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RÉSUMÉ. Nous étudions le problème de détection des petites inclusions immergées dans un fluide
visqueux et incompressible, lorsque le mouvement de celui-ci est régi par les équations de Stokes.
Des données du type Cauchy seront ainsi fournies seulement sur une partie frontière de l’écoule-
ment. A cet égard, nous essayons de développer une méthode originale basée sur une approche de
théorie des jeux, pour résoudre notre problème inverse. Un nouvel algorithme a été donc présenté
traitant simultanément la question de la reconstruction des données manquantes avec celle de dé-
tection d’objets. La notion de gradient topologique a été utilisé afin de déterminer le nombre d’objets
présents et leurs localisations approximatives. Dans cet objectif, une étude numérique présentée, a
été effectuée pour prouver l’efficacité de la méthode.

ABSTRACT. We consider the inverse problem of determining the locations of some small objects
immersed in a stationary viscous fluid, using incomplete boundary data. We carefully introduce a
novel method to solve this problem based on a game theory approach. A new algorithm is provided to
recover jointly the missing data and the locations of these objects. The detection problem is formulated
as a topological one. The efficiency of the proposed method is illustrated by numerical experiments.

MOTS-CLÉS : Problème inverse géométrique, Complétion des données, Calculs des variations, Sen-
sibilité topologique, Jeux de Nash

KEYWORDS : Geometric inverse problem, Data completion, Calculus of variations, Topological sen-
sitivity, Nash games



1. Introduction and motivation
The geometric inverse problem is central in various fields industrial, biological and

biomedical processes, such as the medical ultrasound imaging. In particular, in fluid me-
chanics, it is considered as a challenging problem and has in common been a subject of
many investigations. As a case in point, in the filling of molds, small gas bubbles can be
generated and trapped inside the material during its industrialization. Thus, the inverse
problem has the special objective of determining and detecting the approximate location
of these defects, as it is mentioned in [4].

Figure 1. An example of the geometric configuration of the problem.

Let us introduce a preliminary mathematical description of the problem. Consider a
bounded open domain Ω ⊂ Rd (d=2,3), which is filled with a viscous incompressible
fluid. We assume that a finite number of the objects included in this domain, and we also
suppose that these unknown objects are well separated and have the geometry form :

Ozk,ϵ = zk + ϵBk; ∀k ∈ {1, ...,m},

where ϵ is the diameter and Bk is bounded and smooth domain containing the origin.
The points zk ∈ Ω determine the location of the unknown objects inside Ω. Finally, we
suppose that for k ∈ {1, ...,m}, Ozk,ϵ is far from the boundary ∂Ω, which is composed
of two disjoint components Γi and Γc, see Figure-1.
The problem we study is to detect some small objects (location of the inclusions), from
given velocity f and fluid stress forces Φ prescribed only on the accessible part of the
boundary. Then, we denote O∗

ϵ = ∪m
k=1O∗

zk,ϵ
and we consider the following problem :

∆u−∇p = 0 in Ω \ O∗
ϵ ,

divu = 0 in Ω \ O∗
ϵ ,

σ(u, p)n = 0 on ∂O∗
ϵ ,

u = f on Γc,
σ(u, p)n = Φ on Γc,

(1)

where u denote the velocity filed, p the pressure, and σ(u, p) represents the stress tensor
defined by :

σ(u, p) = 2νD(u)− pId,

with ν is the kinematic viscosity of the fluid, D(u) = 1/2(∇u+t ∇u) is the deformation
tensor, and Id is the identity matrix.



In this work, we study a geometric identification problem related to the Stokes equa-
tions. The problem consists in determining the number of some small objects located in
a fluid flow domain and their approximate locations, using incomplete boundary data.
Thanks to an identifiability result of Habbal et al [8], demonstrated for the inclusion
Cauchy-Stokes problem, with a homogeneous Neumann condition imposed on the boun-
dary of the inclusions, we suggest here an alternating minimization approach.

The Cauchy problem is a difficult issue and is ill-posed in the Hadamard sense [12].
In view of the fact, the existence of solutions for arbitrary Cauchy data cannot be guaran-
teed and even if the solution exists, it may not depend continuously on the given data.
This problem is already discussed in literature by several methods and various algo-
rithms which were carefully considered like optimal control methods and game theory
approaches [2, 7, 8].

The aim of this work is to reconstruct the missing data, fluid velocity and stress forces
on the inaccessible part of the boundary, from available measurements on the accessible
part, in addition to determine the number of the small objects included in the domain, and
their approximate locations. In Section 2, we present our original approach to solve the
coupled problem of data completion and several objects detection. A topological sensi-
tivity analysis method is used in order to determine the optimal locations of these inclu-
sions. In that case a new algorithm is provided. In section 3, we illustrate the efficiency of
the proposed method by treating two different situations.

2. Data completion and localization of small objects
In this section, we present an approach to solve our inverse coupled problem by sol-

ving jointly the data completion and the determination of the number of the unknown
objects and their relative locations, using an original Nash game strategy. Analyzing this
strategy, three players are defined, playing non-cooperatively a Nash game : the two first
players are associated to the data completion while the third one is in charge of the iden-
tification problem.

Therefore, we define for any set of Oϵ = ∪m
k=1zk + ϵBk ∈ Ω three boundary value

problems :

(Pϵ
1)



Find (uϵ
1, p

ϵ
1) ∈ (H1(Ω\Oϵ))

d × L2(Ω\Oϵ) such that :
−div(σ(uϵ

1, p
ϵ
1)) = 0 in Ω \ Oϵ,

divuϵ
1 = 0 in Ω \ Oϵ,

σ(uϵ
1, p

ω
1 )n = 0 on ∂Oϵ,
uϵ
1 = f on Γc,

σ(uϵ
1, p

ϵ
1)n = η on Γi.

(Pϵ
2)



Find (uϵ
2, p

ϵ
2) ∈ (H1(Ω\Oϵ))

d × L2(Ω\Oϵ) such that :
−div(σ(uϵ

2, p
ϵ
2)) = 0 in Ω \ Oϵ,

divuϵ
2 = 0 in Ω \ Oϵ,

σ(uϵ
2, p

ϵ
2)n = 0 on ∂Oϵ,
uϵ
2 = τ on Γi,

σ(uϵ
2, p

ϵ
2)n = Φ on Γc.



(Pϵ
3)



Find (uϵ
3, p

ϵ
3) ∈ (H1(Ω\Oϵ))

d × L2
0(Ω\Oϵ) such that :

−div(σ(uϵ
3, p

ϵ
3)) = 0 in Ω \ Oϵ,

divuϵ
3 = 0 in Ω \ Oϵ,

σ(uϵ
3, p

ω
3 )n = 0 on ∂Oϵ,
uϵ
3 = τ on Γi,

uϵ
3 = f on Γc,

where η ∈ (H
1
2
00(Γi)

d)′ and τ ∈ H
1
2 (Γi)

d are given functions. Let us present the following
three costs : for Z = {z1, ..., zm} ⊂ Ω

J1(η, τ ;Z) =
1

2
||σ(uϵ

1, p
ϵ
1)n− Φ||2

(H
1
2
00(Γc)

d)′
+

1

2
||uϵ

1 − uϵ
2||2

H
1
2 (Γi)d

, (2)

J2(η, τ ;Z) =
1

2
||uϵ

2 − f ||2
H

1
2 (Γc)d

+
1

2
||uϵ

1 − uϵ
2||2

H
1
2 (Γi)d

, (3)

J3(η, τ ;Z) = 2ν||D(uϵ
3)−D(uϵ

2)||2L2(Ω\Oϵ)
. (4)

In a few words, there are three players : the two first players, player 1 and player
2, solve the associated mixed boundary value problem (Pϵ

1) and (Pϵ
2), using as strate-

gies variables the respective Neumann condition η ∈ (H
1
2
00(Γi)

d)′ and Dirichlet condition
τ ∈ H

1
2 (Γi)

d. Each of these two players tries to minimize its own cost, namely, J1 for
player 1 and J2 for player 2, while the third player, player 3, controls the strategy variable
Z = {z1, ..., zm} ⊂ Ω, where no information on the number m is given, and tries to mi-
nimize the Kohn-Vogeluis functional.

To approximate the solution of the original coupled problem, we seek to find a Nash
equilibrium, defined as follows :

Definition 1 A triplet (ηN , τN ,ZN ) ∈ (H
1
2
00(Γi)

d)′×H
1
2 (Γi)

d×Ω is a Nash equilibrium
for the three players game involving the costs J1, J2 and J3 if :

(NE)


J1(ηN , τN ,ZN ) 6 J1(η, τN ,ZN ), ∀η ∈ (H

1
2
00(Γi)

d)′,

J2(ηN , τN ,ZN ) 6 J2(ηN , τ,ZN ), ∀τ ∈ H
1
2 (Γi)

d,
J3(ηN , τN ,ZN ) 6 J3(ηN , τN ,Z), ∀Z ∈ Ω,

The minimization problem minZ⊂ΩJ3 can be formulated as a topological optimiza-
tion problem as follows : for fixed η ∈ (H

1
2
00(Γi)

d)′ and τ ∈ H
1
2 (Γi)

d,

(Pϵ)


FindZ∗ = {z∗1 , ..., z∗m} ⊂ Ω, such that :

J (Ω \ O∗
ϵ ) = minzk∈Ω J (Ω \ Oϵ),

where O∗
ϵ = ∪m

k=1z
∗
k + ϵBk ⊂ Ω, and J is defined by

J (Ω \ Oϵ) = JKV (u
ϵ
2, u

ϵ
3) := J3(η, τ ;Z). (5)

In order to solve the optimization problem (Pϵ) above, we will use the notion of
topological gradient. The topological gradient method has been known as an efficient



approach to solve shape optimization problems. It consists in studying the variation of
a cost function with respect to the modification of the topology of the domain Ω. For
simplicity in what follows, we will consider the case of a single object Oz,ϵ. Notice that
in the case of several inclusions, the results presented below are still valid.

2.1. The topological gradient method
The topological sensitivity analysis consists in the study of the variations of a design

functional J with respect to the insertion of a small inclusion Oz,ϵ at the point z. Then,
an asymptotic expansion of the function J can be obtained in the following form : for
ϵ > 0

J (Ωz,ϵ) = J (Ω) + ρ(ϵ)δJ (z) + o(ρ(ϵ)), ∀z ∈ Ω,
limϵ→0 ρ(ϵ) = 0, ρ(ϵ) > 0,

where Ωz,ϵ = Ω \Oz,ϵ and the function δJ (z) is the so-called topological gradient. This
function δJ (z) provides an information for creating a small hole located at z. Hence, it
can be used like a descent direction in an optimization process. Therefore, to minimize the
cost function, one has to create small hole at the location z when δJ is the most negative.
The concept of the topological derivative was introduced by Schumacher [5] in the case of
compliance minimization. Next, Sokolowski et al [11] extended it to a more general shape
functionals. Since that, it has been widely applied in literature for arbitrary shaped per-
turbations and a general class of cost functionals related to PDEs. One can cite the work
related to : the Laplace equations [1], the elasticity equations [3], the Maxwell equations
[10], and the stokes system [4], with a homogeneous boundary conditions prescribed on
the boundary of the objects.

An adaptation of the adjoint method to the topological context [3] is developed. Next,
we present the following proposition that describes a generalized adjoint method for the
computation of the first variation of a given cost functional.

Proposition 1 Let V be a Hilbert space. For ϵ ∈ [0, ξ), ξ > 0, consider a function uϵ ∈ V
that’s solution of a variational problem of the form

Aϵ(uϵ, v) = lϵ(v), ∀v ∈ V

where Aϵ and lϵ are a bilinear form and a linear form on V , respectively. For all ϵ ∈ [0, ξ),
consider a functional j(ϵ) = Jϵ(uϵ), where J0 is Frêchet differentiable at the point u0 and
its derivative being denoted DJ (u0). Suppose that the following hypotheses hold :

(i)- There exist two numbers δa, δl and a function ρ(ϵ) > 0 such that

(Aϵ −A0)(u0, vϵ) = ρ(ϵ)δa+ o(ρ(ϵ)),

(lϵ − l0)(vϵ) = ρ(ϵ)δl + o(ρ(ϵ)),

where vϵ is an adjoint state satisfying,

Aϵ(w, vϵ) = −DJ (u0)w, ∀w ∈ V.

(ii)- There exist a real number δJ such that

Jϵ(uϵ) = J0(u0) +DJ (u0)(uϵ − u0) + ρ(ϵ)δJ + o(ρ(ϵ)).



Then, the first variation of the cost function with respect to ϵ is given by

j(ϵ) = j(0) + ρ(ϵ)(δa+ δl + δJ ) + o(ρ(ϵ)).

2.2. Application to the model problem
The aim here is to derive an asymptotic expansion for our functional J defined in

(5) following the same steps described in the proposition 1 above. Then, we shall give
explicitly the variations δa, δl, δJKV .

We start by defining the -control free- Sobolev state spaces : Given g ∈ H
1
2 (Γi)

d and
ϕ ∈ H

1
2 (∂Ω),

Vϵ
1,g = {v ∈ H1(Ωz,ϵ)

d, such that divv = 0 inΩz,ϵ and v|Γi = g},

and
Vϵ
2,ϕ = {v ∈ H1(Ωz,ϵ)

d, such that divv = 0 inΩz,ϵ and v|∂Ω
= ϕ}.

The variational formulations associated to problems (Pϵ
2) and (Pϵ

3) can be stated res-
pectively as follows : {

Finduϵ
2 ∈ Vϵ

1,f such that :
A1,ϵ(u

ϵ
2, v) = l1,ϵ(v), ∀v ∈ Vϵ

1,0,
(6)

{
Finduϵ

3 ∈ Vϵ
2,f such that :

A2,ϵ(u
ϵ
3, v) = l2,ϵ(v), ∀ϕ ∈ Vϵ

2,0,
(7)

where

A1,ϵ(u
ϵ
2, v) = 2ν

∫
Ωz,ϵ

D(uϵ
2) : D(v) dx,

A2,ϵ(u
ϵ
3, v) = 2ν

∫
Ωz,ϵ

D(uϵ
3) : D(v) dx,

l1,ϵ(v) =

∫
Γc

Φϕds,

and
l2,ϵ(v) = 0.

Note that for ϵ = 0, we have Ω0 = Ω, and (u0
2, p

0
2) ∈ H1(Ω)d×L2(Ω) and (u0

3, p
0
3) ∈

H1(Ω)d × L2(Ω) solve the respective boundary value problems :

(P0
2 )


Find (u0

2, p
0
2) ∈ H1(Ω)d × L2(Ω) such that :

−div(σ(u0
2, p

0
2)) = 0 in Ω,

divu0
2 = 0 in Ω,

u0
2 = τ on Γi,

σ(u0
2, p

0
2)n = Φ on Γc,



(P0
3 )


Find (u0

3, p
0
3) ∈ H1(Ω)d × L2(Ω) such that :

−div(σ(u0
3, p

0
3)) = 0 in Ω,

divu0
3 = 0 in Ω,

u0
3 = τ on Γi,

u0
3 = f on Γc.

VARIATION OF THE BILINEAR FORM A1,ϵ AND A2,ϵ :
In order to obtain an asymptotic expansion of the variation of the bilinear form, we will
use a simplified technique proposed in [4] for the Stokes system. We can also use a trunca-
tion technique, which is developed in [3] for elasticity equations, with a Neumann boun-
dary condition on ∂Oz,ϵ.

Variation of A1,ϵ : We are interested in the asymptotic analysis of the variation

(A1,ϵ −A1,0)(u
0
2, v

ϵ
1) = −A1,ϵ(u

ϵ
2 − u0

2, v
ϵ
1) + (l1,ϵ(v

ϵ
1)− l1,0(v

ϵ
1))

= −A1,ϵ(u
ϵ
2 − u0

2, v
ϵ
1)

= −
∫
Ωz,ϵ

D(uϵ
2 − u0

2) : D(vϵ1) dx

=

∫
∂Oz,ϵ

σ(u0
2, p

0
2)n vϵ1 ds.

According to fundamental assumption (i) carefully formulated in proposition 1, we search
to find a real number δa1 ∈ R and a scalar function positive ρ such that∫

∂Oz,ϵ

σ(u0
2, p

0
2)n vϵ1 ds = ρ(ϵ)δa1 + o(ρ(ϵ)),

limϵ→0ρ(ϵ) = 0.

To this end, we start by splitting the integral above,∫
∂Oz,ϵ

σ(u0
2, p

0
2)n vϵ1 ds =

∫
∂Oz,ϵ

σ(u0
2, p

0
2)n v01 ds+

∫
∂Oz,ϵ

σ(u0
2, p

0
2)n (vϵ1 − v01) ds

= I1 + I2.

Next, properly using the obtained estimates by Ben Abda et al [4] for each term I1 and
I2, which are written as follows

I1 = −2νϵ2|B|D(u0
2)(z) : D(v01)(z) + o(ϵ2),

and

I2 = 2νϵ2|B|D(u0
2)(z) : D(v01)(z)− ϵ2D(u0

2)(z) :

∫
∂B

µ(y)yT ds+ o(ϵ2),

where µ ∈ H− 1
2 (∂B)d is the solution to the boundary integral equation : ∀y ∈ ∂B,

−µ(y)

2
+

∫
∂B

[2νDy(E)(x−y)µ(x))n(y)−P (x−y)µ(x)n(y)] ds(x) = −2νD(v01)(z)n(y),

with (E,P ) is the fundamental solution to the stokes system in R2. Therefore, we deduce

(A1,ϵ −A1,0)(u
0
2, v

ϵ
1) = −ϵ2D(u0

2)(z) :

∫
∂B

µ(y)yT ds+ o(ϵ2).



If B = B(0, 1), using the same technique as that used in [4], we obtain

δa1 = −4νD(u0
2)(z) : D(v01)(z),

where v01 is the solution to the associated adjoint problem :

A1,0(w, v
0
1) = −∂u0

2
JKV (u

0
2, u

0
3)w, ∀v01 ∈ V0

1,0.

Variation of A2,ϵ : Let us mention that the same bilinear form is available also for the
(Pϵ

3), namely, A1,ϵ ≡ A2,ϵ. Thus, the variation of A1,ϵ associated to (Pϵ
3) is written as

follows :
(A2,ϵ −A2,0)(u

0
3, v

ϵ
2) = −4νπϵ2D(u0

3)(z) : D(v02)(z),

where v02 is the solution to the associated adjoint problem :

A2,0(w, v
0
2) = −∂u0

3
JKV (u

0
2, u

0
3)w, ∀v02 ∈ V0

2,0.

VARIATION OF THE LINEAR FORM l1,ϵ AND l2,ϵ :
Since l1,ϵ and l2,ϵ are independent of ϵ, it follows trivially that δl1 = δl2 = 0.

VARIATION OF THE COST FUNCTIONAL JKV :
Let us now turn to the asymptotic analysis of the variation of the Kohn-Vogeluis functional
given by

Jkv(u
ϵ
2, u

ϵ
3) = 2ν

∫
Ωz,ϵ

D(uϵ
3 − uϵ

2) : D(uϵ
3 − uϵ

2) dx.

One can decompose this above functional as follows :

JKV (u
ϵ
2, u

ϵ
3) = J1(u

ϵ
2) + J2(u

ϵ
3)− 2J12(u

ϵ
2, u

ϵ
3),

where
J1(u

ϵ
2) = 2ν

∫
Ωz,ϵ

D(uϵ
2) : D(uϵ

2) dx,

J2(u
ϵ
3) = 2ν

∫
Ωz,ϵ

D(uϵ
3) : D(uϵ

3) dx,

J12(u
ϵ
2, u

ϵ
2) = 2ν

∫
Ωz,ϵ

D(uϵ
2) : D(uϵ

3) dx.

Variation of J1 : The variation of J1 reads

J1(u
ϵ
2)− J1(u

0
2) = 2ν

∫
Ωz,ϵ

D(uϵ
2) : D(uϵ

2) dx− 2ν

∫
Ω

D(u0
2) : D(u0

2) dx

= 2ν

∫
Ωz,ϵ

D(uϵ
2 − u0

2) : D(uϵ
2) dx+ 2ν

∫
Ωz,ϵ

D(uϵ
2 − u0

2) : D(u0
2) dx

−2ν

∫
Oz,ϵ

D(u0
2) : D(u0

2) dx



Using the Green formula applied to the problem (Pϵ
2), we get

2ν

∫
Ωz,ϵ

D(uϵ
2 − u0

2) : D(uϵ
2) dx =

∫
Γc

Φ(uϵ
2 − u0

2) ds.

Then, it follows that

J1(u
ϵ
2)− J1(u

0
2) = 2ν

∫
Ωz,ϵ

D(uϵ
2 − u0

2) : D(u0
2) dx− 2ν

∫
Oz,ϵ

D(u0
2) : D(u0

2) dx

+

∫
Γc

Φ(uϵ
2 − u0

2) ds.

(8)
Variation of J2 : The variation of J2 reads

J2(u
ϵ
3)− J2(u

0
3) = 2ν

∫
Ωz,ϵ

D(uϵ
3) : D(uϵ

3) dx− 2ν

∫
Ω

D(u0
3) : D(u0

3) dx

= 2ν

∫
Ωz,ϵ

D(uϵ
3 − u0

3) : D(uϵ
3) dx+ 2ν

∫
Ωz,ϵ

D(uϵ
3 − u0

3) : D(u0
3) dx

−2ν

∫
Oz,ϵ

D(u0
3) : D(u0

3) dx

Using the Green formula, one can get from (Pϵ
3) that

2ν

∫
Ωz,ϵ

D(uϵ
3 − u0

3) : D(uϵ
3) dx = 0.

Then, we obtain

J2(u
ϵ
2)− J2(u

0
2) = 2ν

∫
Ωz,ϵ

D(uϵ
3 − u0

3) : D(u0
3) dx− 2ν

∫
Oz,ϵ

D(u0
3) : D(u0

3) dx. (9)

Variation of J12 : The variation of J12 reads

J12(u
ϵ
2, u

ϵ
3)− J12(u

0
2, u

0
3) = 2ν

∫
Ωz,ϵ

D(uϵ
2) : D(uϵ

3) dx− 2ν

∫
Ω

D(u0
2) : D(u0

3) dx.

Using the Green formula applied to (Pϵ
2) and (P0

2 ), we obtain

2ν

∫
Ωz,ϵ

D(uϵ
2) : D(uϵ

3) dx =

∫
Γc

Φf ds+

∫
Γi

σ(uϵ
2, p

ϵ
2)n τ ds.

2ν

∫
Ω

D(u0
2) : D(u0

3) dx =

∫
Γc

Φf ds+

∫
Γi

σ(u0
2, p

0
2)n τ ds.

Then, we deduce

J12(u
ϵ
2, u

ϵ
3)− J12(u

0
2, u

0
3) =

∫
Γi

σ(uϵ
2 − u0

2, p
ϵ
2 − p02)n τ ds. (10)

Combining the variation (8), (9) and (10), the variation of the functional JKV becomes

JKV (u
ϵ
2, u

ϵ
3)− JKV (u

0
2, u

0
3) = −2ν

∫
Oz,ϵ

D(u0
2) : D(u0

2) dx− 2ν

∫
Oz,ϵ

D(u0
3) : D(u0

3) dx

+2ν

∫
Ωz,ϵ

D(uϵ
2 − u0

2) : D(u0
2) dx+ 2ν

∫
Ωz,ϵ

D(uϵ
3 − u0

3) : D(u0
3) dx

+

∫
Γc

Φ(uϵ
2 − u0

2) ds− 2

∫
Γi

σ(uϵ
2 − u0

2, p
ϵ
2 − p02)n τ ds.



Then for ϵ ∈ [0, ξ), we get

DJKV (u
0
2, u

0
3)(u

ϵ
2 − u0

2, u
ϵ
3 − u0

3) = 2ν

∫
Ωz,ϵ

D(uϵ
2 − u0

2) : D(u0
2) dx

+2ν

∫
Ωz,ϵ

D(uϵ
3 − u0

3) : D(u0
3) dx+

∫
Γc

Φ(uϵ
2 − u0

2) ds

−2

∫
Γi

σ(uϵ
2 − u0

2, p
ϵ
2 − p02)n τ ds.

Thus, we have

JKV (u
ϵ
2, u

ϵ
3)− JKV (u

0
2, u

0
3) = DJKV (u

0
2, u

0
3)(u

ϵ
2 − u0

2, u
ϵ
3 − u0

3)

−2ν

∫
Oz,ϵ

D(u0
2) : D(u0

2) dx− 2ν

∫
Oz,ϵ

D(u0
3) : D(u0

3) dx.
(11)

Next, the second term on the right hand side of (11) may be written as

2ν

∫
Oz,ϵ

D(u0
2) : D(u0

2) dx = 2ν

∫
Oz,ϵ

D(u0
2)(z) : D(u0

2)(z) dx

+ 2ν

∫
Oz,ϵ

[D(u0
2)−D(u0

2)(z)] : D(u0
2) dx

+ 2ν

∫
Oz,ϵ

D(u0
2)(z) : [D(u0

2)−D(u0
2)(z)] dx.

Using the Taylor theorem and the change of variables x = z + ϵy, we obtain

2ν

∫
Oz,ϵ

D(u0
2) : D(u0

2) dx = 2νϵ2|B|D(u0
2)(z) : D(u0

2)(z) + o(ϵ2).

The same way for the third term, we have

2ν

∫
Oz,ϵ

D(u0
3) : D(u0

3) dx = 2νϵ2|B|D(u0
3)(z) : D(u0

3)(z) + o(ϵ2).

Thus,
δJKV = −2νπ(|D(u0

2)(z)|2 + |D(u0
3)(z)|2).

Now, we are ready to give the main result of this paper.

Theorem 1 If d = 2, the function J has the following asymptotic expansion

J (Ωz,ϵ)− J (Ω) = πϵd(δa1(u
0
2, v

0
1) + δa2(u

0
3, v

0
2) + δJKV (u

0
2, u

0
3)) + o(ϵd),

where ∀z ∈ Ω, we have δa1(u
0
2, v

0
1) = −4νD(u0

2)(z) : D(v01)(z),
δa2(u

0
3, v

0
2) = −4νD(u0

3)(z) : D(v02)(z),
δJKV (u

0
2, u

0
3) = −2(|D(u0

2)(z)|2 + |D(u0
3)(z)|2),

with v01 ∈ V0
1,0 and v02 ∈ V0

2,0 are solutions to the adjoint equations associated respecti-
vely to the (P0

2 ) and (P0
3 ) :

A1,0(w, v
0
1) = −∂u0

2
J (u0

2, u
0
3)w, ∀w ∈ Vϵ

1,0,

A2,0(w, v
0
2) = −∂u0

3
J (u0

2, u
0
3)w, ∀w ∈ Vϵ

2,0.



The main steps in computing the Nash equilibrium are described in Algorithm be-
low. The gradient method used to solve the partial optimization problems, a fixed step to
minimize J1 and J2, and the topological derivative finding the approximate locations to
optimize J3.

Algorithm :
Set k = 0 and choose an initial guess S(0) = (η(0), τ (0)) ∈ (H

1
2
00(Γi)

d)′ ×H
1
2 (Γi)

d :
• Step I : Fix an initial shape Ok = ∅ and use the one-shot algorithm to determine the

set
Z(k+1) = argminZ∈ΩJ3(η

(k), τ (k);Z).

• Step II : Solve the Nash game between η and τ : Set p = 0.
Set Ω(k+1) = Ω \ Ok+1, where Ok+1 =

∪mk

i=1 B(zi, r).
1. Compute η(p), which solves minηJ1(η, τ

(p);Z(k+1)).
Evaluate η(p+1) = αη(p) + (1− α)η(p), with 0 ≤ α < 1.
2. Compute τ (p), which solves minτJ2(η

(p), τ,Z(k+1)).
Evaluate τ (p+1) = ατ (p) + (1− α)τ (p), with 0 ≤ α < 1.
3. Set S(p+1) = (η(p+1), τ (p+1)).
While ∥S(p+1) − S(p)∥ > εS , set p = p+ 1, return back to step 1.

• Step III : Compute rk = ||u(k)
2 − f ||0,Γc , where (u

(k)
2 , p

(k)
2 ) is the solution of the

problem (Pϵ
2). If rk < ϵN stop. Otherwise k = k + 1, go to Step I.

3. Numerical simulations.
In this section, we will present some numerical reconstructions in two dimensions to

show the efficiency of our novel approach, using synthetic data generated via a finite ele-
ment resolution of boundary value problem, corresponding to a homogeneous Neumann
condition on the boundary ∂O∗

ϵ with the code FreeFem++ [9].

The exterior boundary is assumed to be the rectangle Ω = [−0.5, 0.5]× [−0.25, 0.25],
which will be split in two components : the inaccessible part of the boundary Γi = {0.5}×
[−0.25, 0.25] and the accessible part Γc = ∂Ω \ Γi, where the Cauchy data are available.
In the following, the subscripts ex and opt denote, respectively, exact and optimal values.

Case A- Single object : First, we start testing the detection of a single circle
O∗ = C(zex, r) centered at zex and with radius r where zex = (−0.3,−0.15) and
r = 0.025.
Figure 2 presents the evolution of the three costs functionals as functions of overall Nash
iterations for unnoisy data. We remark that the three players show a fast decrease of their
costs before stagnating. The detection is quite efficient, see Figure 3(a)-(b), where 3(a)
presents the iso-values of the topological gradient and 3(b) presents the obtained domain
at convergence. Figure 4 show the reconstructed Dirichlet and Neumann boundary data. It
can be seen that the reconstructed Dirichlet data give a good approximation for the exact
one, while the reconstructed Neumann data deviate from the exact one, especially near
the endpoints of the unspecified boundary, which is the region of singularities. At conver-
gence, the approximate location zopt is equal to (−0.294,−0.174) and the relative error



on Dirichlet data
||τopt − uex|Γi

||L2(Γi)

||uex|Γi
||L2(Γi)

and Neumann data
||ηopt−σ(uex,pex)n|Γi ||L2(Γi)

||σ(uex,pex)n|Γi ||L2(Γi)
are

equal to 0.003 and 0.073 respectively.

Iteration number
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Figure 2. Case A- . Plots of the three costs J1, J2 and J3 as functions of overall Nash
iterations

Case B- Two objects : For this test, we want to detect two circles O∗
1 and O∗

2

centered respectively at (−0.4,−0.15) and (−0.4, 0.15), with shared radius r = 0.025.
The numerical results are illustrated in Figure 5 and 6. Figure 5 shows the iso-values of the
topological gradient and the obtained domain at convergence. The optimal locations are
equal to (−0.422006,−0.160662) and (−0.416224, 0.159772). In Figure 6, we present
the reconstruction of the missing Dirichlet and Neumann boundary data.

4. Conclusion
We addressed in this work the inverse problem of detecting unknown objects immer-

sed in a viscous fluid in a larger bounded domain from partial boundary measurements.
To treat this problem, we introduced an algorithm based on a game theory. In this case,
a three-player Nash game is considered here as a properly formulation of the above pro-
blem : The two first players target the data completion while the third one determine the
unknown locations of inclusions. The latter problem is formulated as a topological one.
In view of this, the topological gradient of the considered Kohn-Vogelius functional was
calculated. Then, we explored two different numerical tests which have shown precisely
that small inclusions close to the accessible part of the boundary can be detected, simul-
taneously to recovering the missing data on the inaccessible part. This novel approach
allows us to deal effectively with these problems, coupled with "ill-posedness."



(a) (b)

Figure 3. Case A- Detection of a single object (for unnoisy data). (a) the iso-values
of the topological gradient at convergence (b) the approximate location zopt is equal to
(−0.294,−0.174), while the exact one zex is equal to (−0.3,−0.15).
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Figure 4. Case A- Reconstruction of the missing boundary data (for unnoisy data). (a)
exact -line- and computed -dashed line- first component of the velocity over Γi (b) exact
-line- and computed -dashed line- second component of the velocity over Γi (c) exact -line-
and computed -dashed line- first component of the normal stress over Γi (d) exact -line-
and computed -dashed line- second component of the normal stress over Γi.



(a) (b)

Figure 5. Case B- Detection of two objects (for unnoisy data). (a) the iso-values of
the topological gradient at convergence (b) the approximate locations are equal to
z1opt = (−0.422006,−0.160662) and z2opt = (−0.416224, 0.159772), while the exact ones
are equal to z1ex = (−0.4,−0.15) and z2ex = (−0.4, 0.15).
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Figure 6. Case B- Reconstruction of the missing boundary data (for unnoisy data). (a)
exact -line- and computed -dashed line- first component of the velocity over Γi (b) exact
-line- and computed -dashed line- second component of the velocity over Γi (c) exact -line-
and computed -dashed line- first component of the normal stress over Γi (d) exact -line-
and computed -dashed line- second component of the normal stress over Γi.
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