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ABSTRACT

Recently, classification and dimensionality reduction (DR) have become important issues of hyper-
spectral image (HSI) analysis. Especially, HSI classification is a challenging task due to the high-di-
mensional feature space, with a large number of spectral bands, and a low number of labeled samples.
In this paper, we propose a new HSI classification approach, which is called fused 3-D spectral-spatial
deep neural networks for hyperspectral image classification. We propose an unsupervised band selec-
tion method to avoid the problem of redundancy between spectral bands and automatically find a set of
groups Ck each one containing similar spectral bands. Moreover, the model uses the different groups
of selected bands to extract spectral-spatial features in order to improve the classification rate. Each
group is associated with a 3-D CNN model, which are then fused to improve the precision of clas-
sification. The main advantage of the proposed method is to keep the initial spectral-spatial features
by automatically selecting relevant spectral bands, which improves the classification of HSI using a
low number of labeled samples. Experiments on two real HSIs, Indian Pines and Salinas datasets, are
performed to demonstrate the effectiveness of the proposed method. Results show that the proposed
method reaches competitive good performances, and achieves better classification rates compared to
various state-of-the-art techniques.

c© 2020 Elsevier Ltd. All rights reserved.

1. Introduction

Nowadays, hyperspectral imaging sensors can acquire data
from wavelength range in the spectrum, which is typically be-
tween 0.4 and 0.5µm. Hyperspectral image (HSI) can be seen
as a 3-D cube (one spectral dimension, and two spatial dimen-
sions), possibly containing hundreds of narrow and contiguous
spectral bands with high spectral resolution. These hyperspec-
tral data provide a rich spectral information, which can then be
used for identification, or surface classification (Tu et al., 2019).
Therefore, they have been used in spectral unmixing (Liu et al.,
2010), anomaly detection (He et al., 2008), etc. All these ap-
plications require the classification of each hyperspectral pixel.
However, the classification of HSI still faces some majors issues
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(Chen et al., 2017a), especially: i) the large number of spectral
bands makes it difficult to get sufficient labeled training sam-
ples, producing the Hughes phenomenon (i.e, the classification
rate can be deteriorated in high-dimensional space, when the
number of samples is very limited) (Feng et al., 2016); ii) the
spectral bands are very correlated; iii) spectral signatures may
have high spatial variability. Therefore, dimensionality reduc-
tion can be applied as a preprocessing phase before HSI classi-
fication step, since it discards the redundant features and allows
reducing the large number of contiguous spectral bands.

Usually, dimensionality reduction techniques in HSI analy-
sis can be divided into two main approaches: feature extraction
(Zhou et al., 2014) and band selection (Bai et al., 2015). Feature
extraction (Ma et al., 2016a; Feng et al., 2018) seeks to trans-
form high-dimensional feature space into a low-dimensional
space through linear or non-linear projections, such as Princi-
pal component analysis (PCA) (Deepa and Thilagavathi, 2015),
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locality preserving projection (LPP) (Li et al., 2012) projec-
tion pursuit, or local discriminant embedding (Zhou et al.,
2014). Alternatively, band selection aims to preserve the phys-
ical meaning of hyperspectral data by selecting the most rele-
vant, informative, discriminative and distinctive spectral bands.

According to the availability of training samples, band se-
lection can be supervised, unsupervised or semi-supervised (Li
et al., 2016; Sellami et al., 2018). Supervised band selection
selects discriminant spectral bands using the class separability
of labeled training samples and class label (Yan et al., 2016).
Unsupervised band selection evaluates the importance of spec-
tral bands using clustering quality assessment (Martinez-Uso
et al., 2007) and various statistical measures (Chang and Wang,
2006). Therefore, the aim is to select the most informative spec-
tral bands based on band ranking (Datta et al., 2012) or band
clustering (Xu et al., 2018).

Semi-supervised band selection finds relevant spectral bands
by taking advantage of the information of labeled and unlabeled
samples (Sellami et al., 2018). Usually, most semi-supervised
band selection methods are based on manifold learning (Zhao
et al., 2008) or hypergraph models (Bai et al., 2015).

In this paper, we propose a novel unsupervised band selec-
tion technique based on hierarchical clustering algorithm in or-
der to preserve the physical meaning of hyperspectral data i.e.,
keep the initial spectral-spatial information without discarding
or distorting the crucial original information. It aims to parti-
tion all spectral bands using the similarity criterion, which min-
imizes the high correlation between spectral bands. The aim is
to enhance the classification accuracy.

2. Related work

Usually, HSI classification algorithms use spectral and spa-
tial features to perform the classification. In this context, sev-
eral issues have been presented in the literature (Ma et al.,
2016b; Sellami et al., 2019), such as the high-dimensionality of
HSI and the limited number of training samples. Therefore, in
order to enhance the HSI classification accuracy, several works
have been developed to consider the spectral-spatial features.
In (Xia et al., 2015), Xia et al. have proposed an Extended mor-
phological profiles (EMPs) to take into account the spectral and
spatial features for classification. Gabor filtering (GF) model
has been introduced to extract spatial features, i.e., textures and
edges (Chen et al., 2017b). Some approaches also used sup-
port vector machine (SVM) (Sellami and Farah, 2016; Li et al.,
2017). All these studies cannot detect all spatial properties of
the objects (Zhao and Du, 2016).

Several approaches based on deep learning (DL) have re-
cently been developed for spectral-spatial HSI classification,
and showed their high effectiveness and performance (Han
et al., 2018; Sellami et al., 2019). Many techniques have indeed
been developed to fuse the dimensionality reduction paradigm
with DL models in order to improve the HSI classification. The
logistic regression (LR), PCA, and stacked autoencoders (SAE)
have for example been combined for HSI classification, where
the SAE were applied for the spectral-spatial features extraction
(Chen et al., 2014).

Deep belief networks (DBN) have also been used for HSI clas-
sification (Chen et al., 2015). In (Chen et al., 2015), authors
have proposed a hybrid framework of PCA and DBN. Zhou et
al as for them proposed in (Zhou et al., 2017) a novel approach
based on band selection and DBN for HSI classification. How-
ever, DBN and SAE, which aim to extract the deep features
hierarchically in a layer training, cannot extract the spatial fea-
tures from HSI because the training samples have to be flattened
into a 1-D vector before training. As a result, spatial informa-
tion is neglected by flattened training samples.
Quite recently, convolutional neural networks (CNN) (Lee and
Kwon, 2017) have been used for HSI spectral-spatial classifi-
cation. CNN can extract the spatial features from HSI without
any flattening of the training samples. A CNN was used in (Han
et al., 2018) to extract the spatial features from HSI, giving sat-
isfactory results for the classification. An approach based on
PCA, CNN and LR was proposed in (Zhao and Du, 2016) for
HSI classification. Also, Chen et al. (Chen et al., 2017a) have
developed a method for HSI classification, combining Gabor
filters (GF) with convolutional filters to mitigate the problem
of overfitting. In (Sellami et al., 2019), a novel HSIs classifi-
cation method was proposed, which combined the adaptive di-
mensionality reduction and semi-supervised 3-D Convolutional
Neural Network (3-D CNN). It can extract the spatial and spec-
tral features of HSI simultaneously. 3-D CNN needs a very
large number of training samples in the training phase to ob-
tain appropriate weights between the different nodes. Unfortu-
nately, the number of training samples in the HSI is very lim-
ited, which degrades the classification performance of most su-
pervised classification approaches.

3. Proposed methodology

We propose to improve the classification of HSI by perform-
ing a band clustering to avoid the high redundancy of spectral
bands and fusing a multiple 3-D CNN to keep the spectral-
spatial features. Our method can be decomposed into three
steps; (i) Band clustering, (ii) Spectral-spatial feature extrac-
tion from k-clusters of spectral bands with 3-D CNN and, (iii)
Classification based on the fusion of view-pooling. Fig. 1 illus-
trates the proposed methodology.

3.1. Band clustering based on spectral clustering (BCSC)

The first phase of the proposed approach, i.e., band clustering
based on spectral clustering (BCSC), aims to find informative
and distinctive spectral bands from the original HSI. Formally,
let X = [x1, ..., xN] ∈ RM×N be an HSI, where xi ∈ RM repre-
sents a spectral vector of a pixel i ∈ {1, 2, ...,N} and M is the
number of spectral bands B = {B1, B2, .., BM}. Each column X j

of Xt corresponds to a spectral band j. The proposed unsuper-
vised band selection method seeks to select a reduced number
d � M from all spectral bands based on mutual information
(MI).

Mutual information is the measure of independence between
spectral bands, which can be considered as a correlation mea-
sure. In other words, MI quantifies the statistical dependence
between all spectral bands or how much a spectral band can
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Fig. 1. Flowchart of the proposed methodology

predict another one. Therefore, considering a spectral band {B},
MI(Bk, Bl) is defined as:

MI(Bk, Bl) = H(Bk) + H(Bl) − H(Bk, Bl) (1)

=

N∑
i=1

N∑
j=1

p(bk
i , b

l
j) log

p(bk
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l
j)

p(bk
i )p(bl

j)
(2)

where H(Bk, Bl) is the joint entropy. Furthermore, the similarity
S IM(Bk, Bl) between two spectral bands can be expressed as

S IM(Bk, Bl) =
2MI(Bk, Bl)

H(Bk) + H(Bl)
(3)

This similarity function is symmetric and non-negative, and the
corresponding similarity matrix is denoted by S = (si j)i, j =

1, ...,M.
In order to select the most relevant spectral bands, i.e., in-

formative and distinctive bands, we used the spectral clustering
technique (Ng et al., 2002), which seeks to cluster data points
using the eigenvalues of the similarity matrix. Therefore, the
proposed band clustering model (see Fig. 2) constructs a simi-
larity graph G = (V, E,W), where V is a vertex, i.e. a spectral
band, E is an edge (E exists if similarity S (.) > 0), and W is
the edge weights matrix (similarity S (.)). Then, we compute
the first k eigenvectors v1, ..., vk of the graph Laplacian matrix
L = D − W , where k is the number of clusters, i.e., the set
of spectral band groups, and D is the degree matrix of S . The
generalized eigenproblem can be defined as

Lv = λDv (4)

where λ is an eigenvalue. The algorithm then clusters the data
points with the k-means algorithm into clusters C1, ...,Ci, ...,Ck,
where each cluster Ci contains similar spectral bands. Hence,
spectral bands in different clusters are dissimilar. Supervised
band selection methods need a priori information to select in-
formative spectral bands, where the labeled samples are not al-
ways available and very limited. Unsupervised techniques can

Fig. 2. Construction of similarity graph of spectral bands

select redundant or correlated bands, reducing the classification
rate. Our BCSC aims to automatically find relevant spectral
bands by grouping similar bands using hierarchical clustering
based on mutual information measures without discarding the
initial spectral-spatial information of HSI, i.e., keep the spectral
signatures of pixels. It allows then to select informative, dis-
criminative, and distinctive spectral bands by minimizing the
high correlation between spectral bands without requiring la-
beled samples, such as a class label. The proposed BCSC model
is detailed in Algorithm 1.

3.2. 3-D spectral-spatial Convolutional Neural Network
Let each group of similar spectral bands be denoted by

Ci ∈ Ry×z×p, where y and z are the spatial dimensions (width
and height) and p is the number of selected bands of each clus-
ter Ci. Therefore, each pixel is considered as 3D neighboring
pixel of size P ∈ Rs×s×p from Ci, centered at the spatial loca-
tion (α, β), covering the s × s spatial window. The number of
created 3D neighboring pixels n from Ci can be obtained by
(y − s + 1) × (z − s + 1). Therefore, the 3D-patch Pα,β cov-
ers the height from β − (s − 1)/2 to β + (s − 1)/2, width from
α−(s−1)/2 to α+(s−1)/2, and the number of selected bands for
each cluster Ci. Fig. 3 shows the architecture of the 3-D CNN
for HSI spectral-spatial classification. Each layer of 3-D CNN
is composed of both a 3-D convolution and a pooling operation.
The input of the 3-D CNN is a group of selected bands Ci ob-
tained with the BCSC method, where the patch is a neighboring
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Algorithm 1 Band Clustering based on Spectral Clustering
(BCSC)
Input: B1, ..., BM , Bi ∈ RN , i ∈ [[1 · · ·M]]

k: number of clusters
Output: Clusters A1, ..., Ak with Ai = { j|y j ∈ Ci}

for i← 1,M do . M is the number of spectral bands
for j← i,M do

S i, j ← S IM(Bi, B j) . Compute the similarity matrix
S j,i ← S i, j

end for
end for
Build similarity graph G = (V, E,W) using the similarity ma-
trix S (.)
Compute the Laplacian graph L
Compute the first k-eigenvectors v1, ..., vk of L
Let V ∈ RM×k be the matrix containing the vectors v1, ..., vk

as columns.
for i← 1,D do

Let yi ∈ Rk be the vector corresponding to the i-th row of
V
end for
cluster the data points (yi)i=1,...,n in Rk using the k-means al-
gorithm into clusters C1, ...,Ci, ...,Ck.

pixels P ∈ Rs×s×p. Generally, the 1-D convolution operation

Fig. 3. Architecture of the 3-D CNN-based HSI classification

aims to extract spectral features while 2-D convolution aims to
extract only spatial features of each pixel. 3-D CNN convolu-
tion extracts both spectral and spatial features from a cluster of
spectral bands Ci. Formally, the 3-D convolution operation can
be defined as:

vxyz
i j = φ

∑
h

Li−1∑
l=0

Ki−1∑
k=0

Ri−1∑
m=0

v(x+l)(y+k)(z+m)
(i−1)h ∗ wlkm

i jh + δi j

 (5)

where vxyz
i j is the value of the neuron at position (x, y, z), h is the

index of the feature map in the (i − 1)th layer connected to the
current jth feature map. wlkm

i jh is the weight of kernel at position
(l, k,m) connected to the hth feature map, with Ki and Li are the
height and width of the convolution kernel. Ri is the size of the
3D kernel along the spectral dimension, and δi j is the bias.

3.3. Fusion of 3D-CNNs with element-wise maximum pooling
layer

In order to fuse the features maps vik obtained with {3 −
DCNN1, 3−DCNN2, ..., 3−DCNNk}, the main goal is to aggre-
gate all pooling layers with an element-wise maximum pool-
ing layer operation. The motivation to use this operator is to

improve the classification of HSI without redundant spectral-
spatial features. Formally, the element-wise maximum pooling
layer can be obtained as follows

ĥ = MAX

ReLU

∑
h

Li−1∑
l=0

Ki−1∑
k=0

Ri−1∑
m=0

v(x+l)(y+k)(z+m)
(i−1)h ∗ wlkm

i jh + δi j




(6)
To perform the spectral-spatial classification, we applied the
softmax(.) function to the top layer of the proposed fused 3-
D CNN. Usually, softmax(.) aims to measure the correlation
between a reference value (true value) and an output value (pre-
dicted value) by a probability score. Formally, let W and δ
denote all the parameters of our fused 3-D CNN model. The
output of our network f with trainable parameters (W, δ), for a
given input patch Ix,y,z can be formulated as follows:

f (Ix,y,z; (W, δ)) = Wĥ (7)

The fused 3-D CNN model is trained by transforming the scores
fc(Ix,y,z; (W, δ)) of each class of interest c ∈ {1, ....,T } into con-
ditional probability by applying the following softmax(.) func-
tion:

p(c|Ix,y,z; (W, δ)) =
e fc(Ix,y,z;(W,δ))∑

t∈{1,...,T } e ft(Ix,y,z;(W,δ))
(8)

Moreover, the model is trained by maximizing the likelihood of
training samples, i.e., the parameters (W, δ) are learned by min-
imizing the negative log-likelihood based on training samples
set

L(W, δ) = −
∑
Ix,y,z

ln p(lx,y,z|Ix,y,z; (W, δ)) (9)

where lx,y,z is the correct pixel label at position (x, y) of the
spectral band z. In order to optimize the objective function, the
stochastic gradient descent (SGD) with back-propagation algo-
rithm was applied. Finally, at the testing time, the model can
predict the label of the pixel l̂x,y,z located at position (x, y) in
band Bz using

l̂x,y,z = argmax
t∈{1,...,T }

p(c|Ix,y,z; (W, δ)) (10)

4. Experimental Results

4.1. HSI Description
In this paper, two real HSIs are processed to evaluate the per-

formance and effectiveness of the proposed method, including
the Indian Pines Dataset and the Salinas Dataset 1.
The Indian Pines HSI collected by the Airborne Visible/ In-
frared Imaging Spectrometer (AVIRIS) sensor, which repre-
sents the north-western Indiana. It consists of 145 × 145 pix-
els with a spatial resolution of 20 m per pixel and 220 spec-
tral bands in the wavelength range from 0.4 to 2.5 µm. The

1http://www.ehu.eus/ccwintco/index.php?title=

Hyperspectral_Remote_Sensing_Scenes
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Fig. 4. Groups of spectral bands obtained with different band clustering methods. (a) Indian Pines, (b) Salinas (k = 16 clusters). The blue color denotes the
lower spectral band indexes and the red color indicates higher spectral band indexes

Fig. 5. Comparison of different band clustering techniques. (a) Classification results on Indian Pines. (b) Classification results on Salinas.

ground truth contains 16 classes. The Salinas image collected
by the AVIRIS sensor over Salinas, California, which consists
of 512 × 217 pixels with a spatial resolution of 3.7 m per pixel
and 224 spectral bands. The ground truth contains 16 classes.

4.2. Comparison to other methods

In order to evaluate our algorithm, we compared its re-
sults with the following recent band clustering methods: semi-
supervised band clustering (SSBC) (Su et al., 2011), band
clustering using information measures (BCIM) (Martinez-Uso
et al., 2007), dual-clustering band by contextual analysis
(DCCA) (Yuan et al., 2015), ranking-based band clustering ap-
proach (RBCA) (Jia et al., 2015), and optimal band clustering
(Wang et al., 2018) (OBC). Furthermore, we compared our pro-
posed method with various recent and relevant methods based
on DL for HSI classification, including DL using pseudo labels
(PL) (Wu and Prasad, 2018), dual-strategy sample selection
(DS) (Fang et al., 2018), convolutional neural network (CNN)
(Liu et al., 2017), graph convolutional neural network (GCN)
(Qin et al., 2018), multi-decisions labeling (MDL) (Ma et al.,
2016b), 3D deeo learning (3DL) (Hamida et al., 2018), Fast
3D CNN (FST) (Ahmad, 2020), Multi-scale 3D convolutional
neural network (MSC) (He et al., 2017), and 3D convolutional
neural network (3DCNN) Li et al. (2017) .

Table 1. Band clustering performances using AMI, HI, and ARI

Method Score value Score value
AMI HI ARI AMI HI ARI

SSBC 0.743 0.797 0.595 0.750 0.801 0.598
BCIM 0.781 0.828 0.655 0.805 0.847 0.697
DCCA 0.757 0.808 0.601 0.731 0.762 0.582
RBCA 0.763 0.814 0.612 0.771 0.820 0.633
OBC 0.827 0.864 0.743 0.853 0.884 0.787
BCSC 0.897 0.919 0.867 0.926 0.942 0.905
RC 0.555 0.650 0.379 0.520 0.622 0.345
HSI Indian Pines Salinas

4.3. Performance Evaluation Metrics and Parameters Setting

It is important to set the evaluation parameters before
spectral-spatial classification. Therefore, we fixed k = 2, . . . , 30
clusters of spectral bands from the two HSIs. To analyze each
band clustering method, we used three clustering performance
metrics, including adjusted mutual information (AMI), homo-
geneity index (HI), and the adjusted Rand index (ARI). More-
over, we evaluated all band clustering methods on the classi-
fication using the 3-D CNN model (Sellami et al., 2019). We
also set the learning rate lr to 10−3 and the batch size to 200
after several tests. The diagonal degree matrix was fixed with
a window size p = 3, considering the 8-neighbors spectral pix-
els, and the number of epochs was set to 400 for Indian Pines
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Table 2. Classification performances (PL, DS, GCN, CNN, MDL, 3DL,FST,MSC,3DCNN, and Fused 3-D CNN (Ours)) : Indian Pines HSI (k = 16)

Class Samples Method
Train Test PL DS CNN GCN MDL 3DL FST MSC 3DCNN Ours

Alfalfa (C1) 5 49 88.05 94.18 96.40 94.02 95.01 95.22 95.95 94.15 95.47 96.32
Building-G (C2) 38 342 92.03 91.11 96.28 95.07 92.04 94.61 96.03 92.51 96.51 96.26
Corn (C3) 23 211 94.21 92.01 95.03 93.04 92.12 95.81 94.89 94.51 90.12 96.97
Corn-M (C4) 83 751 94.92 89.05 93.08 97.41 96.95 94.91 95.48 93.96 94.36 96.99
Corn-N (C5) 143 1291 94.95 93.28 95.61 95.48 96.01 96.43 96.32 95.74 92.25 97.42
Grass-P-W (C6) 5 21 86.17 88.51 94.02 95.18 95.03 94.96 95.21 89.41 94.91 95.52
Grass-P (C7) 50 447 91.25 81.35 95.10 97.28 94.53 93.39 96.74 96.12 97.01 97.16
Grass-T (C8) 75 672 92.25 94.02 97.10 96.41 93.05 94.21 97.02 94.95 96.31 96.89
Hay-W (C9) 49 440 95.10 92.03 92.01 96.25 95.43 92.98 93.69 91.73 92.06 96.56
Oats (C10) 2 18 92.08 89.92 96.98 94.85 97.02 93.52 96.25 90.14 94.85 97.07
Soybeans-C (C11) 62 552 87.25 89.09 95.92 96.74 96.94 96.21 94.31 95.22 96.07 97.31
Soybeans-M (C12) 247 2221 91.65 91.42 92.05 94.91 95.92 93.22 93.91 91.64 92.82 96.84
Soybeans-N (C13) 97 871 89.22 87.42 94.25 94.18 95.35 94.25 95.94 88.49 93.74 96.21
Stone-S (C14) 10 85 93.25 92.83 95.90 94.65 95.04 92.98 97.08 95.10 94.97 97.26
Wheat (C15) 21 191 92.76 93.54 95.24 95.61 94.05 93.72 96.14 94.42 96.21 96.61
Woods (C16) 130 1164 93.67 93.24 95.21 96.22 94.93 94.03 96.87 92.33 95.61 96.95
OA (%) – – 92.34 91.74 94.29 95.42 95.65 93.84 95.83 94.28 94.81 96.98
AA (%) – – 92.22 91.38 94.83 95.28 95.39 93.67 95.68 94.08 94.62 96.85
kappa × 100 – – 92.28 91.45 94.15 95.47 92.40 93.72 95.79 94.15 94.77 96.89
Time (s) – – 381 362 287 322 254 485 321 389 366 274

and 300 for Salinas. Moreover, for the two HSIs datasets, we
randomly chose 10% of the samples per class for training and
the rest for testing.

In order to get stable classification results, we repeated the
experiments 10 times with different sets of training samples.
Three performance metrics were computed to evaluate the clas-
sification accuracy: kappa coefficient (kappa), overall accuracy
(OA) and average accuracy (AA).

4.4. Band Clustering Performance Evaluation

The obtained spectral band groups with the proposed BCSC
and other existing band clustering techniques, including CBC,
RBCA, DCCA, BCIM, SSBC, and RC are reported in Fig. 4.
Moreover, we compare also all band clustering techniques with
a random clustering method denoted by RC. The aim is to as-
sess the effectiveness of the clustering results. For both HSIs,
i.e., Indian Pines and Salinas, 16 clusters of spectral bands are
extracted and presented in Fig. 4(a) and (b). The color bars
at the bottom of Fig. 4 give the correspondence between the
spectral bands Ids and their corresponding wavelengths, which
help to analyze the extracted clusters from each HSI produced
by the various band clustering methods. The visual interpre-
tation of Fig. 4 shows the potential and the efficiency of the
BCSC method for the clustering of relevant spectral bands. For
both HSIs, clusters computed with BCSC are more homoge-
neous than the one obtained with other band clustering meth-
ods. Moreover, poorly defined BCSC spectral bands belong to
adjacent clusters, i.e., selected spectral bands overlap between
two adjacent regions of the spectrum. Groups processed with
all but BCSC band clustering methods are heterogeneous and
the selected spectral bands are not adjacent, i.e., do not belong
to the neighboring regions of the spectrum. We reported also

in the table 1 score values using AMI, HI, and ARI. The best
score values are obtained using BCSC, where e.g., HI is equal
to 0.919 for Indian Pines and 0.942 for Salinas. Furthermore,
according to the comparative study, we can notice that the band
clustering methods, which uniformly better cluster the entire
region of the spectrum, produce better classification results.

4.5. Comparison of band clustering methods using 3-D CNN
The performances of band clustering techniques, i.e., SSBC,

BCIM, DCCA, RBCA, OBC and BCSC are studied in this sec-
tion. We applied the 3-D CNN model on the clusters of selected
bands to perform the spectral-spatial classification. Fig. 5 re-
ports the obtained classification using different band clustering
techniques.

The OA measures show that our BCSC method outperforms
SSBC, BCIM, DCCA, RBCA, OBC: the OAs with BCSC are
96.21% for Indian Pines, and 97.09% for Salinas, with k = 16.
Furthermore, the OBC approach gave satisfactory classification
results, with the best OA value(92.45% for Indian Pines and
92.86% for Salinas). The SSBC OA’s were respectively equal
to 85.14% and 89.94%. The proposed approach BCSC suc-
ceeded in selecting relevant spectral bands for both datasets, i.e.
each cluster contained the most similar bands, which improve
the spectral-spatial classification by avoiding the problem of re-
dundancy and the high correlation.

4.6. Classification Performance
In this section, we compare the classification results obtained

with our method with other DL-based techniques, including,
PL, DS, CNN, GCN, MDL, 3DL, FST, MSC, and 3DCNN.

Table 2 reports the OA measures computed for the Indian
Pines HSI. Based on these results, fused 3D-CNN gave better
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Table 3. Classification performances (PL, DS, GCN, CNN, MDL, 3DL, FST, MSC, 3DCNN, and Fused 3-D CNN (Ours)) : Salinas HSI (k = 16)

Class Samples Method
Train Test PL DS CNN GCN MDL 3DL FST MSC 3DCNN Ours

Brocoli-G-W-1 (C1) 200 1809 95.28 96.15 96.92 97.17 95.23 95.99 96.89 96.22 96.71 97.01
Brocoli-G-W-2 (C2) 372 3354 95.03 95.91 96.32 96.82 96.10 96.05 96.74 95.03 95.99 96.68
Fallow (C3) 197 1779 94.25 95.21 97.09 96.23 96.81 95.82 96.89 93.48 94.49 96.88
Fallow-R-P (C4) 139 1255 94.92 94.61 95.92 96.08 96.21 96.11 95.21 95.72 96.27 95.98
Fallow-S (C5) 267 2411 94.81 96.28 95.99 96.42 96.12 96.23 96.12 96.41 96.33 96.75
Stubble (C6) 395 3564 96.03 95.24 96.14 96.23 95.61 95.89 97.44 96.98 97.24 97.88
Celery (C7) 357 3222 96.24 96.12 95.96 96.45 95.08 96.17 97.12 96.94 97.12 97.51
Grapes-U (C8) 1127 10144 96.96 96.89 95.96 97.30 96.85 97.02 96.92 96.26 96.74 96.94
Soil-V-D (C9) 620 5583 96.01 95.53 95.98 96.49 97.19 96.98 97.03 97.18 97.02 97.26
Corn-S-G-W (C10) 327 2951 95.99 94.12 96.23 96.18 96.01 96.52 96.41 96.42 96.16 96.73
Lettuce-R-4wk (C11) 106 962 95.41 95.32 96.92 96.26 97.18 97.15 95.40 95.84 97.25 97.10
Lettuce-R-5wk (C12) 192 1735 94.18 94.72 95.99 94.83 94.87 96.11 94.95 94.31 95.89 96.28
Lettuce-R-6wk (C13) 91 825 95.32 96.13 95.98 96.24 96.28 95.77 96.40 96.22 97.14 97.21
Lettuce-R-7wk (C14) 107 963 96.48 94.73 95.98 97.54 96.19 96.99 96.85 95.65 97.28 97.16
Vineyard-U (C15) 726 6542 95.28 95.96 97.25 97.31 96.09 97.02 96.99 96.69 97.10 97.28
Vineyard-V-T (C16) 180 1627 96.74 96.07 96.62 97.00 97.41 97.32 96.84 97.32 96.94 97.62
OA (%) – – 95.94 96.89 97.55 96.84 96.93 96.72 96.75 96.42 96.97 97.65
AA (%) – – 94.72 96.87 96.20 96.63 96.82 96.54 96.69 96.24 96.81 97.52
kappa × 100 – – 95.81 96.60 96.48 96.71 96.88 96.65 96.93 96.35 96.86 97.49
Time (s) – – 321 301 195 210 245 402 364 394 371 289

classification rates, compared to other DL-based approaches.
with OA (resp. AA and kappa) equal to 96.98% (resp. 96.85%,
and 96.89%). However, the GCN model gave the best classi-
fication performance for the following two classes: ‘Corn-M’
and ‘Grass-P’, with an OA of 97.41% and 97.28%, respec-
tively, and the CNN gave better classification rates for these
three classes: ‘Alfafa-C’, and ‘Grass-T’, with an OA of 96.40%,
and 97.10%, respectively. For the remaining 11 out of 16 In-
dian Pines classes, fused 3-D CNN had the best performance
indexes. We find that the CNN and GCN models can give bet-
ter classification rates for some vegetation classes than the fused
3-D CNN model. Furthermore, the 3-D CNN has better clas-
sified some urban areas, e.g, the ’Building-G’ class, than the
rest of classifiers. However, our algorithm gave better results
for most of land use, e,g, woods, vegetation, etc. This proves
that the band clustering method selects representative spectral
bands throughout the spectrum and thus improves the spectral-
spatial classification. The selected bands for each cluster can be
considered as informative and discriminative for each specific
class.

For the Salinas HSI, the OA measure obtained with the fused
3-D CNN model is 97.65%, AA is 97.52%, and kappa is
97.39% as shown in Table 3. Also, we can observe that the
fused 3-D CNN approach gave better classification rates for 13
out of 16 classes, with a number of clusters of spectral bands
k = 16. Furthermore, most classification rates were greater than
97%. Here again, the GCN method gave the best classification
performances for the following three classes: ‘Brocoli-G-W-
2’, ‘Grapes-U’, and ’Lettuce-R-7wk’, with an OA of 96.82%,
97.30% and 97.54%, respectively. 3-D CNN provided better
classifications for the two classes: ‘Fallow-R-P’, and ’Lettuce-
R-7wk’, with OA of 96, 27%, and 97.25%, respectively. And

finally, the CNN model gave a higher classification rates for a
one class: ’Fallow’, with an OA of 97.09%.

According to the classification results, we can state that the
proposed approach fused 3-D CNN is more effective than many
other state-of-the-art DL-based methods. Also, it can select
the relevant spectral bands of HSI with limited labeled sam-
ples by preserving the physical meaning of data, i.e., the spec-
tral and spatial information simultaneously, and it also provides
a good spectral-spatial classification by exploiting the semi-
supervised graph model. The CNN and GCN models can give
better OAs for some vegetation classes. The MDL method has
better classified some vegetation classes. In the case where
other DL-based methods performed best OA for some classes,
our method needed only a few labeled samples for classifica-
tion with low computation time. In general, we can affirm that
band clustering and the fused 3-D CNN models can find most
relevant spectral bands and get a high classification rate by pre-
serving the spectral-spatial features.

5. Conclusion

In this paper, we proposed a novel method for HSI spectral-
spatial classification based on spectral band clustering and 3-
D convolutional neural network (3-D CNN). The proposed
method seeks to find the most discriminative, informative, and
distinctive, spectral bands using spectral clustering. Moreover,
a fused 3-D CNN model is proposed to extract the deep spectral
and spatial hyperspectral features from the different clusters,
which contain similar spectral bands. The main advantage of
the proposed model is to jointly preserve the spatial and spectral
information using 3-D CNN, which improves the classification
performances of HSI. Experimental results have shown that the
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method is more effective compared to state-of-the-art DL-based
classification methods, including CNN-based methods. As fu-
ture work, we will develop a multimodal graph convolutional
network (MGCN) to incorporate the spatial feature in order to
improve the spectral-spatial classification task.
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