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Abstract. We investigate the ability of a mesoscale model
to reconstruct CO2 fluxes at regional scale. Formally, we
estimate the reduction of error for a CO2 flux inversion at
8 km resolution in the South West of France, during four days
of the CarboEurope Regional Experiment Strategy (CERES)
in spring 2005. Measurements from two towers and two
airplanes are available for this campaign. The lagrangian
particle dispersion model LPDM was coupled to the non-
hydrostatic model Meso-NH and integrated in a matrix inver-
sion framework. Impacts of aircraft and tower measurements
are quantified separately and together. We find that the con-
figuration with both towers and aircraft is able to significantly
reduce uncertainties on the 4-day averaged CO2 fluxes over
about half of the 300×300 km2 domain. Most of this reduc-
tion comes from the tower measurements, even though the
impact of aircraft measurements remains noticeable. Imper-
fect knowledge of boundary conditions does not significantly
impact the error reduction for surface fluxes. We test alter-
native strategies to improve the impact of aircraft measure-
ments and find that most information comes from measure-
ments inside the boundary layer. We find that there would be
a large improvement in error reduction if we could improve
our ability to model nocturnal concentrations at tower sites.

Correspondence to:T. Lauvaux
(thomas.lauvaux@lsce.ipsl.fr)

1 Introduction

Construction of a coherent picture of the global carbon cycle,
compatible with all available observations remains an impor-
tant and elusive scientific challenge. The two complementary
approaches are termed bottom-up or top-down. In bottom-
up approaches pointwise estimates of CO2 exchange at the
surface (Baldocchi et al., 2001) are integrated in space and
time or are used to validate and calibrate land surface mod-
els (Krinner et al., 2005) together with satellite retrievals of
surface properties. In top-down approaches, these integrated
fluxes are inferred from their signatures on atmospheric con-
centration after being transported in the atmosphere (Enting,
2002). A coherent description requires that both methods
provide statistically consistent flux estimates. Furthermore,
the uncertainties on the two estimates must be small enough
that each estimate carries meaningful information. Uncer-
tainties on bottom-up estimates increase with spatial scale (as
more extrapolation is required) while uncertainties on top-
down estimates increase withdecreasingscale due to the ill-
conditioning of the inverse problem and the smoothing of at-
mospheric transport (Enting, 2002). The problem is compli-
cated by the difficulties of simulating atmospheric transport
at smaller scales on the continents (Geels et al., 2007; Pérez-
Landa et al., 2007). There have been very few cases with
dense enough observations to test consistency. The CERES
campaign described below (Dolman et al., 2006) is an at-
tempt to do this over a limited domain. This paper describes
the components of a top-down inversion system to estimate
fluxes over the domain of CERES and to evaluate the poten-
tial of various atmospheric measurements to constrain fluxes.
Actual inversion estimates will be described in a future paper
once all necessary data is validated.
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Fig. 1. Map of the vegetation types and the instrumentation over the CERES domain for the 2005 campaign.

The potential of measurements is evaluated by their im-
pact on the posterior uncertainty of fluxes (e.g.Gloor et al.,
2000; Rayner and O’Brien, 2001; Law et al., 2003). In prin-
ciple this requires only knowledge of the prior uncertainty
covariances for data and concentrations plus knowledge of
atmospheric transport, i.e. no dependence on data or fluxes
themselves. However there is a requirement for consistency
between the quality of the final simulation (difference be-
tween simulated and observed concentrations) and the data
uncertainty (Michalak et al., 2005). Realistic evaluation of
possible data must therefore consider the ability of the mod-
elling system to simulate it. The paper therefore includes a
simple comparison of prior simulation and observed concen-
trations.

The outline of the paper is as follows: First we briefly re-
view the CERES campaign. Then we introduce the various
elements of the inversion system. We commence the results
with a brief comparison of the a priori simulation and ob-
servations then discuss the constraint afforded by the vari-
ous observations. Finally we investigate various alternative
strategies for airborne and tower sampling.

2 Description of CERES

During CERES (Dolman et al., 2006), CO2 concentration
measurements on instrumented towers and aircraft were col-
lected during six weeks in May–June 2005. The CERES do-
main includes the pine forest of Les Landes (West) and a
large agricultural area with a mixture of winter and summer
crops, in the south west of France (Fig.1), from Bordeaux
in the north west to Toulouse in the south east. Compared to
other regional studies involving aircraft (e.g.Stephens et al.,
2000; Gerbig et al., 2003; Filippi et al., 2003), the CERES
domain covers a smaller region of about 300×300 km with
several flights each day. Other experiments on similarly-
sized domains were described by (Uliasz et al., 2005) which
comprised a larger set of instrumented towers but without air-
craft, and,Dolman et al.(2002) where aircraft were used but
without towers.

The CERES experiment involved two aircraft measuring
atmospheric CO2 during several Intensive Observation Peri-
ods (IOP), and two towers (Marmande and Biscarosse) mea-
suring atmospheric CO2 continuously (Fig.1). Both towers
provide CO2 concentrations every 30 min, which we average
hourly. The Biscarosse tower is located 2 km from the At-
lantic shore, in the pine forest of Les Landes, at 50 m height
on a 70 m hill. Marmande is located further inland, at 20 m
height, between the pine forest and the agricultural area to
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the East. In this paper, we study a 4-day period between
the 23 at 6 p.m. to the 27 of May at 12 p.m. which includes
the second IOP of the campaign (26 and 27 of May 2005).
The two aircraft, a Piper-Aztec and an ECO-Dimona, flew
ten times between the 23 and 27 of May during the morning
and the early afternoon, with different transects in the region.
We used all the flights in this study. Some flights consist of
a vertical profile above the pine forest; some others corre-
spond to a transect from Biscarosse to Marmande, and also
longer ones from Bordeaux to Toulouse mostly in the plan-
etary boundary layer. CO2 concentrations are measured at
high frequency (1 Hz), then averaged to three-minute periods
as detailed below.

3 Models

In order to perform a mesoscale inversion, the non-
hydrostatic atmospheric mesoscale model MesoNH (Lafore
et al., 1998) was coupled offline to the lagrangian disper-
sion model LPDM (Uliasz, 1994). MesoNH enables us to
simulate atmospheric dynamics at high resolution within the
domain together with high frequency CO2 observations of
the CERES campaign. The Lagrangian model is compu-
tationally efficient enough to allow the multiple backward
tracer calculations required for the inversion. While the res-
olution of mesoscale models improves the simulation (and
hence utility) of observations it comes at the cost of a lim-
ited domain size and limited duration. We use a two-way
nesting with resolutions of 8 km and 2 km with 65 levels to
13 km altitude. We simulated the 27 of May at 2 km reso-
lution which is an intensive period of flights, and included
it in the longer simulation of 23–27 May at 8 km resolu-
tion. The 2-way nesting configuration keeps the consistency
of the dynamics between the different grids, which allows
us to use the particle distributions from different runs to-
gether. These two simulations use the analysed data from
the ECMWF as initial and boundary conditions. Dynamical
fields were saved each 20 min, or five min during the flights,
for the off-line coupling with a lagrangian model. The dy-
namical fields at 2 km resolution allow a more precise de-
scription of the vertical transport during the flights. An inter-
comparison study between different RAMS (Regional Atmo-
spheric Modeling System) model versions, WRF (Weather
Research and Forecasting model), and MesoNH (all cou-
pled with biospheric models and prescribed anthropogenic
emissions) showed their ability to reproduce observed CO2
concentrations measured by aircraft during the CERES cam-
paign (Sarrat et al., 2007).

The tracer backward transport was simulated here by the
Lagrangian Particle Dispersion Model (LPDM) described by
Uliasz(1994). Particles are released from the receptors in a
“backward in time” mode with the wind fields generated by
the eulerian model MesoNH. In a “backward in time” trans-
port mode, particles are released in LPDM from the measure-

ment locations and travel to the surface and the boundaries.
Compared to a forward mode, all the particles here are used
to estimate fluxes, which reduces the computational cost of
the simulation. The lagrangian model LPDM was enhanced
to simulate aircraft observations based on the precise trajec-
tory of the airplane estimated by GPS (Global Positioning
System). At each second, 10 particles are released at the po-
sition of the aircraft. A longer integration time would yield
more particles and hence more reliable Lagrangian statistics
but would misrepresent the aircraft trajectory. We use higher
resolution for the aircraft measurement period because the
eventual particle distributions are more sensitive to the ex-
plicitly resolved vertical velocity.

The dynamical fields in LPDM are forced by mean hori-
zontal winds (u, v), potential temperature, and turbulent ki-
netic energy (TKE) from MESO-NH. At this resolution (less
than 10 km), turbulent motion corresponds to the closure of
the energy budget at each time step. This scalar is used to
quantify turbulent motion of particles as a pseudo random
velocity. Based on the TKE, wind, and potential tempera-
ture, the lagrangian model diagnoses turbulent vertical veloc-
ity and dissipation of turbulent energy. The off-line coupling
between an Eulerian and a Lagrangian model solves most
of the problems of non-linearity in the advection term at the
mesoscale. Most of the non-linear processes resolved by the
atmospheric model are attributed to a scalar representing the
velocity of the particles.

At each timestep (from one to 20 s), particles move with a
velocity interpolated from the dynamical fields of the MESO-
NH simulation (5 or 20 min). The timestep depends on
the TKE, following the discretization described inThomson
(1987). Each time a particle touches the surface, its posi-
tion and release time are saved. Particles here should not be
considered as individual molecules (lost when touching the
surface) but as an air parcel influenced by CO2 fluxes as it
moves along the ground.

The formalism for inferring source-receptor relationships
from particle distributions is described bySeibert et al.
(2004). At each time step, the fraction of particles (released
from one receptor at one time) within some volume, gives
the influence of that volume on the receptor. If the volume
includes the surface this will yield the influence of surface
sources. If the volume includes the boundary (sides or top) it
yields the influence of that part of the boundary. The particle
distribution at the beginning of the study period defines the
influence of the initial condition. The influence function is
thus decomposed into three different terms, corresponding to
the initial concentration, the surface source contribution, and
the boundary fluxes (Peylin et al., 2005).

Mesoscale inversions face the problem of modelling a
limited domain with potentially high contributions from the
boundary fluxes. Regional inversions at the continental scale
(e.g.Gerbig et al., 2003) use large domains and long study
periods to decrease the impact of the lateral boundary and ini-
tial concentrations. In our study, the time period and domain
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size are limited by computational cost which forces us to deal
with both explicitly. Concentrations at domain boundaries
are defined by a grid of 1◦ by 1◦ resolution (as typically used
by atmospheric general circulation models) on the horizontal
and 2 levels on the vertical corresponding to the boundary
layer and the free troposphere. The two levels for the bound-
ary fluxes appear as additional unknowns in the inverse sys-
tem. To separate these layers, we use an averaged height of
the boundary layer, given by the daily mean boundary layer
top. This coarse description of the boundaries has the ad-
vantage of introducing fewer unknowns in the inversion, and
still makes it possible to study the impact of boundaries on
the different receptors. The spatial extent of an aircraft obser-
vation is defined by the integration time for the related obser-
vation. A time interval of 3 min produced the best compro-
mise between the need for sufficient particles to gather good
statistics and the ability to resolve the observed distribution.
Considering the velocity of the aircraft (about 150 km/h), a
3-min time window corresponds to a receptor of less than
8 km long, which is the resolution of the dynamical fields in
Meso-NH.

4 Inversion

The lagrangian model backward simulations provide the ma-
trix of influence functions (frequently called the JacobianJ):
the sensitivity of each observation to each unknown. The size
of the J matrix corresponds to the dimension of the vector
of surface fluxes plus the unknown boundary concentrations.
The surface fluxes comprise 90×90 points multiplied by the
time resolution of surface fluxesδT (either 1 for a mean flux
or 2 for a split of day and night as explained below).

The boundary concentrations are divided into two levels
and 5 horizontal grid cells for each side of the domain. The
observations consist of 102 hourly concentration measure-
ments from each tower plus an observation each 3 min from
each flight, i.e. 852 observations for the ten flights. The num-
ber of elements in the J matrix is finally 8140×δT ×102×2
+ 8140×δT ×852.

The dimension ofJ makes it possible to solve the inverse
problem using the classical matrix solution for one averaged
flux per grid cell over the four days or for separate averaged
fluxes for day and night. (e.g.Tarantola, 1987; Enting, 2002).
Briefly we minimize a cost function:

χ2
=

1

2
[(s − s0)

T C(s0)
−1(s − s0)

+(Js − d)T C(d)−1(Js − d)] (1)

Wheres represents the unknown sources we seek,s0 the
a priori source estimate,d the observed data andC(x) the
uncertainty covariance of a vector quantity.s andJ include

concentrations at the boundary as described above. Minimiz-
ing the equation with respect tos yields

s = s0 + C(S0)JT
(
JC(s0)JT

+ C(d)
)−1

(d − Js0) (2)

More important for this work is the posterior error covariance
for sources given by the expression:

C(s)−1
= C(s0)

−1
+ JT C(d)−1J (3)

We do not solves in this paper, but focus on the uncertainties
of s (C(s)) that do not depend on the observationsd but only
on their errorsC(d) and a prior error covarianceC(s0). We
notice in Eq. (3) that the posterior covarianceC(s) depends
on the prior covarianceC(s0). This dependence will be dis-
cussed for our inversion by doubling the prior uncertainty for
the lateral boundaries, to estimate the impact on the error re-
duction for the surface and the boundaries. The value of the
prior flux error was set to 2 gm−2day−1 for the surface and
4 ppm for the boundaries.

Concerning the estimation of the observation uncertainty,
we assessed it by the comparison of the model results with
aircraft data during the day, and tower data during day and
night. The largest difference is about 3 ppm on different
flights of the 27 of May. Taking into account the uncertainty
of the LPDM model, and the lack of temporal correlations,
we set this diurnal observation error at 4 ppm. The diurnal
variability of the model error for tower data is shown in the
section6 over the four days.

Finally, we define the error reduction as :

r =
σ post

σ prior
(4)

whereσ (x) is the square root of the diagonal ofC(x). σpost
represents the posterior error, andσprior the prior error. Re-
trieving a single mean flux over four days is equivalent to
retrieving fluxes at every time step but assuming perfect tem-
poral correlation for every point. From the study ofCheval-
lier et al. (2006) based on daily CO2 fluxes simulated by a
biosphere model and CO2 flux observations, the time cor-
relation of the differences between modelled and observed
CO2 fluxes is still more than 0.5 after 5 days. Our assump-
tion of a perfect error correlation over four days is therefore
defensible. Concerning the spatial correlation of the prior er-
ror covariance, we assumed uncorrelated flux errors on the
domain, as the weakest constraint for this inversion. Using
a spatial error correlation would lead to assume spatial co-
herences in CO2 flux errors which were not clearly identified
at this scale byChevallier et al.(2006). We do not expect
our prior fluxes to capture the amplitude of the diurnal cycle.
We hence allow separate correction of diurnal and noctur-
nal mean fluxes. The separation is somewhat similar to that
of Zupanski et al.(2007) but separated by time rather than
by process. We also investigate the more optimistic option
where the prior flux captures diurnal variability sufficiently
that we need only correct the daily mean.
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(a) (b)

Fig. 2. CO2 concentrations observed (solid line), modelled with MesoNH and ISBA-A-gs (dashed line), and modelled with our linearised
transport for the inversion (dotted line), at the tower of(a) Biscarosse and(b) Marmande from the 23 of May at 6 p.m. to the 27 at 12 p.m.

5 Experiments

From Eq. 3, the error reduction depends on the prior and ob-
servation error covariance matrices and the Jacobian. For the
observation error, the model error is the main contribution
in our inversion system, compared to measurement uncer-
tainty, aggregation and representation errors. We estimated,
for each tower, the difference between modelled and mea-
sured atmospheric CO2 concentrations during the four days
using the prior estimates of flux. Additionally, we present the
results from the direct simulation of MesoNH coupled with
ISBA-A-gs to identify any differences between the inverse
linearised transport model and the initial direct simulation
used to generate the influence functions. This comparison
will be used to introduce the temporal structure of the uncer-
tainty and its related impact on the error reduction.

We conducted three experiments with the inverse system.
For each of them we optimized CO2 fluxes for the four days
of measurements and for each model pixel at 8 km resolu-
tion. In the first experiment, we tested the potential of the
observations performed during the CERES campaign to re-
duce uncertainties on CO2 fluxes. This study produces maps
of error reduction over the domain. The error reduction was
mapped to a final resolution at 8 km. The different receptors
are simulated separately during the period. Biscarosse, Mar-
mande, and ten different flights were combined to estimate
the final potential of the method. The last case uses only the
two towers, but we separated the flux into two terms, a diur-
nal and a nocturnal, including the temporal structure of the
observation uncertainty from the previous result. We assess
here the impact of the nocturnal and diurnal observations in
the system considering the previous comparison.

The second experiment aimed at optimizing the flight

paths of the next CERES campaign planned for April and
September 2007. For this, we tested different altitudes of
virtual flights in the boundary layer and tried to infer an opti-
mal height from diagnostics of particle distributions and from
the spatial extent of the influence function. Based on one
flight from the 2005 CERES campaign, we created 12 vir-
tual flights with constant altitudes from 100 to 2500 meters.
The horizontal coordinates used for these virtual flights cor-
respond to a long transect from Bordeaux to Toulouse. This
optimization gives a first constraint on aircraft measurement
strategy and on the dependency of spatial extent of the fluxes
influencing the observations to flight altitudes .

In a third experiment, the impact of the altitude of CO2
measurement towers was investigated. The sampling altitude
of near-ground stations continuously measuring CO2 largely
determines the spatial extent of the area influencing the mea-
surements. Tall towers observe CO2 concentrations in the
mixed layer and are able to provide information coming from
larger areas (Davis et al., 2003; Gloor et al., 2001). We mod-
elled here a potential tall tower of 300 m height at the exact
position of the actual Biscarosse tower (real altitude is 50 m).
The spatial variation of the surface flux contribution is then
compared to the actual one over the 4-day period.

6 Results

During this 4-day period, CO2 concentrations were measured
continuously at the two towers, except for a gap in the data
series of Biscarosse starting the 25 of May at 6 p.m. for about
40 h. The comparison of the prior fluxes transported by our
jacobian with the data shows the diurnal variability of the ob-
servation error, much larger during nighttime than daytime,
especially at the Marmande tower (Fig.2). The nocturnal
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accumulation of the atmospheric CO2 at this site reaches
530 ppmv during the second night, whereas the modelled
concentrations in the direct simulation and for the linearised
transport reach about 430 ppmv and 440 ppmv respectively.
During the day, the difference between the observed CO2
concentrations and the linearised transport solution is about
5 ppmv for the two tower measurement sites, consistent with
the previous quantification of the observation uncertainty. At
the biscarosse tower measurement site, the diurnal variabil-
ity of the CO2 concentrations is about 20 ppmv, with an error
of about 10 ppmv compared to the two modelled CO2 con-
centrations. The linearised transport solution shows a large
diurnal cycle up to 25 ppmv, slightly higher than observed at
the tower. Although these errors seem large, (Michalak et al.,
2005) noted that, for statistical coherence, the prior simula-
tion error must be smaller than the observational error plus
the prior flux error projected into concentration space. Here
we use the structure of the error mainly for guidance; it is
clear for example that nighttime data at Marmande would be
hard to use.

The backward in time simulation begins on the 28 at mid-
night and lasts 4 days until the 23 of May at 6pm. At the end
of the afternoon of the 27, a northerly wind prevails at the
Biscarosse tower, parallel to the sea shore. During the 26 and
the 27 of May, a sea breeze starts around noon, affecting the
Biscarosse tower (Fig.3b). The footprint of the Biscarosse
measurement tower is then localised to the West of the tower,
over the Atlantic Ocean. During the 27, the Marmande tower
is affected by a strong south eastern wind, amplified by a val-
ley effect. This wind, called the “Autan wind”, is generated
by the usual synoptic conditions at this period of the year,
with a low pressure system over the Pyrenees mountains. The
cyclonic system induced by the low pressure forces the air
mass from the mediterranean sea to enter the valley between
the Pyrenees mountains and the Montagne Noire (Fig.3a).
During the previous night, between the 26 and the 27 of May,
the two towers show similar footprints to the south east of the
measurement towers, corresponding to the Autan wind situ-
ation. At the Marmande tower, even though the main wind
direction remains SouthEasterly, the plume of particles dur-
ing the 26 of May shows a wave distribution corresponding
to changes in the wind direction. During the 24 and the 25
of May, similar meteorological situations occur alternatively
over the domain.

Figure 3 shows the dominant boundary influence from
the West of the domain for the beginning of the 4-day pe-
riod. The dominant location changes during the other days,
but remains localised, which justifies the fine description of
boundary conditions. Considering the particles released from
Biscarosse, we estimated the time distribution of the parti-
cles reaching the boundaries during the 27 of May (Fig.5).
Within 15 h (backward in time) of their release, 99% of them
left the domain. This result defines the maximum backward
integration time for LPDM. Beyond this (earlier in time)
there are no more particles in the domain hence no fluxes

that affect this observation. It also defines the time period of
observations affected by the initial condition. The synoptic
winds were weak during May 27 (about 3 m/s), which makes
this estimation an upper limit for the other days.

For the first experiment, we ran an inversion using only the
two towers, measuring throughout the 4-day period (Fig.6b).
In the vicinity of the towers ( tens of km), error reduction can
reach 90% but decreases rapidly to 50%. In the directions
of the main daily winds, the reduction is about 30% 300 km
from the towers, in a narrow band. On the boundaries, the
reduction of error is less than 1% and almost uniform on
different sides of the domain. When using only the flight
from Biscarosse to Marmande (Fig.6a), the largest error re-
ductions (about 90%) occur for one or two boundary pixels
(100 km per pixel) of the upper western boundary. South of
the trajectory, error reduction is about 5% in a small region of
few tens of km. Another region at the East of the Pyrenees,
also visible in the tower case, shows a reduction of about 1%.
The last inversion uses all the different available measure-
ments during the second CERES IOP (Fig.6c). It shows an
extended error reduction around the towers from 60 to 90%,
but also some regions of larger error reduction in the East
and South of the Pyrenees of 10 to 60%. As in the aircraft
case, a few grid cells of the upper boundary show a reduction
of about 90%, the rest being less than 10%. The error re-
duction at the surface is extended by the different flights, and
increased by 15 to 20%. Even though one flight shows lim-
ited impact (Fig.6b), the addition of the ten different flights
is noticeable in the final error reduction.

The last setup demonstrates the capacity of the inverse sys-
tem under more limiting assumptions. First, we solved for
two different fluxes corresponding to the daily and the noc-
turnal averaged fluxes. Second, we introduced a large diur-
nal variability in the observation uncertaintyC(d), of 4 ppmv
during the day, and 100 ppmv during the night, which corre-
sponds roughly to neglecting the nighttime data. This ex-
treme assumption also illustrates the impact of the nighttime
data in estimating both daytime and nighttime CO2 fluxes.
We used the results from the data comparison to estimate the
observation error, showing large values during nighttime at
Marmande tower, generalized here to both towers. The four
different error reduction maps presented in the Fig.7 show
the error reduction when retrieving the diurnal or nocturnal
fluxes, considering a constant observation uncertainty or a
large diurnal variability in the model error. The spatial ex-
tent of significant error reduction is reduced by the increased
number of unknowns (Fig.7a and b), and also by the larger
observation uncertainty (Fig.7c and d). Concerning the cases
using a constant observation error (Fig.7a and b), the error
reduction for the nocturnal flux shows a larger extension but
the high values (>30%) are reduced to a few pixels around
the towers, compared to the daytime flux error reduction.
If we increase the nighttime observation error (Fig.7c and
d), the error reduction decreases for both fluxes, which im-
plies that the nighttime observations constrain daytime and
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(a) (b)

Fig. 3. Distribution of the particles (logarithmic scale) released from Biscarosse (B) and Marmande (M) towers(a) the 27 of May between
6:30 a.m. and 7:30 a.m.(b) the 26 of May between 8:30 p.m.‘and 9:30 p.m.

Fig. 4. Number of grid cells with an error reduction of 1% (solid
line), with an error reduction equals or more than 30% (dashed line,
top x-axis) and the averaged value of the error reduction within the
domain (dash-dotted line) depending on the altitude of the virtual
flights.

nighttime fluxes in the same way. The nocturnal flux is
mostly constrained by the nighttime observations as shown
by the narrow high error reduction area around the tower, but
the diurnal flux is also constrained mostly by the nighttime
observations. During the morning, the low boundary layer
height concentrates the particles near the surface, whereas
the high boundary layer during the afternoon distributes the
particles throughout the column. As both periods are consid-
ered diurnal observations, most of the surface influence hap-
pens during the morning. The surface influence is propagated
(backward in time by transport) so that morning observations
are strongly linked to night time fluxes.

The second experiment arises from the first one, where it
appears that aircraft measurements are a weaker constraint
than those from towers. In order to optimize this contribu-
tion, a series of 12 virtual flights was simulated at different

Fig. 5. Time distribution of the particles leaving the domain, re-
leased in a 400-s interval (equivalent to 200 particles) at Biscarosse
tower.

altitudes, from 100 m to 2500 m. Three different diagnos-
tics were used to estimate the impact of the height of the
trajectory on the surface contribution (Fig.4): the number
of grid cells with a number of particles corresponding to an
error reduction greater than 1%, the highest reductions of er-
ror of each flight, and the averaged error reduction for all
the surface grid cells for each flight. The three different
measures are constant in the boundary layer, and decrease
quickly above it, with almost the same shape. Between 500 m
to 1000 m, the three measures of error reduction vary due to
a change in the horizontal mean wind. A local horizontal
wind shear affects the particle distribution when the simu-
lated aircraft flies in one of the main horizontal winds. The
vertical mixing in the boundary layer is strongly dominant
compared to the horizontal mixing, implying that any flight
measurement at one location within the boundary layer will
be influenced by a similar surface area.

The last experiment uses only the Biscarosse tower.
Thanks to the high resolution of the transport model, we esti-
mated the area of influence in the case of a tall tower (300 m)
at Biscarosse. Figure8a shows the particle “touchdowns”
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(a) (b)

(c)

Fig. 6. Error reduction (%) on surface fluxes over the 4-day period:(a) Piper Aztec flight(b) 2 towers,(c) 2 towers+10 flights.

for the real Biscarosse tower (50 m above the ground). The
most important region of influence covers a large area be-
tween Biscarosse and Marmande towers, and also 2 narrow
bands due to sea breezes on different days of the experiment.
We also see a smaller area at the East of the Pyrenees as
with the previous cases. Using the virtual tall Biscarosse
tower, the spatial extent of surface influence is reduced over-
all (Fig. 8b), especially around the tower, and elsewhere is
not visibly enhanced. For the boundary concentrations, re-
duction remains equivalent at less than 1%. The main dif-
ference is due to a change in nighttime response. Particles
released during nighttime are above the nocturnal boundary
layer, compared to the original Biscarosse tower accumulat-
ing particles in the reduced mixed layer.

This is a case where our choice to solve for night and day
fluxes together has a significant impact. Overall, it seems that
the use of tall towers should be treated carefully in inversions
on small regions. Although they are easier to model, (hence
can use lower data uncertainty) a large part of the observed
variability is associated with long range transport, affecting
the boundary conditions of the limited domain.

7 Discussion

For the second CERES IOP, estimated error reduction larger
than 30% covers an area of about 200 km in the North-South
direction and 100 km in the eastwest direction. This sug-
gests it is possible to do a meaningful top-down/bottom-up
comparison for the pine forest and part of the agricultural
area. Aircraft data showed a small but noticeable contribu-
tion at the surface, using the same observation error as the
one used for daytime tower data. The comparison fromSar-
rat et al.(2007) showed the relatively smaller observation
error for aircraft data modeling compared to near-ground ob-
servations, which is mainly due to the lower variability of
the CO2 concentrations at higher altitudes. We have already
noted the assumptions about spatial and temporal correla-
tions that underlie these results. Clearly, at the resolution
of a few kilometers, more work is necessary on the topic of
flux error correlation, both in space and in time.

In our inverse system, boundaries appear to be less well
constrained by observations than surface fluxes. The final
contribution of boundaries remains limited because particles
released in LPDM touch the surface three times on average
before leaving the domain after passing once through the
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Fig. 7. Error reduction (%) on surface fluxes over the 4-day period using only the tower measurements:(a) diurnal mean flux, constant
observation error of 4 ppm(b) nocturnal mean flux, constant observation error of 4 ppm(c) diurnal mean flux, using only daytime data(d)
nocturnal mean flux, using only daytime data.

(a) (b)

Fig. 8. Particle distribution over 4-day period:(a) Real Biscarosse tower (50 m),(b) Fictive tall tower at Biscarosse (300 m).
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Fig. 9. Error reduction (%) on surface fluxes over the 4-day period
for one mean flux, using only daytime tower observations.

boundaries. For aircraft measurements, the contribution of
the boundaries is more important due to the fact that most of
the particles released at higher altitudes reach the boundaries
without touching the surface. However, even with the use
of aircraft, the optimization of the boundary fluxes remains
limited because aircraft measurements represent many fewer
particles than continuous ground sites. This means also that
the impact of the boundaries on final CO2 concentrations ob-
served is reduced. The prior uncertainty of the boundaries
was increased to assess its impact on the posterior error. The
error reduction for surface fluxes remains constant while high
values at the boundaries show higher reductions. The result
is explained by Eq. (3). For a givenC(d) andJ there is a
larger reduction of error ifC(s0)

−1 is small, i.e. a large prior
uncertainty. The lack of impact on the reduction of error for
the surface is explained by the weak coupling between the
surface and boundary parts of the inversion.

Overall, for short term mesoscale inversions, the need for
constraint at the boundaries is clear for observations in the
free troposphere, but not in the boundary layer. Global mod-
els seem able to give this information at least in the context
of weak mean wind and strong convection near the surface.
The use of global models to constrain boundaries might also
be critical when using tall towers. As shown by the third ex-
periment, such towers are mainly influenced by large scale
motions.

The high spatial resolution used for this inversion shows
that the most observable flux contribution comes from re-
gions close to the measuring instruments within the bound-
ary layer. This spatial distribution is strongly dependent on
the quality of atmospheric transport, but mesoscale models
like MesoNH have shown their ability to reproduce complex
dynamical processes in the lower atmosphere during the day

(Sarrat et al., 2007). The nocturnal accumulation of CO2 in
the boundary layer at Marmande tower remains lower than
observed in the direct simulation (Fig.2b). The offline cou-
pling with the lagrangian model reinforces this additional
vertical diffusion. The integration of the particles near the
surface is optimal between 50 m to 100 m high during the
night, higher than expected. The reduced height of the noc-
turnal boundary layer explains the diurnal variability. The
absolute error on the boundary layer height during the night
induces a larger relative error compared to daytime, which is
directly related to the modelled CO2 concentration. The er-
ror reduction of the diurnal CO2 fluxes is less affected by the
larger nocturnal observation error than nocturnal CO2 fluxes.
But the final error reduction is larger for the nocturnal com-
ponent of the fluxes. Considering the inversion setup for
one mean flux, the error reduction using the two towers of
the campaign is reduced but still covers a few tenths of km
(Fig. 9). We suppose in this experiment the model is able to
reproduce the diurnal variability of the CO2 fluxes, as shown
in the study ofAhmadov et al.(2007) during the same cam-
paign using the coupled model WRF-VPRM. The observa-
tion error was set to 4 ppmv during the day and 100 ppmv
during the night following our comparison (Fig.2). The
increase of the diurnal observation error would mainly de-
crease the error reduction by few percents but won’t affect
seriously its spatial distribution. For future inversions, the
preliminary analysis of flux model errors, and simulated con-
centrations, will guide the definition of the final state vector,
especially the choice of a daily mean or diurnal and noctur-
nal components. The prior flux correlations will be guided
by analysis of flux tower measurements. The error reduc-
tion presented here would be affected by these additional el-
ements depending on the hypothesis introduced in the inverse
system.

The behaviour of error reduction is sensitive to vertical ve-
locity in the boundary layer. Averaged vertical velocity es-
timated in a preliminary simulation appeared to be weaker
than observed. A simple first approach to examining the im-
portance of this issue is to estimate the impact of strongly
varying day/night turbulence intensities and depth of mix-
ing. This can be approximated with vertical turbulent veloc-
ities of a few meters per second and mixing depths of one
to two kilometers for a strongly convective diurnal bound-
ary layer such as 27 May. The present LPDM parameteriza-
tion for boundary layer turbulence corresponds to Gaussian
but inhomogeneous conditions (Thomson, 1987; Du, 1997).
Using enhanced mixing in a test, we found that error reduc-
tion was smaller due to a loss of particles to the free tro-
posphere. A more sophisticated planetary boundary layer
scheme should be developed to improve the vertical mix-
ing in LPDM. We also examined the vertical mixing over
the ocean, mostly dominated by wind shear, weaker than ob-
served at the Biscarosse tower due to the complex dynamical
processes induced by the highly negative energy balance at
the surface. This development needs the description of other
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dynamic processes such as entrainment and detrainment at
the top of the planetary boundary layer. We will investigate
such a scheme in the context of an inversion using actual
measurements.

Finally, towers are the most important source of informa-
tion for the inversion of surface fluxes. At the same time,
aircraft measurements allow us to constrain the limits with
only a small effect on the final surface fluxes and their pos-
terior uncertainties. The combination of these observations
defines a complete framework to assess sources and sinks for
mesoscale domains.

8 Conclusions

We have developed a demonstration system for regional in-
verse modelling at the meso scale, and tested it for the
CERES intensive campaign (2nd IOP). Using available mea-
surement locations and dates, a large part (more than 50%)
of the domain (300 km×300 km) is constrained with an er-
ror reduction larger than 30%. No spatial a priori correla-
tion was used to enlarge the impact of the data. Concentra-
tion measurements on towers play a major role in reducing
uncertainties for surface fluxes, whereas aircraft measure-
ments above the planetary boundary layer influence mostly
the boundaries. The intensive period of flights improved the
error reduction at the surface by 15 to 20% compared with
the two tower-only case. This implies also a reduced impor-
tance of boundary conditions compared to surface influence
for near ground observations.
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