs-gif.fr/). Under the
assumptions of a small observation noise and a perfect at-
mospheric transport model, the reconstruction of daily CO2
fluxes and in particular of their synoptic variability is best
over Western Europe where the network is the densest. At
least a 10 days temporal and a 1000 km spatial averaging of
the inverted daily/40 km fluxes is required in order to obtain a
good agreement between the estimated and the “true” fluxes
in terms of correlation and variability. The performance of
the inversion system rapidly degrades when fluxes are sought
for a smaller temporal or spatial averaging.

1 Introduction

The problem of determining the space-time structure of sur-
face CO2 fluxes has gained considerable prominence along
with the rising interest in anthropogenic climate change. The
two classes of methods developed by scientists are distin-
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guished as “bottom-up” and “top-down” methods. In the
bottom-up approach, process models based on observations
at very small scales are scaled up to regions of interest. In
the top-down, or inverse, method, the integrated atmospheric
signatures of the fluxes contained in atmospheric concentra-
tion gradients are disentangled to recover the spatial and tem-
poral distribution of fluxes. Two advantages of the top-down
method are that it integrates some of the small-scale hetero-
geneity that may not be of direct interest (either for policy
or scientific applications) and that it does not require a direct
knowledge of the processes giving rise to the fluxes.

The top-down method has hitherto been limited by a se-
vere lack of data and biases in atmospheric transport mod-
els (Gurney et al., 2002; Stephens et al., 2007; Geels et al.,
2007). Law et al. (2002) have proposed to use the records
increasingly available from in-situ air sampling instruments.
The use of continuous data creates stringent demands on at-
mospheric transport models (Geels et al., 2007; Gerbig et
al., 2003), probably requiring higher spatial resolution, abil-
ity to reproduce diurnal PBL dynamics and synoptic shifts
in transport. Law et al. (2002) also noted that the so-called
aggregation error (Kaminski et al., 2001), due to the a priori
spatial aggregation of surface fluxes to be optimized by in-
versions, was likely to be more serious with the use of such
continuous data. To tackle this issue, Kaminski et al. (2001)
suggested solving fluxes at model resolution in inversions,
prescribing prior error correlations for fluxes in order to limit
biases caused by lack of spatial resolution in the data, and the
generation of non-physical solutions.

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://www.aerocarb.cnrs-gif.fr/
http://creativecommons.org/licenses/by/3.0/


3108 C. Carouge et al.: Potential of the 2001 network

The combined requirements of a relatively high resolution
for modeling atmospheric transport and an equally high res-
olution for determining sources in the inversion pose a sig-
nificant computational challenge. In order to calculate the
Jacobian matrix for the inversion problem, it is necessary
to know the sensitivity of each concentration measurement
to fluxes at all preceding times and places. In the conven-
tional approach where a forward model run is attached to
each source, this requires potentially millions of forward at-
mospheric transport simulations. An alternative is provided
by the retrotransport of Hourdin et al. (2006a, b) who used
the reversibility of transport for passive constituents to cal-
culate the sensitivity of one measurement to all influencing
sources, by emitting a pulse of passive tracer at the observ-
ing point and tracking its dispersion backwards in time. Thus
only one tracer run is required per observation to map the
sensitivity to all the sources. Another important although un-
related property of the model they used (LMDZ, originally
described in Sadourny and Laval 1984) is its capability of
a zoomed grid over a particular region. In this study, using
LMDZ zoomed over Europe gives us the technical possibil-
ity of simulating the high-resolution transport necessary for
matching the continuous European CO2 stations, while re-
taining a globally coherent picture of CO2 elsewhere.

Peylin et al. (2005) used output from the same LMDZ
model zoomed over Europe in their methodological study.
That paper solved for daily fluxes over a region including
Europe and parts of the North Atlantic during the test pe-
riod of November 1998. Our work builds upon the results
of Peylin et al. (2005) and goes beyond them in three im-
portant directions: 1) we use continuous daily data for an
entire year which enables us to analyze the impact of very
different meteorological and flux conditions, 2) we use data
from ten rather than six continuous stations, and 3) we focus
on so-called pseudo-data generated with the correct “true”
value of the flux fields, and try to retrieve the fluxes under
diverse, more or less optimistic, assumptions about the data.
Pseudo-data experiment is a common tool for exploring the
information content of potential observations (Gloor et al.,
2000; Rayner et al., 2001; Law et al., 2002, 2003).

The main focus of this paper is the information content
available from the existing network of continuous CO2 mea-
surements over Europe of the AEROCARB project in 2001
(http://www.aerocarb.cnrs-gif.fr/). In particular we wish to
quantify the “optimal” spatial and temporal scales at which
fluxes may be determined reliably. A companion paper
(Carouge et al., 2010, CA08) considers extensions to the net-
work and sensitivity tests of the inversion system to differ-
ent error scenarios. The outline of the paper is as follows:
in Sect. 2, the inverse methodology is described with spe-
cial reference to new developments from Peylin et al. (2005).
Then, Sect. 3 presents and discusses the fluxes optimised in
the pseudo-data experiment, where one year of pseudo-data
with noise is inverted.

2 Grid-based regional inversion

For this study we describe below the inverse setup that is used
to assimilate daily atmospheric CO2 pseudo-data over Eu-
rope and retrieve daily fluxes at the model resolution (40 km).
The use of a pseudo-data modeling framework allows inves-
tigation, in a “controlled environment”, of the potential of
the 2001 European network to infer regional CO2 fluxes. In
this section, we detail in turn the overall inverse approach
(Sect. 2.1), the transport model (Sect. 2.2) and the Jaco-
bian matrix calculation (Sect. 2.3), the pseudo-data genera-
tion (Sect. 2.4), the prior error covariance matrix (Sect. 2.5),
and a few critical technical choices (Sect. 2.6).

2.1 Overall approach: the use of pseudo data

Following the methodology of Peylin et al. (2005), daily CO2
fluxes are optimized over Europe at the LMDZ model spatial
resolution of∼40 km, using information contained in daily
pseudo-observations. A Bayesian synthesis inverse method
is applied, based on a matrix formulation, to invert one year
of fluxes.

Pseudo-data allow testing the accuracy of the solution and
the impact of different inverse setups by comparing the in-
verted fluxes to the “true” fluxes. The extent to which the
results of those experiments can inform on a real-data case
strongly depends on the realism of the inverse setup. In this
study, we consider an ideal case compared to Peylin et al.,
2005. We only optimize for daily land ecosystem fluxes
over Europe and for air-sea fluxes over the eastern North At-
lantic where small flux adjustments are allowed. We consider
fluxes from other regions are null in building the pseudo-data
and performing the inversion. Note that we chose to not con-
sider fossil fuel emissions in our setup. Thus, we do not
need to perform a first global inversion with all stations and
all fluxes, as Peylin et al., 2005 did using real observations.
Rather, we only have to define two sets of fluxes over Europe:
the target or true fluxes and the first guess prior fluxes to be
optimized. A rigorous approach is to perturb the true flux
distribution according to a given error covariance matrix,Pb,
in order to define the prior fluxes (Chevallier et al., 2007). In
that case, the inverse problem is statistically consistent (Pb

being used in the optimization process). However, consider-
ing the poor knowledge of land-ecosystem fluxes and their
error covariance (Chevallier et al., 2006), we want to start
with differences between prior and the true fluxes that are a
plausible representation of the differences between any prior
and the unknown true flux in the real world. This is the rea-
son why we chose one ecosystem model (TURC) to generate
the daily prior flux maps, and another independently devel-
oped ecosystem model (ORCHIDEE) to produce the true flux
distributions (see Sect. 2.4).

The pseudo-data are calculated by applying the LMDZ
transport model to the daily true fluxes. Note that the year
2001 was consistently chosen for atmospheric transport and
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for forcing the land ecosystem model calculating the true
fluxes. The pseudo-data are perturbed in order to account
for data and model errors. We choose a white noise of rel-
atively small amplitude (±0.3 ppm). Such a small noise is
representative of data errors only. The atmospheric transport
is considered perfect as illustrative of an ideal case (CA08
explore a case with a large white noise).

The inversion of daily flux maps during one year is divided
into a series of consecutive optimizations overlapping in time
in order to cope with the numerical size of the problem (see
Sect. 2.6). The quality of the results will be analyzed by com-
paring the optimized fluxes to the true fluxes using statistical
diagnostics.

2.2 Global atmospheric transport model zoomed over
Europe

We use the LMDZ transport model (Sadourny and Laval,
1984) and the same grid as Peylin et al. (2005) with a zoom
centered over Europe leading to a maximum resolution of
40×40 km and 19 sigma-pressure layers up to 3 hPa (10 lay-
ers in the troposphere). In LMDZ, the advection of tracers is
calculated based on the finite-volume, second-order scheme
proposed by Van Leer (1977) as described by Hourdin and
Armengaud (1999). Deep convection is parameterized ac-
cording to the scheme of Tiedtke (1989) and the turbulent
mixing in the planetary boundary layer is based on a local
second-order closure formalism (Hourdin and Armengaud,
1999). Finally, model winds are relaxed towards analyzed
fields of the European Center for Medium Range Weather
Forecasting (ECMWF) for the year 2001 in order to remain
as close as possible to the observed synoptic events (with a
time constant of 2.5 h). The model has been widely used for
climate studies (IPCC, 2007) and for direct and inverse mod-
eling of CO2 (Peylin et al., 2005) and of other atmospheric
trace gases (Hauglustaine et al., 2004; Bousquet et al., 2005,
2006).

2.3 Jacobian transport matrix calculation

Within a synthesis inverse approach, one needs to define the
sensitivity of concentrations (at each site and each moment in
time) to the surface flux of each source region (each model
grid cell during one time step). The sensitivity of one mea-
surement to all the sources is often called the influence func-
tion, or concentration footprint. We used the retro-transport
formulation implemented in LMDZ to compute these sensi-
tivities at ten atmospheric stations with daily observations (as
in Peylin et al., 2005). The approach relies on the time sym-
metry of modeled transport which defines a “retro-tracer”
(transport backward in time) equivalent to adjoint transport
of a tracer without developing the adjoint model (Hourdin et
al., 2006a; Issartel and Baverel, 2003). Time symmetry oc-
curs because a tracer and a retro-tracer would symmetrically
spread out along with time in LMDZ. If some passive tracer

Table 1. List of European continuous stations with their position.

Station Station Latitude Longitude Altitude
name symbol (m a.s.l.)

Cabauw CBW 51◦58′ N 4◦55′ E 200
Monte Cimone CMN 44◦11′ N 10◦42′ E 2165
Hegyhatsal HUN 46◦57′ N 16◦39′ E 363
Mace Head MHD 53◦19′ N 9◦53′ W 25
Pallas PAL 67◦58′ N 24◦07′ E 560
Plateau Rosa PRS 45◦56′ N 7◦42′ E 3480
Puy de D̂ome PUY 45◦45′ N 3◦00′ E 1465
Saclay SAC 48◦45′ N 2◦10′ E 120
Schauinsland SCH 47◦55′ N 7◦55′ E 1205
Westerland WES 54◦56′ N 8◦19′ E 8

is emitted at one point, after enough time, it would be spread
all over the world. A retro-tracer represents the locations of
the air parcels composing a measurement at times before the
measurement time. These locations would spread across the
world if the simulation time goes back long enough, and thus
should do a retro-tracer. So a tracer and a retro-tracer are
symmetrically transported.

The distribution of the retro-tracer is computed by a sin-
gle simulation backward in time, i.e. reversing the sign of
the different advection and convection mass fluxes but keep-
ing the sign of the unresolved diffusion terms. On account
of discretization issues, the retro-tracer is not the exact solu-
tion of the adjoint of the transport equation but, in the case
of LMDZ, Hourdin et al. (2006b) have shown a fair agree-
ment between the forward and backward calculations in the
analysis of the European Transport Experiment (ETEX). We
also realized a comparison between forward and backward
calculations for three months at the European stations used
in this study. It shows daily differences smaller than 0.3 ppm
at all stations. With this approach, computation of sensitiv-
ity to all fluxes requires only one backward simulation per
observation, with a pulse of retro-tracer emitted backward at
each time step for each station.

2.4 Pseudo-data and their error

A network comprising the 10 continuous surface stations
that were operating in Europe in 2001 is used here in the
context of the AEROCARB project (Table 1, Fig. 1, and
http://www.aerocarb.cnrs-gif.fr/). Daily pseudo-data at these
ten stations are generated with LMDZ for the whole year
with daily Net Ecosystem Exchange (NEE) over Europe of
the ORCHIDEE model (Krinner et al., 2005). For con-
sistency, ORCHIDEE was forced by meteorological fields
from ECMWF for the year 2001 (Uppala et al., 2005). OR-
CHIDEE is a state of the art mechanistic model that com-
putes the turbulent fluxes of CO2, H2O and energy on a
half hourly basis, and the dynamics of ecosystem C and
water pools (phenology, allocation, growth, mortality, soil
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Figure 1.Fig. 1. Map of the 2001 European continuous stations represented
by black triangles. After inversion, fluxes were aggregated over
five different regions: “Western Europe” in blue, “Mediterranean
Europe” in orange, “Balkans” in light green, “Central Europe” in
red and “Scandinavia” in green.

organic matter decomposition) on a daily basis. The mod-
eled daily NEE compares relatively well with the measured
NEE at specific eddy-covariance flux towers, with a mean
standard deviation of the model-observed differences close to
2 gC/m2/day (Chevallier et al., 2006). Atmospheric transport
models are known to have difficulties in simulating the day-
to-day variability of the nocturnal planetary boundary layer
(PBL) height (Geels et al., 2007). We thus selected the model
concentrations for daytime only (11:00 to 16:00 local time) to
generate the pseudo-data and the associated influence func-
tions.

The choice of assigning a white noise of standard devia-
tion 0.3 ppm for the pseudo-data at each station reflects an
optimistic setup, with small measurement uncertainties and
no transport error (i.e. the model is able to represent perfectly
well the measurements at each site). The value of 0.3 ppm is
consistent with instrumental noise in measuring CO2 at con-
tinuous stations. In a companion paper (CA08), we investi-
gate the impact of a larger and likely more realistic noise on
the results. This Gaussian noise defines the error statistics of
the pseudo-data in the inversion, no error correlations being
assumed between different stations (i.e. the error covariance
matrix,R0, is diagonal).

2.5 Prior fluxes and error covariance

2.5.1 European land ecosystem fluxes and errors

The prior daily NEE flux maps are calculated from the TURC
model (Lafont et al., 2002). TURC is a diagnostic model
driven by 10-daily satellite vegetation index observations
from VEGETATION-SPOT4. The model run with climate
forcing data and vegetation index values corresponding to
the period April 1998 to April 1999 (hereafter referred to
as year 1998). This arbitrary choice of a different NEE
model induces large differences between daily prior and true
fluxes. The a priori vs. true differences follow approxi-

mately a Gaussian distribution with a standard deviation of
1.3 gC m−2 day−1. We doubled this value to define the un-
certainty on prior daily NEE (3 gC m−2 day−1 on each grid-
cell), considering 1) that the tail of the distribution is larger
than the ideal Gaussian case, 2) that the a priori vs. true NEE
differences significantly vary through time, and 3) that in the
real world we do not know the a priori flux error characteris-
tics precisely. Note that Chevallier et al., 2006 found a simi-
lar value (∼2 gC m−2 day−1) by comparing ORCHIDEE and
measured NEE (eddy-covariance data) at 34 eddy covariance
sites worldwide.

When the fluxes are optimized in each grid cell, prior flux
error covariances are crucial in propagating the information
given by the station network. In a real data inversion, the
prior flux errors have multiple causes that strongly depend
on the underlying model. Some of these causes are likely
to induce a large-scale spatial error correlation, for example,
structural biases of the underlying vegetation model (e.g. pa-
rameter values or vegetation classification) or large-scale bi-
ases in the forcing data (Jung et al., 2007). On the other hand,
meteorological events like frontal systems will certainly de-
correlate daily flux errors between nearby regions if the re-
sponse of the NEE model to changing meteorology is not
perfect. Moreover, for a given day, errors in the meteoro-
logical forcing (e.g. heterogeneous cloud cover) are likely
to cause random errors in prior NEE. Overall the sign and
magnitude of the prior flux error correlations are difficult
to assess with real data. Most global inversion studies have
prescribed spatially correlated errors following an exponen-
tial decay with the distance between pixels when solving for
weekly or monthly fluxes (R̈odenbeck et al., 2003, Peylin
et al., 2005). However when solving for daily fluxes, there
seems to be no clear evidence of such long-range spatial er-
ror correlations, although temporal error correlations seem to
be significant (Chevallier et al., 2006).

In our pseudo-data experiment, the error structure of the
prior fluxes can be computed from the differences between
TURC (prior) and ORCHIDEE (true). The autocorrelation
in time of the TURC vs. ORCHIDEE differences shows for
each pixel an exponential decrease with variations in the de-
creasing speed. We choose to define a long decay time be-
cause the correlations are reduced during the process to cal-
culate the covariance matrix (see Sect. 2.5.3). The longest
autocorrelated pixels have R2 dropping down to 0.3 after
10 days. We thus defined exponentially decreasing tempo-
ral correlations for prior NEE errors, with a decay time of
10 days. For spatial correlations of NEE errors, Cheval-
lier et al., 2006 show no significant correlations but, as for
time correlations, we want to maximize them. So we use
an exponentially decreasing function with distance with an
e-folding length of 1000 km, representing the typical size of
synoptic meteorological systems. We do not consider cross-
correlations between space and time to avoid computational
complications (see below). In a companion paper (CA08) we
test the impact of different NEE error correlation structures.
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2.5.2 Eastern North Atlantic air-sea fluxes and errors

Only the north-east Atlantic fluxes are optimized in this study
in addition to European daily NEE (Fig. 1). Over this ocean
region, the prior air-sea fluxes are set to zero as for the gener-
ation of pseudo-data with a total regionally averaged uncer-
tainty of 0.05 GtC year−1 (13 106 km2). To calculate the grid
point uncertainty, we first distribute the total uncertainty over
all grid points assuming a constant uncertainty per day and
per squared meter. Then, we build the full covariance matrix
with spatial and temporal correlations. We then uniformly
rescale the variances so that the total uncertainty of the full
matrix is equal to 0.05 GtC year−1. This is equivalent to an
error of 0.5 gC m−2 day−1 over each grid point when taking
into account the flux error correlations over the north-east
Atlantic. Such a small regional error follows the hypothe-
sis that fluxes outside of Europe are well constrained, so that
only small adjustments of the “upwind” flux over the North
Atlantic region are allowed. Prior air-sea flux error covari-
ances between ocean grid points are set using an exponential
decrease with a length scale of 1500 km in space and 10 days
in time.

2.5.3 Calculation of the error covariance matrix

The calculation of a full covariance matrix, based on true
minus prior fluxes, although possible, is rather difficult and
uneasy to implement given the size of the inverse problem
(more than 2 106 parameters (see companion paper CA08 for
several tests on this). Thus, in a first approximation, we
choose to disjointedly define spatial and temporal covariance
matrices and to add them, thus neglecting cross-covariances
between space and time. In other words, there are no cor-
relations between flux errors unless the fluxes have either a
common location or a common time. In this case, the result-
ing spatial and temporal correlations are necessarily reduced
compared to the original “space-only” or “time-only” corre-
lation matrix, in order to remain mathematically consistent.
Technically the prior flux covariance matrix (Pb) is defined
in four steps:

Step 1. We calculate the total daily flux variance for each
grid cell using a standard deviation of 3 gC m−2 day−1 for
Europe and 0.5 gC m−2 day−1 for the eastern North Atlantic
region.

Step 2. We define spatial and temporal correlations be-
tween land or ocean grid points in two separate matrices (ma-
trix S’ for spatial correlations and matrixT’ for temporal cor-
relations).

Step 3. We convert correlations into covariances matrices,
S and T, by multiplying S’ and T’ by the variances from
step 1.

Step 4. We compute the total a priori flux covariance ma-
trix asPb

=
1
2 [S+T] .

Note that spatial and temporal correlations inPb are di-
vided by two compared toS and T, reaching a maximum

value of 0.5 only. The variances are unchanged. With
this approach, the total European a priori flux uncertainty is
0.15 GtC/y and 0.05 GtC/y over eastern North Atlantic. Ad-
ditional choices for the structure ofPb are tested in a com-
panion paper (CA08).

2.6 Sequential inverse procedure

Solving for daily fluxes over each model grid point yields
to ∼2 700 000 unknown fluxes each year. The number of
daily observations is comparatively very small (3650 for 10
stations each year). Therefore, we choose a “data-oriented”
expression (see Tarantola, 1987, page 70) to calculate the es-
timated fluxesXa :

Xa
= Xb

+PbHT
(
HPbHT

+R0
)−1(

Y 0
−HXb

)
(1)

with Xb the prior fluxes,Y 0 the observations,H the model
response functions,R0 andPb the observation and prior error
covariance matrices. In this expression, the matrix to invert
has the dimension of the observation space (3650×3650).

The critical step is to compute the productHPbHT

becausePb and H are matrices of very large dimen-
sions, 2 700 0002 and (3650×2 700 000) elements respec-
tively. This product can be decomposed using only few lines
of H at a time and the result stored. The size of the result-
ing file could be reduced by taking advantage of the struc-
ture of these matrices.Pb is symmetric but also very sparse
as we do not use cross-correlations between space and time;
and the size ofH can be roughly divided by 2 as half of the
matrix is filled by zeros. To further reduce the size of the in-
verse problem, we choose to use a sequential approach with
consecutive inversions. Peylin et al., 2005 showed that the
influence of the initial conditions is critical for the first 15 to
20 days. We thus choose windows of three months for the
inversion of daily fluxes with a two months overlap between
consecutive windows. Each three-month inversion sequence
is shifted one month ahead from the previous one, and only
estimated fluxes for the month two are kept to build estimated
fluxes for all the year except for the beginning and the end of
the year.

This sequential approach requires us to carry the influence
of all fluxes from previous sequences. Rigorously, for a se-
quence starting at month “m” and ending at month “m+3”
this means transporting forward the initial conditions (i.e. re-
sulting from all fluxes prior to month “m”) in order to com-
pute their contribution at each station for the period “m”–
“m + 3”. This process would involve too many forward
transport simulations. To reduce computing time, we con-
sider that, if we use a long enough spin-up time, the influ-
ence of initial conditions at each station can be approximated
by an overall constant offset. Thus, we solve for this off-
set at each sequence to account for past sources. In addi-
tion, we replace the prior fluxes for month “m” by the es-
timates of the previous sequence. We also linearly decrease

www.atmos-chem-phys.net/10/3107/2010/ Atmos. Chem. Phys., 10, 3107–3117, 2010



3112 C. Carouge et al.: Potential of the 2001 network

  

a/ SP pixel : Raw fluxes

b/ SP pixel : “Residual” fluxes

Figure 2.

prior
posterior
ORCHIDEE (truth)

Fig. 2. Raw(a) and de-seasonalised(b) daily fluxes at the SP grid-
cell (5◦10′ E, 47◦36′ N).

the prior flux variance for month “m” from the standard value
at the beginning of the month (3 gC m−2 day−1 over Europe
and 0.5 gC m−2 day−1 over northeastern Atlantic) to 10% of
that value at the end. This forces the system to start month
“m+1” with fluxes close to those optimized at the end of
month “m” in the previous sequence. This prevents unreal-
istic flux variations between successive months. We checked
for two following sequences that this simplified approach
provides similar results as compared to the rigorous treat-
ment of the influence of past sources. Note finally that for the
first sequence, initial conditions are not solved, as in Peylin et
al., 2005, given that the impact is limited to the first 20 days.

3 Results and discussion

3.1 Daily Fluxes at the transport model grid scale

We first evaluate the potential of the chosen network to quan-
tify CO2 fluxes at model grid scale in Western Europe (Fig. 1,
region in blue). This region has the highest density of obser-
vations. As the problem is still under-constrained, with only
a few observations for more than 2000 unknowns each day,
we expect little constraint on individual grid-point fluxes.
Differences between the estimated (or prior) and the true
daily fluxes for all the grid points of Western Europe are

summarized using correlation (R) and normalized standard
deviation (NSD) statistics. NSD is calculated as the ratio
between the yearly standard deviation of the fluxes and the
yearly standard deviation of the true fluxes. We prefer these
two statistics to the conventional RMS diagnostic in order to
separate mismatches in the phase (R) and amplitude (NSD)
between retrieved and true fluxes. In the ideal case where
R=1 and NSD=1, there is a perfect match between optimized
fluxes and true fluxes. Averaged values ofR and NSD over
Western Europe are reported in Table 2. As expected,R and
NSD at the grid scale level are very low. The inversion even
degrades the correlations, with a mean a posteriori correla-
tion,RAPO=0.43±0.21 (error from standard deviation of cor-
relation over all grid points) compared to a mean a priori cor-
relation,RAPR=0.62±0.12. However, the inversion improves
the NSD at the grid scale level.

In order to separate synoptic from seasonal variations, the
prior, estimated and true fluxes are de-seasonalized in each
grid point. A smooth curve comprising 4 harmonics and
a 2nd-order polynomial is first subtracted from each daily
NEE time series (Thoning et al., 1989). Then, residuals are
smoothed in time with a low pass filter at 80 days to create
deseasonalized fluxes. For the deseasonalized prior fluxes,
RAPR drops to almost zero and NSDAPR remains large (1.15)
showing that the correlations between prior and true fluxes
over each grid-point are dominated by the seasonal cycle of
NEE. These differences between synoptic variations in fluxes
are not surprising because two distinct NEE models forced
with climate data from different years were used for estimat-
ing the prior and true fluxes. For the deseasonalized opti-
mized fluxes, the correlation at the grid scale level remain
very small on average (RAPO=0.11) while the NSD further
increases from the prior. This result indicates that unreal-
istically large day-to-day NEE variations are introduced by
the inversion in order to match the pseudo-data. Despite the
spatial and temporal flux error correlations, these daily varia-
tions at the grid scale level are clearly too large and not even
in phase with true fluxes. Our choice for the prior covariance
matrix Pb, with rather low spatial and temporal correlations,
may limit the constraint on the amplitude of the estimated
fluxes (see CA08). The constraint delivered by the network
of ten stations, despite small observational errors, for NEE
on each grid-point is thus quite poor on a daily basis.

As an example, we display the different flux time series
for a specific pixel (called SP) located in Germany (5◦10′ E,
47◦36′ N), in the middle of a ring of 5 stations (SCH, CBW,
SAC, PUY, PRS). The SP pixel starts out with a pretty
good RAPR (0.58) and a too large NSDAPR of 1.37 (Ta-
ble 2). At this location, TURC seasonal cycle differs from
that of ORCHIDEE especially during the spring uptake. The
TURC peak to peak amplitude is higher than in ORCHIDEE
(Fig. 2a).R and NSD statistics for that particular pixel reflect
those obtained on average over Western Europe (Table 2).
The low NSDAPO (0.72) is mainly due to a smaller seasonal
cycle in the optimized fluxes than in the true fluxes at SP.
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Table 2. Correlation and NSD for raw and residual fluxes for SP pixel and aggregated flux over Western Europe and their mean over all pixels
of Western Europe and their standard deviation. SP pixel (5◦10′ E, 47◦36′ N) is chosen in the middle of a ring of 5 stations as representative
of a well-constrained pixel.

Raw fluxes “ Residual ” fluxes
Prior Posterior Prior Posterior

Mean over all
Correlation 0.62±0.12 0.43±0.21 0.04±0.09 0.11±0.07

pixels of Western Europe and
NSD 1.26±0.54 1.14±0.39 1.15±0.47 1.55±0.48

standard deviation around the mean

SP pixel
Correlation 0.58 0.36 −0.01 0.1
NSD 1.37 0.72 1.33 1.13

Western Europe
Correlation 0.94 0.96 0.31 0.63
NSD 1.33 0.72 1.48 1.00

An analysis of the residuals (Fig. 2b) shows that the exag-
gerated NSD and small correlation with the true fluxes result
from noisy day-to-day variations in optimized fluxes while
the true fluxes show only a few synoptic events. Even for a
favorably located grid-point, the inversion cannot retrieve the
day-to-day variations of NEE.

In summary, the 2001 European network does not contain
enough information to reliably estimate daily CO2 fluxes at
the grid-scale level, even under the optimistic assumption of
fairly small data errors (i.e. all sites are perfectly modeled).
The introduction of a priori spatial and temporal error corre-
lations does not compensate for the under-constrained nature
of this inverse problem.

In the following, we investigate whether aggregation in
space and time of the retrieved fluxes can turn the inversion
results from useless to useful. Seven of our ten stations are
located in the region “Western Europe” of Fig. 1. Therefore,
from now on, we focus our analysis on Western Europe and
on the inversion accuracy for retrieving residual deseasonal-
ized CO2 fluxes rather than seasonal daily fluxes.

3.2 Effects of aggregation of inversion results in space
and time

For each pixel within Western Europe (Fig. 1), we calculate
R and NSD as a function of spatial and temporal flux aggre-
gation levels (Fig. 3). Starting from each grid-point (40 km),
fluxes of the neighboring land grid-points are progressively
added to form flux aggregates and these aggregated fluxes are
then deseasonalized. The process is repeated until all West-
ern Europe becomes a big aggregate. At each step,R and
NSD statistics are calculated for aggregated fluxes. The im-
pact of temporal aggregation is estimated by smoothing in
time the different spatially aggregated fluxes. We use a box-
car average of width ranging between 1 and 17 days. Longer
temporal aggregations are not considered as they would be
meaningless for already deseasonalized aggregated fluxes.
After interpolation, the aggregated inversion fluxes show a
regular evolution ofR and NSD (Fig. 3), as a function of
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Fig. 3. Evolution of correlation and NSD with spatial and temporal
aggregation over Western Europe for prior residual fluxes(a), pos-
terior residual fluxes(b) and the difference between these panels
(c).

temporal aggregation in the range 1 to 17 days, and of spatial
aggregation, in the range of 40 km (grid point) to≈1200 km
(Western Europe). In addition, we estimated the statistical
significance of the correlations and variance differences at
all aggregation scales, based on Gaussian law and F-variance
tests, respectively (see Saporta, 1990, p. 136 and 329). For
time series of 365 points (one year of daily fluxes), we cal-
culated a 95% confidence interval for correlations of±0.1
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Figure 4.

Fig. 4. Raw(a)and de-seasonalised(b) fluxes for “Western Europe”
after a 10-days aggregation.

which means that prior and estimated correlations differ-
ences higher than 0.2 are statistically significant.

Comparison between prior deseasonalized fluxes and true
deseasonalized fluxes shows only a small improvement with
spatial or temporal aggregation alone (Fig. 3a). Overall, cor-
relations only increase from 0.05 to a maximum of 0.35 and
NSD values increase from 1.25 to 1.45 degrading with spa-
tial aggregation. The use of two different years of meteo-
rological forcing for TURC (1998) and ORCHIDEE (2001)
probably explains why synoptic events do not match even at a
rather large scale (after aggregation). However, the statistics
of optimized deseasonalized fluxes are clearly improved un-
der combined time and space aggregations.RAPO increases
from 0.15 up to 0.75 and NSD varies between 0.9 and 1.2 for
temporal aggregation scales longer than a few days and spa-
tial aggregation lengths larger than a few hundred kilometers.
More precisely, for too short time aggregations (<4 days),
the isolines for NSD are almost parallel to the axis of spatial
aggregation (Fig. 3). This indicates that temporal aggrega-
tion is the limiting factor at all spatial scales in this case.
For longer time aggregation (>4 days), temporal aggrega-
tion is still the limiting factor but only for spatial aggregation

lengths larger than 500 km. Below 500 km, the isolines for
NSD become parallel to the temporal axis, indicating that
spatial aggregation is the limiting factor for long time ag-
gregations, especially after 10 days. This shows that daily
grid-point fluxes need to be aggregated both in space and in
time to produce realistic and accurate flux estimates. These
improvements can be quantified by the differences between
the statistics before and after inversion (Fig. 3c). Improve-
ments from the prior remain small at low aggregation levels
(0.2/0.15 for R/NSD around 500 km and 4 days) and only be-
come substantial around 10 days and 1000 km (0.35/0.45 for
correlation/NSD). At low temporal aggregation (<4 days),
NSD is even slightly degraded after the optimization, indicat-
ing that the inversion introduces large short-term flux varia-
tions to match the pseudo-data. The 95% confidence interval
in R shows that estimated correlations are different from the
prior ones for temporal aggregation longer than 3 days and
spatial aggregation larger than 200 km (Fig. 3c). At a 95%
level, the variance of prior residuals is statistically different
from the variance of the true residual for spatial aggregations
higher than 500 km and all temporal aggregations. On the
other hand, the estimated variances are not statistically differ-
ent from the true variances for temporal aggregations longer
than 3 days and all spatial aggregations (not shown), indicat-
ing thus a statistically significant improvement above 3 days
and 200 km.

If one regards the inversion as successful to retrieve true
fluxes if R >0.7 and NSD≈1, the network of 10 continuous
stations over Europe (assumed to be perfectly modeled) al-
lows us to retrieve the true fluxes over Western Europe at a
spatial resolution greater than 1000 km and a temporal reso-
lution greater than 10 days in agreement with the statistical
significance analysis (Fig. 3).

Figure 4 displays the different fluxes over Western Europe
smoothed at 10 days. Although the amplitude of the seasonal
cycle is still underestimated compared to the truth, the 10-
day smoothed aggregated residual fluxes show a good agree-
ment with the true deseasonalized fluxes (R=0.63, NSD=1.0,
Table 2), a marked improvement from the prior (R=0.3,
NSD=1.5). Thus, even with a prior estimate inconsistent
with the truth (different land model and different years of
driving meteorology), the current network of stations allows
us to correct the prior and to successfully retrieve NEE on a
10-day average basis, for the relatively well-constrained and
large Western Europe region. Only a few flux variations such
as those observed in May are not retrieved well. Note that
with real data, the prior fluxes may be as far from the un-
known truth as in this particular case, which reinforces the
general character of this finding.

3.3 Flux improvement over other European regions

Minimum requirements in terms of spatial and temporal ag-
gregation to get satisfying flux retrieval depend on the re-
gion under consideration. For other large regions in Europe
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(Fig. 1), aggregation generally brings smaller improvements
than for the Western Europe region, as fewer measurement
sites constrain these regions. In some regions, the fluxes can-
not be retrieved satisfactorily with the criteria defined above
(R >0.7 and NSD=1). This is the case for the Mediter-
ranean Europe region (Fig. 5a), with a maximumRAPO of
0.5 (12-day aggregation over the whole region) and a large
NSD for all aggregations. NSD is even significantly de-
graded from the prior, indicating again large unrealistic day-
to-day variations in the inverted fluxes (Fig. 5a). Other re-
gions show a relatively good agreement. Central Europe
shows smallerRAPO than Western Europe but minimum re-
quirements can be fulfilled with a 15-day averaging of the
residual fluxes over the whole region (Fig. 5b). For Scandi-
navia (not shown), the results are only slightly degraded as
compared to Western Europe. However, the relatively good
agreement between estimated and true fluxes in Scandinavia
is due to the initial agreement between prior and true fluxes
and only partially due to additional information delivered by
atmospheric data.

4 Conclusions

We have built an inverse model to infer daily CO2 fluxes over
the European continent using continuous daily concentration
observations and prior information on surface fluxes. This
model is a classic Bayesian inversion. We used prior flux
error correlations in space and time. Both correlations are
exponentially decreasing and characterized by a correlation
length. In a first attempt, we used a simplified prior covari-
ance matrix by neglecting cross-correlations between space
and time. This simplification mathematically implies a re-
duction of the correlations when combined together. We thus
used longer correlation lengths, both in time and space, to
counterbalance. We avoid the problem of dealing with huge
matrices (H andP) by using overlapping time windows in-
versions of three months, with two months overlapping.

We have shown that, in the idealized perfect transport
case, where the transport model operator can accurately rep-
resent each site (±0.3 ppm of white noise added to daily CO2
pseudo-data), it is not possible to reconstruct European fluxes
each day at the model resolution. Given the overwhelming
number of unknown fluxes compared to the amount of data, it
is clear that aggregation is necessary. When aggregating the
inversion fluxes in space (∼1000 km) and time (∼10 days),
the CO2 budget of Western Europe, the best-observed region,
can be retrieved. Other European regions where the network
is less dense, show a limited ability of the inversion to re-
trieve the true fluxes, even at regional scale, highlighting the
need of dense regional atmospheric observation networks. In
this experiment, we only consider the prior flux errors and
measurement errors. But, in real data inversions, there are
several other sources of uncertainties: the transport error,
the presence of uncertain fossil fuel emissions. Thus, the
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Fig. 5. Evolution of correlation and NSD with spatial and temporal
aggregation over Mediterranean region for prior(a) and posterior
(b) residual fluxes, and over Central Europe for prior(c) and poste-
rior (d) residual fluxes.

retrieval fluxes from real data inversion would be degraded
compared to this experiment.

Extending the area where CO2 fluxes could properly be
retrieved in Europe requires enhancing the development of
the atmospheric continuous network, especially in Eastern
Europe and around the Mediterranean basin. The use of
tall towers and small aircraft can also bring additional in-
formation from meso to regional scales (www.carboeurope.
org). The potential of combining continuous surface mea-
surements with upcoming satellite measurements is also a
promising perspective, but it will require updated inversion
tools, capable to handle larger volumes of data and associ-
ated error covariances.

Further improvements can come from more accurate prior
flux scenarios, including knowledge of prior flux error co-
variance, both for NEE and for fossil fuel emissions. For the
former, coupling between atmospheric models and vegeta-
tion models, developed for instance with mesoscale models
(Lauvaux et al., 2008) or the use of Carbon Data Assimilation
Systems (CCDAS) (Rayner et al., 2005) are promising ways
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for improving ecosystem modeling and atmospheric data fu-
sion. For the latter, efforts have been recently made to im-
prove fossil fuel emission scenarios and to provide hourly
fossil fuel CO2 emission maps (IER:http://carboeurope.ier.
uni-stuttgart.de/, EDGAR: Van Aardenne, 2005). Differ-
ences between these scenarios have a significant seasonal im-
pact on the concentration at most European stations (Peylin
et al., 2008).

Maximizing the benefits of these new atmospheric and
emission constraints requires progress on the quality of mod-
eled transport, and integration of relevant scenarios for error
correlations in inversions, both in the flux and in the observa-
tion domains. In the companion paper of this work (CA08),
we propose a first analysis of the impact on inversion results,
of transport model error and of scenarios for flux error corre-
lations.
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