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[1] We design a Bayesian inversion method (gradient-based) to optimize the key
functioning parameters of a process-driven land surface model (ORganizing Carbon and
Hydrology In Dynamic EcosystEms (ORCHIDEE)) against the combination of prior
information upon the parameters and eddy covariance fluxes. The model calculates
energy, water, and CO2 fluxes and their interactions on a half-hourly basis, and we carry
out the inversion using measurements of CO2, latent heat, and sensible heat fluxes as
well as of net radiation over a pine forest in southern France. The inversion method
makes it possible to assess the reduction of uncertainties and error correlations of the
parameters. We designed an ensemble of inversions with different set ups using flux data
over different time periods, in order to (1) identify well-constrained parameters and
loosely constrained ones, (2) highlight some model structural deficiencies, and (3)
quantify the overall information gained from assimilating each type of CO2 or energy
fluxes. The sensitivity of the optimal parameter values to the initial carbon pool sizes and
prior parameter values is discussed and an analysis of the posterior uncertainties is
performed. Assimilating 3 weeks of half-hourly flux data during the summer improves the
fit to diurnal variations, but merely improves the fit to seasonal variations. Assimilating a
full year of flux data also improves the fit to the diurnal cycle more than to the
seasonal cycle. This points out to the key importance of timescales when inverting
parameters from high-frequency eddy-covariance data. We show that photosynthetic
parameters such as carboxylation rates are well-constrained by the carbon and water
fluxes data and get increased from their prior values, a correction that is corroborated by
independent measurements at leaf scale. In contrast, the parameters controlling
maintenance, microbial and growth respirations, and their temperature dependencies
cannot be robustly determined. The CO2 flux data could not discriminate between the
different respiration terms. At face value, all the parameters controlling the surface energy
budget can be safely determined, leading to a good model-data fit on different timescales.

Citation: Santaren, D., P. Peylin, N. Viovy, and P. Ciais (2007), Optimizing a process-based ecosystem model with eddy-covariance

flux measurements: A pine forest in southern France, Global Biogeochem. Cycles, 21, GB2013, doi:10.1029/2006GB002834.

1. Introduction

[2] Large uncertainties pertain to the distribution and
future evolution of terrestrial CO2 sources and sinks and
their controlling mechanisms. In particular, the key processes
determining the response of CO2 fluxes to changes in
climate, atmospheric composition and management prac-
tice, need to be better quantified when it comes to account
for carbon-climate feedbacks in coupled models for future
predictions. The question is whether we can exclude any of
those model’s responses with current observations. At
present, there is a global network of nearly 250 eddy

covariance flux towers with quasicontinuous in situ obser-
vations of CO2, H2O and energy fluxes. These data are
likely to be the best source of knowledge on terrestrial
carbon processes. However, the small spatial footprint of
each flux tower requires extrapolation (up scaling) techni-
ques and models. In that process, the spatial heterogeneity
of ecosystems or the effects of nonlinear processes on
spatial parameter averaging makes it difficult to extrapolate
small-scale process formulations to larger scales (regions,
continents, globe. . .). Advanced biogeochemical models
which encapsulate the processes determined at the flux
tower level and can extrapolate them into regional fluxes
appear as logical partners of eddy covariance flux networks.
[3] This paper focuses on a method to optimize processes

within a simulation model so as to optimally fit observations
of CO2, H2O, heat and net radiation fluxes. These four
independent fluxes are intimately coupled to each other via
the ecosystem functioning (CO2 and water fluxes are linked
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for instance via the stomatal conductance and soil moisture
budget), so that a multiple constraint approach to invert
model parameters must be the ultimate goal. The essence of
the multiple constraint approach is to use different kinds of
measurements to constrain model parameters to their opti-
mal values, and from these, to infer space-time distribution
of carbon/water fluxes and pools or of other sought eco-
system variables. Parameter estimation techniques have
been developed to optimize model parameters against CO2

fluxes [Vukicevic et al., 2001] at small scales, against CO2

atmospheric concentrations [Kaminski et al., 2002] at large
scale, or even against both flux and concentration signals
within carbon cycle data assimilation systems [Rayner et al.,
2005]. Recently, Wang et al. [2001] assimilated eddy-
covariance CO2, H2O and heat fluxes, and investigated
how many parameters could be inferred from these data.
Their model structure however did not couple CO2 fluxes
with the dynamics of carbon pools, and thus neglected some
of the key interactions within ecosystems.
[4] Here we optimize ecosystem functioning parameters

against net radiation and eddy covariance fluxes of CO2,
H2O and heat using a process-driven ecosystem carbon
model, ORCHIDEE (Krinner et al. [2005] and http://
www.ipsl.jussieu.fr/~ssipsl/), which calculates surface CO2

and energy fluxes and carbon pools. The study is performed
at the Bray forest, a temperate conifer site (Pinus Sylvestris)
where continuous eddy covariance fluxes are measured
continuously together with net radiation and ancillary in-
formation on leaf gas exchange, soil moisture and temper-
ature, vegetation structure and phenology. We first describe
briefly the model equations and the set of parameters that
are sought for. Second, we describe the Bayesian optimiza-
tion procedure. We then analyze the results of several
inversions where the four types of (half-hourly) flux obser-
vations are assimilated either individually or altogether and
either for a full year, or only few weeks in summer. In the
last section, we analyze the degree of confidence that we
can have on the optimization results.

2. Components of the Optimization Procedure

2.1. Eddy-Covariance Flux Data

[5] The Bray forest is located in southwestern France
(44�430N, 0�460W). It is a nearly homogeneous plantation of
30-year-old Pinus pinaster, of mean height 18 m, with a
projected Leaf Area Index (LAI) of about 3. The tree
canopy is confined to the top 6 m, while the ground is
covered by perennial grasses Molinia Coerula, with active
leaves between April and November and LAI in the range
1.4–2.5. The water table rarely drops below 200 cm, except
during periods of intense water stress [Ogée et al., 2003].
Note that the Bray forest is growing and thus acts on an
annual basis as a net carbon sink (average NEE equals to
�350 gC m�2 yr�1 over 1996–2001).
[6] Fluxes and meteorology are measured in situ using the

standardized CARBO-EUROFLUX protocol [Aubinet et
al., 2000] and produced on a 30-min basis. There are about
20% of data gaps in each flux time series but we only
optimize parameters against real data. A usual difficulty
when applying inverse methods to geophysical problems is

to properly define the uncertainties on the data. Eddy-
covariance fluxes contain random errors [Moncrieff et al.,
1996], which altogether limit their overall accuracy to
typically 10–20% [Wesely and Hart, 1985]. They also
contain biases with a systematic underestimation of fluxes
during calm nocturnal period [Goulden et al., 1996] and
larger errors during rainy periods [Wilson et al., 2002]. To
take such limitations into account, we will assume that the
sum of random and systematic errors follows a Gaussian
distribution of standard deviation equal to 15% of the
maximum datum during daytime (respectively 30% during
nighttime) and of null mean. The typical resulting uncer-
tainties on NEE, LE, H fluxes and Rn are of 2 mmol m�2 s�1,
30 Wm�2, 30 Wm�2, and 50 Wm�2 respectively. Although
this is likely not to be the case in reality, we will also assume
that half-hourly data errors are independent one from each
other (see section 6.4).

2.2. Biogeochemical Flux Model

[7] The ORCHIDEE biogeochemical ecosystem model
(‘‘ORganizing Carbon and Hydrology In Dynamic Eco-
systems’’) was originally developed for global applica-
tions, including the coupling with atmospheric models
[Krinner et al., 2005]. It is a process-driven model, which
calculates fluxes with the atmosphere on a range of
timescales, from 30 min to thousands of years. In the
following, we applied the model in a ‘‘grid point’’ mode,
forced by 30 min gap-filled meteorological measurements
made on the top of the tower of air temperature (Tair),
precipitation, specific humidity (qair), wind speed (Vwind),
pressure, short wave (RSW) and long wave (RLW) inco-
ming radiation. The model contains a biophysical module
dealing with photosynthesis and energy balance calcula-
tions each 30 min, a carbon dynamics module dealing
with the allocation of assimilates, autotrophic respiration
components, onset and senescence of foliar development,
mortality and soil organic matter decomposition on a daily
time step. The equations of ORCHIDEE are given by
Ducoudré et al. [1993] and Krinner et al. [2005] and in
http://www.ipsl.jussieu.fr/~ssipsl/. The optimized parame-
ters are defined in Table 1 and the model equations linking
them are given in Appendix A in Figure A1.
[8] As in most global biogeochemical models, the vege-

tation is classified into Plant Functional Types (PFT), with
13 different PFT over the globe. Distinct PFTs follow the
same set of governing equations, but with different param-
eters values, except for the calculation of the growing
season onset and termination, which involves a PFT specific
parameterization [Botta et al., 2000]. In order to treat the
presence of Molinia grasses below the trees at the Bray site,
we modeled the fluxes separately for the PFTs temperate
needleleaf forest and C3 grasses, and combine grasses
(30%) with trees (70%).

2.3. Parameters to be Optimized

[9] We optimize 12 parameters controlling directly or
indirectly the net CO2 flux (NEE), the latent heat flux
(LE), the sensible heat flux (H), and the net radiation
(Rn), according to Table 1. We distinguish, rather arbitrarily
between ‘‘biophysical’’ parameters acting on photosynthesis
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and transpiration (Kvmax, b, fstress), surface energy budget
(Kalb, KCsoil) and turbulent transfer of scalars across the top
of the canopy (Kra, Kz0), and ‘‘biological’’ parameters (KMR,
KGR, KHR, QMR, Q10) controlling plant and soil respiration.
Those parameters beginning with the letter K do not have a
direct biological meaning, but rather are multipliers of
‘‘real’’ parameters in the model. Moreover, some ‘‘real’’
parameters such as Kvmax or b depend on the PFT but we
will optimize them in the same ratio for the two PFTs of the
Bray site. In other words, we assume that the parameters for
understorey grasses are proportional to those of the trees.
This assumption is criticized in section 6.3. Hereafter, only
the values for the dominant PFT are given. Our choice of
parameters gives more emphasis on processes causing rapid
variations in fluxes (diurnal to seasonal) rather than long-
term changes in water and carbon budgets (e.g., tree growth,
soil carbon turnover). The reason for this is that we exploit
chiefly the information contained in the diurnal to seasonal
variability of the fluxes, using one year of these data.

2.4. Inverse Algorithm

[10] We aim to find a parameter set that minimize the
distance between model outputs and the corresponding
observations, considering model and data uncertainties,
and prior information on parameters. With the assumption
of Gaussian errors for both the observations and the prior
parameters, the optimal parameter set corresponds to the
minimum of the cost function J(x) [Tarantola, 1987],

J xð Þ ¼ 1

2
y�H xð Þð Þ tR�1 y� ? xð Þð Þ þ x� xbð Þ tP�1

b x� xbð Þ
� �

;

ð1Þ

that contains both the mismatch between modeled and
observed fluxes and the mismatch between a priori and
optimized parameters. x is the vector of unknown parame-
ters, xb the a priori value, H() the nonlinear model
(ORCHIDEE) and y the vector of observations. The covari-
ance matrices Pb and R describe a priori uncertainties on

Table 1. Definition of ORCHIDEE Parameters to be Optimizeda

Name Description (units) Prior Value Range

GS Optimization FY Optimization

Optimized Value Error Optimized Value Error

Photosynthesis
Kvmax Carboxylation

maximum rates
multiplier

1 0.1–2 1.48 2 (0.02) 1.19 1 (0.0006)

Photosynthesis and Transpiration
b Slope of stomatal

conductance
9 0.9–18 6.75 1 (0.01) 8.1 1 (0.0006)

fstress Soil water stress
dependency of the
canopy stomatal
conductance slope

0.5 0.05–1 0.27 3 (0.03) 0.43 25 (0.015)

Surface Energy Balance
Kalb Surface albedo

multiplier
1 0.5–2 0.5b 1 (0.02) 0.5b 10 (0.006)

KCsoil Soil heat capacity
multiplier

1 0.1–2 0.5 1 (0.02) 0.45 8 (0.005)

Turbulent Transport
Kra Aerodynamic resistance

multiplier
1 0.1–2 0.47 10 (0.2) 0.43 66 (0.04)

Kz0 Roughness length 1 0.1–2 0.97 70 (0.7) 0.58 166 (0.1)

Respiration
KMR Rate of plants

maintenance
respiration

1 0.1–2 1.11 80 (0.8) 0.91 35 (0.02)

KGR Rate of plants growth
respiration

0.28 0.028–0.56 0.13 20 (0.20) 0.2 35 (0.02)

KHR Rate of microbial
respiration

1 0.1–2 0.77 23 (0.23) 0.7 35 (0.02)

QMR Temperature
dependency of
maintenance respiration
(K�1)

0.2 0.02–4 0.09 41 (0.41) 0.17 18 (0.01)

Q10 Temperature
dependency of
microbial respiration
(K�1)

2 1–4 1b 8.2 (0.08) 2.34 57 (0.03)

aThe term GS stands for an assimilation of 3 weeks of growing season data, and FY denotes 1 year of flux data.
bEH denotes edge-hitting parameters whose optimized value reaches one bound of the optimization range. Given errors are normalized by the smallest

error. Absolute errors are also provided in parentheses.
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parameters, and on observations. Both matrices are diagonal
as we suppose the observation uncertainties and the param-
eter uncertainties to be independent. This assumption is
criticized in section 6.4.
[11] To determine an optimal set of parameters which

minimizes J(x), we use a gradient-based algorithm which
converges far more straightforwardly than Monte-Carlo
methods. In our case, the cost running numerous Monte-
Carlo simulations would be computationally too prohibi-
tive. We adopt a limited memory quasi-Newton algorithm,
called BFGS, that offers the possibility to prescribe an
upper/lower limit for each parameter [Byrd et al., 1995].
The BFGS algorithm requires at each step the calculation of
the value and of the gradient of J(x), the Hessian (second-
derivatives matrix) being approximated internally. With
ORCHIDEE, we typically converge to a minimum of J(x)
within �100 iterations.
[12] An exact estimation of the J(x) derivatives to find the

minimum would lead in principle to the construction of the
Linear Tangent model of ORCHIDEE, a rather sophisticated
operation [Giering and Kaminski, 1996]. Here we use instead
a classic finite difference method, assuming local linearity,

@J

@xi
� J xi þ eð Þ � J xið Þ

e
: ð2Þ

[13] We run twice the model for each parameter xi, the
critical point being to estimate a correct value for e. With too
small e values, the numerical computation of the derivatives
gets adversely affected by rounding errors. In Figure 1a, we

show that the derivatives of J(x) with respect to the param-
eters Kvmax, b and KHR tend to zero if e < 10�7. Conversely,
too large values of e (>10�2) violate the locality requirement.
The derivatives are less sensitive to the choice of e for the
range [10�4, 10�2]. We tested different e values in that range.
Thewell constrained parameters were robust to the value of e.
The poorly constrained parameters (@J/@xi very small) or the
pairs of highly correlated parameters were sensitive to the
value e, which is a limit of our approach but fortunately does
not degrade the inference of well-constrained parameters. In
the following, the results were obtained with e = 10�3.

2.5. Uncertainties and Correlations Assessment

[14] The BFGS algorithm does not provide uncertainties
nor correlations between parameters. It is yet crucial to
determine which parameters are best resolved by the obser-
vations and which ones are not. Once the minimum is
reached, we quantify the parameters uncertainties from the
curvature of the cost function at its minimum (inverse of the
Hessian). A large sensitivity of J(x) to a given parameter
indicates that this parameter is tightly constrained by the
measurements, i.e., has a small uncertainty. If the model is
linear with Gaussian error distributions, the posterior prob-
ability distribution of the optimized parameters is also
Gaussian [Tarantola, 1987]. Each parameter uncertainties
and error correlations can thus directly be estimated by the
variance-covariance matrix Pa,

Pa ¼ Ht
1R�1H1 þ P�1

b

� ��1
; ð3Þ

Figure 1. (a) Derivative of the cost function with respect to different parameters (Kvmax, b, and KHR,
Table 1), as a function of epsilon (e), the step for the finite difference used to calculate the derivative (in
normalized unit for all parameters, equation (2)). The derivatives are shown at the prior value of each
parameter. Too low value of epsilon gives null derivatives because of computer precision limits (see text).
(b) Cross sections of the cost function J(x) (equation (1)) for parameters Kvmax, b, and KHR around their
optimal values.
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with H1 the derivative of all model output with respect to
the parameters at the minimum of J(x). Large absolute
values of correlations (close to 1) indicate that the obser-
vations do not provide independent information to separate
a given pair of parameters.
[15] One thus need to verify the assumption of both the

locality and linearity approximation to compute Pa. Cross
sections of the cost function J(x) for different parameters
near their minimum are useful with that respect. This is
illustrated in Figure 1b for Kvmax, b and KHR parameters. All
J(x) curves are of parabolic shape, which confirms a locally
linear behavior of the model. Figure 1b also shows that the
estimated parameters effectively represent a minimum of the
cost function and, that some parameters are better con-
strained than others. From systematic inspections of the
curvature of J(x) for each parameter, we checked that
ORCHIDEE is only weakly nonlinear with respect to the
selected parameters.

3. Optimization Settings

3.1. Time Windows of Inverted Flux Measurements

[16] We perform optimizations, differing by the period
during which the flux data are assimilated. First, we use flux
data during the summer peak of the growing season (19 July
to 9 August), when the diurnal cycle is most pronounced.
This is called the GS (Growing Season) inversion. Second,
we use alternatively flux data for the entire year 1997 which
corresponds to the FY (Full Year) set of inversions. The GS
inversions was performed in order to test whether the
ORCHIDEE model is generic enough to improve the
seasonal flux variations using the parameters derived only
from diurnal cycles during the growing season peak.

3.2. Initial Carbon Pools and State Variables

[17] Each model run requires knowledge of the initial
biomass and soil carbon pool sizes. Unfortunately, there is
no accurate enough pool data (nor site history data), and the
model is likely not able to realistically simulate tree growth.
To overcome this problem, we initialize biomass and soil
carbon pools to their equilibrium values from a 250-year-
long spinup driven by cycling 1997–1998 climate inputs.
The initialization results in modeled annual NEE equal to
zero, whereas in reality, the forest is a net carbon sink of
nearly 350 gC m�2 yr�1. We let the inversion corrects for
this bias, by optimizing parameters KMR, KGR, KHR which
scale plant and heterotrophic respirations, and thus indirectly
also determine pools sizes that are plainly compatible with
the observed annual NEE (Appendix A, equations (A8),
(A9), (A11) and (A12)). We further quantify in section 6.2
the sensitivity of optimized parameters to these initial
conditions.

3.3. Initial Parameter Uncertainties and Bounds

[18] Initial parameters uncertainties and bounds are cru-
cial in Bayesian inversions to avoid retrieving unrealistic
values. Because we want to study the maximum information
content of the data, we accordingly assign large prior
uncertainties on parameters. The Bayesian term thus has a
smaller influence on the retrieved values, but it still ensures

the stability of the algorithm toward a proper determination
of the minimum. The a priori value of parameters acting as
multipliers (Ki) is obviously the unity. For most parameters,
the prior uncertainty, lower and upper bounds are set to
100%, 1% and 200% respectively of their prior value (see
Table 1). For Kalb and Q10, we narrow the lower bound to
50%, because albedo <0.1 is unrealistic for forests, and
because Q10 < 1 would violate the structural assumption that
microbial respiration increases with temperature.

4. Fit to the Observations

4.1. Diurnal Cycle During the Growing Season

[19] We discuss the results of the GS and FY inversions
together. They are shown in Figure 2. In the a priori model
values, the diurnal cycle amplitude of each flux is under-
estimated, with NEE, LE and Rn being too weak during the
day, and H being too large during the night. The GS
inversion successfully corrects the diurnal cycle with a cost
function reduction equating 41%, 37%, 32% and 84% for
respectively NEE, LE, H and Rn data. In the GS and FY
inversions, the model-data mismatch is greatly reduced,
except for the sensible heat flux at night. However, the
FY inversion only partially improves the fit to NEE during
the day (Figure 2).
[20] For NEE, the good agreement between a priori model

results and data during the night suggests that GPP is the
critical gross flux that is underestimated. Shortcomings of
the prior model can be seen both for the amplitude of
daytime NEE and for the phase at dawn and in the evening
(Figure 2). The uptake of CO2 starts earlier and terminates
later in the model than in the data. The optimization nearly
doubles the fixation of CO2 by plants at midday in the GS
case, but it does not correct for the phase mismatch.
Different explanations are possible for this. In the morning,
the turbulent flux measurements can no longer be inter-
preted as instantaneous net fluxes in presence of a release of
respired CO2 formerly accumulated within the canopy
[Aubinet et al., 2000]. The magnitude of this storage effect
(not present in the model) is still under investigation for the
Bray site and could not be accounted for in this study.
However, this effect occurs only at dawn and cannot explain
the phase misfit in the evening. We attribute the evening and
at least part of the morning misfit to the ‘‘big leaf’’
approximation. As ORCHIDEE does not distinguish
between shaded and sunlit leaves, this model likely over-
estimates the amount of radiation intercepted by the canopy
at low sun angles. This deficiency or other similar structural
deficiencies related to stomatal functioning could not be
corrected given the set of ‘‘photosynthetic’’ parameters we
optimize.
[21] For the latent heat flux (LE), the GS and FY

optimizations nicely increase the diurnal cycle amplitude,
in a consistent way with the increase in carbon uptake.
Contrary to NEE, however, there is no phase mismatch for
LE (Figure 2). Given the covariance of NEE and LE, this
would logically favor our hypothesis of storage ‘‘contami-
nation’’ of instantaneous NEE flux data in the morning
when the LE flux is small. For the sensible heat flux (H), the
prior model fits the daytime observations well, but the
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nighttime values of H are overestimated, even after the
optimization. That misfit shows a structural problem of
ORCHIDEE where a single surface temperature is calculated
(Ts) ignoring thermal stratification within the canopy. Ogée
et al. [2003] showed using a multilayer model, that a single
temperature for the whole canopy does not allow to accu-
rately model H at the Bray forest. The simulated nocturnal
temperature gradient between the surface and the top-of-the-
tower reference level (28 m) is probably too large for
situations when a temperature inversion develops in the
canopy, yielding even a slightly negative sensible heat flux
during the night. Finally, we can see that the optimization is

always able to successfully modify the overall energy
balance, changing either the albedo, LE, H or the ground
heat storage to balance the observed net radiation.

4.2. Results for the Full Year

[22] We first tested whether the diurnal variability derived
from the GS optimization parameters gets also improved for
other periods of the year when no data were assimilated.
Figure 3 shows, for each type of data, the bin-averaged
monthly diurnal cycles for the months of April, July,
October and December as predicted with the GS-optimized
parameters (dashed lines). As expected, the model fit to the

Figure 2. Bin-averaged diurnal cycles for the GS period (days 195–216 of 1997) and for each type of
data (NEE, LE, H, and Rn). Diamonds with the errors bars represent the data and their uncertainties.
Dotted lines show prior model outputs and solid and dashed lines model outputs with optimized
parameters values for the full year (FY) and the growing season (GS) cases, respectively.
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observed diurnal cycles is improved by the GS optimization
for July and for each flux. For the rest of the year however,
the improvement only concerns LE and H, while daytime
NEE remains largely overestimated, both with too large
daytime uptake (October) and with too large nighttime
release (December). This result may indicate rigidities in
ORCHIDEE and/or the need to optimize parameters specif-
ically related to seasonal variability (e.g., phenology). The
seasonal variations of the photosynthesis parameters are
indeed probably underestimated. In ORCHIDEE, the car-
boxylation rates are function of temperature and leaf age
[Medlyn et al., 2002] and in further work, the parameters of
this function should be optimized. If we now compare the
optimized NEE between the GS optimization and the FY
optimization, Figure 3 shows that the fit to daytime NEE in
the FY case (plain line), is underestimated in July but better
for the other months than in the GS case. The FY optimi-
zation seeks for an overall compromise among all the
months with the model being too rigid to find a perfect
adjustment each month. There are even few months, March,
September, and October, where the a posteriori model-data

fit is worse than in the prior (not shown). For other fluxes
than NEE, we obtained no clear difference between the GS
and the FY fit suggesting that the simulated components of
the energy balance are well assessed for ‘‘slow’’ and ‘‘fast’’
timescales in ORCHIDEE, except for the sensible heat flux
during the night. We conclude from this that we cannot
optimize the ORCHIDEE model using only few weeks of
high-quality data in summer (GS case) and that we rather
need to use the information from a full year (FY case).

5. Parameter and Uncertainty Estimates

[23] We now examine the estimated parameter values,
and their uncertainties, mainly for the FY inversion
results. We intend to identify (1) parameters that can be
robustly inferred from flux data to improve the model, and
(2) parameters that have a nonregular behavior by being
set to one of their bounds. These ‘‘Edge-Hitting’’ (EH)
parameters may illuminate model structural deficiencies,
or show an improper setup of the inverse problem. In
Figure 4 we display the prior and posterior value of the

Figure 3. Bin-averaged monthly diurnal cycles for all data type and for the months of April, July,
October, and December. Observations (OBS), a priori model simulation (prior), and model simulation
with optimized parameters from 3 weeks of data (GS) and from 1 year of data (FY) are shown.
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parameters together with the prior and posterior uncertain-
ties. Each parameter is normalized by its prior estimate (value
of 1) so that box widths in Figure 4 are normalized prior
uncertainties. In complement, Table 1 also reports the opti-
mized parameters values and uncertainties. Three main types
of uncertainties are discussed in the following: (1) the ‘true’
uncertainty of posterior parameter given by the shape of the
posterior probability density function, (2) the errors due to the
limited precision of the optimizationmethod to detect the best
estimate within a given PDF, and (3) the uncertainty due to
unknown state variables at the beginning of the observation
period (biomass, soil carbon, reserves, soil moisture). The
‘‘true’’ uncertainties computed from equation (3) are globally
underestimated. The shapes of the PDF are indeed not strictly
coherent with the information content of the data, as detailed
in section 6.4. However, the relative ‘‘true’’ uncertainty
between the different parameters is informative and Table 1
thus reports each value relative to the best constrained
parameter error (b). The uncertainties of type 2 and 3

(illustrated in Figure 6 in section 6.1), being linked to the
inverse setup, are discussed in sections 6.1 and 6.2.

5.1. Photosynthesis Parameters

[24] The value of Kvmax, a multiplier that scales both Vcmax

and Vjmax gets significantly increased from its prior estimate
(Table 1) which reflects the increase in daily NEE required to
match the measurements (Figure 2). For the dominant tem-
perate needleleaf forest PFT, the FY optimization gives at
25�C Vcmax = 42.7 mmol m2 s�1 and Vjmax = 83.3 mmol m2

s�1. Note the larger increase in photosynthetic capacities in
the GS optimization (+48% versus +19% in FY), which
reflects the larger increase in the NEE diurnal cycle in this
case (Figure 3). Overall, both optimizations robustly indicate
that the prior Vcmax and Vjmax values were underestimated for
that PFT at the Bray site. The large error reduction in Kvmax

(Table 1) compared to other parameters enforces that results.
[25] The value of b, the slope of stomatal conductance

versus assimilation decreases by nearly 25% in the FY
optimization (Table 1). Decreasing b compensates for the
increase in Kvmax. At first glance, we might expect b to
increase in order to enhance the modeled LE. However, the
Kvmax large increase, driven by daytime NEE, propagates to
an enhanced stomatal conductance which is probably too
strong, and thus forces b to get reduced. However, the small
change in the value of b suggests that its prior value was
already realistic, and that the so-called Ball-Berry formula-
tion [Ball et al., 1987] is a good predictor of the stomatal
conductance at the Bray site. Like for Kvmax, b is relatively
well constrained by the data, indicating that NEE plus LE
measurements strongly constrain those two key photosyn-
thetic parameters (see section 5.4).
[26] The stomatal conductance also depends on the soil

water content through the parameter fstress (Appendix A,
equation (A3)). The value of fstress gets reduced by nearly
15% in the FY optimization (Table 1). Recall that fstress
defines a threshold below which the model reduces stomatal
conductance in response to soil water limitations. Its initial
value, defined to be the same for all PFT, is probably
overestimated at the Bray site, knowing that conifers species
suffer less than other species from soil water limitations
[White et al., 2000]. The McMurtrie et al. [1992] relation-
ship we use to account for water effects on photosynthetic
activity may be also too simplistic as well as the treatment
of the soil hydrology with only two reservoirs (‘‘double
bucket model’’). The future use of a more physical approach
based on diffusion-type equations will be more convenient
[de Rosnay et al., 2002].

5.2. Respiration Parameters

[27] We found that all respiration parameters are poorly
constrained by the flux data and remain strongly sensitive to
their prior settings or to the initial carbon pools settings. For
the five parameters controlling respiration, KMR, KHR, KGR,
Q10, QMR we determined a smaller uncertainty reduction
than for all other parameters, and strong correlations among
errors in distinct parameters: we obtain values between 0.5
and 0.8. This points out to the fact that NEE alone cannot
properly separate each respiration component, nor the
pertaining parameters. Note that the Q10 parameter exhibits
an ‘‘edge-hitting’’ behavior toward its lower bound (Q10 = 1)

Figure 4. Parameter values and errors estimated by the
optimization. Optimized values are normalized by the prior
estimate (horizontal line in the boxes centered around one).
The boxes’ half height equals the normalized a priori
uncertainty. Within each box are reported the parameters
and errors retrieved from 3 weeks of data in the GS
inversion (pluses) and from 1 year of data in the FY
inversion (diamonds).
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in the GS case. The inversion thus flattens the temperature
dependency of heterotrophic respiration. This indicates that
the nighttime NEE data do not exhibit significant correla-
tions with soil temperature during the short GS assimilation
window of 3 weeks. This result is consistent with the fact
that the so-called ‘‘Q10 relationship’’ has been obtained over
seasonal timescales using soil respiration data regressed
against air temperature [Raich and Potter, 1995] or soil
temperature [Raich and Schlesinger, 1992]. Therefore this
relationship has conceivably no predictive power for match-
ing day-to-day NEE variability. However, the full year
inversion (FY) also poorly determines the respiration
parameters. We found that the relative error reduction for
each respiration parameters is globally the same in both
optimizations (Table 1). As further discussed in section 6.1
the information contained in the diurnal cycles of NEE
probably overcomes the signal of smoother seasonal varia-
tions when assimilating one year of 30 min flux data points.

5.3. Energy Balance and Turbulent Transport Related
Parameters

[28] We found that Kalb, a multiplier of the surface albedo,
is decreased to its lower bound, yielding to unrealistic

albedo values (�0.1) for conifers (Figure 4 and Table 1).
This may be due to a model deficiency related to the energy
balance calculation. We outlined above in 4.1 a mismatch
for nighttime H, which could reflect the use of a unique
model surface temperature, Ts, thus overestimated at night.
The albedo decrease is consistent with the necessity to
increase Ts during the day in order to balance the net
radiation flux, but this daytime rise in Ts gets probably
too large in the big-leaf approximation, and propagates into
an overestimated nighttime H flux (Figure 2). To counteract
this effect, the soil thermal capacity, KCsoil gets also reduced
by a factor of two (Table 1). Such a change diminishes the
soil heat storage during the day (equation (A16)) and helps
to maintain cooler surface temperatures during the night.
Another possibility is that the adjustment of KCsoil occurs as
a ‘‘free’’ degree of freedom in order to close the surface
energy balance, which eddy-covariance observations gener-
ally fail to do [Wilson et al., 2002].
[29] The parameters Kra and Kz0 controlling turbulent

transport across the top of the canopy are reduced in GS
and FY inversions. This implies a reduction in aerodynamic
resistance ra after equation (A7), and in turn, helps to increase
H and LE during the day to match the data (Figure 2). The a
priori value of ra was probably overestimated because the
roughness height z0 itself was too high owing to the over-
estimated surface temperature. The small uncertainty reduc-
tion for Kra and Kz0 as compared to other parameters is
however, rather surprising. A closer look at the different
resistance terms indicates that ra is small (�30 s m�1)
compared to the stomatal resistance (�200 s m�1), explain-
ing the weak sensitivity of NEE and LE to turbulent
transport parameters Kra and Kz0.

5.4. How Each Flux Constrains the Different
Parameters

[30] Figure 5 compares the FY-optimization parameters
obtained by assimilating only one type of flux (either NEE,
LE, H or Rn) with those obtained by using all fluxes, or the
pair NEE plus LE. The main conclusion is that assimilating
the couple NEE, LE allows to constrain each parameter
almost equally as well as when using the four fluxes, except
for KCsoil. The optimization of Kvmax and Q10 against NEE
data alone, leads to the same solution than when using all
the fluxes (compare points and crosses in Figure 5).
Assimilating only the LE data (diamonds in Figure 5) is
also powerful enough to robustly recover all parameters
controlling the energy balance, b, fstress, Kra, and Kalb. Apart
for the soil thermal capacity KCsoil, for which the optimiza-
tion requires all four different fluxes, one could have used
only NEE and LE to optimize the parameters. This result
indicates that H and Rn linked to the latent heat flux via the
energy balance closure do not bring any significant addi-
tional information, at least in our set up, and for the site
chosen.

6. Discussion

[31] Discussion is focused on the implications of the
inversion set up on the parameter values and their uncer-
tainties. In particular, we address how much information on

Figure 5. Same as Figure 4 but parameters are inverted
from NEE, LE, H, and Rn flux data (pluses), from NEE and
LE data only (crosses), from NEE only (dots), and from LE
only (diamonds).
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parameters can be retrieved from eddy-covariance data. A
major positive outcome of inverse methods is to be able to
reject a parameterization without neglecting uncertainties on
the data and on other parameterizations. For non-edge-hitting
parameters, one can still wonder whether an ‘‘optimal’’
value yet has a useful biogeochemical significance, or rather
reflects an impetus to compensate for model deficiencies.
Missing processes are always an overlooked source of bias
in inversions.

6.1. Number of Optimized Parameters and Sensitivity
to Prior Values

[32] A gradient-based minimization algorithm, such as
BFGS, has shortcomings when some parameters are equally
resolved by the data or are very poorly constrained. This
stems from the inversion of the Hessian matrix, which may
end up being ill-conditioned and not easily invertible. To

overcome this problem, Wang et al. [2001] for instance,
excluded poorly constrained parameters from their inver-
sion. This approach is not justified from a physical point of
view. It adds bias to our effective knowledge of the
remaining parameters and possibly yields to overestimate
their incremental change from the prior because sensitive
parameters are frozen in the beginning. It is difficult to
assess beforehand which parameters must be excluded or
not. A Monte Carlo sensitivity analysis to browse parame-
ters can be used as an alternative [Bastidas et al., 1999;
Franks et al., 1997]. We found that freezing some param-
eters is unnecessary, provided that the cost function contains
a Bayesian term to regularize the Hessian. One should thus
not hold any restriction upon the number of parameters to
be optimized. In our case, we choose ‘only’ 12 parameters
(i.e., all the parameters related to rapid flux changes) out of
nearly 50 in total in the model, because of computing
limitations. Calculating each derivative by a finite differ-
ence scheme requires one run of ORCHIDEE per parameter
and per iteration.
[33] If we increase the number of parameters, we face the

problem that different physically reasonable parameter sets
optimally fit the data. This problem of equifinality [Franks
and Beven, 1997; Schulz et al., 2001] is present in our
inversions and makes it more difficult to assess the best set
of parameters. Equifinality mainly results in this study from
the approximate derivatives of J(x) in the finite difference
calculation, which hampers a robust convergence of the
algorithm for ill-constrained parameters. Equifinality does
not result from J(x) having multiple local minima, as
verified by inspecting the cross sections of J(x) at the last
iteration (see examples in Figure 1b). We also show that,
among the different parameter sets leading to a similar fit to
the data, the parameters retrieved with the greater uncer-
tainty reduction (equation (3)) have the narrower interval of
optimal values. To investigate this, we made 50 sensitivity
tests (FY optimization) by changing randomly the prior
values. We show in Figure 6 (first column) the frequency
distribution of the parameters best estimates. One can see
that different parameter sets lead to similar model-data fits,
with differences in J(x) < 5%, but the well-constrained
parameters are much less sensitive to their initial value than
the poorly constrained ones (compare Figure 4 and Figure 6).
In the end, we conclude that five parameters, Kvmax, b, Kra,
Kalb and KCsoil can be robustly estimated with a standard
deviation for the 50 estimates lower than 0.1. Table 1
indicates that these parameters have indeed the greatest
uncertainty reduction as estimated from equation (3) (except
for Kra).

6.2. Sensitivity to Initial Carbon Pools Values

[34] We have shown in section 5.1 that photosynthetic
parameters are well determined by the optimization. We
investigate here to what extent the inversion solutions can
be affected by the fact that the prior modeled carbon pool
sizes correspond to equilibrium (annual NEE = 0), whereas
in reality the Bray forest is a net carbon sink (annual NEE =
�350 gC m�2 yr�1). This is an additional source of
uncertainty (related to the inversion set up) which might
hamper the determination of the optimal parameter set.

Figure 6. (left) Distribution of the estimated parameter
values from a series of 50 different optimizations, where the
initial value of the parameters are randomly changed up to
30% for the FY case. (right) Fifty inversions where the
initial carbon pool sizes were randomly changed up to 30%
for the FY case. Parameter values are normalized with
respect to the prior values. The distribution of the 50
estimates is binned into 0.05 intervals. The color table is
defined as a linear scale with the maximum values per
interval set to black and the zero value to white.
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[35] We verified that optimizing respiration parameters
KMR, KGR, KHR which also scale the soil pools, allows to fit
the observed annual NEE well. We first performed several
sensitivity tests perturbing the half-hourly flux data in order
to scale the annual average NEE between �750 and 0 gC
m�2 yr�1. We found strong correlations between the annual
NEE magnitude and the optimized values of KGR, KMR and
KHR but no correlations with all other parameters. We then
tested the sensitivity of optimized parameters to the initial
carbon pools size, through 50 sensitivity inversions where
the initial leaf, sapwood, litter and soil pools are randomly
changed within a 30% range. The results (Figure 6, second
column) indicate that the photosynthetic parameters (Kvmax,
b and partially fstress) and the energy budget parameters
(Kalb, KCsoil, Kra and to a less extent Kz0) are only weakly
sensitive to the assumed initial carbon pools value. In
contrast, all the poorly constrained respiration parameters
critically depend on initial conditions.
[36] Note, however, that we still have an inconsistency in

the model because the initial pool values are determined
from the prior parameter values, after an equilibrium run. To
improve this, one should solve independently for the initial
carbon pool values. In this study, we have implicitly
optimized in that manner the initial pools through the
respiration parameters, KMR, KGR, and KHR. These three
respiration parameters cannot be meaningfully related
to respiration rates because their value depends on state

variables at the beginning of the observation period (bio-
mass, reserves). However, they can be regarded as mean-
ingful for adjusting these unknown initial variables and
bringing them to compatible values with observed NEE.
One may finally wonder if the initial soil moisture content
also impacts the parameters retrieval. For the year 1997,
owing to abundant rainfalls, the initial soil moisture has
only a minor influence on the optimized parameters, but this
might not be true for drier conditions.

6.3. Validation of Optimized Parameters Against
Independent Observations

[37] We compare now the optimized carboxylation rates
Vcmax and Vjmax, obtained via the multiplier Kvmax against
independent leaf-scale cuvette measurements from [Porté
and Loustau, 1998]. Leaf-scale carboxylation rates are
determined at 25�C from the fitting process of assimilation
versus leaf internal CO2 concentration and PAR data, using
a photosynthetic model. Cuvette measurements were taken
both for young needles (0.1 to 1 years) and for old cohorts
(1 to 2 years). In ORCHIDEE, Vcmax and Vjmax are function
of the leaf age [Ishida et al., 1999] and of leaf temperature
[McMurtrie et al., 1992]. In Figure 7, we compare the
model prior and optimized age dependency of Vcmax and
Vjmax with the leaf measurements. The grey area is the range
of optimal values, defined by the 50 sensitivity tests to
initial carbon pools. Note that we consider here the GS
optimization for which air temperature was close to 25�C as
in the leaf-scale observations. The optimized values are
closer to the leaf observations than were the prior, suggest-
ing that the prior values of Vcmax and Vjmax for the Bray site
were underestimated. A cause for this could be that we use
carboxylation rates measurements on Pinus Pinaster, where-
as in the model this parameter combines trees and under-
storey grasses with different individual values. Wang et al.
[2001] showed that nonlinearity makes it impossible to
separate carboxylation rates from different PFTs spatially
distributed in the footprint of the same tower. We performed
a sensitivity optimization assuming 100% of trees, and
found that the optimized carboxylation rates remained close
to those of the mixed ecosystem case. This is because the
trees have a larger light interception all year round, and
grasses are usually fairly dry in summer: 70% of the total
NEE come from the pine trees [Ogée, 2000]. The inversion
proves here to be quite useful to update the value of Vcmax

and Vjmax for the evergreen needleleaf forest at the Bray site.
In general, inversion performances should be verified if
possible by using independent validation data.

6.4. Overall Uncertainty Estimates

[38] We now discuss the estimated Bayesian ‘‘true’’ uncer-
tainty, in comparisonwith other sources of error. The inverted
parameter errors reported in Table 1 (or ‘‘true’’ uncertainties)
are unrealistically low, as shown in section 5. In addition,
these errors are smaller in the FY case than in the GS case.
This behavior reflects an overestimation of the information
content of the eddy-covariance flux data in our approach. We
suppose that all flux data errors are independent (R matrix is
diagonal in equation (3)) and assimilate half-hourly LE, H
and Rn observations altogether, whereas these fluxes remain

Figure 7. Dependency of carboxylation rates Vcmax and
Vjmax (at 25�C) on leaf age in ORCHIDEE for the prior
(dashed line) and for the optimized model (grey area). The
grey area corresponds to the range of Kvmax given by the
sensitivity study of the GS retrieved parameters to
perturbation of the initial carbon pool sizes. Independent
leaf-scale cuvette determinations at Bray for ‘‘young’’ and
‘‘old’’ needles with their uncertainties (diamonds) are used
to verify the inverse results.
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linked by the energy balance closure. This latter ‘‘hidden
redundancy’’ was evidenced in section 5.4, with the result
that most parameters could be determined with only the NEE,
and LE fluxes, whereas the error reduction was yet much
larger when matching the four types of fluxes rather than
NEE plus LE alone (Figure 5). We prefer however to keep
using the entire set of observations because the energy
balance is not closed for most of the flux towers [Falge et
al., 2001; Wilson et al., 2002], and we ignore which flux(es)
is biased versus the unknown truth.
[39] Determining adequate error correlations to account

for the right amount of information in the data is not an easy
task. Data error covariance could be estimated from the data
autocorrelation (data correlations taken as a proxy of error
correlations), given that those errors mainly arise from
model uncertainties. For the NEE, we found a significant
autocorrelation for at least 8 days (not shown) which
reflects that nighttimes values hardly change days after
days. This suggests that we must account for error correla-
tions in order to obtain better parameter uncertainties.
However, the resulting underestimation of the uncertainties
is likely to affect all parameters. As discussed in section 6.1,
the relative error reduction becomes then useful to distin-
guish well-constrained from poorly constrained parameters.
Note that the residuals (standard deviation between data and
model outputs) only slightly differ from Gaussian distribu-
tion (with larger tails), which is a critical hypothesis for the
error estimates in equation (3).
[40] As shown in section 5, sensitivity tests upon prior

parameter values and initial pool values give additional
hints on parameter uncertainties. The use of a finite differ-
ence scheme to approximate the derivative of the cost
function increases the uncertainty of poorly constrained
parameters. The standard deviations of parameters across
the different sensitivity tests illustrated in Figure 6 are much
larger than the ‘‘true’’ uncertainties from the Bayesian
inversion (equation (3)) and they give a more realistic error
estimate. In this approach, the respiration parameters are
found to have uncertainties of 30–50%. In contrast, the
photosynthesis parameters have much smaller errors, on the
order of 5 to 10%.

7. Conclusion and Perspectives

[41] We designed a simple and generic inversion method
to optimize many parameters of an ecosystem model using
high-frequency eddy covariance flux measurements of
NEE, latent heat, sensible heat, and net radiation. The
method is tested at a pine forest site in France, for which
we inverted 12 parameters controlling the carbon, water,
and energy fluxes in a detailed process oriented model. The
model is nonlinear and deals with multiple timescales and
their interactions. We focus the analysis on the robustness of
inversion results, and on the numerous biases and uncer-
tainties which hinders the retrieval of parameters.
[42] We calculate explicitly the uncertainty reduction on

each parameter, using a Bayesian formalism. However, we
use a range of sensitivity studies to estimate an overall
uncertainty range and the robustness of the solutions. Direct
use of Bayesian posterior uncertainties would need to take

into account the error correlations between half-hourly data.
We found that only few parameters, mostly related to
photosynthesis and energy balance can be robustly inferred
from the flux data, while other ‘‘edge-hitting’’ parameters
are still useful to point out to structural deficiencies of the
model. Carboxylation rates could be verified successfully
with independent leaf-scale data, but respiration parameters
show spurious variations, and are not robust through the
different sensitivity inversions. However, instead of freezing
the ill-constrained parameters (as was done in some earlier
studies), we recommend to adjust all parameters to avoid
aliasing effects.
[43] The inversion successfully matches the observed

diurnal cycle of the diverse fluxes, and corrects for the
prior misfit to daytime NEE and LE. Some discrepancies
remain for sensible heat emissions at night. Our inversion
procedure tends to favor the fit to the diurnal variations over
the fit to the seasonal variations. This has been quantified
with a Fourier Transformation of the difference between the
posterior and the prior model outputs (not shown) and it
primarily results from the fact that we consider all diurnal
cycles to be independent throughout the year.
[44] In this attempt to optimize a nonlinear complex

ecosystem water-carbon-energy model we estimated the
potential of the different eddy covariance fluxes. Further
improvements should include (1) the optimization of addi-
tional parameters especially those related to the seasonal
processes (e.g., the temperature dependence of carboxyla-
tion), (2) the optimization of initial carbon pool sizes, and
(3) the modification of the cost function to account more
evenly for the information from different timescales.
[45] A logical next step would be to invert parameters

for different vegetation types, using data of the FLUXNET
program (http://daac.ornl.gov/FLUXNET/). Whether the
parameters are invariant or site specific, and whether they
take or not different values for different PFTs, are impor-
tant research questions that can be investigated. In a
further development we also must invert parameters linked
to the ‘‘slow’’ carbon processes like biomass allocation,
and turnover times of soil carbon. We could then use
‘‘slow’’ biometric measurements jointly with ‘‘fast’’ flux
measurements.

Appendix A: ORCHIDEE Model

[46] The components of the ORCHIDEE model together
with the number of parameters optimized in each submod-
ule are describe in Figure A1.

A1. NEE Component Fluxes

[47] Processes by which parameters are related to fluxes
and other prognostic variables of the model are summarized
below. The parameters we optimized are written in bold.
The Net Ecosystem Exchange flux (NEE) is calculated as
the sum of four terms,

NEE ¼ Rm þ Rg þ Rh � A: ðA1Þ

Rm is the maintenance respiration, Rg the growth respiration,
Rh the heterotrophic respiration and A the net carbon
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assimilation rate (A = photosynthesis minus leaf respiration
in light). ORCHIDEE is a ‘‘big leaf’’ model where
vegetation is treated as a single equivalent surface for the
carbon cycle. Net assimilation (A), stomatal conductance
(gs) and the CO2 concentration in the chloroplast (Ci) are
solutions of the following system of three equations:

gs ¼ b:wl:A:hr=Ca þ gsoffset; ðA2aÞ

A ¼ Kvmax : min Vc;Vj

� �
: 1� G*

Ci

 !
� Rd; ðA2bÞ

A ¼ gs Ca � Cið Þ: ðA2cÞ

Equation (A2a) gives the stomatal conductance gs(A, Ci)
following the experimental data of Ball et al. [1987]
obtained for plants under no-stress conditions. Here b is the
slope of the stomatal conductance versus A linear relation-
ship, hr the relative air humidity (%) and Ca the CO2

atmospheric concentration. To account for the effect of soil
water stress on the stomata aperture, gs is modulated by a
function wl of the water fraction available for the plant in
the root zone fw,

wl ¼
1 if fw > f stress
fw

f stress
if 0 < fw < f stress:

8<
: ðA3Þ

Parameter fstress defines the soil water fraction above which
maximum opening of the stomata occurs (wl = 1).
[48] Equation (A2b) describes A(Ci) with distinct rates of

carboxylation for the Rubisco (RuBP) limited regime (Vc)
and the electron transfer limited regime (Vj), following
Farquhar et al. [1980] for C3 photosynthesis and Collatz et
al. [1992] for C4 photosynthesis. The Rubisco-limited
carboxylation rate is given by

Vc ¼
Vcmax:Ci

Ci þ Kc 1þ Oi=Koð Þ : ðA4Þ

Vcmax (mmol m�2 s�1) is the maximum rate of RuBP
carboxylation, Kc and Ko are the Michaelis-Menten
constants for enzyme catalytic activity for CO2 and O2

respectively, and Oi is the intercellular concentration of
Oxygen. The electron transfer limited regime is defined by a
nonrectangular hyperbola function of the incident photon
flux I,

Vj ¼

1

2Q
ajI þ Vjmax �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ajI þ Vjmax

� �2�4QajIVjmax

q� 

1þ 2G*=Ci

: ðA5Þ

Vjmax defines the maximum potential rate of RuBP
regeneration at quantum saturation, aj the quantum yield
of RuBP regeneration, Q the curvature of the quantum
response and G* the CO2 compensation point. Both Vjmax

Figure A1. Flow diagram of the ORCHIDEE model structure with the different modules for which the
parameters are optimized. Number in parentheses in the diagram refers to the parameters listed in the
right-hand box.
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and Vcmax are optimized simultaneously via the parameter,
Kvmax, which scales both Vjmax and Vcmax (equation (A2b)),
assuming that they are linearly related. Several studies have
shown that Vcmax and Vjmax are linked by the nitrogen cycle
in a factor of �2 [Leuning, 2002],

Vjmax ¼ 2:Vcmax: ðA6Þ

Equation (A2c) calculates the gas phase molecular diffusion
of CO2 from canopy air to chloroplast. Altogether, the
system of equations (A2a), (A2b), and (A2c) is solved
iteratively to update at each time step the values of A, gs and
Ci at the leaf level.
[49] To scale up to the canopy level, we integrate the

value of A and gs over the canopy depth, that is over the leaf
area index (LAI) assuming an exponential decrease of Vcmax

and Vjmax [Johnson and Thornley, 1984]. By doing so, we
introduce the canopy aerodynamic resistance, ra, which
embodies the resistance to the transfer of CO2 between the
canopy and the measurement plane,

ra ¼
1

Kra:Vwind :Cd Kz0ð Þ : ðA7Þ

The value of ra depends on canopy turbulence and on
surface roughness via the surface drag coefficient Cd. Vwind

is the wind speed norm. We optimize two parameters: Kra a
multiplier of the overall aerodynamic conductance (1/ra)
and Kz0 modifying the roughness height z0 which intervenes
in the calculation of Cd.
[50] The release of CO2 to the atmosphere by mainte-

nance respiration (Rm) is function of each living biomass
pool Bi, and has a linear temperature dependency c(Ti),
where Ti is the temperature of the pool i [Ruimy et al.,
1996],

Ri
m ¼ KMR:c Tið Þ:Bi: ðA8Þ

For leaves maintenance respiration, a function of the leaf
area index also enters the calculation,

Rleaf
m ¼ KMR:c Tleaf

� �
:Bleaf :f LAIð Þ; ðA9Þ

where KMR is a parameter to be optimized and acting as a
multiplier of the whole maintenance respiration flux. The
slopes and intercepts of the temperature dependency
functions c(Ti) are different for each pool and the slopes
will be optimized via parameter QMR in the same proportion
for each pool.

c Tið Þ ¼ max ci0: 1þ QMR:Tið Þ; 0
� �

: ðA10Þ

Growth respiration Rg is computed as a fraction of the
difference between assimilation inputs and maintenance
respiration outputs to plant biomass. This fraction is scaled
by the parameter KGR,

Rg ¼ KGR: A� Rmð Þ: ðA11Þ

[51] Processes controlling the decomposition of litter, soil
organic matter, and subsequent heterotrophic respiration
(Rh) losses of CO2 to the atmosphere are similar to those
described by Parton et al. [1988] and popular among

biosphere modelers. Soil litter laid off to the forest floor
distinguishes a structural and a metabolic pool of distinct
turnover times. Soil organic matter is distributed among
three soil carbon pools of increasing turnover with carbon
flowing among them and CO2 emitted to the atmosphere by
heterotrophic processes. The evolution of each pool is
governed by a first-order linear differential equation, where
pool-specific turnovers have soil moisture and soil tem-
perature dependencies (A12). We define a multiplier KHR of
the total Rh flux that we optimize. The moisture dependency
g(swc) of Rh is not optimized. The temperature dependency
of Rh, currently being parameterized with a Q1O function of
soil temperature Tsoil is optimized by adjusting Q1O,

Rh ¼ KHR

X
s

as:Bs:g swcð Þ:Q
Tsoil�30	C

10	C
10 : ðA12Þ

In equation (A12), Bs is the size of each soil carbon pool
and as is a pool specific coefficient partitioning hetero-
ptrophic respiration into pools.

A2. Net Energy Balance Component Fluxes

[52] The latent heat flux (LE) is computed as the sum of
snow sublimation, soil evaporation, plant transpiration and
evaporation of water intercepted by foliage. Each of these
fluxes is linearly related to the gradient of specific humidity
between the evaporating surface (qi) and the air overlying
the canopy (qair), the latter being an input data. The
aerodynamic resistance ra intervenes in the calculation of all
LE components, as illustrated for plant transpiration ET in
(equation (A13)). The value of ra mediates the transfer of all
scalars from their emitting surface up to the top of the
canopy. One can see the importance of the couple of
parameters Kra and Kz0 controlling ra in equation (A7),
since it directly impacts the triad of fluxes NEE, LE and H.
Moreover, LE also depends on the stomatal conductance gs
(gs = 1/rs) via its transpiration component ET and thus
constrains the parameter b, according to (A13) below,
where Ki is a coefficient specific to each evaporating
surface.

ET ¼
X
i

Ki

ra þ rs
qi � qairð Þ: ðA13Þ

[53] The sensible heat flux H is entirely determined by the
aerodynamic resistance ra, the surface temperature Ts and
the input data of air temperature Tair, according to

H ¼
�air:Cair

ra
Ts � Tairð Þ; ðA14Þ

where rair and Cair are the air density (m�3) and the air
thermal capacity (J m�3 K�1) respectively. The surface
temperature in ORCHIDEE is derived from the energy
budget calculation, considering that soil and vegetation
form a single medium assigned with a single surface
temperature Ts. The energy balance is expressed by

1� Kalb:albedoð Þ:RSW þ RLW � esT 4
s ¼ Rn ¼ H þ LE þ G:

ðA15Þ

[54] We optimize a multiplier of the albedo, Kalb in
equation (A14) directly against net radiation flux data Rn
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and indirectly via changes in Ts, against energy fluxes H and
LE. In equation (A14) the incoming short and long wave
radiation fluxes RSW and RLW, are input data. The average
albedo is a linear combination of dry and wet soil albedos
and leaf albedo. Only leaf albedo is a prognostic variable in
ORCHIDEE, being a function of LAI. Heat storage in the
soil, G, is optimized by adjusting a multiplier KCsoil, of the
storage capacity, according to equation (A16) where Tsoil,
rsoil and Csoil are calculated by a seven layers model of
thermal diffusion within the soil [Warrilow et al., 1986].

G ¼ rsoil:KCsoil :Csoil: Ts � Tsoilð Þ: ðA16Þ
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l’atmosphère, Ph.D. thesis, Univ. Paul Sabatier–Toulouse III, Toulouse,
France.

Ogée, J., Y. Brunet, D. Loustau, P. Berbigier, and S. Delzon (2003),MuSICA,
a CO2, water and energy multilayer, multileaf pine forest model: Evalua-
tion from hourly to yearly time scales and sensitivity analysis, Global
Change Biol., 9, 697–717.

Parton, W., J. Stewart, and C. Cole (1988), Dynamics of C, N, P, and S in
grassland soil: A model, Biogeochemistry, 5, 109–131.
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