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[1] We evaluated three global models of the coupled carbon‐climate system against
atmospheric CO2 concentration measured at a network of stations. These three models,
HadCM3LC, IPSL‐CM2‐C, and IPSL‐CM4‐LOOP, participated in the C4MIP experiment
and in various other simulations of the future climate impacts on the land and ocean
carbon cycle. A new set of performance metrics is defined and applied to quantify each
model’s ability to reproduce the global growth rate, the seasonal cycle, the El Niño–
Southern Oscillation (ENSO)–forced interannual variability of atmospheric CO2, and the
sensitivity to climatic variations. Knowing that the uncertainty on the amplitude, in 2100,
of the climate‐carbon feedback is mainly due to the uncertainty of the response of the
terrestrial biosphere to the climate change, our new metrics primarily target the evaluation
of the land parameterization of the carbon cycle. The modeled fluxes are prescribed to
the same global atmospheric transport model LMDZ4, and the simulated
concentrations are compared to available observations. We found that the IPSL‐CM4‐
LOOP model is best able to reproduce the phase and amplitude of the atmospheric CO2

seasonal cycle in the Northern Hemisphere, while the other two models generally
underestimate the seasonal amplitude. This points to some shortcomings in describing the
vegetation phenology and heterotropic respiration response to climate. We also found that
IPSL‐CM2‐C produces a climate‐driven abnormal source of CO2 to the atmosphere in
response to El Niño anomalies. Here a good model performance rests upon a realistic
simulation of ENSO‐type climate variability and the subsequent tropical carbon cycle
response. The three climate models underestimate the sea surface temperature warm
anomaly during an El Niño, but HadCM3LC does best in reproducing the interannual CO2

variability. More efforts are needed to further develop metrics for assessing the sensitivity
of the carbon cycle to climate change, and this work should now be extended to assess
ocean carbon models against observations.

Citation: Cadule, P., P. Friedlingstein, L. Bopp, S. Sitch, C. D. Jones, P. Ciais, S. L. Piao, and P. Peylin (2010), Benchmarking
coupled climate‐carbon models against long‐term atmospheric CO2 measurements, Global Biogeochem. Cycles, 24, GB2016,
doi:10.1029/2009GB003556.

1. Introduction

[2] Increasing atmospheric CO2 concentration will be the
most important driver of climate change throughout the 21st

century. The atmospheric CO2 concentration has already
increased by around 100 ppm (+30%) compared to 1860s
preindustrial levels [Trenberth et al., 2007]. This increase
has both a direct and an indirect effect on the carbon cycle,
the latter being due to climate change induced by the con-
centration change. Global models of the coupled climate‐
carbon system have shown that the indirect climatic effect
induces a reduction of both land and ocean capacity to
absorb atmospheric CO2 [Cox et al., 2000; Friedlingstein et
al., 2001; Dufresne et al., 2002; Friedlingstein et al., 2003;
Jones et al., 2003; Zeng et al., 2004; Thompson et al., 2004;
Govindasamy et al., 2005; Matthews et al., 2005]. Conse-
quently, these reduced sinks lead to an additional amount of
CO2 remaining in the atmosphere, which ranges between
20 and 220 ppm by 2100 following the SRES‐A2 scenario,
as shown by Friedlingstein et al. [2006] in the Coupled
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Carbon Cycle Climate Model Intercomparison Project
(C4MIP). This positive feedback leads to an increase of
global warming by up to 0.9°C [Cadule et al., 2009]. In
models, the carbon cycle response to climate change con-
sists of (1) a decline of tropical forests and a widespread,
climate‐driven, loss of soil carbon; and (2) a decrease of
CO2 uptake by the oceans, caused by decreased solubility
and by a shrinking volume of the surface mixed layer in
contact with the atmosphere. Further, Raddatz et al. [2007]
show that the C4MIP models unanimously agree on a key
role of tropical regions in controlling the global carbon‐
climate positive feedback. However, the models wildly
diverge concerning the amount of carbon released by the
tropics. Furthermore, the C4MIP models also diverge in
their response to climate change at midlatitudes and high
latitudes. Indeed, climate warming has opposing effects on
terrestrial ecosystems: on the one hand, an increased pro-
ductivity will increase carbon storage in biomass and soils,
but on the other hand, warmer and wetter conditions will
accelerate the decomposition of litter and soil organic
carbon. The balance between these opposing effects thus
determines the magnitude, and even the sign, of carbon
cycle feedbacks in midlatitude and high‐latitude ecosystems.

[3] The large range of C4MIP models’ results, regarding
the climate‐carbon feedback amplitude, reflects divergences
in their representations of basic carbon cycle processes and
their interactions [Sitch et al., 2008; Le Quéré et al., 2005;
Heimann and Reichstein, 2008]. Nevertheless, all these
C4MIP models are able to simulate a 20th century CO2

increase broadly consistent with the historical record, with
an atmospheric CO2 concentration of 380 ± 14 ppm in 2005,
as compared to the observed value of 379 ppm [Trenberth et
al., 2007]. Note that, as per the C4MIP protocol, various
radiative forcings (such as non‐CO2 GHGs, aerosols, and
volcanoes) are not taken into account even if studies have
shown the importance of these atmospheric agents on the
climate [Mitchell et al., 1995; Meehl et al., 2007] and the
carbon cycle [Jones et al., 2003]. The HadCM3LC [Cox et
al., 2000], IPSL‐CM2‐C [Dufresne et al., 2002], and IPSL‐
CM4‐LOOP coupled models, more deeply analyzed in this
paper, produce an atmospheric CO2 concentration of 386,
377, and 377 ppm, respectively, in 2005 (Figure 1a).
[4] Simulating the cumulated change in atmospheric CO2

during the 20th century is thus a necessary but not sufficient
condition to validate a coupled climate‐carbon cycle model.
It is in fact not even a very stringent constraint on the future

Figure 1. (a) Global average atmospheric CO2 concentration simulated by the three coupled models:
HadCM3LC (red), IPSL‐CM2‐C (blue), and IPSL‐CM4‐LOOP (green) over the historical period.
Observed global CO2 concentration, from combined ice core and atmospheric measurements, is shown
in black. (b) Atmospheric CO2 concentration at Point Barrow (BRW), Alaska, observed (black) and sim-
ulated by the atmospheric transport of the surface fluxes from the three coupled models. Color scheme is
as in Figure 1a. (c and d) Same as Figure 1b for Mauna Loa (MLO), Hawaii, and South Pole (SPO),
respectively.
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CO2 projections [Melnikov and O’Neill, 2006]. It is there-
fore important both to identify observational constraints
which will reduce the uncertainty in the range of future
model projections and to improve the understanding of
carbon cycle mechanisms.
[5] In this study, we propose a set of performance metrics,

based on various characteristics of atmospheric CO2, to
quantify the ability of climate‐carbon coupled models to
reproduce key processes of climate‐carbon projections. We
apply these new metrics to three C4MIP models:
HadCM3LC, IPSL‐CM2‐C, and IPSL‐CM4‐LOOP. The
method consists in indirectly evaluating land and ocean
modeled carbon fluxes against observations of atmospheric
CO2 at various stations. This is achieved by calculating the
atmospheric CO2 field derived from each model flux dis-
tribution (section 3.3). The model evaluation is performed at
three different time scales which give different constraints
on the carbon cycle. First, we analyze the long‐term trend of
atmospheric CO2, which provides information on the model
capability to simulate realistic land and ocean carbon sinks
over the historical period. Second, we evaluate the modeled
atmospheric CO2 seasonal cycle, which, particularly at
Northern Hemisphere atmospheric CO2 stations, constrains
the model’s simulation of the continental fluxes seasonal
activity: vegetation growth in spring and summer and veg-
etation decay in autumn. Third, we analyze the interannual
variability of the atmospheric CO2 as a constraint on the
model capability to simulate realistic El Niño–Southern
Oscillation (ENSO) climate patterns and impacts on land
and ocean carbon fluxes. For the seasonal and interannual
variability, we first evaluate the model capability to repre-
sent the CO2 signal, and then we evaluate the sensitivity of
the atmospheric CO2 to climatic fluctuations for these two
time scales. Statistical methods are used to analyze model‐
data misfits (section 3.5) and to define a new metric to
quantify the various models performances (section 3.6).
Results are presented in section 4. The analysis and dis-
cussion of models’ traits and shortcomings are presented in
section 5, and conclusions are drawn.

2. Models’ Description

2.1. Introduction

[6] The three models (HadCM3LC, IPSL‐CM2‐C, and
IPSL‐CM4‐LOOP) used in this study appear in the IPCC

Fourth Assessment Report [Meehl et al., 2007]. These
models also participated in the C4MIP project [Friedlingstein
et al., 2006]. A description of the three models is given in
Appendix A.

2.2. Simulation Scenario

[7] For this study, we used the C4MIP simulations
[Friedlingstein et al., 2006]. The three models were forced
by the same anthropogenic CO2 emissions prescribed from
historical data, for the 1860–2000 period [Marland et al.,
2005; Houghton and Hackler, 2002] and from the SRES‐
A2 scenario, for the 2000–2003 period [Nakicenovic et al.,
2000]. The other greenhouse gases (GHGs) and the anthro-
pogenic aerosols were set to preindustrial values. The models
did not account for any change in solar irradiance or natural
aerosols due to volcanic eruptions. Emissions of CO2 to the
atmosphere due to land use change were prescribed within
the emissions scenario, but the direct effect of land use
changes on vegetation distribution, as well as changes in
nitrogen deposition, were excluded in these simulations. The
simulated terrestrial biosphere and ocean carbon fluxes thus
only respond to the increase of atmospheric CO2 concen-
tration and to climate change which itself is only due to the
increase of atmospheric CO2 concentration.

3. Methodology

3.1. Atmospheric Site Selection

[8] We use the global cooperative data product GLO-
BALVIEW‐CO2 which contains 277 extended CO2 records
derived from observations made by different measurement
networks, covering the whole globe for the period 1979–2008
[GLOBALVIEW‐CO2, 2008]. Here we choose 12 monitoring
sites representative of high, middle, and low latitudes of each
hemisphere (Table 1), and we focus over the 1979–2003
period.

3.2. Data Filtering Technique

[9] Our goal is the evaluation of models at different time
scales from intra‐annual to interannual and longer term. We
use a curve‐fitting procedure based on a polynome (degree 2),
four harmonics, and a digital filtering technique relying on
fast Fourier transform and low‐pass filters [Thoning et al.,
1989] to decompose atmospheric CO2 flask observations,
sampled at discrete weekly intervals, into three components:

Table 1. Selected CO2 Measurement Stations

Stations Code Position Altitude (m)

Alert ALT Nunavut, Canada 82°45′N 62°52′W 210
Amsterdam Island AMS France 37°95′S 77°53′E 150
Terceira Island AZR Azores, Portugal 38°77′N 27°38′W 30
Barrow BRW Alaska, United States 71°32′N 156°60′W 94
Cape Grim CGO Tasmania, Australia 40°68′S 144°68′E 11
Cape Kumukahi KUM Hawaii, United States 19°52′N 154°82′W 3
Mace Head MHD Galway, Ireland 53°33′N 09°90′W 25
Mauna Loa MLO Hawaii, United States 19°52′N 155°58′W 3397
Niwot Ridge NWR Colorado, United States 40°05′N 105°58′W 3475
Schauinsland SCH Germany 47°55′N 07°55′W 1205
American Samoa SMO Tutuila, American Samoa 14°24′N 170°57′W 42
South Pole SPO Antarctica 89°98′S 24°80′W 2810
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(1) a long‐term trend (TR) component, (2) a smoothed sea-
sonal cycle (SC), and (3) an interannually variable (IAV)
component (Figure 2).

3.3. Atmospheric Transport

[10] Atmospheric CO2 concentration variations at a given
station result from transport acting on surface fluxes. In order
to evaluate model fluxes against measured CO2 concentra-
tions, it would be ideal to describe, in the same coupled
modeling framework, the spatial and temporal variations of
the atmospheric CO2 field. Most models do not, however,
compute this field. We thus used the global 3‐D atmospheric
transport model LMDZ4 [Hourdin et al., 2006] to transport
land and ocean carbon flux maps from HadCM3LC, IPSL‐
CM2‐C and IPSL‐CM4‐LOOP. Even though HadCM3LC
does simulate atmospheric transport of CO2, we opted to

perform a separate transport of its fluxes for this study for
consistency with the other models. Any reported difference
between the modeled CO2 concentration fields will be due to
the simulated carbon fluxes and not to atmospheric transport.
Likewise any errors in the transport are now common to each
model. LMDZ4 was nudged toward interannually varying
reanalyzed meteorological wind fields from ECMWF, which
ensure maximum consistency in the comparison of modeled
and observed CO2 concentrations. Using the transport field
from each OAGCM would have lead to additional source of
biases in this benchmarking exercise. Nevertheless, a com-
parison of CO2 concentrations (not shown here) showed that
HadCM3LC‐simulated CO2 agreed very closely with that
transported by LMDZ4. Anthropogenic emissions from
fossil fuel combustion [Marland et al., 2005] and defores-
tation [Houghton and Hackler, 2002] were also transported

Figure 2. Decomposition of the (a) atmospheric CO2 signal into its (b) long‐term, (c) seasonal, and
(d) interannual components as done by Thoning et al. [1989].
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within LMDZ4 and added to each tracer before comparison
to the observations.

3.4. Regions of Influence

[11] The notion of region of influence is defined to
quantify the relative contribution of several key regions of
the globe in terms of surface flux contributions to the tem-
poral CO2 concentration variations at few stations. Using the
LMDZ4 model, we transported the carbon fluxes obtained
from atmospheric inversions (P. Peylin et al., unpublished
results, 2009) for 22 regions (11 terrestrial and 11 oceanic;
see Table 2) as defined by the TransCom‐3 project [Baker et
al., 2006] and performed a principal component analysis
(PCA) of the monthly simulated concentrations. The prin-
cipal components account for the variability of the data, and
the coefficients can be interpreted as the contribution of each
region to the CO2 concentration measured at each station.
These contributions vary depending on the time scale (sea-
sonal, interannual, or decadal) [Randerson et al., 1997;
Heimann et al., 1998; Nevison et al., 2008] and also on the
spatial distribution of the terrestrial and oceanic carbon
fluxes. Here we only use the PCA, at seasonal time scale,
for the estimation of the sensitivity of the atmospheric CO2

concentration to temperature. The relative contribution of
each region is given in Appendix C at the 12 stations, for
the seasonal cycle. Table C1 enables us to highlight the
regions that primarily influence the air masses at the dif-
ferent stations.
[12] For the seasonal cycle (Table C1), ALT and BRW are

mainly influenced by arctic and high northern latitude ter-
restrial regions, BRW being, in addition, influenced by
Northern Ocean. MHD and AZR are mostly influenced by
boreal North America, Europe, and boreal Asia and to a
lesser extent by temperate North America. SCH and NWR
are both primarily influenced by Europe while NWR is also
influenced by temperate North America and high northern

latitudes. KUM and MLO are influenced by the midlatitudes
and high latitudes of the Northern Hemisphere, KUM being
more dominated by the boreal regions than MLO. SMO is
mainly influenced by Africa, while AMS and CGO are
mainly influenced by the tropics. For SPO, and more gen-
erally for the four stations of the Southern Hemisphere, the
22 regions contribute much more evenly than for the eight
stations of the Northern Hemisphere. Finally, Table C1 also
shows that the contribution of the oceanic regions is very
low compared to that of the terrestrial regions.

3.5. Model Data Statistical Analysis

[13] We use statistical tests, the Pearson correlation
(PEARSON), the normalized standard deviation (NSD), and
a simple normalized model to data deviation measure (MOD)
to perform comparisons between models and observations.
These tests, described in Appendix B, stand as the base for
quantifying models performances.

3.6. Multi‐Time‐Scale Evaluation Traits

[14] The study of the influence of land and ocean carbon
fluxes on the atmospheric CO2 concentration, both in terms
of seasonal cycle and of interannual variability, is well
documented [Pearman and Hyson, 1981; Cleveland et al.,
1983; Keeling et al., 1984; Bacastow et al., 1985; Peterson
et al., 1986; Thompson et al., 1986; Enting, 1987; Thoning
et al., 1989; Keeling et al., 1996; Jones et al., 2001;
Buermann et al., 2007]. We define here for each time scale
(seasonal, interannual, and longer term) a series of traits. A
trait is a quantity which can be calculated both with modeled
and observed CO2 time series, providing a basis for model
evaluation. We use the above statistical tests to quantify the
discrepancy between models and observations for each trait.
3.6.1. Long‐Term Trend
[15] We evaluate two characteristic traits of the modeled

long‐term CO2 trend. The long‐term CO2 trend (TR) is itself
a trait which provides information on the decadal mean
carbon budget, assuming perfect atmospheric transport
(i.e., if decadal trends in transport exist, they will be perfectly
captured by the LMDZ4 model). For each of the models and
for the observations, this trait is composed of 25 yearly
averages over the 1979–2003 period. We also calculated the
long‐term north–south gradient (TR‐NSG) of atmospheric
CO2 concentration as a trait. This trait was calculated over
the 1979–2003 period by subtracting CO2 at South Pole
(SPO) from CO2 of each other station and provides infor-
mation on the spatial (north–south) distribution of the land
and ocean carbon sinks. We apply the NSD test to the TR
trait of the 12 stations data set, and to the TR‐NSG trait of the
11 stations data set as SPO is used as reference station for this
latter trait.
[16] We apply the NSD test to the TR trait of the 12 sta-

tions data set and to the TR‐NSG trait of the 11 stations data
set as SPO is used as reference station for this latter trait.
3.6.2. Seasonal Cycle
[17] We evaluate three characteristic traits of the modeled

CO2 seasonal cycle. The first and second traits are the
amplitude (SC‐a) and phase (SC‐p), respectively, of the
climatologic average seasonal cycle at each station, which
reflects the dynamics of the carbon cycle during the course

Table 2. The 22 Aggregate Regions as Defined in the TransCom‐3
Project

Latitudinal Grouping Regions

Northern Land Boreal North America
Boreal Asia

Temperate North America
Temperate Asia

Europe
Northern Oceans Northern Ocean

North Atlantic
North Pacific

Tropical Land Northern Africa
Tropical America
Tropical Asia

Tropical Oceans West Pacific
East Pacific

Tropical Atlantic
Tropical Indian

Southern Land Australia
Southern Africa

Temperate South America
Southern Oceans South Atlantic

South Pacific
South Indian

Southern Ocean
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of the year. The third trait is the trend in the peak‐to‐peak
amplitude of the seasonal cycle (SC‐ptp). The trend in the
strength of the seasonal pulse of CO2 provides information
on the trend in the land carbon sink. These three traits are
defined over the 1979–2003 period. We apply the NSD and
PEARSON tests to the two climatologic average seasonal
cycle traits to evaluate the amplitude and phase, respec-
tively. We also apply the MOD test to the peak‐to‐peak
trait.
3.6.3. Interannual Variability
[18] We evaluate two characteristic traits of the interan-

nual variability of atmospheric CO2 growth rate. The first
trait concerns the positive anomalies of the IAV (IAV+), and
the second concerns the negative anomalies of the IAV
(IAV−). To obtain the IAV traits, we calculated the first
principal component of the empirical orthogonal function
(EOF) of the sea surface temperature (SST) for each model.
We selected the boxes in which the SST anomaly is maxi-
mum, which are the Niño 1.2 (90°W‐80°W, 10°S‐0) box for
IPSL‐CM2‐C and the Niño3 (150°W‐90°W, 5°S‐5°N) box
for both HadCM3LC and IPSL‐CM4‐LOOP. We then
searched for the optimal positive time lag between SST
anomalies, in the respective boxes, and anomalies of the CO2

growth rate at each station. The optimal lag (of n months) is
defined when the correlation between SST and the CO2

growth rate, shifted by n months, is maximum. We then
extracted positive (and negative) SST anomalies, and, using
the lag defined at each station, retrieved the corresponding
atmospheric CO2 anomalies. We define positive (negative,
respectively) SST anomalies as the periods for which the
SST value is greater than +0.7 × standard deviation, (lower
than −0.7 × standard deviation, respectively) for more than
three consecutive months. For each positive (negative,
respectively) SST anomaly period, only the maximum
(minimum, respectively) is retained, and the corresponding
of the CO2 growth rate anomalies is retrieved. Note that in
order to facilitate the computation and analysis of the IAV
related traits, the Pinatubo period was removed from the
observations. Using the MOD test, we then compare, at each
station and for both positive and negative SST phases, the
averaged maximum and minimum CO2 growth rates to the
observed ones. We used the SST anomalies in the Niño 3.4
(170°W‐120°W, 5°S‐5°N) box for the observations
[Trenberth, 1997]. The SST data (observations and models)
were smoothed with a 5 month running mean.
3.6.4. Sensitivity of Atmospheric CO2 to Climate
Fluctuations
[19] We evaluate three traits for the sensitivity of atmo-

spheric CO2 to climate fluctuations. The first trait is the
sensitivity of atmospheric CO2 concentration to temperature
for the seasonal cycle and is referred to as gSC. To obtain
this trait, we use the climatologic seasonal cycle of atmo-
spheric CO2 concentration at each station over the 1979–
2003 period. We then calculate the climatologic seasonal
cycle of the temperature simulated by the models, over the
1979–2003 period, in each of the 11 terrestrial regions
(Table 2) and average these values using weights expressing
the contribution of each terrestrial region to a specific
atmospheric CO2 station (see section 3.4 and Appendix C).
The use of the 11 terrestrial regions, instead of the 22 (ter-

restrial and oceanic) regions, is driven by the relatively
small contribution of the oceanic regions, as indicated in
section 3.4 and Appendix C.
[20] For the observations, the same averaging technique

was applied to the observed temperature given by the CRU
[Mitchell and Jones, 2005]. We then calculate gSC for the
12 climatologic months using (1), where Cm and Tm are the
CO2 concentration and temperature, respectively, for month
m, for models or observations; r is the index for the different
regions (Table 2); and a is the weighting factor given by the
PCA (Table C1).

� � SCm ¼ Cm � Cm�1X
r

�r � Tr;m �
X
r

�r � Tr;m�1X
r

�r

ð1Þ

[21] The second trait relates to the sensitivity of the
atmospheric CO2 growth rate to the SST anomalies in the
Niño 3 SST box and is referred to as gIAV. To obtain this
trait, we make use of the extracted SST and CO2 growth rate
anomalies as explained in section 3.6.3. However, knowing
that the study only covered 25 years, the number of points
corresponding to the positive and negative phases of the
ENSO is not sufficient to perform a separate evaluation of
these two phases. As per the common definition, the posi-
tive and negative phases of the ENSO correspond to positive
and negative anomalies, respectively, of SST in the specific
Niño box. The two sets of points were considered as a
whole, and the evaluation was performed on this combined
set. We calculate the regression line for the combined sets
(positive and negative phases). Further, as a result of a
positive ENSO phase, precipitation decreases, and the
temperature increases, in the tropics. Conversely, the
response to a negative phase of the ENSO is an increase of
precipitation in the tropics, but combined with a nonsig-
nificant change of temperature. Therefore, the response of
the terrestrial biosphere to the different phases of the ENSO
may not be symmetric, and this explains that the regression
line of the combined sets does not have a null intercept. As a
result, we evaluate both the slope and intercept of the
regression line as part of a single trait. We apply the
PEARSON test to gSC and the MOD test to both the slope
and intercept of the regression lines for gIAV and average the
results of these two MOD tests. Table 3 summarizes the
selected traits and associated performed tests.

3.7. Metric Definition

[22] The traits defined above help evaluate models against
observations in a more quantitative way. Here we propose to
associate a mark to each statistical test result in order to
combine the different statistical tests into an overall per-
formance mark associated to each of the models. The
PEARSON test can return any value in the range [−1, 1].
We decompose that range into the following set of sub-
ranges {−1, [−1, −0.8],…, [0.6, 0.8], [0.8, 1]} to which we
associate the following marks {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6,
0.7, 0.8, 0.9, 1}. The NSD test can return any value within
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the range [0, +∞] with a nominal value of 1. To be able to
associate a mark to a specific NSD test (trait, station), we
propose to infer a validity range around the observed CO2

value by using observation derived estimates of land and
ocean carbon fluxes from atmospheric inversions (P. Peylin
et al., unpublished results, 2009). The valid range around
any specific observation is arbitrarily defined by transport-
ing the inversion fluxes multiplied by 0.5 and 2, respec-
tively. For these two fluxes, we calculate the NSD for the
specific traits at each station. This gives, for any trait using
NSD, a lower and an upper bound of NSD at each station.
This range is then divided in regular subranges to which we
associate the following marks {0.1, 0.2, 0.4, 0.6, 0.8, 1, 0.8,
0.6, 0.4, 0.2, 0.1}. A mark of zero is then given for any
model that falls out of the upper or lower bounds of NSD.
Similarly to the NSD test, we consider, for the MOD test, that
a model with a value either 2 times greater than the
observations or 0.5 times lower than the observations is out
of the valid range. This defines the acceptable range of the
MOD test results which is thus [−0.33, 0.33]. We decompose
that range into the following set of subranges {[−0.33,
−0.25], [−0,25, −0.20],…, [0.20, 0.25], [0.25, 0.33]} and
which are associated to the following marks {0.1, 0.2, 0.4,
0.6, 0.8, 1, 0.8, 0.6, 0.4, 0.2, 0.1}. For test results outside of
the valid range, the associated mark is 0.
[23] For each station s and each characteristic trait t, we

obtain a test result, transformed into a mark, symbolized as
Ms,t. The performance mark of a given model, for a given
trait, is thus:

Pt ¼

X
s

Ms;t

nstations
ð2Þ

where nstations is the number of stations considered. In the
general case, nstations is equal to 12, except for the TR‐
NSG test, for which it is equal to 11.
[24] Further, we average the marks for the CO2 evaluation

by separately averaging (without any weight) the two long‐
term trend‐related marks, the three seasonal cycle related
marks, the two marks on interannual variability, and the two
marks of the sensitivity traits.

4. Results

[25] In this section, we present the traits described in
section 3.6 for all models along with the relevant observa-

tion field. Although we generally only show figures for
three major atmospheric CO2 stations (Point Barrow, Alaska,
latitude 71.32°N, longitude 156.62°W, BRW; Mauna Loa,
Hawaii, latitude 19.54°N, longitude 155.58°W, MLO; and
South Pole, latitude 89.98°S, longitude 24.8°W, SPO), the
analysis was performed for the 12 selected stations. We then
give the marks of each model for every trait (averaged over
the 12 stations). Table 4 and Figure 3 summarize the dif-
ferent performance marks obtained by the models. A general
discussion on the models capability to reproduce these traits
will be proposed in section 5.
[26] The atmospheric CO2 time evolution simulated at

BRW, MLO, and SPO for the three models is shown on
Figures 1b, 1c, and 1d, respectively. Figure 4 shows the
observed (solid black) and simulated (HadCM3LC in solid
red, IPSL‐CM2‐C in solid blue and IPSL‐CM4‐LOOP in
solid green) long‐term trend (TR, trait 1) at the three illus-
trative stations (Figures 4a, 4b, and 4c for BRW, MLO, and
SPO, respectively). HadCM3LC has a general tendency to
overestimate the long‐term trend across all three stations just
as for IPSL‐CM2‐C, but to a lesser degree for the latter.
IPSL‐CM4‐LOOP shows a much better agreement with the
observations while, in opposition to HadCM3LC and IPSL‐
CM2‐C, underestimating the trend. The 12 stations averaged
mark for the long‐term trend (trait 1, TR) is 0.60, 0.80, and
0.85 for HadCM3LC, IPSL‐CM2‐C, and IPSL‐CM4‐
LOOP, respectively.
[27] The evolution of the north–south gradient (here dis-

played for MLO) is shown in Figure 5. We only analyze the
reproduction of its long‐ term trend (i.e., the dotted line in
Figure 5); neither the mean value nor the year‐to‐year var-
iability of the gradient is used in the mark here. At MLO, the
trend simulated by IPSL‐CM4‐LOOP is lower than the
observed, while the other two models show a better agree-
ment with observations, although this behavior is not robust
across the 12 stations. The 12 stations averaged mark for the
trend in the north–south gradient (trait 2, TR‐NSG) is 0.31,
0.39, and 0.53 for HadCM3LC, IPSL‐CM2‐C, and IPSL‐
CM4‐LOOP, respectively.
[28] Note that the score for the long‐term trend mostly

highlights the differences existing between the different

Table 3. Chosen Traits and Associated Statistical Testsa

PEARSON NSD MOD

TR X
TR‐NSG X
SC‐a X
SC‐p X
SC‐ptp X
IAV+ X
IAV− X
gSC X
gIAV X

aMOD, model‐to‐data deviation measure. NSD, normalized standard
deviation.

Table 4. Performance Marks for HadCM3LC, IPSL‐CM2‐C, and
IPSL‐CM4‐LOOP

HadCM3LC IPSL‐CM2‐C IPSL‐CM4‐LOOP

CO2 Evaluation
TR 0.60 0.80 0.85
TR‐NSG 0.31 0.39 0.53

SC‐a 0.57 0.84 0.88
SC‐p 0.13 0.23 0.66
SC‐ptp 0.12 0.18 0.03

IAV+ 0.64 0.00 0.33
IAV− 0.27 0.15 0.00

Sensitivity Evaluation
gSC 0.35 0.69 0.98
gIAV 0.60 0.01 0.13

Total 0.40 0.37 0.49
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stations and models for the TR‐NSG trait, as the decadal
trend (TR trait) is very similar if not identical across the
different stations for a given model.
[29] The simulations of the climatologic average CO2

seasonal cycle are displayed for BRW, MLO, and SPO
(Figure 6). HadCM3LC phase is 1 to 2 months too early at
BRW and almost out of phase (6 months) at SPO. At MLO,
the model’s phase is better, but its amplitude is more than a
factor of 2 too low. The two IPSL models (in particular,
IPSL‐CM4‐LOOP) show a rather good agreement both in
terms of amplitude and phase (especially at BRW for IPSL‐
CM2‐C and at MLO for IPSL‐CM4‐LOOP), although they
are still out‐phased by 3 months at SPO. Reasons for the
HadCM3LC behavior are detailed in section 5. The 12
stations’ averaged marks for the phase and amplitude of the
climatologic average CO2 seasonal cycle (traits 3, SC‐a and
4, SC‐p) are 0.57 and 0.13 for HadCM3LC, 0.84 and 0.23
for IPSL‐CM2‐C, and 0.88 and 0.66 for IPSL‐CM4‐LOOP,
respectively.
[30] Next, we evaluated the long‐term trend in the peak‐

to‐peak amplitude of the seasonal cycle (Figures 7 and 8).
This trend was reported at several stations [Keeling et al.,
1996; Randerson et al., 1997, 1999; Piao et al., 2008],
and we thus performed the analysis on the 12 stations.

Figure 8 shows the change in the peak‐to‐peak amplitude
relative to 1979 at BRW, MLO, and SPO. IPSL‐CM4‐
LOOP has a tendency to overestimate the trend at the three
stations, while HadCM3LC has a very realistic trend at SPO
and to a lesser degree at MLO, but a larger one than the
observations at BRW. IPSL‐CM2‐C is in fair agreement
with the observations at BRW.
[31] The 12 stations’ averaged mark for the trend in the

peak‐to‐peak amplitude (trait 5, SC‐ptp) is 0.12, 0.18, and
0.03 for HadCM3LC, IPSL‐CM2‐C, and IPSL‐CM4‐
LOOP, respectively. Traits 6 (IAV+) and 7 (IAV−) are the
reproduction of the positive and negative phases, respec-
tively, of the ENSO variability. Figure 9 shows the observed
and simulated interannual anomalies of the CO2 growth rate
at MLO. The amplitude of both the positive and negative
anomalies is much better simulated by the HadCM3LC
model than by the two IPSL models, with a generally very
good agreement with the observations in the Northern
Hemisphere. In particular, the IPSL‐CM2‐C model has a
much lower CO2 interannual variability than the observa-
tions. The 12 stations averaged mark for positive and neg-
ative phase of ENSO variability are 0.64 and 0.27 for
HadCM3LC, 0.00 and 0.15 for IPSL‐CM2‐C, and 0.33 and
0.00 for IPSL‐CM4‐LOOP, respectively.

Figure 3. Matrix displaying the three models’ (H, HadCM3LC; I, IPSL‐CM2‐LC; and L, IPSL‐CM4‐
LOOP) scores (see color bar) at all stations. Long‐term trend score is the average of two traits: the trend in
growth rate and the trend in interhemispheric gradient. Seasonal cycle score is the average of three traits:
climatic average traits (phase and amplitude) and the trend in the peak‐to‐peak amplitude. Interannual
variability score is the average of two traits: the El Niño and La Niña CO2 variabilities. The “gSC and
gIAV” is the average of two traits: (seasonal and interannual) CO2‐temperature sensitivities.
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[32] We then look at the links between seasonal cycle of
temperature and atmospheric CO2, in order to test the model
climate‐carbon sensitivity at the seasonal time scale (trait 8).
Figure 10 shows models’ and observations’ seasonal evo-
lution in an atmospheric CO2 versus surface temperature
diagram. As described in section 3.6.4, a weighted mean of
the surface temperatures was calculated over the continental
regions which controls the seasonal variability of the atmo-
spheric CO2 station considered. At BRW and MLO, the
HadCM3LC model produces a much too narrow ellipse,
indicating a too weak atmospheric CO2 seasonal amplitude,
despite a realistic temperature range over the seasons. At
MLO, IPSL‐CM4‐LOOP shows an ellipse in very good
agreement with the observations, although there is a clear
cold bias in the simulated temperature. IPSL‐CM2‐C has a
too low CO2 pulse despite a larger than observed temperature
range (particularly at MLO). The 12 stations’ averaged mark
for the trend in seasonal CO2‐temperature sensitivity (trait 8)
is 0.35, 0.69, and 0.98 for HadCM3LC, IPSL‐CM2‐C and
IPSL‐CM4‐LOOP, respectively.
[33] Finally, we analyzed the CO2‐temperature sensitivity

on interannual time scale for the combined positive and
negative phase of ENSO variability (Figure 11 for MLO).
HadCM3LC model has a CO2‐temperature regression line
intercept which is nearest to the observations compared to
the other two models, and while IPSL‐CM2‐C shows a
regression line slope more faithful to the observations,
HadCM3LC overall test result outperforms the other models.
The 12 stations’ averaged marks for the CO2‐temperature
sensitivity in response to ENSO variability (trait 9) are 0.60,
0.01, and 0.13 for HadCM3LC, IPSL‐CM2‐C, and IPSL‐
CM4‐LOOP, respectively.

5. Analysis and Discussion

[34] In this paper we have attempted to define some
observed traits of atmospheric CO2 which we would expect

Figure 5. Time evolution of the interhemispheric gradient
of atmospheric CO2, defined here as the difference between
the deseasonalized annual CO2 concentration at MLO and
SPO.

Figure 4. Observed and simulated long‐term trend of
atmospheric CO2 at the three illustrative stations (BRW,
MLO, and SPO). The deseasonalized annual CO2 concentra-
tion is shown with a solid line, while its averaged value over
the 1979–2003 period is shown with a dotted line. Modeled
CO2 is set to the observation value for January 1979.
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coupled climate‐carbon cycle earth system models (ESMs)
to be able to capture and some metrics to quantitatively
measure model performance against them. We have chosen
to use a common transport model in order to assess inter‐

ESM differences in simulated CO2 fluxes, but the method
could be applied to ESM‐simulated CO2 where available. It
is not our intent to suggest that CO2 should be a sole
measure for model evaluation. Many other metrics are

Figure 7. (a) Change in the observed amplitude of the atmospheric CO2 seasonal cycle at MLO. (b, c,
and d) Change in the amplitude of the seasonal cycle at MLO for the three models. The observed data are
also shown in grey.

Figure 6. Simulated and observed climatologic averaged CO2 seasonal cycle at BRW, MLO, and SPO.
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possible, such as high‐frequency site‐level carbon and
energy fluxes from eddy covariance measurements, vege-
tation cover, structure, and carbon storage or phenological
behavior, such as leaf area observed by remote sensing.
Such metrics have been proposed and evaluated elsewhere
[Randerson et al., 2009]. Here we have focused on CO2 as a
large‐scale integrator of both terrestrial and ocean CO2

fluxes with valuable information on a wide range of time
scales.

5.1. Methodology

[35] It should be noted that the evaluation was performed
with coupled models which does not enable us to specifi-
cally highlight either the role of the climate or the role of the
carbon cycle in the difference that lies between the models
and the observations. This study could be augmented by an
identical study where the carbon cycle models are run off-
line (i.e., forced by observed climate). With an identical
climate it would be possible to explicitly identify the modeled
carbon cycle deficiencies. Further, this study only provides
indirect information on net simulated fluxes but does not
enable us to evaluate the detailed specific processes playing
a role in the carbon cycle at different time scales nor does it
enable us to evaluate their sensitivity to climate over the
1979–2003 period. The follow‐up study will thus incorpo-
rate a finer‐grain evaluation using data issued from mea-
surements at flux towers.

5.2. Missing Forcings and Processes

5.2.1. Missing Forcings
[36] There are of course limitations to our approach, at

least partly due to the experimental design of the simulations
available to us here and partly due to limitations in the
models themselves. The C4MIP intercomparison study
[Friedlingstein et al., 2006] used a deliberately simplified
experimental design as its aim was to compare results across
a range of coupled climate‐carbon cycle models. Those
simulations were not designed to do any more than approx-
imate the 20th century. They neglected non‐CO2 GHGs,
aerosols, and natural forcings which, by chance, roughly
cancel in the 20th century global mean [e.g., Solomon et al.,
2007, Figure SPM.2]. Hence they get about the right level of
global warming, but at least partly for the wrong reasons.
Although this makes the climate‐carbon cycle model
experiment setup simpler, it does imply that spatial pattern
of climate change and hence carbon cycle changes may not
be realistic and hence limit the power of the model evalu-
ation against the observations.
[37] Limitations arising from the lack of natural and non‐

CO2 anthropogenic forcings mean the simulations do not
capture the detailed spatial and temporal pattern of 20th
century climate and CO2. Jones et al. [2003] and Cadule et
al. [2009] showed the impact of different forcings, finding
anthropogenic aerosols especially important giving rise to a
different time evolution, different N‐S gradient, and differ-
ent land:ocean uptake split by present day and into the
future. The response of the global carbon cycle to the
eruption of Mt. Pinatubo in 1991 (absent in our experiments
and deliberately excluded from our analysis) also makes
direct comparison with the TransCom period of 1992–1996
[Gurney et al., 2004] quantitatively difficult [Jones and
Cox, 2001; Lucht et al., 2002]. The models assessed here,
in common with the other C4MIP models, also lack some
relevant and possibly significant carbon cycle processes
which are important in determining present‐day carbon
sinks and variability. As such, they may not be expected to
exactly recreate the observed record.

Figure 8. Observed and simulated linear trend of the peak‐
to‐peak amplitude of the seasonal cycle of CO2 at the three
illustrative stations for (a) BRW, (b) MLO, and (c) SPO.
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5.2.2. Key Missing Processes
[38] 1. Nutrient cycling: Nutrient limitation is likely to

affect the large‐scale behavior of terrestrial carbon sinks due
to both remineralization of nitrogen in soils under climate
warming and anthropogenic nitrogen deposition from
industrial activity and fertilizer application [Magnani et al.,
2007; Hungate et al., 2003; Sokolov et al., 2008].
[39] 2. Land use change and management: Over the 20th

century, land use effects are important for both regional and
global carbon balance [McGuire et al., 2001; Brovkin et al.,
2004; Bala et al., 1985] and for land physical properties and
their implication on the climate [Bonan et al., 1997; Betts,
2001; Govindasamy et al., 2001; Davin et al., 2007].
Although the C4MIP experiments included prescribed CO2

emissions from land use change [Houghton and Hackler,
2002], the land surface in the models was not directly dis-
turbed, meaning aspects of land use change, such as
regrowth of forest on abandoned crop areas, were not re-
presented. There was also no account taken of potentially
important fluxes due to agriculture and land management
[Bondeau et al., 2007; Friend et al., 2007].

[40] 3. Changes in direct:diffuse light: Diffuse light can
penetrate the forest canopy more effectively than direct light
and stimulate photosynthesis in lower leaf layers [Alton et
al., 2007; Still et al., 2009]. Anthropogenic aerosols have
reduced the amount of sunlight reaching the Earth’s surface
in recent decades [Stanhill and Cohen, 2001; Liepert, 2002;
Niyogi et al., 2004], which apart from the effect on climate
will directly affect vegetation productivity through changes
in the direct:diffuse partitioning of solar radiation [Knohl
and Baldocchi, 2008; Mercado et al., 2009]. Volcanic
aerosols may also have played a similar role [Angert et al.,
2004].
[41] 4. Ozone: Ozone is known to negatively impact

regional plant production and terrestrial carbon cycle [Felzer
et al., 2004; Sitch et al., 2007], but is also believed to impact
the ocean carbon fluxes [Andrew et al., 2009].
[42] 5. Fire: Some, but not all, models include a mecha-

nistic representation of natural fire which affects both the
long term and IAV of terrestrial carbon fluxes [Langenfelds
et al., 2002; van der Werf et al., 2006] and the seasonal
cycle at tropical monitoring stations [Wittenberg et al.,

Figure 9. Interannual variability of atmospheric CO2 growth rate atMauna Loa (solid line) and sea surface
temperature (SST) anomalies in the Niño three index region (Niño 1.2 for IPSL‐CM2‐C; see Figure 11) for
the observations and the three models. The horizontal solid lines represent 0.7 × sigma of the SST vari-
ability. This threshold is used to define El Niño (positive anomalies) and La Niña (negative anomalies).
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1998]. Models without fire (such as HadCM3LC and IPSL‐
CM2‐C) which capture the observed IAV sensitivity to
ENSO variability may be doing so for the wrong reasons.
Even models which do include fire activity generally do not
represent anthropogenic fires, which may themselves be
linked to climate variations and contribute to the IAV of
carbon fluxes [van der Werf et al., 2009; Field et al., 2009].
[43] 6. Dynamic vegetation: Some, but not all, models

include simulation of the fractional vegetation cover of the
land surface. Those that do thus include an additional pro-
cess which may affect the future carbon balance of the
biosphere, due to changes in biome cover. But in doing so
they may have errors in the control (preindustrial) vegetation
simulation which subsequently affect their ability to simu-
late the CO2 traits examined here. For example, the seasonal
cycle of CO2 flux may be sensitive to the simulated land
cover.

5.3. Seasonal Cycle

[44] The poor performance of HadCM3LC and IPSL‐
CM2‐C (Figure 12) at reproducing the seasonal cycle traits
warrants further investigation. The models simulate an early
drawdown of CO2 at all monitoring stations, in particular for
those at high northern latitudes. In addition, HadCM3LC
and IPSL‐CM2‐C underestimate the amplitude of the sea-
sonal cycle of CO2 at Mauna Loa. Subsequent analyses of
the regional net and gross carbon fluxes and those at indi-
vidual flux towers identified several causes. The early
drawdown in CO2 is due to an advanced onset of the
growing season with simulated bud burst and leaf growth
for deciduous vegetation occurring too early in the spring.
The simulated seasonal net flux of CO2 over North America
is out of phase with inversion estimates, and indeed, during
the second half of the summer the net carbon flux changes
from a sink to a source of atmospheric CO2. This is largely
responsible for the low‐amplitude seasonal cycle simulation
for HadCM3LC at Mauna Loa. Several factors compound to
give this result. From the gross fluxes it is evident that the
model simulates an early onset of the growing season as
compared with inversion estimates and data from temperate
North American flux sites. By the middle of the summer the
limited soil water supply is exhausted, leading to a reduction
in plant production, indicative of a plant drought response.
Also, HadCM3LC simulates higher seasonal amplitude
variations in heterotrophic respiration than the IPSL models,
with a large midsummer peak over temperate North Amer-
ica. This is likely due to too cold soil temperature in winter
leading to too small winter respiration rates, especially in
snow‐covered regions, rather than the respiration sensitivity
to temperature.
[45] HadGEM2‐ES is the next generation Earth System

model of the Hadley Centre [Collins et al., 2008]. It uses the
MOSES‐TRIFFID land surface scheme of HadCM3LC,
with improved representations of canopy photosynthesis and
light interception with the adoption of a multilayer approach
[Mercado et al., 2007], and the RothC soil biogeochemistry
scheme [Jenkinson, 1990; Jones et al., 2005]. In light of our
seasonal cycle evaluation of HadCM3LC we have made
several important modifications to HadGEM2‐ES. We now
delay the onset of the growing season using a 5°C growing

Figure 10. CO2‐temperature diagram showing the seasonal
course of atmospheric CO2 at the three illustrative stations
for (a) BRW, (b) MLO, and (c) SPO as a function of surface
temperature averaged over the continental region upwind of
the station. The letter “J” represents the month of January;
the small arrows in the bottom left corners represent the
direction (clockwise or anticlockwise) of the seasonal cycle.
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degree base for the deciduous vegetation phenology, as used
in the LPJ‐DGVM [Sitch et al., 2003]. The winter cold bias
in top soil temperature under snow [Wiltshire, 2006] was
causing too low respiration rates in winter and too high in
summer. In addition, the majority of soil organic carbon
(between 56% and 71%) resides in the top 40 cm for
grasslands, shrublands, and forest ecosystems [Jobbágy and
Jackson, 2000]. Therefore it is more realistic to use the
simulated soil temperature of the second layer (from 10–
35 cm depth) to drive microbial respiration, thus leading to
an improved (reduced) seasonal amplitude variation in het-
erotrophic respiration. Addressing the physical cold bias by
adopting an arguably more appropriate deeper soil temper-
ature rather than reducing the respiration sensitivity to tem-
perature avoids changing our future sensitivity to climate
change for the wrong reason. Combined, these changes
contribute to the superior simulation of the CO2 seasonal
cycle at the global network of monitoring stations, and at flux
sites, by HadGEM2‐ES compared with HadCM3LC [Collins
et al., 2008].
[46] At the various stations influenced by air masses from

the Northern Hemisphere, IPSL‐CM4‐LOOP simulates both
the phase and amplitude of the CO2 climatologic seasonal

cycle in agreement with the observations. However, this
model overestimates the change in amplitude of the CO2

climatologic seasonal cycle at these same stations, confer-
ring on IPSL‐CM4‐LOOP a very bad score for the SC peak‐
to‐peak trait. While several factors can explain this, it
should be noted that IPSL‐CM4‐LOOP atmospheric model
simulates a cold bias in the high latitudes of the Northern
Hemisphere which may have an effect on the sensitivity, to
temperature increase, of the terrestrial biosphere. Further-
more, when the land carbon cycle is activated, the cold bias
is amplified by the parameterization of the albedo of the
fallen leaves which is greater than the one of the soil,
inducing a reduction of the radiative energy absorbed by the
surface. As an example, over the 1982–2002 period, north to
50°N, when compared to the Global Inventory Monitoring
and Modeling Studies (GIMMS) data [Tucker et al., 2004],
IPSL‐CM4‐LOOP overestimates the increase of the Leaf
Area Index (LAI) monthly trend, by 30% in average over
the growing season (March to August) and by 160% in
maximum (in July for GIMMS data and in August for IPSL‐
CM4‐LOOP).
[47] Preliminary studies with IPSL‐ESM, the new IPSL

Earth system model, indicate that the integration of clouds

Figure 11. (a) First empirical orthogonal function (EOF) of HadCM3LC model SST variability showing
the spatial pattern of the ENSO variability. The box in the Eastern Tropical Pacific represents the Niño
three index region for which SST anomalies are calculated. (b) Same as in Figure 11a for IPSL‐CM2‐C
except that the Niño 1.2 region was used here because of the too low variability of the model. (c) Same as
in Figure 11a for IPSL‐CM4‐LOOP. (d) CO2‐temperature diagram showing the positive and negative
anomalies of atmospheric CO2 growth rate as a function of anomalies of Eastern Tropical Pacific SST.
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microphysics and increase in the spatial horizontal resolu-
tion of the atmospheric model both augment the global
surface temperature and thus reduce the cold bias.

5.4. Interannual Variability

[48] As for the seasonal cycle, the interannual variability
of atmospheric CO2 growth rate is dominated by the vari-
ability in the terrestrial net carbon fluxes [Keeling et al.,
1996; Battle et al., 2000; Bousquet et al., 2000; Le Quéré
et al., 2003; Baker et al., 2006]. Several studies have
shown the ENSO‐induced climate variations are primarily
responsible for carbon anomalies in the tropics, but also in
temperate and boreal regions [Jones et al., 2001; Patra et
al., 2005; van der Werf et al., 2004]. The response of
tropical fluxes to El Niño Southern Oscillation climate
anomalies is the most documented [Gurney et al., 2003,
2004; Rodenbeck et al., 2003; Baker et al., 2006]. ENSO
temperature and precipitation anomalies cause changes in
plant productivity, ecosystem respiration, and biomass
burning. Positive anomalies in the atmospheric CO2 growth
rate are often due to warmer and dryer El Niño events, with

carbon being released by the terrestrial biosphere. Negative
anomalies correspond to the wetter and cooler La Niña
events.
[49] For a given model a bad score to the interannual

variability evaluation traits may correspond to a deficiency
of the model to reproduce ENSO variability in terms of
ocean‐atmosphere coupling dynamics, climate sensitivity,
and teleconnections, and carbon cycle response to climate
local variability.
[50] The simulated SST anomaly over the specific Niño

box for the ENSO positives phases is on average 1.48 ±
0.77, 0.85 ± 0.28, and 1.57 ± 0.52°C for HadCM3LC, IPSL‐
CM2‐C, and IPSL‐CM4‐LOOP, respectively, compared to
the average observed anomaly of 2.48 ± 0.94°C. Con-
versely, for the negative phase of the ENSO, the average
SST anomaly is −1.22 ± 0.38, −0.75 ± 0.24, and −1.72 ±
0.45°C for HadCM3LC, IPSL‐CM2‐C, and IPSL‐CM4‐
LOOP, respectively, compared to the average observed
anomaly of −1.97 ± 0.60°C. Both HadCM3LC and IPSL‐
CM4‐LOOP thus show ENSO SST dynamics relatively
similar to the observations, while IPSL‐CM2‐C largely

Figure 12. (a to d) Net CO2 flux averaged over four regions of the Northern Hemisphere ((Figure 12a)
boreal North America, (Figure 12b) boreal Asia, (Figure 12c) temperate North America, and (Figure 12d)
Europe) for the three models. Positive values denote a source of CO2 to the atmosphere. (e to h) Net CO2

flux (PgC yr−1) averaged over the same regions, as derived from TransCom‐3 atmospheric CO2 inver-
sions [Gurney et al., 2004]. The error bar represents the intermodel uncertainty. (i to l) Net Primary
Productivity (NPP, solid line) and heterotrophic respiration (Resp, dashed line) averaged over the same
four regions for the three models. All fluxes are in PgC yr−1.
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underestimates it, because of a coarser ocean spatial reso-
lution compared to HadCM3LC and IPSL‐CM4‐LOOP, as
suggested by Meehl et al. [1993] and Knutson et al. [1997].
To confirm the capability of both HadCM3LC and IPSL‐
CM4‐LOOP to reproduce the ENSO variability, the maxi-
mum entropy power spectra of the SST, from the equatorial
Pacific, were calculated. HadCM3LC and IPSL‐CM4‐
LOOP simulate a maximum of the power spectra between 2
and 7 years over 300 years of the model control run [see
Jones et al., 2001, Figure 5] and between 2 and 7 years over
250 years of the model control run, respectively, which is
the typical range of El Niño frequency [Randall et al.,
2007].
5.4.1. ENSO Positive Phase
[51] Sitch et al. [2008] have shown that during the posi-

tive phase of the ENSO, the sensitivity of the terrestrial

biosphere simulated by TRIFFID and ORCHIDEE is in
agreement, at global scale, with the observations, when the
models are forced by the observed climate. Furthermore,
Jones et al. [2001] have shown that, at global scale, the
carbon cycle simulated by HadCM3LC responds to the
simulated climate anomalies in agreement with the ob-
servations (Figure 13). Note that as the decomposition and
oxidation of carbon soil (Rs) and Net Primary Productivity
(NPP) response is mostly dominated by the temperature
anomalies, which are in agreement with the observations,
this explains the good performance of HadCM3LC for the
gIAV trait even if the HadCM3LC overestimates the pre-
cipitation anomalies.
[52] During the positive phase of ENSO, IPSL‐CM2‐C

does not reproduce the observed temperature and precipita-

Figure 13. Modeled El Niño variability. (a) Spatial distribution of continental precipitation anomalies
(mm yr−1) simulated by the HadCM3LC model for an El Niño composite calculated as the average of
the El Niño events defined in Figure 8. (b) Same as Figure 13a for surface temperature. (c) El Niño
time scale correlation between heterogeneous respiration (RESP) and climate, defined as the difference
between the RESP‐temperature coefficient of determination and the RESP‐precipitation coefficient of
determination. Positive (red) values mean that heterogeneous respiration follows temperature during El
Niño events, while negative (blue) values mean that heterogeneous respiration follows precipitation
during El Niño events. White regions are either regions which do not show significant correlation between
respiration and climate, or regions where precipitation and temperature are equally important at driving
respiration anomalies. (d) Same as in Figure 13c but for NPP. (e to h and i to l) same as Figures 13a–13d
but for the IPSL‐CM2‐C and IPSL‐CM4‐LOOP models, respectively.

CADULE ET AL.: COUPLED CLIMATE‐CARBON MODELS BENCHMARKS GB2016GB2016

16 of 24



tion patterns (Figure 13), which explains the poor perfor-
mance of IPSL‐CM2‐C for the interannual variability traits.
[53] Both the temperature and precipitation anomalies

pattern simulated by IPSL‐CM4‐LOOP are in general good
agreement with the observations, except for precipitation in
South Africa and tropical Asia where the model simulates a
reduction that is opposite to the observations (Figure 13). As
precipitation anomalies control component carbon fluxes,
both for NPP and for decomposition and oxidation of carbon
soil and fire disturbances (Rt), in these regions, IPSL‐CM4‐
LOOP overestimates the effect of carbon fluxes from South
Africa and tropical Asia to the positive anomaly of the CO2

growth rate. This explains the poor performance of IPSL‐
CM4‐LOOP in terms of interannual variability, notably at
MLO.
5.4.2. ENSO Negative Phase
[54] The precipitation anomalies induced by the negative

phase of ENSO are well reproduced by HadCM3LC (except
for Africa), while the temperature anomalies are clearly
misrepresented (Figure 14): HadCM3LC simulates a cooling
which spans the whole globe with a greater intensity in North
America and in the tropics. As a consequence, this cooling
induces an increase in land carbon storage and explains the

abnormal simulated negative net carbon flux anomaly which
explains the difference, between HadCM3LC and the ob-
servations, of sensitivity of the atmospheric CO2 to the
interannual variability, which impacts negatively the per-
formance of HadCM3LC for the gIAV trait.
[55] As for the positive phase of ENSO, IPSL‐CM2‐C

does not reproduce the observed patterns of variability in
temperature and precipitation during the negative phase of
ENSO (Figure 14). As stated above, these deficiencies arise
from the poor representation of ENSO dynamics in this
model and explain the poor performance of IPSL‐CM2‐C
for the interannual traits.
[56] During the negative phase of the ENSO, IPSL‐CM4‐

LOOP simulates an increase of precipitation, in agreement
with the observations over the Amazonian rainforest but in
opposition to the observations over a large part of central
Africa and over tropical Asia. As HadCM3LC and in
opposition to observations, IPSL‐CM4‐LOOP simulates a
cooling which spans over the whole tropical region reaching
−2°C in the Amazonian basin (Figure 14). IPSL‐CM4‐
LOOP deficiencies to simulate precipitation and temperature
anomalies lead to an increase in NPP in the South America
region and to a decrease of Rt in tropical Asia and to a lesser

Figure 14. Same as Figure 13, but for La Niña events.

CADULE ET AL.: COUPLED CLIMATE‐CARBON MODELS BENCHMARKS GB2016GB2016

17 of 24



extent in Africa. Both this increase of NPP and decrease of
Rt could be at the origin of IPSL‐CM4‐LOOP poor per-
formance for the gIAV trait.

5.5. From Seasonal and Interannual Variability
to Climate Change

[57] It is not yet clear to what extent, if at all, these metrics
will constrain future model projections, but their consistent
use to evaluate late 20th century ESM simulations will
provide valuable guidance on model performance and ave-
nues for future model development and improvement. An
ultimate goal would be to link such observed quantities with
future behavior in ESMs and hence be able to derive con-
straints, e.g., through weighting of individual members
within an ensemble of future projections. Analysis of mul-
timodel ensembles that exist already (e.g., from C4MIP
[Friedlingstein et al., 2006]) or are planned (e.g., for IPCC
AR5 [Hibbard et al., 2007]) and perturbed parameter en-
sembles of single models (e.g., with HadCM3C (B. Booth et
al., Global warming uncertainties due to carbon cycle
feedbacks exceed those due to CO2 emissions, manuscript
in preparation, 2010)) will enable progress toward this goal.
[58] A perturbed‐parameter ensemble of HadCM3LC

climate simulations (QUMP; Murphy et al. [2004]) showed
a significant shift in the frequency distribution of climate
sensitivity when each member was weighted according to a
Climate Prediction Index: a quantitative measure of model
skill akin to those proposed in this study. However, how do
we know that better simulation of the mean state gives a
better simulation of sensitivity to forcing? Whilst it is
undeniably useful to use observations to evaluate models,
identify deficiencies, and guide development and improve-
ment, it is not yet clear if such quantitative use of metrics
provides a reliable constraint on future projections. There
are also methodological problems of “double counting”: it
may not be valid to use observations in such a way if the
same data have been used for model development. Some
independent data may have to be withheld for the metrics‐
based evaluation.
[59] Model‐observation comparisons can, though, be a

valuable guide to process understanding and thus provide a
guide to which aspects of model performance are reliable
and which processes or regions are more critical for future
projections. For example, a principal component analysis
showed that IAV is predominantly determined by fluxes
from the tropics, whereas SC was determined predominantly
by northern extratropical land fluxes. Hence our evaluation
of IAV may provide a constraint on tropical behavior more
so than on extratropical behavior, and the SC may constrain
the high‐latitude behavior. Raddatz et al. [2007] showed
that future feedback in the C4MIP models was strongly
controlled by tropical behavior on land, so we might sup-
pose that IAV analysis gives some constraint on those future
projections. Yet, very large amounts of carbon are stored in
boreal forests with high‐latitude soil carbon changes espe-
cially important for future climate‐carbon cycle feedbacks,
so the SC behavior is clearly crucial as well.
[60] For future changes to be constrained by observable

quantities we must be confident they are driven by the same,

or at least similar, processes. For example, our analysis in
terms of temperature sensitivity of carbon fluxes implicitly
assumes that other climate variables change with tempera-
ture in a fixed pattern: clearly, changes in other environ-
mental conditions (precipitation, light levels, etc.) affect
carbon fluxes as well, but we can use temperature, T, as a
proxy for the wider “climate” if the patterns of change scale
simply with T. If future changes in other climate variables
follow the same scaling with T, then the observed behavior
may well act as a strong constraint on the future.
[61] For the seasonal cycle, especially in the high latitudes

where we have identified it as most important, carbon fluxes
are strongly linked with light availability. In the future we
expect high latitudes to warm faster than other regions of the
world but we do not expect changes in the seasonal cycle of
day length. Also for precipitation, P, we do not necessarily
expect the seasonal P:T relationship to hold for climate
change of P and T: over a seasonal cycle, higher T in summer
is generally associated with lower P, but under climate
change, higher T may be accompanied by increased P.
[62] Similarly for IAV−, can we be confident that general

climate patterns in future will be related to T in the same
way as they are on interannual time scales? To some extent
this may be true as some, although not all, GCMs predict
future climate change to resemble El Niño–like patterns of
climate change [Cox et al., 2004]. But even so, we do not
know if the long‐term response of terrestrial carbon fluxes
to given environmental conditions will be the same as to
short‐term variability. Possible acclimation of processes
such as soil decomposition is still hotly debated [Giardina
and Ryan, 2000; Davidson et al., 2000; Knorr et al.,
2005; Davidson and Janssens, 2006].
[63] Over the tropical ocean, IAV due to ENSO is driven

predominantly by upwelling of carbon‐rich deep water
[Jones et al., 2001; Schneider et al., 2008] with solubility
effects of SST variations secondary. Hence future SST
patterns may play less of a crucial role in ocean CO2 fluxes
than changes in global ocean circulation of dissolved inor-
ganic carbon and nutrients.
[64] More research is required to determine which

observed quantities are related (at least in the models) to key
future behavior. Then we may be able to derive useful
constraints.

5.6. Land Carbon Cycle Versus Ocean Carbon Cycle

[65] As detailed above, the analysis we present here is
mainly focused on the land carbon cycle. This is largely due
to the intrinsic nature of atmospheric CO2 variability on
seasonal to interannual time scales, for which the land car-
bon fluxes clearly dominate. As such, the metrics we
develop here would mainly provide constraints on model
performance for the land carbon cycle component of ESMs.
[66] Similarly to the land carbon fluxes, the ocean carbon

fluxes will contribute both to the evolution of atmospheric
CO2 over the next decades and to the magnitude of the
climate‐carbon feedback. The analysis of the multimodel
ensemble from C4MIP also clearly demonstrates the large
uncertainty associated with the ocean carbon flux response
to climate change [Friedlingstein et al., 2006] and the need
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for a more thorough evaluation of the ocean carbon cycle
component of ESMs.

6. Conclusion

[67] We have defined a new set of performance metrics to
test coupled carbon‐climate models against atmospheric
CO2 observations. Land fluxes are primarily tested. Three
state‐of‐the‐art global models were evaluated using these
new metrics, which contain multiple time scale constraints
based upon the (1) long‐term CO2 trend, i.e., the global
carbon budget, (2) seasonal cycle of CO2, (3) interannual
variability of the CO2 growth rate forced by ENSO climate
anomalies, and (4) sensitivity to climatic variations. Time‐
varying fluxes from the HadCM3LC, IPSL‐CM2‐C, and
IPSL‐CM4‐LOOP models of the C4MIP ensemble are used
as input of the global LMDZ4 transport model, and the
modeled CO2 field is compared to station observations. For
the seasonal variability analysis, an inversion of the LMDZ4
transport is applied to determine the regional footprint of
CO2 at each station. Using many stations and different
statistical measures of the model‐data misfit at multiple time
scales, we define a single mark, which allows us to compare
models with each other, and against data, at a glance.
[68] We found that the IPSL‐CM4‐LOOP model is best

able to reproduce the phase and the amplitude of atmo-
spheric CO2 at northern stations. The two other models
generally underestimate the seasonal amplitude. This points
out their shortcomings in describing the vegetation phe-
nology and the heterotropic respiration response to climate.
Such misfit of the seasonal cycle is worrisome because the
future response of the land carbon cycle to climate change is
certainly highly seasonal and has a different sign between
spring and autumn [Piao et al., 2008]. One way to overcome
this difficulty is to improve both the seasonal cycle of cli-
mate in climate models and the carbon cycle response to it,
for instance by using satellite data to constrain phenological
processes [Botta et al., 2000] and eddy covariance networks
to constrain the timing of respiration versus photosynthesis
[e.g., Kucharik et al., 2006].
[69] We also found that IPSL‐CM2‐C produces a climate‐

driven abnormal source of CO2 to the atmosphere during El
Niño‐like anomalies and, conversely, an abnormal CO2 sink
during La Niña‐like anomalies. Nevertheless it is encour-
aging to see that this fundamental carbon cycle response to
climate is properly encapsulated in the three models; the
magnitude of such response differs among models. The
three climate models all underestimate the SST warm
anomaly during El Niño and, to a lesser extent, the cold
anomalies during La Niña. ENSO‐driven changes in pre-
cipitation regimes are also not so well captured, except by
HadCM3LC, a climate bias which translates into a CO2 flux
bias. Overall, HadCM3LC does best in reproducing the
interannual CO2 variability in response ENSO forcing.
[70] This example shows that multiple time scales are

needed to evaluate models and that a model which does best
on seasonal scales may not necessarily be outperforming
others on interannual time scales. The advantage of defining
a single metric, although the procedure is a bit rigid and

looks tedious to implement, is that it allows for testing of
future structural improvements of models and inclusion of
new processes in the same rigorously defined framework.
Here we have shown that the signal of atmospheric CO2

concentration, despite being a coarse‐scale and process‐
integrated signal, has a great usefulness in falsifying models
against observations.
[71] More efforts are needed to further improve such

metrics for assessing the sensitivity of the carbon cycle to
climate change. A next logical step for benchmarking ter-
restrial carbon cycle models would be to use eddy covari-
ance observations of flux‐climate relationships [Reichstein
et al., 2007; Ito et al., 2008], global satellite information
[Running, 2006], and manipulative experiments of warming
or altered precipitation at ecosystem scale [Luo et al., 2008;
Gerten et al., 2008]. Further, the definition of metrics should
be extended to assess ocean carbon cycle models against
observations, using, for instance, ocean flux observations
[Takahashi et al., 2009], ocean interior inventories [Sabine
et al., 2004], and atmospheric tracers such as atmospheric
potential oxygen [Naegler et al., 2007]. Finally, the avail-
ability of observational data over longer time series is
essential in view of benchmarking models over the longest
possible periods which is necessary, even if not sufficient, to
build confidence in future projections.

Appendix A: Model Description

A1. HadCM3LC

[72] HadCM3LC [Cox et al., 2000] is based on the third
Hadley Centre coupled ocean‐atmosphere model, HadCM3
[Gordon et al., 2000], coupled to an ocean carbon cycle
model HadOCC and a dynamic global vegetation model
TRIFFID. The ocean carbon cycle model, HadOCC [Palmer
and Totterdell, 2001], simulates the movements of carbon
within the ocean system, including exchange of CO2 with
the atmosphere, the circulation of dissolved inorganic car-
bon within the ocean, and the cycling of carbon by the
marine biota. It explicitly represents ocean carbonate
chemistry, and the biological component of HadOCC is an
explicit ecosystem model consisting of the four components:
nutrient (assumed to be nitrate), phytoplankton, zooplank-
ton, and (sinking) detritus. The terrestrial carbon cycle
model, TRIFFID [Cox, 2001], defines the state of the ter-
restrial biosphere in terms of the soil carbon and the struc-
ture and coverage of five plant functional types (broadleaf
tree, needleleaf tree, C3 grass, C4 grass, and shrub) within
each model grid box. The areal coverage, leaf area index,
and canopy height of each type are updated based on a
carbon balance approach, in which vegetation change is
driven by net carbon fluxes calculated within the MOSES‐2
tiled land surface scheme [Essery et al., 2003]. Carbon
fluxes for each of the vegetation types are derived using the
coupled photosynthesis‐stomatal conductance model
developed by Cox et al. [1998] which utilizes existing
models of leaf‐level photosynthesis in C3 and C4 plants
[Collatz et al., 1991, 1992]. Net primary productivity is
allocated into the growth of existing vegetation biomass and
to expansion of the vegetated area in each grid cell. Leaf
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phenology (bud burst and leaf drop) is updated, using
accumulated temperature‐dependent leaf turnover rates.

A2. IPSL‐CM2‐C

[73] IPSL‐CM2‐C [Dufresne et al., 2002] shows results
of the coupling between the IPSL ocean‐atmosphere general
circulation model IPSL‐CM2 [Khodri et al., 2001] and the
two carbon cycle models, IPSL‐OCCM1 [Aumont et al.,
1999] for the ocean part, and the Scheme for Large‐Scale
Atmosphere Vegetation Exchange (SLAVE) model for the
terrestrial part [Friedlingstein et al., 1995a, 1995b]. SLAVE
is driven by surface air temperature, precipitation, and solar
radiation and calculates NPP following a light use efficiency
formulation [Field et al., 1995] that is a function of tem-
perature and water stress. NPP increases with CO2 under a
Michaelis‐Menten beta factor formulation [Gifford, 1992],
which has a global value of 0.5, in the upper range of
experimental data [DeLucia et al., 1999], although nitrogen
limitation and deposition as well as vegetation dynamics and
land use changes are ignored in this study. The ocean carbon
model, IPSL‐OCCM1 [Aumont et al., 1999; Le Quéré,
1999], based on the HAMOCC3 biogeochemical scheme
[Maier‐Reimer, 1993], is driven by monthly mean global
fields of oceanic circulation, temperature, salinity, and surface

fields of winds, sea ice, and water fluxes all issued from the
Ocean‐Atmosphere General Circulation Model (OAGCM).

A3. IPSL‐CM4‐LOOP

[74] IPSL‐CM4‐LOOP results of the coupling between the
IPSL coupled ocean‐atmosphere general circulation model
IPSL‐CM4 [Marti et al., 2005] and the two carbon cycle
models: the Pelagic Interactions Scheme for Carbon and Eco-
systems Studies (PISCES) biogeochemical model [Aumont
et al., 2003] for the ocean part and the Organizing Carbon
and Hydrology in Dynamic Ecosystems (ORCHIDEE)
model for the terrestrial part [Krinner et al., 2005]. PISCES
includes three nutrients, two phytoplanktons, two zoo-
planktons, one detritus, and semilabile dissolved organic
matter. It explicitly represents the collimation of phyto-
plankton growth by light and three nutrients: phosphate,
iron, and silicate. The phytoplankton reservoir is split in two
size fractions corresponding to nanophytoplankton and dia-
toms. Two sizes of zooplankton (microplankton and meso-
zooplankton) are also explicitly considered. ORCHIDEE is a
dynamic global vegetation model (DGVM) which calculates
energy and hydrology budgets, carbon assimilation, alloca-
tion and decomposition, and vegetation competition. In
these simulations, the natural and agricultural vegetation
distributions were prescribed. ORCHIDEE distinguishes

Table C1. Principal Component Analysis at the 12 Stations for the Seasonal Cycle Based on Peylin’s Inversionsa

Station
Code

Terrestrial Regions

Boreal
North

America

Temperate
North

America
Boreal
Asia

Temperate
Asia Europe

Northern
Africa

Tropical
America

Tropical
Asia Australia

Southern
Africa

Temperate
South

America

ALT 22 8 31 2 21 4 1 0 1 1 8
BRW 25 5 29 1 14 2 1 0 0 1 0
MHD 27 12 20 3 26 5 1 0 0 2 1
SCH 17 15 13 3 37 6 1 1 0 3 1
NWR 11 22 19 5 25 1 3 3 0 3 1
AZR 28 14 20 4 24 3 0 1 0 3 1
KUM 13 14 24 4 22 2 4 3 0 2 0
MLO 11 15 18 4 19 8 6 5 0 1 2
SMO 4 6 5 3 10 20 4 1 2 21 13
AMS 3 6 4 2 8 18 9 1 1 19 5
CGO 3 5 4 2 7 16 8 1 9 17 6
SPO 4 7 5 3 9 21 10 1 0 22 5

Station
Code

Oceanic Regions
Percent
Variance

Northern
Ocean

North
Atlantic

North
Pacific

West
Pacific

East
Pacific

Tropical
Atlantic

Tropical
Indian

South
Atlantic

South
Pacific

South
Indian

Southern
Ocean 1st mode

ALT 0 0 0 0 0 0 0 0 0 0 0 96
BRW 20 0 0 0 0 0 0 0 0 0 0 94
MHD 1 0 0 0 0 0 0 0 0 0 0 93
SCH 0 1 1 0 0 0 0 0 0 0 0 88
NWR 1 2 2 0 0 0 0 0 0 0 0 85
AZR 1 0 0 0 0 0 0 0 0 0 0 92
KUM 1 5 5 1 0 0 0 0 0 0 0 93
MLO 1 4 4 1 0 0 1 0 0 0 0 93
SMO 0 0 0 4 2 0 1 1 1 0 3 58
AMS 0 1 1 0 0 0 1 2 2 11 6 52
CGO 0 1 1 0 0 0 1 2 3 5 8 60
SPO 0 1 1 1 0 0 1 2 1 0 8 63

aTerrestrial biosphere and ocean, which were all transported with LMDZ4 and filtered according to Thoning et al. [1989] (see section 3.2). The codes for
the stations are expanded in Table 1. Peylin’s inversions are for terrestrial biosphere and ocean. At each station, the contribution from all regions (see Table 2
for details on the TransCom‐3 regions) sums up to 100%. The third subtable shows the representativeness of the 1st mode of the PCA.
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13 plant functional types (PFTs). In every grid point, dif-
ferent PFTs can coexist.

Appendix B: Model Data Statistical Analysis

[75] For the following, x refers to the modeled CO2, and
o refers to the observed CO2.

B1. Pearson Correlation

[76] The Pearson correlation is the ratio of the sample
covariance of two variables to the nonnull product of their
standard deviations. In the following formula, x refers to the
model value, and o to the observations.

�xo ¼ �xo

�x�o
¼

1

N
�
XN
i¼1

xi � xoÞðoi � oð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN
i¼1

xi � xoð Þ2
s

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN
i¼1

oi � oð Þ2
s ðB1Þ

[77] The Pearson test is used to evaluate if models and
observations values are linearly correlated. Note that the
Pearson correlation is subject to outlying data and is
bounded by −1 and +1.

B2. Normalized Standard Deviation

[78] The normalized standard deviation (NSD) is the ratio
of model to observed standard deviations. In the following
formula, x refers to the model value, and o refers to the
observations.

S

Sobs
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN
i¼1

xi � xoð Þ2
s

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
�
XN
i¼1

oi � oð Þ2
s ðB2Þ

[79] A value of NSD = 1 means that the model perfectly
captures the magnitude of observed variability. A value
lower than 1 corresponds to underestimating the magnitude
of observed variability, while a value greater than 1 corre-
sponds to overestimating it.

B3. Models to Observations Deviation

[80] When comparing a single value between models
and observations, we use the simple following formula,
where x refers to the model value and o refers to the
observations.

MOD ¼ x� o

xþ o
ðB3Þ

Appendix C: Contribution to the Seasonal Cycle
of Atmospheric CO2 at Observations Stations

[81] Table C1 shows the principal component analysis at
the 12 stations for the seasonal cycle based on Peylin’s
inversions.
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