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Wigner and Wishart Ensembles for graphical models

Hideto Nakashima and Piotr Graczyk

Abstract. Vinberg cones and the ambient vector spaces are important in modern statis-
tics of sparse models and of graphical models. The aim of this paper is to study eigenvalue

distributions of Gaussian, Wigner and covariance matrices related to growing Vinberg ma-

trices, corresponding to growing daisy graphs. For Gaussian or Wigner ensembles, we give
an explicit formula for the limiting distribution. For Wishart ensembles defined naturally

on Vinberg cones, their limiting Stieltjes transforms, support and atom at 0 are described

explicitly in terms of the Lambert-Tsallis functions, which are defined by using the Tsallis
q-exponential functions. Eigenvalue distributions and graphical models and covariance ma-

trices and Wigner matrices and homogeneous cones and Vinberg cones and q-exponential

and Lambert-Tsallis functions

1. Introduction

This paper is a first step towards studying high-dimensional asymptotics of eigenvalue dis-
tributions of Gaussian and covariance matrices related to growing statistical graphical models.

Graphical models provide one of the most powerful methods of unsupervised learning and
sparse modelization of modern Data Science and high dimensional statistics (cf. Lauritzen
(1996); Maathuis et al. (2018)). Mathematical bases of Wishart distributions on matrix cones
related to decomposable and homogeneous graphs considered in this paper were laid down by
Lauritzen (1996); Letac and Massam (2007); Ishi (2014); Graczyk and Ishi (2014).

Asymptotics of empirical eigenvalue distributions are a classical topic of the random matrix
theory (RMT). There are numerous interactions of RMT with important areas of modern
multivariate statistics: high dimensional statistical inference, estimation of large covariance
matrices, principal component analysis (PCA), time series and many others, see the review
papers by Diaconis (2003, Section 2), Johnstone (2007), Paul and Aue (2014), Bun et al. (2017),
the book of Yao et al. (2015) and the references therein. RMT is also used in signal processing
(including MIMO) and compressed sensing (see Hastie et al. (2015, Chapter 10), for example)
in the restricted isometry property (RIP) introduced by Candès and Tao (2005). Fujikoshi and
Sakurai (2016) and Bai et al. (2018) used RMT methods to study consistency of the criteria
AIC and BIC in estimation of the number of components in PCA. Distribution of the largest
eigenvalue of a Wishart matrix was studied in Takayama et al. (2020).

High-dimensional spectral asymptotics for graphical models seem to have never been studied
before and we are convinced that our results will be useful in modern multivariate statistical
analysis in the context of graphical models. In this paper, we concentrate on proving fundamen-
tal theorems of RMT, the Wigner and Marchenko-Pastur type limit theorems for considered
graphical models. We expect to study statistical applications to estimation of large covariance
matrices, the number of significative PCA factors and asymptotics of the largest eigenvalue of
a sparse Wishart matrix in our subsequent researches.

Growing daisy graphs are among the most natural classes of graphical models. Vinberg
matrices are the symmetric matrices corresponding to the growing daisy graphs. Covariance
matrices are defined naturally on them by a quadratic construction (see Section 2.4), thanks
to quadratic triangular group actions on positive definite Vinberg matrices (cf. Section 2.2).

In Sections 3 and 4, we provide a complete study of limiting eigenvalue distributions related
to Vinberg matrices. The main results are contained in Theorem 3.1 for the Wigner Ensembles
and in Theorem 4.8 and Corollaries 4.9, 4.11 and 4.14 for the Wishart Ensembles of Vinberg
matrices. We are able to treat both real and complex matrix ensembles, but in view of statistical
applications, we focus on real random matrices.

As a special case of Corollary 4.9, we provide an elementary and short proof of a result of
Dykema and Haagerup (2004, §8) on the asymptotic empirical eigenvalue distribution µ0 for
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the covariance of the triangular real Gaussian ensemble. The proof in Dykema and Haagerup
(2004) is based on the theory of free probability with involved calculations, and the Stieltjes
transform S0(z) is given implicitly by determining all the moments of µ0. Later, Cheliotis
(2018) mentioned that S0(z) can be expressed in terms of the Lambert W function.

Our paper contributes to the study of triangular random matrices initiated by Dykema
and Haagerup (2004) and continued in Cheliotis (2018), also in the framework of the theory
of Muttalib-Borodin biorthogonal ensembles (see Borodin (1999); Muttalib (1995); Forrester
(2010); Forrester and Wang (2017)). This is a part of recent developments in the theory
of singular values of non-symmetric random matrices (see the survey by Chafäı (2009)). In
contrast to Cheliotis (2018), we do not dispose of an explicit formula for the joint eigenvalue
density.

The analysis, probability and statistics on homogeneous cones develops intensely in recent
years (Andersson and Wojnar (2004); Graczyk and Ishi (2014); Graczyk et al. (2019); Ishi
(2014, 2016); Letac and Massam (2007); Yamasaki and Nomura (2015); Nakashima (2020)),
and Vinberg cones and dual Vinberg cones are basic examples of homogeneous cones (see
Section 2.2). Our results are a first contribution to the RMT on homogeneous cones.

The main method used in our paper is the variance profile method for Gaussian and Wigner
matrix ensembles, presented in Section 2.5. It was applied first in Shlyakhtenko (1996) in the
Gaussian case and developed in Anderson and Zeitouni (2006) in the Wigner case. We use the
recent approach of Bordenave (2019). In Theorem 2.3 we slightly strengthen for our needs the
main variance profile result of Bordenave (2019). Theorem 2.3 will be useful for studying of
eigenvalue distributions related to general graphical models.

Note that the variance profile methods were also developed directly for Wishart ensembles
by Hachem at al. (2005, 2006, 2007); Hachem et al. (2008) (cf. Remark 4.16). The variance
profile methods are related to operator-valued free probability theory (Mingo and Speicher
(2017, Chapter 9)).

Our expression of a limiting Stieltjes transform for Wishart Ensembles of Vinberg matrices,
is based on the introduction of Lambert-Tsallis functions Wκ,γ , see Section 4.1. The Lambert-
Tsallis functions are defined by using Tsallis q-exponential functions, now actively studied in
Information Geometry (cf. Amari and Ohara (2011); Zhang et al. (2018)).

Outlines of all proofs are given. Technical details are omitted and can be viewed in Supple-
mentary material available from the editor of the journal.

Simulations of histograms of eigenvalues of Vinberg matrices are illustrated by Figures 2-6
in the Wigner case and by Figures 10-12 in the Wishart case.

2. Preliminaries

We begin this paper with recalling the definition of the empirical eigenvalue distribution of
a symmetric matrix. Let X ∈ Sym(n,R) be a symmetric matrix and let λ1(X) ≥ · · · ≥ λn(X)
be the ordered eigenvalues of X with counting multiplicities. Denote by δa the Dirac measure
at a. Then, the empirical eigenvalue distribution µX of X is defined by µX = 1

n

∑n
i=1 δλi(X).

If {Xn}∞n=1 (Xn ∈ Sym(n; R)) is a sequence of Gaussian, Wigner or Wishart matrices, then
it is well known that there exists a limit µ of µXn as n → ∞, and the sequence of random
measures µXn converges almost surely weakly to the semi-circle law or the Marchenko-Pastur
law, respectively (see for example Bai and Silverstein (2010); Bordenave (2019)). The limits µ
of µXn , in the almost sure weak sense, are said to be the “limiting eigenvalue distributions µ
of Xn.” For simplicity, we will say “i.i.d. matrices” instead of “matrices with independent and
identically distributed non-null terms”.

2.1. Basics on statistical graphical models. LetG be a graph with vertices V = {1, 2, . . . , n}
and edges E. We say that a statistical character X = (X1, . . . , Xn) has the dependence graph
G when each conditional independence of marginals Xi and Xj with respect to remaining
variables corresponds to the absence of the edge {i, j} in E. Thus the dependence graph G is
a tool of encoding of the conditional independence of marginals of X . We say that X belongs
to the graphical model governed by G.

Let UG be the subspace of Sym(n,R) containing matrices with uij = 0 if the edge {i, j} 6∈ E.
Cones PG = Sym(n,R)+ ∩ UG and their dual cones QG are basic objects of graphical model
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theory. Actually, a Gaussian n-dimensional model N(m,Σ) is governed by the graph G if and
only if the inverse covariance matrix Σ−1 ∈ PG (cf. Lauritzen (1996)).

Figure 1. Daisy Graph

An important class of graphical models, called daisy graphs, is
defined as follows. Let a + b = n and let D(a, b) be a graph with
vertices V = {1, . . . , n}, such that the first a elements form a complete
graph and the latter b elements are satellites (petals) of the complete
graph, that is, each satellite connects to all elements in the complete
graph and does not connect to the other satellites (see Figure 1). The
double circle around the vertex an in Figure 1 indicates the complete
graph with an vertices.

In high dimensional statistics, it is essential to let the number of
observed characters n tend to infinity. From the graphical model
theory point of view, the pattern of the growing graphs Gn and of
the corresponding cones PGn should remain the same. This requirement is met by growing
daisy graphs D(an, bn) for non-decreasing sequences of positive integers {an}∞n=1 and {bn}∞n=1

such that an + bn = n.

2.2. Generalized dual Vinberg cones and Vinberg matrices. Let {an}∞n=1 and {bn}∞n=1

be non-decreasing sequences of positive integers such that an + bn = n and the ratio an/n
converges to c ∈ [0, 1]. Let Gn = D(an, bn) be the corresponding daisy graph. Then, the
corresponding matrix space Un of the graph Gn is a subspace of Sym(n,R) defined by

Un :=

{
U =

(
x y
ty d

)
;
x ∈ Sym(an,R), y ∈ Mat(an × bn,R),
d is a diagonal matrix of size bn

}
,

and we set

Pn := PGn = Un ∩ Sym(n,R)+.

Then, Pn is an open convex cone in PGn . Moreover, the cone Pn admits a transitive group
action, i.e. Pn is a homogeneous cone, since the following triangular group

Hn :=

h =

(
h1 y
0 d

)
∈ GL(n,R);

h1 ∈ GL(an,R) is upper triangular,
y ∈ Mat(an × bn; R),
d : diagonal of size bn


acts on Pn transitively by the quadratic action ρ(h)U := hU th for h ∈ Hn and U ∈ Pn. This
is easily verified by using the Cholesky decomposition (cf. Ishi (2016, p. 3)). For definition and
basic properties of homogeneous cones, see Vinberg (1963); Ishi (2014).

If n = 3 and (an, bn) = (1, 2), then P3 is the dual Vinberg cone (see Example 2.1) so that, in
this paper, we call Pn a generalized dual Vinberg cone and elements U ∈ Un Vinberg matrices.
Vinberg cones form an important class of matrix cones related to graphical models (cf. Section
2.1). On the other hand, if we set an = n − 1 and bn = 1, then Un is the space Sym(n,R) of
symmetric matrices of size n, and hence our discussion covers the classical results. In what
follows, we introduce two kinds of random matrices related to the homogeneous cones Pn, that
is, Gaussian and Wigner matrices and Wishart quadratic (covariance) matrices.

2.3. Gaussian and Wigner matrices in Un. Analogously to the classical Wigner matrices,
we say that Un = (uij) ∈ Un is a Wigner random matrix if

• the diagonal terms (uii) are independent of the off-diagonal terms (uij)i<j ,
• the diagonal uii’s are centered i.i.d. variables with variance v′ and fourth

moment M ′4,
• the non-nul off-diagonal uij ’s, i < j, are centered i.i.d. variables with vari-

ance v and fourth moment M4,

(2.1)

where v, v′,M4,M
′
4 are fixed positive real numbers. If the non-nul terms uij are Gaussian, with

ν = 1 and ν′ = 2, the matrices Un form a Gaussian Orthogonal Ensemble of Vinberg matrices.
In Section 3, we consider empirical eigenvalue distributions of rescaled Wigner matrices

Un/
√
n ∈ Un.
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2.4. Quadratic construction of Wishart (covariance) matrices in Un. Recall that
Wishart matrices are constructed quadratically both in Random Matrix Theory and in statis-
tics. In this section we define, by a quadratic construction, Wishart (covariance) matrices in
Un.

We first recall the notion of a direct sum of quadratic maps. Let Qi : Rmi → Rm (i =
1, . . . , k) be quadratic maps. Then, the direct sum Q1 ⊕ · · · ⊕ Qk is an Rm-valued quadratic
map on Rm1 ⊕ · · · ⊕ Rmk given by

Q(x) := Q1(x1) + · · ·+Qk(xk) where x =

k∑
i=1

xi
(
xi ∈ Rmi

)
.

If Q1 = · · · = Qk, then the direct sum Q is denoted by Q⊕k1 . As showed in Graczyk and Ishi
(2014), any homogeneous cone Ω admits a canonical family of the so-called basic quadratic
maps qj (j = 1, . . . , r) defined for each j on a suitable finite dimensional vector space Ej and

with values in the closure Ω of Ω. The number r is called the rank of Ω and r = n for the
cones Un. Using the basic quadratic maps qj , one constructs quadratic maps Qk for k ∈ Zr≥0
by

Qk := q⊕k11 ⊕ · · · ⊕ q⊕krr ,

defined on Ek := E⊕k11 ⊕ · · · ⊕ E⊕krr . The maps Qk are Ω-positive, i.e. if ξ ∈ Ek \ {0}, then

Qk(ξ) ∈ Ω \ {0}.
In our case Ω = Pn, the basic quadratic maps are given as follows (cf. Graczyk and Ishi

(2014)). For j = 1, . . . , n, define Ej ⊂ Rn by

Ej =

{(
ξ
0

)
∈ Rn; ξ ∈ Rj

}
(j ≤ an),

Ej =

{(
ξ
0

)
+ ξ′ej ∈ Rn; ξ ∈ Ran , ξ′ ∈ R

}
(j > an),

where ei (i = 1, . . . , n) is the vector in Rn having 1 on the i-th position and zeros elsewhere.
We note that each Ej corresponds to the j-th column of the Lie algebra hn of Hn, that is, we
have hn =

{
H = (ξ1, . . . , ξn); ξj ∈ Ej

}
. Then, the basic quadratic maps qj : Ej → Un of the

cone Pn are defined by

qj(ξj) := ξj
tξj ∈ Un (ξj ∈ Ej).

Let k ∈ Zn≥0. Then, Ek can be viewed as a subspace of Mat(n × (k1 + · · · + kn); R). In fact,
we have

Ek =

η =
( k1︷ ︸︸ ︷
ξ
(1)
1 , . . . , ξ

(k1)
1 , ξ

(1)
2 , . . . , ξ

(kn−1)
n−1 ,

kn︷ ︸︸ ︷
ξ(1)n , . . . , ξ(kn)n

)
;
ξ
(i)
j ∈ Ej ,
j = 1, . . . , n,
i = 1, . . . , kj


⊂ Mat(n× (k1 + · · ·+ kn); R),

and then Qk(η) = η tη for η ∈ Ek.
When η ∈ Ek is an i.i.d. random matrix whose non-null terms have the normal law N(0, v),

the law of Qk(η) is a Wishart law γQk,1/(2v)Idn on the cone Pn. For the definition of all

Wishart laws on the cone Pn, see Graczyk and Ishi (2014). More generally, in this paper, we
consider eigenvalue distributions of rescaled matrix Qk(η)/n under the assumption that η ∈ Ek
is a centered rectangular i.i.d. matrix whose non-null terms have variance v and finite fourth
moments M4.

We consider two-dimensional multiparameters k = k(n) ∈ Zn≥0 of the form

k = m1(1, . . . , 1) +m2(

an︷ ︸︸ ︷
0, . . . , 0,

bn︷ ︸︸ ︷
1, . . . , 1 ) (m1,m2 ∈ Z≥0). (2.2)

Example 2.1. Let n = 3, a3 = 1 and b3 = 2. In this case, P3 is the dual Vinberg cone (cf.
Vinberg (1963, p. 397), Ishi (2001, §5.2)):

P3 =

x =

x11 x12 x13
x12 x22 0
x13 0 x33

 ; x is positive definite

 .
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Consider m1 = m2 = 1, so k = (1, 2, 2). Then Ek = E(1,2,2) can be written as

E(1,2,2) =

η =

x y11 y12 z11 z12
0 y21 y22 0 0
0 0 0 z21 z22

 ; x, yij , zij ∈ R

 ,

and Q(1,2,2)(η) = η tη is given as

Q(1,2,2)(η) =

x2 + y211 + y212 + z211 + z212 y11y21 + y12y22 z11z21 + z12z22
y11y21 + y12y22 y221 + y222 0
z11z21 + z12z22 0 z221 + z222

 .

If x, yij , zij are N(0, v) i.i.d. Gaussian variables, the random matrix Q(1,2,2)(η) has a Wishart
law on P3.

The form (2.2) of the Wishart multiparameter k englobes and generalizes the following cases.
In both cases, with rescaling 1/n, the limiting eigenvalue distribution is known.

(i) The classical Wishart Ensemble M tM on Sym(n,R)+, where M = Mn×N is an i.i.d.
matrix with finite fourth moment M4, with parameter C := limn

N
n > 0 (see Anderson

et.al. (2010); Faraut (2014)) for (an, bn) = (n − 1, 1), m1 = 0 and m2 ∼ Cn. The
limiting eigenvalue distribution is the Marchenko-Pastur law µC with parameter C,

i.e. denoting a =
(√
C − 1

)2
, b =

(√
C + 1

)2
and [x]+ := max(x, 0) (x ∈ R),

µC = [1− C]+δ0 +

√
(t− a)(b− t)

2πt
χ[a,b](t)dt.

(ii) The Wishart Ensemble related to the Triangular Gaussian Ensemble
(Dykema and Haagerup (2004); Cheliotis (2018)) for (an, bn) = (n− 1, 1), m1 = 1 and
m2 = 0. When v = 1, the limiting eigenvalue distribution, which we call the Dykema-
Haagerup measure χ1, is absolutely continuous with respect to Lebesgue measure and
has support equal to the interval [0, e]. Its density function φ is defined on the interval
(0, e] by the implicit formula (Dykema and Haagerup (2004, Theorem 8.9))

φ

(
sinx

x
exp(x cotx)

)
=

1

π
sinx exp(−x cotx) (0 ≤ x < π), (2.3)

with φ(0+) = ∞ and φ(e) = 0. For v 6= 1, the limiting measure χv has density
φ(y/v)/v on the segment (0, ve].

2.5. Resolvent method for Wigner ensembles with a variance profile σ. Let C+ denote
the upper half plane in C. In this paper, the Stieltjes transform S(z) = Sµ(z) of a probability
measure µ on R is defined to be

S(z) =

∫
R

µ(dt)

t− z
(z ∈ C+).

In the sequel, we will need the following properties of the Stieltjes transform, which are not
difficult to prove.

Proposition 2.2. 1. Suppose that s(z) is the Stieltjes transform of a finite measure ν on R.
If for all x ∈ R it holds

lim
y→0+

Im s(x+ iy) = 0

then s(z) ≡ 0 and ν is a null measure (ν(B) = 0 for any Borel set B).
2. Suppose f ≥ 0 and f ∈ L1(R). Let s(z) be the Stieltjes transform of f . If f is continuous
at x then

lim
y→0+

1

π
Im s(x+ iy) = f(x). (2.4)

If f is continuous on an interval [a, b], a < b, the convergence (2.4) is uniform for x ∈ [a, b].

Recall that if µ is a probabilistic measure on R, with Stieltjes transform s(z) and the
absolutely continuous part of µ has density f , then (2.4) holds for almost all x (Lemma 3.2
(iii) of Bordenave (2019)).

We present now the following, slightly strengthened result from the Lecture Notes of Bor-
denave (2019, §3.2), that will be a main tool of proofs in this paper.
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Let σ : [0, 1] × [0, 1] → [0,∞) be a bounded Borel measurable symmetric function. For
each integer n, we partition the interval [0, 1] into n equal intervals Ji, i = 1, . . . , n. Put
Qij := Ji×Jj , which is a partition of [0, 1]× [0, 1]. We assume that Yij (i ≤ j) are independent
centered real variables, defined on a common probability space, with variance

EY 2
ij =

1

n

(∫
Qij

σ(x, y)

|Qij |
dx dy + δij(n)

)
, (2.5)

for a sequence δij(n). We note that the law of Yij depends on n. We set Yji := Yij and we
consider the symmetric matrix Yn := (Yij)1≤i,j≤n. We note that, if σ is continuous, then, up
to a perturbation δij(n), the variance of

√
nYij is approximatively σ(i/n, j/n), and hence we

call σ a variance profile in this paper.

Theorem 2.3. Let δ0(n) :=
1

n2

∑
i,j≤n

|δij(n)|. Assume (2.5) and suppose that

lim
n
δ0(n) = 0 and max

i,j≤n

E(Y 4
ij)

n(EY 2
ij)

2
= o(1) (Yij 6= 0). (2.6)

Let µYn be the empirical eigenvalue distribution of Yn. Then, there exists a probability measure
µσ depending on σ such that µYn converges weakly to µσ almost surely. The Stieltjes transform
Sσ of µσ is given as follows.
(a) For each z with Im z > 1, there exists a unique C+-valued L1-solution ηz : [0, 1] 7→ C+, of
the equation

ηz(x) = −
(
z +

∫ 1

0

σ(x, y) ηz(y) dy

)−1
(for almost all x ∈ [0, 1]), (2.7)

and the function z 7→ ηz(x) extends to an analytic C+-valued function on C+, for almost all
x ∈ [0, 1]. Then,

Sσ(z) =

∫ 1

0

ηz(x) dx.

(b) The function x→ ηz(x) is also a solution of (2.7) for 0 < Im z ≤ 1.

Proof. The proof is the same as the proof of Bordenave (2019, Theorem 3.1), where a stronger
assumption |δij(n)| ≤ δ(n) is required for some sequence δ(n) going to 0. It is replaced by the
first condition of (2.6). Detailed analysis of the proof of the approximate fixed point equation
in Bordenave (2019, page 42) shows that the weakest assumption on the fourth moments EY 4

ij

ensuring the concentration of the conditional variance of 〈Zi, R(i)Zi〉 is the second condition
of (2.6). The property (b) is observed in Bordenave (2019, page 39) by analiticity. � �

Theorem 2.3 shows that, to each variance profile function σ, one associates uniquely a
Stieltjes transform Sσ(z) of a probability measure. For the correspondence between σ and Sσ,
the conditions (7) are not needed. We define Sσ(z) as the Stieltjes transform associated to σ.

Remark 2.4. A prototype of the variance profile method for Wigner ensembles was given
by Anderson and Zeitouni (2006, Theorem 3.2). Theorem 3.1 of Bordenave (2019) and Theorem
2.3 provide a simple general approach. Special cases of variance profile convergence results for
Wigner matrices were studied before, as discussed below in (i) and (ii).

(i) If we set σ(x, y) = 1 for all x, y, then
√
nY is a Wigner ensemble with v = v′ = 1. Let

Ssc(z) be the Stieltjes transform of the semi-circle law on [−2, 2]. Then, the functions
x → ηz(x) do not depend on x (but do on z) and the functional equation (2.7) gives
the equation Ssc(z) = −(z + Ssc(z))

−1, which is well known from the detailed study of
resolvent matrices (see Tao (2012, §2.4.3)).

(ii) The paper Anderson and Zeitouni (2006) deals primarily with a variance profile σ such
that

∫
σ(x, y) dy = 1 for any x, corresponding to a band matrix model. For band matrix

ensembles, see also Erdös et al. (2012,b); Nica et al. (2002); Shlyakhtenko (1996).
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3. Wigner Ensembles of Vinberg Matrices

In this section, we give explicitly the limiting eigenvalue distributions µ for the scaled Wigner
matrices Un ∈ Un defined by (2.1). Let χI denote the indicator function of a subset I ⊂ R. For
a real number a, its cubic root is denoted by 3

√
a ∈ R and set [ a ]+ = max(a, 0). We introduce

two real numbers αc, βc depending on c ∈ [0, 1) by

αc =
8 + 4c− 13c2 −

√
c(8− 7c)3

8(1− c)
, βc =

8 + 4c− 13c2 +
√
c(8− 7c)3

8(1− c)
. (3.8)

It is clear that α0 = β0 = 1, αc < βc and βc > 0 for all c ∈ (0, 1). We note that α1/2 = 0,
αc < 0 when c > 1/2, limc→1− αc = −∞, limc→1−(1 − c)αc = −1/4 and limc→1− βc = 4, so
that we set β1 = 4. It can be shown that c 7→ αc is strictly decreasing and c 7→ βc is strictly
increasing on [0, 1] (see Figure 7).

Theorem 3.1. Let Un be a Wigner matrix on Un defined by (2.1). Assume that limn→+∞ an/n =
c ∈ (0, 1). Then, the limiting eigenvalue distribution µ of the rescaled matrices Un/

√
n exists

and is given for c ∈ (0, 1) as

µ = fc(t) dt+ [1− 2c]+δ0

with

fc(t) :=
3
√
R+ (t/

√
v; c)− 3

√
R− (t/

√
v; c)

2
√

3π t
χ[αc,βc]

(
t2

v

)
, (3.9)

where, for x2 ∈ [αc, βc],

R±(x; c) := x6 − 3(c+ 1)x4 + 3
2 (5c2 − 2c+ 2)x2 + (2c− 1)3

±3c
√

3− 3c · x
√

(x2 − αc)(βc − x2).

The support of µ is given as

suppµ =


[
−
√
vβc, −

√
vαc

]
∪ {0} ∪

[√
vαc,

√
vβc

]
(if c ∈ (0, 12 ))[

−
√
vβc,

√
vβc

]
(if c ∈ [ 12 , 1)).

(3.10)

If c = 0, then µ = δ0. If c = 1, then µ is the semicircle law on [−2
√
v, 2
√
v].

Remark 3.2. The formula (3.9) is valid for the extreme cases c = 0 or c = 1. If c = 0 then

there is no density and µ = δ0. If c = 1, then it can be checked that 3
√
R+(x; 1)− 3

√
R−(x; 1) =√

3x
√

4− x2 so that, for v = 1 we get the semicircle law µ(dt) = (1/2π)
√

4− t2χ[−2,2](t)dt
of Wigner (1955).

Sketch of the proof. We first derive the Stieltjes transform of the limiting eigenvalue distribu-
tion by applying Theorem 2.3 to Yn = Un/

√
n. Let Un = (Uij)1≤i,j≤n, so that Yij = (1/

√
n)Uij .

The variance profile is given as

σ(x, y) =

{
v if (x, y) ∈ C,
0 otherwise,

C :=
{

(x, y) ∈ [0, 1]2; min(x, y) ≤ c
}
. (3.11)

We check easily that the conditions (2.6) are satisfied, since, by (2.1) and writing M :=
max{|v − v′|, v′, v}, we get

δ0(n) ≤ 3M

n
and max

i,j≤n

E(Y 4
ij)

n(EY 2
ij)

2
≤ max{M4,M4

′}
nmin{v, v′}

.

Let us fix z ∈ C+ = {z ∈ C; Im z > 0}. The functional equation (2.7) from Theorem 2.3
becomes

ηz(x) =


−
(
z + v

∫ 1

0
ηz(y) dy

)−1
(x ≤ c),

−
(
z + v

∫ c
0
ηz(y) dy

)−1
(x > c).

Observe that the right-hand sides are independent of x. Integrating both sides of these equa-
tions, we obtain the following simultaneous equations

B =
−c

z + vA
, A−B =

c− 1

z + vB
, (3.12)
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where A =
∫ 1

0
ηz(x) dx and B =

∫ c
0
ηz(x) dx. Note that A is the desired Stieltjes transform

S(z).
If c = 0, then we have A = −1/z so that the limiting measure is µ = δ0. If c = 1 then the

equation (2.7) reduces to the equation A = −(z + vA)−1, which corresponds to the Stieltjes
transform of the semi-circular law (cf. Tao (2012, p.178)). Thus we assume 0 < c < 1 in what
follows.

Then, the cubic equation for A, resulting from (3.12) writes

zA3 + (2z2 + 1− 2c)A2 + (z2 + 2− 2c)zA+ z2 − c2 = 0 (3.13)

and it is an algebraic equation with polynomial coefficients. The last equation (3.13) is reduced
to

Y 3 + p (zv)Y + q (zv) = 0, (3.14)

where we set zv := z/
√
v,

Y = Y (z) :=
vA

z
+

2

3
− (2c− 1)v

3z2
, (3.15)

and the coefficients p, q are given by the following analytical rational functions on C∗:= C \ {0}

p(z) := −z
4 − 2(c+ 1)z2 + (2c− 1)2

3z4
,

q(z) := − 2

27
·
z6 − 3(c+ 1)z4 + 3

2 (5c2 − 2c+ 2)z2 + (2c− 1)3

z6
.

The discriminant of the cubic equation (3.14) is expressed by p(z) and q(z), using αc, βc in
(3.8), as (cf. Ronald (2004))

Disc(z) = −
(
4p(z)3 + 27q(z)2

)
=

4c2(1− c)
z10

(z2 − αc)(z2 − βc).

Let E = {z ∈ C; z = 0 or Disc(zv) = 0} be the set of exceptional points of (3.14). For z 6∈ E ,
the equation (3.14) has three different solutions (cf. Ronald (2004)). Cardano’s method and
formula (3.15) imply that, for z ∈ C+

S(z) =
z(u+(z) + u−(z))

3v
− 2z

3v
+

2c− 1

3z
(3.16)

with u±(z) := (Fc(zv)± iDc(zv))
1
3 , Fc(z) := − 27

2 q(z) and

Dc(z) := 27 ·
√

Disc(z)

4 · 27
=

3c
√

3− 3c

z5

√
(z2 − αc)(z2 − βc),

where convenient branches of the cube and the square roots are chosen, respectively, for u±(z)
and Dc(z) to be such that S(z) is a Stieltjes transform of a probability measure. In particular,
S(z) is holomorphic on C+ and

u+(z) · u−(z) = −3p(z), and ImS(z) > 0 (z ∈ C+). (3.17)

Note that the branches of the roots may be different on different subregions of C+ and that
U := (u+ +u−)/3 is a solution of (3.14). In order to derive the limiting eigenvalue distribution
µ from S(z), we will need the following properties of S(z). Set R∗ := R \ {0}.

Proposition 3.3. The limit S(x) = lim
y→+0

S(x+ yi) exists for each x ∈ R∗. The function S is

continuous on R∗ and S(x) is a solution of (3.13) on R∗.

Sketch of the proof of the proposition. It is sufficient to prove it for a solution U(z) of the
reduced equation (3.14) on C+, such that U(z) is holomorphic on C+. We apply Theorem
X.3.7 of Palka (1991) to a convenient connected and simply connected domain D avoiding
the set E . By the discussion of Ahlfors (1979, p.304), U has at most an ordinary algebraic
singularity at a non-zero exceptional point, so U(z) is continuous on R∗. � �

Without loss of generality, we suppose v = 1. We first assume that x = 0. The detailed
local analysis of (3.16) and (3.17) that we omit here, shows that

(Z1) if 0 < c < 1
2 , then lim

y→+0
yImS(yi) = 1 − 2c, so µ has an atom at 0 with the mass

1− 2c < 1,
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(Z2) if c = 1
2 , then lim

y→+0
ImS(yi) = +∞, lim

y→+0
yImS(yi) = 0 so µ does not have an atom

at 0,
(Z3) if 1

2 < c < 1, then lim
y→+0

ImS(yi) = c(2c−1)−1/2 = πfc(0), so µ does not have an atom

at 0.

Next we consider the case x 6= 0. Combining the fact that S(z) is an odd function as a

function on C \R by (3.16) and the property S(z) = S(z) of the Stieltjes transform, we obtain
ImS(−x+ iy) = ImS(x+ iy) so that ImS(−x) = ImS(x). Thus we can assume that x > 0.

Suppose Disc(x) ≥ 0. Since the coefficients p, q of (3.14) are real on R∗, the equation (3.14)
has only real solutions (cf. Ronald (2004)). Therefore, S(x) is real so that the density of µ
vanishes at such points.

Next we assume that Disc(x) < 0. By Proposition 3.3, S(x) is a solution of the cubic
equation (3.13) and U(x) = (u+(x) +u−(x))/3 is a solution of the reduced equation (3.14). In
particular, the formulas (3.16) and (3.17) hold for S(x), with convenient choices of branches
of cubic roots and square roots. Consequently, we have{

Fc(x) + iDc(x), Fc(x)− iDc(x)
}

=
{
R′+(x), R′−(x)

}
as a set, where R′±(x) := R±(x; c)/x6 ∈ R. Let ω = e2iπ/3 denote the cube root of 1 with
positive imaginary part. Then, (3.16) yields that the sum u+(x) + u−(x) has the following
form

u+(x) + u−(x) = ωk+ 3

√
R′+(x) + ωk− 3

√
R′−(x) with k+, k− ∈ {0, 1, 2}.

By the first condition in (3.17), as p(x) ∈ R, we need to have k+ + k− ≡ 0 mod 3, that
is, (k+, k−) = (0, 0), (1, 2) and (2, 1). Using the fact that R′+(x) > R′−(x) when x > 0 and
Disc(x) < 0, we see that the imaginary part of u+(x) + u−(x) and of limy→0+ S(x + iy) is,
respectively, nul, positive and negative in these three cases. Since ImS(z) > 0, the last case
is impossible. Set h(x) := Im

(
ω 3
√
R′+(x) + ω2 3

√
R′−(x)

)
. Notice that h is a strictly positive

continuous function on the set {x ∈ R; Disc(x) < 0} and that 1
πh(t) = fc(t), the density part

of µ in the formula (3.9). Since the function ImS is continuous on R∗ by Proposition 3.3, we
have ImS ≡ h or ImS ≡ 0 on the set {x ∈ R∗; Disc(x) < 0}.

We now show that the latter case is impossible. Note that µ has no atoms different from
zero because S(z) is continuous on C+ \ {0}. By Theorem 2.4.3 of Anderson et.al. (2010) and
by the dominated convergence, we have for closed intervals [a, b] ⊂ R∗

µ([a, b]) =
1

π
lim
y→0+

∫ b

a

S(x+ iy) dx =
1

π

∫ b

a

lim
y→0+

S(x+ iy) dx = 0, (3.18)

so that µ(0,∞) = 0 and, symmetrically, µ(−∞, 0) = 0. Since µ is a probability measure, we get
µ = δ0. This contradicts properties (Z1-3) proven in the case x = 0. Thus, we have ImS ≡ h

on the set {x ∈ R∗; Disc(x) ≤ 0} and, for x ∈ R∗, lim
y→0+

1

π
ImS(x + iy) =

1

π
h(x) = fc(x).

Note that fc has a compact support {Disc(x) ≤ 0}. For c 6= 1
2 , the function fc is continuous

on R. For c = 1
2 , a detailed analysis shows that limx→0 fc(0) = ∞, with fc(x) ∼ |x|−1/2

at x = 0 and fc is continuous on R∗. By property (Z3), if c > 1
2 then limy→0+ ImS(iy) =

πfc(0). When c 6= 1/2, Proposition 2.2.1 implies that µ = fc(t) dt + [1 − 2c]+δ0. Actually,
if s(z) is the Stieltjes transform of µ − fc(t) dt − [1 − 2c]+δ0, then, using Proposition 2.2.2,
we get limy→0+ Im s(x + iy) = 0 for all x ∈ R. When c = 1/2, by Proposition 2.2.2, we get
limy→0+ Im s(x + iy) = 0 for all x ∈ R∗, uniformly on compact intervals [a, b] ⊂ R∗. Like in
(3.18), we conclude by Theorem 2.4.3 in Anderson et.al. (2010) that µ = fc(t) dt. The support
formula (3.10) follows by supp fc = {Disc(x) ≤ 0}. � �

In the Figures 2–6 we present graphical comparison between simulations for n = 4000 and
the limiting densities, when c = 1/5, 2/5, 1/2, 3/5, 4/5.

Remark 3.4. We can also consider the class of generalized daisy graphs D(a, b, k), with b
complete satellites of k vertices, so that there are N = a + kb vertices. If all three sequences
an, bn, kn are non-decreasing, the graphs D(an, bn, kn) form a growing sequence of graphical
models. Let us assume that kn = k is fixed for n large enough.
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Figure 2. Simulation for c =
1/5

Figure 3. Simulation for c =
2/5

Figure 4. Simulation for c =
1/2

Figure 5. Simulation for c =
3/5

Figure 6. Simulation for c =
4/5

Figure 7. Graphs of αc and
βc

Corollary 3.5. Consider a sequence of growing graphs Dn := D(an, bn, k) with Nn = an+bnk
vertices. Let Un be a Wigner Nn × Nn matrix on UDn defined as in (2.1). Assume that
limn→+∞ an/Nn = c ∈ [0, 1]. Then, the limiting eigenvalue distribution µ of the rescaled
matrices Un/

√
Nn exists and is given by formula (3.9).

Proof. The proof of Theorem 3.1 is valid for the matrices Un of size Nn × Nn. Actually,
the variance profiles σ are the same and are given by (3.11) for all cases D(an, bn, k). There
are at most (k2 + 2)Nn non-zero perturbation terms δij(Nn) and they are all bounded by
M = max{|v − v′|, v′, v} so that δ0(Nn) = O(1/Nn)→ 0. � �

Remark 3.6. The Wigner case may be considered in a framework of operator-valued free
probability theory by methods of the rectangular free probability (cf. Mingo and Speicher
(2017, Chapter 9), Benaych-Georges (2009)).

4. Wishart Ensembles of Vinberg Matrices

In this section, we shall consider the quadratic Wishart (covariance) matrices introduced in
§2.4. We first prepare some special functions which we need later. They generalize the Lambert
W function appearing (see Cheliotis (2018)) in the case Pn = Sym(n,R)+ and m = (1, . . . , 1).

4.1. Lambert–Tsallis W function and Lambert–Tsallis function Wκ,γ. For a non zero
real number κ, we set

expκ(z) :=
(

1 +
z

κ

)κ
(1 +

z

κ
∈ C \ R≤0), log〈κ〉(z) :=

zκ − 1

κ
(z ∈ C \ R≤0),

where we take the main branch of the power function when κ is not integer. If κ = 1
1−q , then it

is exactly the so-called Tsallis q-exponential function and q-logarithm, respectively (cf. Amari
and Ohara (2011); Zhang et al. (2018)). We have the following relationship between these two
functions:

log〈1/κ〉 ◦ expκ(z) = z (−π < κArg
(

1 +
z

κ

)
< π). (4.19)

By virtue of lim
κ→∞

expκ(z) = ez, we regard exp∞(z) = ez and log〈0〉(z) = log(z).
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For two real numbers κ, γ such that γ ≤ 1
κ ≤ 1 and γ < 1, we introduce a holomorphic

function fκ,γ(z), which we call generalized Tsallis function, by

fκ,γ(z) :=
z

1 + γz
expκ(z) (1 +

z

κ
∈ C \ R≤0).

We note that κ ∈ (−∞, 0) ∪ [1,+∞). Analogously to Tsallis q-exponential, we also consider

f∞,γ(z) = zez

1+γz (z ∈ C). In particular, f∞,0(z) = zez.

In our work it is crucial to consider an inverse function to fκ,γ . A multivariate inverse
function of f∞,0(z) = zez is called the Lambert W function and studied in Corless et al.
(1996). Hence, we call an inverse function to fκ,γ the Lambert–Tsallis W function.

The function fκ,γ(z) has the inverse function wκ,γ in a neighborhood of z = 0, because we
have f ′κ,γ(0) = 1 6= 0 by

f ′κ,γ(z) =
γz2 +

(
1 + 1/κ

)
z + 1

(1 + γz)2

(
1 +

z

κ

)κ−1
.

Let us present some properties of fκ,γ . When γκ 6= 1, the function fκ,γ has a pole at
x = − 1

γ . By the condition on κ and γ, the function γz2 + (1 + 1/κ)z + 1 has two real roots,

say α1 ≤ α2, when γ 6= 0. If γ = 0, there is only one real root, that we denote α2 = − κ
κ+1 .

f ′κ,γ(z) = 0 implies z = αi (i = 1, 2), or z = −κ if κ > 1. For the case κ < 0, it is convenient
to change the variable by a homographic action z′ = z

1+ z
κ

. Then

fκ,γ(z) = fκ′,γ′(z
′) where κ′ = −κ > 0, γ′ = γ − 1

κ
.

Since a homographic action by an element in SL(2,R) leaves C+ invariant, the analysis of the
case κ < 0 reduces to the case κ′ > 0 and γ′ ≤ 0. Then, the set S := R \ fκ,γ(R) has the
following possibilities.

(S1) S = (fκ,γ(α2), fκ,γ(α1)), where fκ,γ(α2) < fκ,γ(α1) < 0. It occurs when κ ∈ [1,+∞]
and γ < 0, and when κ < 0 and γ′ = γ − 1

κ < 0.
(S2) S = (−∞, fκ,γ(α2)), where fκ,γ(α2) < 0. It occurs when κ > 1 and γ ≥ 0 and when

(κ, γ) = (1, 0).
(S3) S = (−∞, fκ,γ(α1)), where fκ,γ(α1) < 0. It occurs when κ < 0 and γ′ = γ − 1

κ = 0.
(S4) S = (fκ,γ(α1), fκ,γ(α2)), where fκ,γ(α1) < fκ,γ(α2) < 0. It occurs when κ = 1 and

γ > 0.

The cases (S1,S2,S3) are studied in detail in the Supplementary Material. The case (S4)
appears in the well known Wishart Ensemble case.

Theorem 4.1. Let S be an interval or half-line given by (S1)-(S4) above, and S ⊂ (−∞, 0)
its closure. Then, there exists a complex domain Ω ⊂ C, symmetric with respect to the real
axis and containing 0, such that fκ,γ maps Ω bijectively to C \ S. Consequently, the function

wκ,γ can be continued in a unique way to a holomorphic function Wκ,γ defined on C \ S. The

codomain of Wκ,γ is Ω, that is, Wκ,γ(C \ S) = Ω.

Proof. The proof is based on the properties of fκ,γ showed in Proposition 4.3. �

Recall that the main branch of the Lambert W function is holomorphic on C \ (−∞,− 1
e ]

(see Corless et al. (1996)).

Definition 4.2. The unique holomorphic extension Wκ,γ of wκ,γ to C \ S is called the main
branch of Lambert-Tsallis W function. In this paper, we only study and use Wκ,γ among
other branches so that we call Wκ,γ the Lambert–Tsallis function for short. Note that in our
terminology the Lambert-Tsallis W function is multivalued and the Lambert-Tsallis function
Wκ,γ is single-valued.

We summarize the basic properties of the Lambert-Tsallis function that we need later.

Proposition 4.3. (i) Let D = Ω ∩ C+. The function fκ,γ is continuous and injective on

the closure D. Consequently, Wκ,γ extends continuously from C+ to C+ ∪ R, and one has
fκ,γ(∂Ω ∩ C+) = S.
(ii) The Lambert-Tsallis function Wκ,γ has the following properties.
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(a) Suppose that κ ≥ 1 and γ < 0, or κ < 0 and γ′ ≤ 0. In these cases, the set D is

bounded. If κ ≥ 1 then D ⊂
{
z ∈ C+; Arg

(
1 + z

κ

)
∈ (0, π

κ+1 )
}

and z ∈ D satisfies

Re z > −κ. If κ = ∞, then D ⊂ {z ∈ C+; Im z ∈ (0, π)}. If κ < 0 then D ⊂{
z ∈ C+; Arg

((
1 + z

κ

)−1) ∈ (0, π
|κ|+1 )

}
. Moreover, lim|z|→+∞Wκ,γ(z) = − 1

γ (recall

that − 1
γ is a pole of fκ,γ).

(b) Suppose κ ∈ [1,+∞] and γ = 0. The set D = Ω∩C+ is unbounded and fκ,0(∞) =∞.

If κ ∈ [1,+∞) then D ⊂
{
z ∈ C+; Arg

(
1 + z

κ ∈ (0, π
κ+1 )

)}
. If κ =∞, then W∞,0(z)

is the classical Lambert function, and one has D ⊂ {z ∈ C+; Im z ∈ (0, π)}.
(c) Suppose γ > 0. In this case we have κ ∈ [1, 1γ ]. The set D = Ω∩C+ is unbounded and

fκ,γ(∞) =∞. Moreover, D =
{
z ∈ C+; Arg

(
1 + z

κ

)
∈ (0, πκ )

}
.

Proof. The main tool is the Argument Principle (cf. Ahlfors (1979, Theorem 18, p.152)).
A detailed study of the inverse image f−1κ,γ(R) is performed. We omit the technical details,
provided in Supplementary Material. � �

Remark 4.4. It is worth underlying that we consider the main branch of the complex power
function in the Tsallis q-exponential expκ(z) appearing inside the generalized Tsallis function
fκ,γ . Consequently, the main branch Wκ,γ is the unique one such that W (0) = 0. A complete
study of all branches of the Lambert-Tsallis W function will be interesting to do. The study
of the Lambert-Tsallis function Wκ,γ in the full range of parameters κ, γ is also an interesting
open problem. We exclude the case κγ > 1 with κ > 0 because we do not need it later. We
note that, when κγ > 1 and κ > 1 with a condition (1 + κ)2 − 4γκ2 > 0, then fκ,γ maps a
subregion of C+ onto C+.

Applying the Lagrange inversion theorem, we see that the Taylor series of the function Wκ,γ

near z = 0 is

Wκ,γ(z) = z + (γ − 1)z2 +

(
γ2 − 3γ +

3κ+ 1

κ

)
z3 + o(z3).

4.2. Quadratic Wishart matrices. We will now study eigenvalues of Wishart (covariance)
matrices in Pn ⊂ Un, defined in Section 2.4. We apply the approach of Bordenave (2019,
Cor.3.5), based on the variance profile method (Theorem 2.3).

In this subsection, we first consider the case of an = n − 1 and bn = 1, that is, Pn is the
symmetric cone Sym(n,R)+ of positive definite symmetric matrices of size n. Let ξn be a
rectangular matrix of size n×N . In order to study eigenvalue distributions of Xn = ξn

tξn, we
equivalently consider Wigner matrices of the form

Yn :=

(
0 ξn
tξn 0

)
∈ Sym(n+N, R). (4.20)

If Xn has eigenvalues λj ≥ 0 (j = 1, . . . , n), then those of Yn are exactly ±
√
λj (j = 1, . . . , n)

and zeros with multiplicity |N − n|. Let Tn denote the Stieltjes transform of the empirical
eigenvalue distribution of rescaled Xn/n and Sn the Stieltjes transform of rescaled Yn/

√
n+N .

Then, it is easy to see that these Stieltjes transforms satisfy

Tn

(
z2

pn

)
=

1

2z

(
1− 2pn

z
+ Sn(z)

)
, (4.21)

where pn := n
n+N and qn = N

n+N . In fact, we have

Sn(z) =
1

n+N

 |N − n|
0− z

+

min(n,N)∑
j=1

1√
λj/
√
n+N − z

+
1

−
√
λj/
√
n+N − z


=
pn − qn

z
+ 2zTn

(
z2

pn

)
.

In order to study eigenvalue distributions of covariance matrices from Section 2.4, with
parameters k as in (2.2), we introduce a trapezoidal variance profile σ as follows. Let p, α be
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real numbers such that 0 < p < 1 and 0 ≤ α ≤ (1− p)/p. Then, σ is defined by

σ(x, y) =


v (x < p and y ≥ p+ αx),

v (x ≥ p and 0 ≤ y ≤ min{(x− p)/α, p}),
0 (otherwise).

(4.22)

Graphically, σ is of the form

σ = with
p+ q = 1, p, q > 0
0 ≤ tan θ = α ≤ q

p
(4.23)

If limn pn = p, by Theorem 2.3, this variance profile determines the limiting distribution
of empirical eigenvalue distributions of the Wigner matrices Yn in (4.20). Recall that, to a
variance profile σ, Theorem 2.3 associates the Stieltjes transform Sσ(z). It will be determined
in Theorem 4.5. Analogously, to a variance profile σ of ξn, we associate the “covariance Stieltjes
transform” Tσ(z) of the corresponding covariance matrices Qk(ξn) =ξn

tξn. The covariance
Stieltjes transform Tσ(z) is related to Sσ(z) by the formula (4.21). It will be determined in
Proposition 4.7.

Theorem 4.5. Let σ be a variance profile given in (4.22), and set κ := 1/(1 − α) and γ :=
(2p− 1)/p = 1− (q/p). Then, the Stieltjes transform Sσ(z) associated to σ is given as

Sσ(z) = − 2p

zWκ,γ

(
−vpz2

) +
1− 2p

z
− 2z

v
(z ∈ C+),

where Wκ,γ is the Lambert-Tsallis function defined in Section 4.1.

Proof. We use Theorem 2.3. Let z ∈ C+ with Im z � 1. By (2.7) we have

ηz(x) =



−
(
z + v

∫ 1

p+αx

ηz(y) dy

)−1
(0 ≤ x ≤ p),

−

(
z + v

∫ α−1(x−p)

0

ηz(y) dy

)−1
(p < x ≤ p+ αp),

−
(
z + v

∫ p

0

ηz(y) dy

)−1
(p+ αp < x ≤ 1).

For z fixed, we set

a(t) := ηz(t), t ∈ [0, p], b(t) := ηz(p+ αt), t ∈ (0, p].

By differentiating both sides in the above equations, we obtain a system{
a′(t) = −vαa(t)2b(t),
b′(t) = va(t)b(t)2,

(4.24)

with initial data a(p) = −
(
z + v

∫ 1

p+αp
ηz(y) dy

)−1
, b(0+) = − 1

z . By the unicity part of

Theorem 2.3 holding for ηz(x) ∈ C+, it is enough to show that (4.24) is satisfied by

a(t) = −zw(z)X(t)ακ, b(t) = −1

z
·X(t)−κ,

where we set w(z) := − 1
vpWκ,γ

(
−vpz2

)
and X(t) := 1− vw(z)

κ t, and that a(t), b(t) ∈ C+ for Im z

big enough. Here, we choose the main branches for complex power functions. If α = 1 then

a(t) = −zw(z)e−vw(z)t, b(t) = −1

z
· evw(z)t.
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The crucial part of the proof is to show that a(t) satisfies the initial data condition. We only
give a proof for this in the case of α 6= 1. Set w = w(z) and X = X(p) for brevity. Since
fκ,γ(−vpw(z)) = −vpz2 , we have

wXκ

1 + v(1− 2p)w
=

1

z2
⇐⇒ wz2Xκ = 1 + v(1− 2p)w

⇐⇒ wz2Xκ = 1− vwp

κ
− (p+ αp− 1)vw

⇐⇒ X = z2wXκ + (p+ αp− 1)vw

⇐⇒ 1 = zwXκ−1
(
z + (p+ αp− 1)

v

z
·X−κ

)
⇐⇒ −zwXκ−1 = −

(
z +

v(p+ αp− 1)

z
·X−κ

)−1
.

In the second and third equivalences, we use the formulas κ = 1/(1 − α) and X = 1 − vwp
κ .

Since a(p) = −zwXακ = −zwXκ−1 by ακ = κ− 1, we see that

a(p) = −
(
z + v · p+ αp− 1

zXκ

)−1
.

Since ηz(x) is independent of x when x ∈ [p+ αp, 1], we have∫ 1

p+αp

ηz(y) dy = (1− p− αp)ηz(p+ αp) = (1− p− αp)b(p) =
p+ αp− 1

zXκ
.

Thus we conclude that a(t) satisfies the initial condition. We omitted other details of the
proof. �

�

Remark 4.6. We call the parameter κ of Lambert-Tsallis functions the angle parameter since
it depends only on the angle of the trapeze in (4.23). If κ = 1, then we have α = 0 so that the
trapeze reduces to a rectangle. If α = q/p, i.e. κ = p/(p−q) = 1/γ, then the trapeze reduces to
a triangle. On the other hand, the parameter γ = 2p−1

p = 1−C depends directly on the shape

parameter C = q/p. We call γ the shape parameter of the Lambert-Tsallis function. Note that
the geometric condition 0 ≤ α ≤ p

q is equivalent to the condition 1
κ ≥ γ. The formula γ = 1− q

p

shows that γ ∈ (−∞, 1). We have

κ ∈ [1, 1γ ] if 0 ≤ γ < 1, and κ ∈ [1,∞] ∪ (−∞, 1γ ] if γ < 0.

Now we give the covariance Stieltjes transform Tσ(z) for the profile σ.

Proposition 4.7. Let σ be a variance profile defined in (4.22) with parameters p and α. Set
κ := 1

1−α and γ := 2p−1
p = 1− q

p . Then, the covariance Stieltjes transform Tσ(z) corresponding

to the profile σ is described as

Tσ(z) = Tκ,γ(z) := −1

v
− 1

zWκ,γ

(
− vz
) − γ

z
=

expκ
(
Wκ,γ(−v/z)

)
− 1

v
(4.25)

for z ∈ C+, and its R-transform R(z) is given as

R(z) = −1

z
− vγ

1− vz
− v

(1− vz) log〈1/κ〉(1− vz)
(1− vz ∈ C \ R≤0).

Proof. The first equality of the formula for Tσ(z) is given by the formula (4.21), and the second
by the definition of the Lambert-Tsallis function. To prove the formula of R-transforms, we

use the fact that −π < κArg
(

1 + W (z)
κ

)
< π for any z ∈ C+ coming by Proposition 4.3 (ii)

and we use relation (4.19). �
�

Recall that Ω denotes the codomain of Wκ,γ . By Proposition 4.3, for each x ∈ S, there are
exactly two solutions of fκ,γ(z) = x in z ∈ ∂Ω, which are conjugate complex numbers, denoted
by K+(x), K−(x), such that ImK+(x) > 0. Recall that α1 ≤ α2 are zeros of the function
γz2 + (1 + 1/κ)z + 1. Then, we have the following theorem.
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Theorem 4.8. Let σ be a trapezoidal variance profile defined by (4.22). Let µσ be the probabil-
ity measure corresponding to the associated covariance Stieltjes transform Tσ given by (4.25).
Then, the density function dσ of µσ is given as

dσ(x) =


1

2πxi

(
1

K−(− v
x )
− 1

K+(− v
x )

)
(if − v

x ∈ S),

0 (if − v
x ∈ R \ S).

(4.26)

Moreover, one has the following possibilities.

(1) In the case p < q and q
p 6= α (i.e. κ ≥ 1 and γ < 0, or κ < 0 and γ′ < 0), the measure

µσ is absolutely continuous and its density dσ(x) is continuous on R. In particular,
µσ has no atoms. Its support is given as

suppµσ =

[
− v

fκ,γ(α2)
,− v

fκ,γ(α1)

]
=

[
v

α2
2

(
1 +

α2

κ

)1−κ
,
v

α2
1

(
1 +

α1

κ

)1−κ]
. (4.27)

(2) In the case p = q = 1
2 or q

p = α (i.e. κ ≥ 1 and γ = 0, or κ < 0 and γ′ = 0), the measure

µσ is absolutely continuous. Its density dσ is continuous on R∗ and limx→+0 dσ(x) =
+∞. In particular, µσ has no atoms. Let α0 := α2 if κ ≥ 1 and α0 := α1 = −1 if
κ < 0. The support of µσ is given as

suppµσ =

[
0,− v

fκ,γ(α0)

]
=

[
0,

v

α2
0

(
1 +

α0

κ

)1−κ]
. (4.28)

When κ =∞, the measure µσ is the Dykema-Haagerup measure χv with support [0, ve].
(3) In the case p > q (i.e. κ ≥ 1 and 0 < γ < 1), we have µσ = dσ(x)dx + (1− q

p )δ0.

The measure µσ has an atom at x = 0 with mass 1− q
p . Recall that κ ∈ [1, 1/γ].

When κ > 1, the support of µσ is given by (4.28). The function dσ is continuous
on R∗ and limx→+0 dσ(x) = +∞. For κ = 1 and −∞ < γ < 1, the measure µσ is
the Marchenko-Pastur law µC with parameter C = q

p = 1 − γ ∈ (0, 1) and supp dσ =[
v(1−

√
C)2, v(1 +

√
C)2

]
.

Proof. We use Proposition 4.7. Let z = x + yi. By Proposition 4.3 (i) and the fact that
Wκ,γ(z) = 0 only if z = 0, we see that l(x) := limy→+0 ImTσ(x + iy) exists when x 6= 0 and
that l(x) = 0 when −v/x 6∈ S.

Assume that x 6= 0 and −v/x ∈ S. Set a(x) + ib(x) := limy→0+Wκ,γ(−v/z). Since

the function fκ,γ is continuous and injective on the closure D ⊂ C+, the function a + ib
is continuous. By Proposition 4.3 (i), we have b(x) > 0 and a(x) + ib(x) = K+(− v

x ). Since

S ⊂ (−∞, 0) by Theorem 4.1, we have −v/x < 0, that is, x > 0. Thus, we obtain for −v/x ∈ S
with x 6= 0

l(x) = lim
y→0+

ImTσ(x+ yi) = Im

(
−1

v
− 1

x(a(x) + ib(x))
− γ

x

)
= − 1

2xi

(
1

K+(− v
x )
− 1

K−(− v
x )

)
=

b(x)

x(a(x)2 + b(x)2)
> 0,

(4.29)

and thus l(x) is a continuous function on R∗. Therefore, x ∈ R∗ is included in the support of
µσ if and only if −v/x ∈ S. By (2.4), we have dσ(x) = 1

π l(x), so that we obtain (4.26).
Let us consider the case (S1). In this case, since S = (f(α2), f(α1)) and f(α1) < 0, we have

x ∈ suppµ ⇐⇒ f(α2) ≤ −v
x
≤ f(α1) < 0 ⇐⇒ − v

f(α2)
≤ x ≤ − v

f(α1)
.

Recall that αi, i = 1, 2 are the real solutions of the equation γz2 + (1 + 1/κ)z + 1 = 0. For a
solution α of this equation, we have by 1 + α/κ = −α(1 + γα)

fκ,γ(α) =
α

1 + γα

(
1 +

α

κ

)κ
= −α2

(
1 +

α

κ

)κ−1
,

so that we arrive at the assertion 1. of the theorem. The argument for other two cases is
similar, and hence we omit it.

Next we consider the case x = 0. We present the case κ ∈ [1,+∞) and γ = 0. For z ∈ C+,

let us set reiθ = 1+
Wκ,γ(−v/z)

κ (r > 0, θ ∈ (0, π)). By Proposition 4.3 (ii-b), the set D = Ω∩C+
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is unbounded and fκ,γ(∞) = ∞. Consequently, if z → 0 in C+, or equivalently −v/z → ∞
in C+, then we have Wκ,0(−v/z) →∞ and r → +∞. Again by Proposition 4.3 (ii-b), we see
that θ ∈ (0, π

κ+1 ) so that sinκθ > 0 when z = −v/(iy) ∈ C+, and thus

ImT (z) = Im
expκ

(
Wκ,γ(−v/z)

)
− 1

v
= Im

(reiθ)κ − 1

v

= Im
rκ cosκθ − 1 + irκ sinκθ

v
=
rκ sinκθ

v
→ +∞ (y → +0).

On the other hand, µσ does not have an atom at x = 0 because we have by Wκ,0(−v/z)→∞
and by γ = 0

yT (iy) = −y
v
− 1

iWκ,γ(−v/(yi))
− γ

i
→ γi = 0 (y → +0).

The proofs for other cases are similar, and hence we omit them.
The absolute continuity of µσ follows from Proposition 2.2, by considering µ0 := µσ −

dσ(x)dx, or, in the case with atom at x = 0, of µ0 := µσ − dσ(x)dx − γδ0 and using the fact
that the Stieltjes transform S0(z) of µ0 satisfies limy→0+ ImS0(x+ iy) = 0 for all x ∈ R. The
argument is similar as in the proof of Theorem 3.1. � �

In the following corollary, we give a real implicit equation for the density dσ analogous to
the Dykema-Haagerup equation (2.3). To do so, we introduce the following notation

eκ(z) := |expκ(z)| ≥ 0, θκ(z) = κArg
(

1 +
z

κ

)
(z ∈ C+).

If κ =∞, we set eκ(z) := eRe z and θκ(z) := Im z. Then, we have expκ(z) = eκ(z)
(
cos
(
θκ(z)

)
+

i sin
(
θκ(z)

))
.

Corollary 4.9. (i) Suppose v = 1 for simplicity. For two real numbers κ, γ such that γ ≤ 1
κ ≤ 1

and γ < 1, the density dσ of the limiting law µσ satisfies the equation

dσ

(
sin
(
θκ(z)

)
b

(
1 + γa− γb cot

(
θκ(z)

))(
eκ(z)

)−1)
=

1

π
· eκ(z) sin

(
θκ(z))

(4.30)

for z = a + bi ∈ ∂Ω ∩ C+. In particular, when (κ, γ) = (∞, 0), the density dσ satisfies the
equation (2.3) with b = x and a = −x cotx (x ∈ [0, π)).
(ii) If κ ∈ [1,∞] and γ < 0, then the correspondence a 7→ b = b(a) is unique for each
z = a + bi ∈ ∂Ω ∩ C+. Then, a ∈ [α1, α2]. The same is true for κ = ∞ and γ = 0 with
a ∈ [−1,+∞).

Proof. (i) Let z = a+bi ∈ ∂D∩C+. Then, it satisfies fκ,γ(z) ∈ S. Suppose fκ,γ(z) = − 1
x , and

set X = a+γa2 +γb2 and Y = |1+γz|2 = (1+γa)2 +(γb)2. Notice that X2 +b2 = (a2 +b2)Y .
The equation fκ,γ(z) = − 1

x means that

eκ(z)

Y

(
X cos

(
θκ(z)

)
− b sin

(
θκ(z)

))
= − 1

x
, (4.31)

X sin
(
θκ(z)

)
+ b cos

(
θκ(z)

)
= 0. (4.32)

The latter one (4.32) yields that cos
(
θκ(z)

)
= − sin

(
θκ(z)

)
b X so that

− 1

x
= −eκ(z)

Y
·

sin
(
θκ(z)

)
b

(X2 + b2) ⇐⇒ 1

x
· b

a2 + b2
= eκ(z) sin

(
θκ(z)

)
.

On the other hand, (4.32) can be written as X = −b cot
(
θκ(z)

)
, and using this expression

together with (4.31), we obtain

− 1

x
=
eκ(z)

Y

(
−b cot

(
θκ(z)

)
cos
(
θκ(z)

)
− b sin

(
θκ(z)

))
= − b

sin
(
θκ(z)

) · eκ(z)

Y

and hence

x =
sin
(
θκ(z)

)
b

· Y
(
eκ(z)

)−1
.
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Figure 8. Domain Ω for κ =
−1/3, γ = −4.

It is easy to check that we have Y = 1 + γa+ γX. By (4.29), the density can be described as
dσ(x) = 1

πx ·
b

a2+b2 so that we obtain the formula (4.30).

(ii) We shall show the part (ii) for κ ∈ (1,∞) and γ < 0. The other cases can be done by a
similar way. Let z = a+ bi ∈ D = Ω∩C+. Set θ(a, b) = Arctan b

κ+a for a > −κ and b > 0. By

Proposition 4.3 (ii-a), we see that Re
(
1+ z

κ

)
= 1+ a

κ > 0 and hence θκ(a+ ib) = κθ(a, b). Note

that ∂
∂bθκ(a+ ib) = κ · κ+a

(κ+a)2+b2 . For given a > −κ, set g(y; a) := y cot(θκ(a+ iy)). Let y0 > 0

satisfy θ(a, y0) = π
κ+1 . Then, we can show that g(y; a) is monotonic decreasing for y ∈ (0, y0).

Set h(y) = h(y; a) := a+γa2+γy2+g(y) for the fixed a > −κ. Recall that h(y; a) = 0 if and
only if z = a+ iy ∈ ∂D ∩C+. As γ < 0, we see that the function h(y) := a+ γa2 + γy2 + g(y)
is decreasing on y ∈ (0, y0) for each fixed a > −κ. Since cot(θκ(a + iy0)) = −κ+ay0 , we see

that h(y0; a) < 0. By the fact that limy→+0 g(y; a) = 1 + a
κ , we have limy→+0 h(y; a) =

γ(a − α1)(a − α2). Since h is monotonic decreasing on y ∈ (0, y0), if a ∈ (α1, α2) then
limy→+0 h(y; a) > 0 so that there exists a unique solution y = b of h(y; a) = 0 in y ∈ (0, y0)
for each a ∈ (α1, α2) by the intermediate value theorem, whereas if limy→+0 h(y; a) ≤ 0 then
there is no solution of h(y; a) = 0 in y ∈ (0, y0). Thus the correspondence a 7→ b = b(a) is
unique for each z = a+ bi ∈ ∂Ω ∩ C+. �

�

Remark 4.10. Corollary 4.9 (ii) enables us to write the density dσ with one real parameter in
a way similar to Dykema and Haagerup (2004, Theorem 8.9), see formula (2.3). In particular,
in the case (a), we obtain the formula

dσ

(
sin b(a)

b(a)

(
1 + γa− γb(a) cot b(a)

)
e−a
)

=
1

π
· ea sin b(a) (a ∈ [α1, α2]).

A natural conjecture that we always have a 1-1 correspondence a → b or b → a is not
confirmed by numerical generation of the domain Ω. For κ = −1/3 and γ = −4 the domain Ω
is illustrated in the Figure 8. We do not have unicity of a→ b nor b→ a.

4.3. Applications to Wishart Ensembles of Vinberg matrices. Now we apply Theorem
4.8 to the covariance matrix Xn = Qk(ξn) ∈ Pn in two situations. The first (Corollary 4.11)
is the case when Pn is the symmetric cone Sym(n,R)+ with k of the form (4.33) below. The
second situation (Theorem 4.14) is the general case when Pn ⊂ Un is a dual Vinberg cone with
k of the form (2.2). This case contains the first one, that we present separately because of the
importance of the symmetric cone Sym(n,R)+.

Let us assume that k = k(n)= (k1, . . . , kn) in (2.2) is of the form

k = m1(1, . . . , 1, 1) +m2(n)(0, . . . , 0, 1), lim
n

m2(n)

n
= m, (4.33)

where m1 ∈ Z≥0 is a fixed non-negative integer and m ∈ R≥0 is a non-negative real such that
m1+m > 0. Set N := k1+ · · ·+kn = m1n+m2(n). We note that the case m1 = 0 corresponds
to the classical Wishart ensembles, and if m1 ≥ 1 then we have N ≥ n.
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Corollary 4.11. Let k be as in (4.33). Suppose that ξn ∈ Ek is an i.i.d. matrix with finite
fourth moments and let Xn = ξn

tξn. Let µn be the empirical eigenvalue distribution of Xn/n.
Then, there exists a limiting eigenvalue distribution µ = limn µn. The Stieltjes transform T (z)
of µ is given by formula (4.25)

T (z) = Tκ,γ(z) =
expκ

(
Wκ,γ(−v/z)

)
− 1

v
with κ =

1

1−m1
, γ = 1−m−m1.

The measure µ is absolutely continuous and has no atoms. If m1 = 0 then the measure µ
is the Marchenko-Pastur law with parameter C = m. The case (m1,m) = (1, 0) corresponds
to the Dykema–Haagerup measure χv. If m = 0 then the density d is continuous on R∗ and

limx→+0 d(x) = +∞. When m1 ≥ 2 then the support of µ is [0, vm
m1/(m1−1)
1 ]. Otherwise, for

m1,m > 0, the density d(x) of µ is continuous on R, and its support equals [A(α2), A(α1)]
where A(αi) := vα−2i (1 + (1 − m1)αi)

m1/(m1−1) and α1 < α2 are roots of the function (1 −
m1 −m)x2 + (2−m1)x+ 1.

Proof. We use Theorem 2.3. It is enough to show that the matrix Yn in (4.20) has the variance
profile σ in (4.22) and that the conditions (2.6) are satisfied. Since we have for n large enough∣∣δ0(n)

∣∣ ≤ 1

n2
· 2v(m1 +m+ 1)n =

2v(m1 +m+ 1)

n
→ 0 (n→∞)

and if E|Yij |2 6= 0 then

E(Y 4
ij)

n(EY 2
ij)

2
=
M4

vn
→ 0 (n→∞),

we can easily check the conditions (2.6). Thus, we can apply Theorem 4.8. Consider m1 ≥ 2.
Then κ < 0. When m = 0, then we have γ′ = γ − 1

κ = 0 so that we apply Theorem 4.8.2.

We have α = −1, 1 − 1
κ = m1 and 1 − κ = m1

m1−1 . By (4.28), the support is given by

suppµ =
[
0, vα2

(
1 + α

κ

)1−κ]
=
[
0, vm

m1/(m1−1)
1

]
. When m > 0, we have γ′ < 0 so that we

apply Theorem 4.8.1. The support of µ is given by the formula (4.27), where α1 ≤ α2 are roots
of the function γx2 + (1 + 1/κ)x+ 1. � �

Remark 4.12. If m = 0, our results contain those of Claeys and Romano (2014, Section
4.5.1) and Cheliotis (2018, Theorem 4 and (12)). The result on the limiting densities of
biorthogonal ensembles in Cheliotis (2018) can be reproduced from Corollary 4.11. In fact, our
random matrices Qk(ξn) essentially correspond to those considered in Cheliotis (2018) through
adjusting parameters m1 = θ − 1 and m2(n) = b− 1 (not depending on n), where θ and b are
parameters used in that paper.

Remark 4.13. Until now, we assumed that m1 ∈ Z≥0 and hence the parameter α of the
variance profile σ needs to be also an integer. However, we can take a sequence {k(n)}∞n=1

so that the corresponding α is an arbitrary given positive real number. In fact, when α > 0
is given, we consider a right triangle with lengths 1 and α. For an arbitrary n, we cover the
triangle by 1/n × 1/n squares as in the figure. To each j = 1, . . . , n, we associate an integer

kj(n) such that
kj(n)
n ≤ j

nα <
kj(n)+1

n , or equivalently kj(n) ≤ jα < kj(n) + 1, and we set
k(n) = (k1(n), . . . , kn(n)). Note that this condition is independent of n so that kj(m) = kj(n)
when m ≥ n ≥ j, and hence {Ek(n)}n is a sequence of vector spaces such that Ek(n) ⊂ Ek(n+1).
In the Figure 9, we set α = 1.8, n = 11 and k(n) = (1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2).

Let us return to the quadratic Wishart case for general Pn with parameter k as in (2.2) such
that m1,m2 ∈ Z≥0 are fixed. Note that m2(n) in the previous discussion is now m2(n) = m2bn.
Set Nn := m1n+m2bn. We have

Ek =

ξ =

(
η
ζ

)
∈ Mat(n×Nn, R);

η = (ηij) ∈ Mat(an ×Nn, R),
ζ = (ζij) ∈ Mat(bn ×Nn, R)
ηij = 0 if j ≤ (m1 − 1)i,
ζij = 0 if M(i, j) 6∈ {1, 2, . . . ,m1 +m2}

 ,

where M(i, j) := j −m1an − (m1 +m2)(i− 1).
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Figure 9. Realization of non-
integer α

Corollary 4.14. Let {Pn}n be a sequence of generalized dual Vinberg cones such that limn→∞ an/n =
c ∈ (0, 1]. Let k be a vector as in (2.2) such that m1,m2 are fixed. Set κ := 1/(1 −m1) and
γ := 1 −

(
m1 + m2(1 − c)

)
/c. Then, the Stieltjes transform T (z) of the limiting eigenvalue

distribution of Qk(ξn)/n with i.i.d. matrices ξn ∈ Ek is given for z ∈ C+ as

T (z) = −1

v
− c

zWκ,γ(− cvz )
− cγ + 1− c

z
=

expκ
(
Wκ,γ(−vc/z)

)
− 1

v
− 1− c

z
.

The properties of absolute continuity and support of the limiting measure can be derived
analogously to those obtained in Theorem 4.8 for c = 1.

Proof. We construct a variance profile σ from Ek likely to (4.22). We embed the rectangular

matrix ξn ∈ Ek in a square matrix Y (ξn) =

(
0 ξn
tξn 0

)
, and set Vn =

{
Y (ξn); ξn ∈ Ek

}
. Set

p′ = lim
n→∞

n

n+Nn
=

1

1 +m1 +m2(1− c)
. Let σ be a function [0, 1]× [0, 1]→ R≥0 defined by

σ(x, y) =


v (x < cp′ and y ≥ p′ +m1x)

v (x ≥ p′ and 0 ≤ y ≤ min{(x− p′)/m1, cp
′}),

0 (otherwise).

Then, we can show that σ is the variance profile of Vn. On the other hand, let us consider

a subspace E′k :=

{
ξ =

(
η
ζ

)
∈ Ek; ζ = 0

}
of Ek, and let V ′n =

{
Y (ξn); ξn ∈ E′k

}
. Then,

σ is also the variance profile of V ′n. Thus, we consider equivalently the limiting eigenvalue

distribution of V ′n, and that of covariance matrices on E′k. If ξn =

(
ηn
0

)
∈ E′k, then Qk(ξn) =(

ηn
tηn 0
0 0

)
, and thus it is enough to study the limiting eigenvalue distribution of ηn

tηn. The

variance profile of ηn
tηn has a trapezoidal form (4.22) (illustrated by (4.23)) with parameters

α = m1 and p = limn
an

an+Nn
= c

c+m1+m2(1−c) . Applying Proposition 4.7, we see that the

corresponding Stieltjes transform T1(z) is given by

T1(z) = Tκ,γ(z) with κ =
1

1−m1
, γ =

2p− 1

p
=
c−m1 −m2(1− c)

c
.

In general, for two symmetric matrices Ai (i = 1, 2) of size ni, the Stieltjes transform S(z)
of diag(A1, A2)/(n1 + n2) can be described by using the Stieltjes transforms Si(z) of Ai/ni
(i = 1, 2) as

S(z) = S1

(
n1 + n2
n1

z

)
+ S2

(
n1 + n2
n2

z

)
(z ∈ C+).

In our situation, we have (n1, n2) = (an, bn) and (A1, A2) = (ηn
tηn, 0). Hence, we have

S2(z) = − 1
z and S1(z) is the Stieltjes transform of ηn

tηn/an so that limn→∞ S1(z) = T1(z).
Thus, taking the limit n→∞, we see that the limiting Stieltjes transform T (z) corresponding
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Figure 10. Simulation for
α = 1/2

Figure 11. Simulation for
α = 1

Figure 12. Simulation for
α = 2

to E′k, and hence to Ek is given as

T (z) = T1

(z
c

)
+ S2

(
z

1− c

)
= Tκ,γ

(z
c

)
− 1− c

z

= −1

v
− c

zWκ,γ(−vc/z)
− cγ + 1− c

z
,

whence we obtain the corollary. � �

Remark 4.15. In the Figures 10-12 we present simulations of k-indexed Wish-art ensembles
Xn = Qk(ξn) on the symmetric cone Sym(n,R)+ (i.e. c = 1), for n = 4000 and N = |k| = 2n
with parameters α = m1 = 1/2, 1 and 2, respectively. We have γ = −1 and κ = 2,∞,−1
respectively. The red line is the graph of d(x) generated by the R program from its Stieltjes
transform given in Corollary 4.11. In two first cases, the limiting density d(x) is continuous on
R with compact support contained in (0,∞). The last case (κ, γ) = (−1,−1) corresponds to
(κ′, γ′) = (1, 0) which is the classical Wishart case with C = 1. Thus its density explodes to
∞ at 0.

Remark 4.16. Let Yn be a rectangular n × p i.i.d. matrix with variance profile σ(x, y), and
assume that limn→∞ p/n = c. In papers Hachem at al. (2005, 2006); Hachem et al. (2008) a

functional equation τ(u, z) =
(
−z+

∫ 1

0
σ(u, v)

(
1+c

∫ 1

0
σ(x, v)τ(x, z)dx

)−1
dv
)−1

is given to get
the limiting Stieltjes transform f(z) for the rescaled random matrices YnY

∗
n , as the integral∫ 1

0
τ(u, z)du. This equation appears in Girko (1990) in the setting of Gram matrices based on

Gaussian fields (cf. Hachem at al. (2006, Remark 3.1)).
However, thanks to symmetry, solving the equations (4.24) resulting from Theorem 2.3 is

easier than solving the last functional-integral equation for τ(u, z). Therefore we opted for
variance profile method for Gaussian and Wigner ensembles as the main tool of studying
Wishart ensembles of Vinberg matrices.

5. Wigner and Wishart Ensembles related to Generalized Vinberg cones

In this section, we consider the dual cone QGn of Pn, which is realized as a minimal ma-
trix form in the sense of Yamasaki and Nomura (2015) as follows. Let Vn be a subspace of
Sym(an(bn + 1), R) defined by

Vn :=

diag

((
x y1
ty1 d1

)
, . . . ,

(
x ybn
tybn dbn

))
;
x ∈ Sym(an,R),
y1, . . . , ybn ∈ Ran ,
d1, . . . , dbn ∈ R

 . (5.34)

Then, the dual cone QGn is described as QGn := Vn ∩ Sym(an(bn + 1), R)+.
We consider Wigner Ensembles Vn ∈ Vn and quadratic Wishart Ensembles Xn ∈ QGn as

those in the sense of Sym(an(bn+1), R). Assume that limn→+∞ an =∞. By the theory of lower
rank perturbation (see Tao (2012, §2.4.1), for example), the study of eigenvalue distributions
of these ensembles boils down to the study of the eigenvalue distributions of x and, after
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suitable normalization, the limiting eigenvalue distributions of Vn and Xn are the same as for
x ∈ Sym(an, R).

This essential difference in the Random Matrix Theory for the cones QGn and Pn may be
explained by a substantial difference between the cones QGn and Pn in terms of numbers of
sources in the sense of Yamasaki and Nomura (2015). In the case Pn, there is only one source
so that Pn can be realized in a usual matrix form. On the other hand, QGn has bn sources so
that bn copies of a usual matrix form appear.
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Laboratoire de Mathématiques LAREMA under the support of Grant-in-Aid for JSPS fellows
(2018J00379).



Supplemental material
of

Wigner and Wishart Ensembles for graphical models

Hideto Nakashima and Piotr Graczyk

1. Description of Supplementary material

In this Supplementary material we give all technical details of proofs. In order to facilitate using the
Supplementary material, we include in it the main text of the article and keep the same numbering.

2. Preliminaries

We begin this paper with recalling the definition of the empirical eigenvalue distribution of a
symmetric matrix. Let X ∈ Sym(n,R) be a symmetric matrix and let λ1(X) ≥ · · · ≥ λn(X) be the
ordered eigenvalues of X with counting multiplicities. Denote by δa the Dirac measure at a. Then,
the empirical eigenvalue distribution µX of X is defined by µX = 1

n

∑n
i=1 δλi(X).

If {Xn}∞n=1 (Xn ∈ Sym(n; R)) is a sequence of Gaussian, Wigner or Wishart matrices, then it is
well known that there exists a limit µ of µXn as n→∞, and the sequence of random measures µXn
converges almost surely weakly to the semi-circle law or the Marchenko-Pastur law, respectively (see
for example Bai and Silverstein (2010); Bordenave (2019)). The limits µ of µXn , in the almost sure
weak sense, are said to be the “limiting eigenvalue distributions µ of Xn.” For simplicity, we will say
“i.i.d. matrices” instead of “matrices with independent and identically distributed non-null terms”.

2.1. Basics on statistical graphical models. Let G be a graph with vertices V = {1, 2, . . . , n} and
edges E. We say that a statistical character X = (X1, . . . , Xn) has the dependence graph G when each
conditional independence of marginals Xi and Xj with respect to remaining variables corresponds
to the absence of the edge {i, j} in E. Thus the dependence graph G is a tool of encoding of the
conditional independence of marginals of X . We say that X belongs to the graphical model governed
by G.

Let UG be the subspace of Sym(n,R) containing matrices with uij = 0 if the edge {i, j} 6∈ E.
Cones PG = Sym(n,R)+ ∩ UG and their dual cones QG are basic objects of graphical model theory.
Actually, a Gaussian n-dimensional model N(m,Σ) is governed by the graph G if and only if the
inverse covariance matrix Σ−1 ∈ PG (cf. Lauritzen (1996)).

Figure 1. Daisy Graph

An important class of graphical models, called daisy graphs, is defined as
follows. Let a+ b = n and let D(a, b) be a graph with vertices V = {1, . . . , n},
such that the first a elements form a complete graph and the latter b elements
are satellites(petals) of the complete graph, that is, each satellite connects to
all elements in the complete graph and does not connect to the other satellites
(see Figure 1). The double circle around the vertex an in Figure 1 indicates
the complete graph with an vertices.

In high dimensional statistics, it is essential to let the number of observed
characters n tend to infinity. From the graphical model theory point of view,
the pattern of the growing graphs Gn and of the corresponding cones PGn
should remain the same. This requirement is met by growing daisy graphs
D(an, bn) for non-decreasing sequences of positive integers {an}∞n=1 and {bn}∞n=1 such that an+bn = n.

2.2. Generalized dual Vinberg cones and Vinberg matrices. Let {an}∞n=1 and {bn}∞n=1 be
non-decreasing sequences of positive integers such that an + bn = n and the ratio an/n converges to
c ∈ [0, 1]. Let Gn = D(an, bn) be the corresponding daisy graph. Then, the corresponding matrix
space Un of the graph Gn is a subspace of Sym(n,R) defined by

Un :=

{
U =

(
x y
ty d

)
;
x ∈ Sym(an,R), y ∈ Mat(an × bn,R),
d is a diagonal matrix of size bn

}
,

and we set

Pn := PGn = Un ∩ Sym(n,R)+.
22
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The cone Pn admits a transitive group action, i.e. Pn is a homogeneous cone, since the following
triangular group

Hn :=

h =

(
h1 y
0 d

)
∈ GL(n,R);

h1 ∈ GL(an,R) is upper triangular,
y ∈ Mat(an × bn; R),
d : diagonal of size bn


acts on Pn transitively by the quadratic action ρ(h)U := hU th for h ∈ Hn and U ∈ Pn. This is
easily verified by using the Cholesky decomposition (cf. Ishi (2016, p. 3)). For definition and basic
properties of homogeneous cones, see Vinberg (1963); Ishi (2014).

If n = 3 and (an, bn) = (1, 2), then P3 is the dual Vinberg cone (see Example 2.1) so that, in this
paper, we call Pn a generalized dual Vinberg cone and elements U ∈ Un Vinberg matrices. Vinberg
cones form an important class of matrix cones related to graphical models (cf. Section 2.1). On the
other hand, if we set an = n−1 and bn = 1, then Un is the space Sym(n,R) of symmetric matrices of
size n, and hence our discussion covers the classical results. In what follows, we introduce two kinds
of random matrices related to the homogeneous cones Pn, that is, Gaussian and Wigner matrices and
Wishart quadratic (covariance) matrices.

2.3. Gaussian and Wigner matrices in Un. Analogously to the classical Wigner matrices, we say
that Un = (uij) ∈ Un is a Wigner random matrix if

• the diagonal terms (uii) are independent of the off-diagonal terms (uij)i<j ,
• the diagonal uii’s are centered i.i.d. variables with variance v′ and fourth moment
M ′4,
• the non-nul off-diagonal uij ’s, i < j, are centered i.i.d. variables with variance v

and fourth moment M4,

(2.1)

where v, v′,M4,M
′
4 are fixed positive real numbers. If the non-nul terms uij are Gaussian, with ν = 1

and ν′ = 2, the matrices Un form a Gaussian Orthogonal Ensemble of Vinberg matrices.
In Section 3, we consider empirical eigenvalue distributions of rescaled Wigner matrices Un/

√
n ∈

Un.

2.4. Quadratic construction of Wishart (covariance) matrices in Un. Recall that Wishart
matrices are constructed quadratically both in Random Matrix Theory and in statistics. In this
section we define, by a quadratic construction, Wishart (covariance) matrices in Un.

We first recall the notion of a direct sum of quadratic maps. Let Qi : Rmi → Rm (i = 1, . . . , k) be
quadratic maps. Then, the direct sum Q1⊕· · ·⊕Qk is an Rm-valued quadratic map on Rm1⊕· · ·⊕Rmk
given by

Q(x) := Q1(x1) + · · ·+Qk(xk) where x =

k∑
i=1

xi
(
xi ∈ Rmi

)
.

If Q1 = · · · = Qk, then the direct sum Q is denoted by Q⊕k1 . As showed in Graczyk and Ishi
(2014), any homogeneous cone Ω admits a canonical family of the so-called basic quadratic maps qj
(j = 1, . . . , r) defined for each j on a suitable finite dimensional vector space Ej and with values in

Ω. The number r is called the rank of Ω and r = n for the cones Un. Using the basic quadratic maps
qj , one constructs quadratic maps Qk for k ∈ Zr≥0 by

Qk := q⊕k11 ⊕ · · · ⊕ q⊕krr ,

defined on Ek := E⊕k11 ⊕ · · · ⊕ E⊕krr . The maps Qk are Ω-positive, i.e. if ξ ∈ Ek \ {0}, then

Qk(ξ) ∈ Ω \ {0}.
In our case Ω = Pn, the basic quadratic maps are given as follows (cf. Graczyk and Ishi (2014)).

For j = 1, . . . , n, define Ej ⊂ Rn by

Ej =

{(
ξ
0

)
∈ Rn; ξ ∈ Rj

}
(j ≤ an),

Ej =

{(
ξ
0

)
+ ξ′ej ∈ Rn; ξ ∈ Ran , ξ′ ∈ R

}
(j > an),

where ei (i = 1, . . . , n) is the vector in Rn having 1 on the i-th position and zeros elsewhere. We
note that each Ej corresponds to the j-th column of the Lie algebra hn of Hn, that is, we have
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hn =
{
H = (ξ1, . . . , ξn); ξj ∈ Ej

}
. Then, the basic quadratic maps qj : Ej → Un of the cone Pn are

defined by

qj(ξj) := ξj
tξj ∈ Un (ξj ∈ Ej).

Let k ∈ Zn≥0. Then, Ek can be viewed as a subspace of Mat(n× (k1 + · · ·+ kn); R). In fact, we have

Ek =

η =
( k1︷ ︸︸ ︷
ξ
(1)
1 , . . . , ξ

(k1)
1 , ξ

(1)
2 , . . . , ξ

(kn−1)
n−1 ,

kn︷ ︸︸ ︷
ξ(1)n , . . . , ξ(kn)n

)
;
ξ
(i)
j ∈ Ej ,
j = 1, . . . , n,
i = 1, . . . , kj


⊂ Mat(n× (k1 + · · ·+ kn); R),

and then Qk(η) = η tη for η ∈ Ek.
When η ∈ Ek is an i.i.d. random matrix whose non-null terms have the normal law N(0, v), the

law of Qk(η) is a Wishart law γQk,1/(2v)Idn on the cone Pn. For the definition of all Wishart laws

on the cone Pn, see Graczyk and Ishi (2014). More generally, in this paper, we consider eigenvalue
distributions of rescaled matrix Qk(η)/n under the assumption that η ∈ Ek is a centered rectangular
i.i.d. matrix whose non-null terms have variance v and finite fourth moments M4.

We consider two-dimensional multiparameters k = k(n) ∈ Zn≥0 of the form

k = m1(1, . . . , 1) +m2(

an︷ ︸︸ ︷
0, . . . , 0,

bn︷ ︸︸ ︷
1, . . . , 1 ) (m1,m2 ∈ Z≥0). (2.2)

Example 2.1. Let n = 3, a3 = 1 and b3 = 2. In this case, P3 is the dual Vinberg cone (cf. Vinberg
(1963, p. 397), Ishi (2001, §5.2)):

P3 =

x =

x11 x12 x13
x12 x22 0
x13 0 x33

 ; x is positive definite

 .

Consider m1 = m2 = 1, so k = (1, 2, 2). Then Ek = E(1,2,2) can be written as

E(1,2,2) =

η =

x y11 y12 z11 z12
0 y21 y22 0 0
0 0 0 z21 z22

 ; x, yij , zij ∈ R

 ,

and Q(1,2,2)(η) = η tη is given as

Q(1,2,2)(η) =

x2 + y211 + y212 + z211 + z212 y11y21 + y12y22 z11z21 + z12z22
y11y21 + y12y22 y221 + y222 0
z11z21 + z12z22 0 z221 + z222

 .

If x, yij , zij are N(0, v) i.i.d. Gaussian variables, the random matrix Q(1,2,2)(η) has a Wishart law on
P3.

The form (2.2) of the Wishart multiparameter k englobes and generalizes the following cases. In
both cases, with rescaling 1/n, the limiting eigenvalue distribution is known.

(i) The classical Wishart Ensemble M tM on Sym(n,R)+, where Mn×N is an i.i.d. matrix with
finite fourth momentM4, with parameter C := limn

N
n > 0 (see Anderson et.al. (2010); Faraut

(2014)) for (an, bn) = (n−1, 1), m1 = 0 and m2 ∼ Cn. The limiting eigenvalue distribution is

the Marchenko-Pastur law µC with parameter C, i.e. denoting a =
(√
C−1

)2
, b =

(√
C+1

)2
and [x]+ := max(x, 0) (x ∈ R),

µC = [1− C]+δ0 +

√
(t− a)(b− t)

2πt
χ[a,b](t)dt.

(ii) The Wishart Ensemble related to the Triangular Gaussian Ensemble
(Dykema and Haagerup (2004); Cheliotis (2018)) for (an, bn) = (n − 1, 1), m1 = 1 and
m2 = 0. When v = 1, the limiting eigenvalue distribution, which we call the Dykema-
Haagerup measure χ1, is absolutely continuous with respect to Lebesgue measure and has
support equal to the interval [0, e]. Its density function φ is defined on the interval (0, e] by
the implicit formula (Dykema and Haagerup (2004, Theorem 8.9))

φ

(
sinx

x
exp(x cotx)

)
=

1

π
sinx exp(−x cotx) (0 ≤ x < π), (2.3)
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with φ(0+) =∞ and φ(e) = 0. For v 6= 1, the limiting measure χv has density φ(y/v)/v on
the segment (0, ve].

2.5. Resolvent method for Wigner ensembles with a variance profile σ. Let C+ denote the
upper half plane in C. In this paper, the Stieltjes transform S(z) = Sµ(z) of a probability measure
µ on R is defined to be

S(z) =

∫
R

µ(dt)

t− z
(z ∈ C+).

In the sequel, we will need the following properties of the Stieltjes transform, which are not difficult
to prove.

Proposition 2.2. 1. Suppose that s(z) is the Stieltjes transform of a finite measure ν on R. If for
all x ∈ R it holds

lim
y→0+

Im s(x+ iy) = 0

then s(z) ≡ 0 and ν is a null measure (ν(B) = 0 for any Borel set B).
2. Suppose f ≥ 0 and f ∈ L1(R). Let s(z) be the Stieltjes transform of f . If f is continuous at x
then

lim
y→0+

1

π
Im s(x+ iy) = f(x). (2.4)

If f is continuous on an interval [a, b], a < b, the convergence (2.4) is uniform for x ∈ [a, b].

Recall that if µ is a probabilistic measure on R, with Stieltjes transform s(z) and the absolutely
continuous part of µ has density f , then (2.4) holds for almost all x (Lemma 3.2 (iii) of Bordenave
(2019)).

We present now the following, slightly strengthened result from the Lecture Notes of Bordenave
(2019, §3.2), that will be a main tool of proofs in this paper.

Let σ : [0, 1]× [0, 1]→ [0,∞) be a bounded Borel measurable symmetric function. For each integer
n, we partition the interval [0, 1] into n equal intervals Ji, i = 1, . . . , n. Put Qij := Ji× Jj , which is a
partition of [0, 1]× [0, 1]. We assume that Yij (i ≤ j) are independent centered real variables, defined
on a common probability space, with variance

EY 2
ij =

1

n

(∫
Qij

σ(x, y)

|Qij |
dx dy + δij(n)

)
, (2.5)

for a sequence δij(n). We note that the law of Yij depends on n. We set Yji := Yij and we consider
the symmetric matrix Yn := (Yij)1≤i,j≤n. We note that, if σ is continuous, then, up to a perturbation
δij(n), the variance of

√
nYij is approximatively σ(i/n, j/n), and hence we call σ a variance profile

in this paper.

Theorem 2.3. Let δ0(n) :=
1

n2

∑
i,j≤n

|δij(n)|. Assume (2.5) and suppose that

lim
n
δ0(n) = 0 and max

i,j≤n

E(Y 4
ij)

n(EY 2
ij)

2
= o(1) (Yij 6= 0). (2.6)

Let µYn be the empirical eigenvalue distribution of Yn. Then, there exists a probability measure µσ
depending on σ such that µYn converges weakly to µσ almost surely. The Stieltjes transform Sσ of µσ
is given as follows.
(a) For each z with Im z > 1, there exists a unique C+-valued L1-solution ηz : [0, 1] 7→ C+, of the
equation

ηz(x) = −
(
z +

∫ 1

0

σ(x, y) ηz(y) dy

)−1
(for almost all x ∈ [0, 1]), (2.7)

and the function z 7→ ηz(x) extends to an analytic C+-valued function on C+, for almost all x ∈ [0, 1].
Then,

Sσ(z) =

∫ 1

0

ηz(x) dx.

(b) The function x→ ηz(x) is also a solution of (2.7) for 0 < Im z ≤ 1.
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The proof is given in the next subsection. Theorem 2.3 shows that, to each variance profile
function σ, one associates uniquely a Stieltjes transform Sσ(z) of a probability measure. For the
correspondence between σ and Sσ, the conditions (7) are not needed. We define Sσ(z) as the Stieltjes
transform associated to σ.

Remark 2.4. A prototype of the variance profile method for Wigner ensembles was given by Ander-
son and Zeitouni (2006, Theorem 3.2). Theorem 3.1 of Bordenave (2019) and Theorem 2.3 provide
a simple general approach. Special cases of variance profile convergence results for Wigner matrices
were studied before, as discussed below in (i) and (ii).

(i) If we set σ(x, y) = 1 for all x, y, then
√
nY is a Wigner ensemble with v = v′ = 1. Let Ssc(z)

be the Stieltjes transform of the semi-circle law on [−2, 2]. Then, the functions x → ηz(x) do
not depend on x (but do on z) and the functional equation (2.7) gives the equation Ssc(z) =
−(z + Ssc(z))

−1, which is well known from the detailed study of resolvent matrices (see Tao
(2012, §2.4.3)).

(ii) The paper Anderson and Zeitouni (2006) deals primarily with a variance profile σ such that∫
σ(x, y) dy = 1 for any x, corresponding to a band matrix model. For band matrix ensembles,

see also Erdös et al. (2012,b); Nica et al. (2002); Shlyakhtenko (1996).

2.5.1. Proofs of Proposition 2.2 and Theorem 2.3.
Proof of Proposition 2.2

1. The zero limit means that the Stieltjes transform s(z) has no discontinuity on R, so s(z) is
holomorphic on C and has decay 1/z when |z| → ∞, so is bounded. By Liouville theorem, this implies
that s(z) = const = 0 and, by unicity of the Stieltjes transform, ν = 0.

2. is given in the following lemma.

Lemma 2.5. Let f be an L1-function on R:
∫
|f(x)|dx = F < +∞ and let S be its Stieltjes

transform.
(a) If f is continuous at x = x0, then we have

lim
y→+0

1

π
ImS(x0 + yi) = f(x0). (2.8)

(b) If f is continuous on an interval [a, b], a < b, then the convergence in (2.8) is uniform for
x ∈ [a, b].

Proof. Since S(z̄) = S(z), we have

ImS(x+ yi) =
1

2i

(∫
R

f(t)

t− x− yi
dt−

∫
R

f(t)

t− x+ yi
dt

)
= y

∫
R

f(t)

(t− x)2 + y2
dt =

∫
R

f(x+ yu)

1 + u2
du.

In the third equality, we change variable t− x = yu.
(a) Let y > 0. We consider

1

π
ImS(x0 + yi) =

1

π

∫
R

f(x0 + yu)

u2 + 1
du.

Let us take an enough small ε > 0. Then, there exists δ > 0 such that if |x − x0| < δ then
|f(x)− f(x0)| < ε. We divide the integral into two parts: I1 = {u; |(x0 + yu)− x0| = |yu| < δ} and
its complement I2 = {u; |(x0 + yu)− x0| = |yu| ≥ δ}:

1

π

∫
R

f(x0 + yu)

u2 + 1
du =

1

π

∫
I1

f(x0 + yu)

u2 + 1
du+

1

π

∫
I2

f(x0 + yu)

u2 + 1
du =: J1 + J2.

Let us consider J1. Since |yu| < δ for u ∈ I1, we have f(x0)− ε < f(x0 + yu) < f(x0) + ε so that

f(x0)− ε
π

∫
|u|<δy

du

1 + u2
≤ J1 ≤

f(x0) + ε

π

∫
|u|<δy

du

1 + u2
.

Set

A = Ay,δ =
1

π

∫
|u|<δy

du

1 + u2
=

2

π
Arctan

δ

y
≤ 1.

Then, the above inequality means

|J1 − f(x0)A| ≤ εA ≤ ε
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Next we consider J2. By changing variable v = yu, we have

|J2| =

∣∣∣∣∣y ·
∫
|v|≥δ

f(x0 + v)

v2 + y2
dv

∣∣∣∣∣ ≤ y ·
∫
|v|≥δ

|f(x0 + v)|
v2 + y2

dv ≤ y ·
∫
|v|≥δ

|f(x0 + v)|
δ2 + y2

dv

≤ y

δ2 + y2

∫
R
|f(x0 + v)|dv =

Fy

δ2 + y2
≤ F

δ2
· y.

Since we can choose y0 > 0 such that if 0 < y < y0 then

|f(x0)| · |A− 1| ≤ ε, F

δ2
· y ≤ ε

(Note that Aδ,y → 1 as y → +0 when δ is fixed), we see that

|J1 + J2 − f(x0)| ≤ |J1 − f(x0)|+ |J2| ≤ |J1 − f(x0)A|+ |f(x0)| · |A− 1|+ |J2| ≤ ε+ ε+ ε = 3ε.

Since ε is arbitrary, we conclude that
1

π

∫
R

f(x0 + yu)

u2 + 1
du→ f(x0) as y → +0.

(b) The proof is the same, using the uniform continuity of f on [a, b]. We choose the same δ for all
x ∈ [a, b] and y0 such that ‖f1[a,b]‖∞|A− 1| < ε for 0 < y < y0. �

Note that the proof of 2. is shorter when f is bounded continuous. Since f(x) is continuous,

limy→0+
f(x+yu)
1+u2 = f(x)

1+u2 and all these functions are bounded by ‖f‖∞1+u2 integrable, we can change the
limit and the integral by the dominated convergence theorem so that

lim
y→+0

ImS(x+ yi) = lim
y→+0

∫
R

f(x+ yu)

1 + u2
du =

∫
R

lim
y→+0

f(x+ yu)

1 + u2
du =

∫
R

f(x)

1 + u2
du = πf(x). �

Proof of Theorem 2.3
To give a proof of Theorem 2.3, we first prepare some basic lemmas on matrices. For Hermitian

symmetric matrix A, we set

‖A‖2F = tr(A2), ‖A‖ = sup
|x|=1

|Ax|
x

.

Note that ‖A‖F is called the Frobenius norm of A. For X,Y ∈ Cn, we set 〈X |Y 〉 = tXY , which is
a complex bilinear form.

Lemma 2.6. Let A be a Hermitian symmetric matrix of size n and R = (A− zIn)−1 its resolvent.
Then, for any z ∈ C+, one has

(i) ‖R(z)‖2F ≤
n

(Im z)2
and ‖R(z)‖2 ≤ 1

(Im z)2 ,

(ii) Rij(z) ∈ C+ for any i, j,
(iii) 〈X |R(z)X 〉 ∈ C+ for any X ∈ Rn.

Proof. Since A is symmetric, there exists an orthogonal matrix O = (v1, . . . , vr) ∈ O(n) such that

A = OΛtO, Λ = diag(λ1, . . . , λn), λj ∈ R.

Then, we have

R(z) = (OΛtO − zIn)−1 = O(Λ− zIn)−1tO =

n∑
j=1

1

λj − z
vj
tvj ,

and thus

‖R(z)‖2F =

n∑
j=1

1

|λj − z|2
≤

n∑
j=1

1

(Im z)2
=

n

(Im z)2
.

Moreover, since vj
tvj are real matrices and

1

λ− z
=

λ− z̄
|λ− z|2

∈ C+,

each Rij(z) has positive imaginary parts. We have

〈X |R(z)X 〉 = tXO(Λ− zIn)−1 tOX = tY (Λ− zIn)Y =

n∑
j=1

y2j
λ− z

∈ C+,

where we set Y = (yj) = tOX. �
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Lemma 2.7. Let n ≥ 2. Let A be a symmetric matrix of size n and R its resolvent.
(i) (Resolvent complement formula) For i = 1, . . . , n, one has

Rii = −(z −Aii +
〈
X(i) |R(i)X(i)

〉
)−1,

where X(i) = (Aji)j 6=i and R(i) is the resolvent of the matrix A(i) obtained from A removing the i-th
row and column.
(ii) Moreover,

|Rii|2 ≤
1

(Im z)2
.

Proof. Note that there exists a permutation matrix P such that

A = P

(
A(i) X(i)

tX(i) Aii

)
tP,

and thus it is enough to consider the case i = n. Set A′ = A(n), X ′ = X(n). We have(
A′ X ′
tX ′ Ann

)
=

(
In−1 0

t((A′)−1X ′) 1

)(
A′ 0
0 Ann − tX ′(A′)−1X ′

)(
In−1 (A′)−1X ′

0 1

)
,

whence(
A′ − zIn−1 X ′

tX ′ Ann − z

)−1
=

(
In−1 −(A′ − zIn−1)−1X ′

0 1

)(
(A′ − zIn−1)−1 0

0 α

)(
In−1 0

t((A′ − zIn−1)−1X ′) 1

)
,

where

α = (Ann − z − tX ′(A′ − zIn−1)−1X ′)−1 = −
(
z −Ann +

〈
X ′ |(A′ − zIn−1)−1X ′

〉)−1
.

By Lemma 2.6 (iii), we have

w = a+ bi := −Ann +
〈
X ′ |(A′ − zIn−1)−1X ′

〉
∈ C+.

Then, the (n, n) entry of R =

(
A′ − zIn−1 X ′

tX ′ Ann − z

)−1
is given by α = − 1

z+w . Therefore, by

setting z = x+ yi,

|Rii|2 =
1

|z + w|2
=

1

(x+ a)2 + (y + b)2
≤ 1

(y + b)2
≤ 1

y2

since b > 0. Thus we obtain the lemma. �

Theorem 2.3 is a slightly strengthened version of Theorem 3.1 in Bordenave (2019). Our assump-
tions (2.6) are different from the assumptions of Theorem 3.1 in Bordenave (2019). The proof is
similar to the proof of Theorem 3.1 in Bordenave (2019). Below we point out the places where our
assumptions intervene and justify their sufficiency. In this proof, we use the notation σ2 of Bordenave
(2019) for variance profile (to simplify, in our paper we use σ for variance profile).

Bordenave (2019, P.41, line 11): an upper estimate of

E
∫
λ2dµY ≤ ‖σ2‖1 + δ0(n) = O(1).

Bordenave (2019, P.42, line 5): Estimation of

1

n2

∑
i,j

|ρ2(
i

n
,
j

n
)− nV ar(Yij)| (2.9)

Here ρ is a function depending on L, i.e. ρ = ρL and is constant on squares Pkl of size 1/L2.

(1) The first idea is to replace each ρ2( in ,
j
n ) by 1

|Qij |
∫
Qij

ρ2(x, y)dxdy.

Suppose n > L. Note that if Qij ⊂ Pkl then

ρ2(
i

n
,
j

n
) =

1

|Qij |

∫
Qij

ρ2(x, y)dxdy.

The difference between the last terms may be not zero only if Qij intersects Pkl, but is not included in
Pkl. This happens on squares Qij of size 1/n along 2(L−1) segments x = i

L and y = i
L , i = 1, . . . , L−1

in the unit square.
Denote the union of such error-generating rectangles Qij by E. There are less than 2nL error-

generating rectangles in E. In order to control the error we perform the following estimations.
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Recall that ρkl = L2
∫
Pkl

σdxdy and that 0 ≤ σ is bounded. We will suppose without loss of

generality that σ ≤ 1. Thus maxk,l ρ
2
kl ≤ 1.

Suppose n ≥ L2. We have

1

n2

∑
Qij⊂E

ρ2(
i

n
,
j

n
) ≤ 1

n2
· 2nL ≤ 2L

n
≤ 2

L
;

1

n2

∑
Qij⊂E

1

|Qij |

∫
Qij

ρ2(x, y)dxdy =
∑

Qij⊂E

∫
Qij

ρ2(x, y)dxdy =

∫
E

ρ2(x, y)dxdy

≤ λ(E) ≤ 2L

n
≤ 2

L
.

Finally, when n ≥ L2, ∑
ij

∣∣∣∣∣ 1

|Qij |

∫
Qij

ρ2(x, y)dxdy − ρ2(
i

n
,
j

n
)

∣∣∣∣∣ ≤ 4

L
= O(

1

L
).

(2) One replaces

nVar(Yij) =

∫
Qij

σ(x, y)2

|Qij |
dx dy + δij(n)

(3) one uses triangular inequality to get

1

n2

∑
i,j

|ρ2(
i

n
,
j

n
)− nV ar(Yij)|

≤ 1

n2

∑
i,j

∣∣∣∣∣ 1

|Qij |

∫
Qij

(ρ2(x, y)− σ(x, y)2)dxdy

∣∣∣∣∣+ δ0(n) +O(
1

L
)

≤
∑
i,j

∫
Qij

|ρ2(x, y)− σ(x, y)2|dxdy + δ0(n) +O(
1

L
)

=

∫
[0,1]2

|ρ2(x, y)− σ(x, y)2|dxdy + δ0(n) +O(
1

L
)

The hypothesis δ0(n)→ 0 allows to conclude like in Bordenave (2019, p.42, l.5).

Bordenave (2019, Page 42, lines -3 / -1): For two vectors X,Y , we set

〈X |Y 〉 =
∑
j

XjYj .

Take z ∈ C+. Set

Z = (Zij), Zij =

{ Yij√
nVar(Yij)

ρ( in ,
j
n ) (Var(Yij) 6= 0)

0 (Var(Yij) = 0)

and

R =
(
Rij
)
1≤i,j≤n = (Z − zIn)−1.

Note that

E|Zij |2 = E

[
Yij√

nVar(Yij)
ρ( in ,

j
n )

]2
= ρ( in ,

j
n )2

E|Yij |2

nVar(Yij)
=
ρ( in ,

j
n )2

n
.

Fix an integer i such that 1 ≤ i ≤ n. LetX(i) =
(
Zji
)
j 6=i ∈ Rn−1 and Z(i) be the matrix obtained from

Z where the i-th row and i-th column have been removed. Setting R(i) = (R
(i)
jk )j,k = (Z(i)−zIn−1)−1,

we have by Lemma 2.7

Rii = −
(
z − Zii +

〈
X(i) |R(i)X(i)

〉)−1
.

For three complex numbers z, w,w′ ∈ C+ with positive imaginary parts, we have∣∣∣∣ 1

z + w
− 1

z + w′

∣∣∣∣ =
|w′ − w|

|z + w| · |z + w′|
≤ |w − w

′|
(Im z)2

.
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By Lemma 2.6, we obtain −Zii +
〈
X(i) |R(i)X(i)

〉
∈ C+ and R

(i)
jj ∈ C+, and hence

LHS :=

∣∣∣∣∣∣∣Rii +

z +
1

n

∑
j 6=i

ρ( in ,
j
n )2R

(i)
jj

−1
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣−
(
z − Zii +

〈
X |R(i)X

〉)−1
+

z +
1

n

∑
j 6=i

ρ( in ,
j
n )2R

(i)
jj

−1
∣∣∣∣∣∣∣

≤ 1

(Im z)2

∣∣∣∣∣∣Zii −
〈
X(i) |R(i)X(i)

〉
+

1

n

∑
j 6=i

ρ( in ,
j
n )2R

(i)
jj

∣∣∣∣∣∣
≤ 1

(Im z)2

|Zii|+
∣∣∣∣∣∣
〈
X(i) |R(i)X(i)

〉
− 1

n

∑
j 6=i

ρ( in ,
j
n )2R

(i)
jj

∣∣∣∣∣∣


(1)
=

1

(Im z)2

|Zii|+
∣∣∣∣∣∣
〈
X(i) |R(i)X(i)

〉
−
∑
j 6=i

(
E|Zij |2

)
R

(i)
jj

∣∣∣∣∣∣


(2)
=

1

(Im z)2

(
|Zii|+

∣∣∣〈X(i) |R(i)X(i)
〉
− Ei

〈
X(i) |R(i)X(i)

〉∣∣∣) .
Here, Ei = E( · |R(i)) is the conditional expectation with respect to R(i) . We use E|Zij |2 = 1

nρ( in ,
j
n )2

in the equality (1), and in the equality (2) we use (2.10) below.
The objective, stated by Bordenave (2019) in the last two lines of p.42, is to show that, for fixed

z and i,
E(LHS)2 → 0 when n→∞.

By the last inequality, it is sufficient to show that

EZ2
ii → 0 and E

∣∣∣〈X(i) |R(i)X(i)
〉
− Ei

〈
X(i) |R(i)X(i)

〉∣∣∣2 → 0 when n→∞.

The convergence EZ2
ii → 0 follows from EZ2

ii ≤ 1
n .

Let Vari be the variance with respect to R(i). We note that

E
∣∣∣〈X(i) |R(i)X(i)

〉
− Ei

〈
X(i) |R(i)X(i)

〉∣∣∣2
= E(Ei

∣∣∣〈X(i) |R(i)X(i)
〉
− Ei

〈
X(i) |R(i)X(i)

〉∣∣∣2)

= E(Vari

〈
X(i) |R(i)X(i)

〉
).

We will apply (the proof of) the concentration inequality in Bordenave (2019, Lemma 3.6) in order
to estimate Vari

〈
X(i) |R(i)X(i)

〉
and next the E of it.

Let us consider Vari
〈
X(i) |R(i)X(i)

〉
. We have〈

X(i) |R(i)X(i)
〉

=
∑
j,k

R
(i)
jkXjXk.

Here, the sum taken over all j, k different from i, and we use this notation in the sequel. By definition,
the vector X(i) is independent of R(i) because there is no variables of X(i) in R(i). Then,

Ei
〈
X(i) |R(i)X(i)

〉
= Ei

∑
j,k

R
(i)
jkXjXk =

∑
j

R
(i)
jj EiX

2
j =

∑
j

(EZ2
ij)R

(i)
jj . (2.10)

Similarly as in the proof of Bordenave (2019, Lemma 3.6), we have

Vari

〈
X(i) |R(i)X(i)

〉
= Ei

 ∑
j1,j2,k1,k2

R
(i)
j1k1

R
(i)
j2k2

Xj1Xk1Xj2Xk2

− ∣∣∣∣Ei∑
j,k

R
(i)
jkXjXk

∣∣∣∣2
=

∑
j1,j2,k1,k2

R
(i)
j1k1

R
(i)
j2k2

E
(
Xj1Xk1Xj2Xk2

)
−
∑
j,k

R
(i)
jj R

(i)
kk(E|Xj |2)(E|Xk|2).

The first sum is non zero only if
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(i) j1 = j2 = k1 = k2, (ii) (j1, k1) = (j2, k2),
(iii) (j1, k1) = (k2, j2), (iv) (j1, j2) = (k1, k2)

so that, noting that by independence of R(i) and X(i) we have Ei(X4
j ) = E(X4

j ), VariX
2
j = VarX2

j

etc.

Vari

〈
X(i) |R(i)X(i)

〉
=

(i)∑
j

∣∣∣R(i)
jj

∣∣∣2 E(X4
j ) +

(ii)∑
j1 6=k1

∣∣∣R(i)
j1k1

∣∣∣2 E(X2
j1X

2
k1)

+

(iii)∑
j1 6=k1

R
(i)
j1k1

R
(i)
k1j1

E(X2
j1X

2
k1) +

(iv)∑
j1 6=j2

R
(i)
j1j1

R
(i)
j2j2

E(X2
j1X

2
j2)

−
∑
j

∣∣∣R(i)
jj

∣∣∣2 (EX2
j

)2 −∑
j 6=k

R
(i)
jj R

(i)
kk(EX2

j )(EX2
k)

=
∑
j

∣∣∣R(i)
jj

∣∣∣2 (E(X4
j )−

(
EX2

j

)2)
+ 2

∑
j 6=k

∣∣∣R(i)
jk

∣∣∣2 (EX2
j )(EX2

k)

=
∑
j

∣∣∣R(i)
jj

∣∣∣2 Var(X2
j ) + 2

∑
j 6=k

∣∣∣R(i)
jk

∣∣∣2 (EX2
j )(EX2

k).

(In the first line, the numbers (i)–(iv) on the summation mean the correspondence to the case of
j1, j2, k1, k2.) Recall that Xj = Zji. Note that maxj,k ρjk ≤ 1. Then,

EX2
j = E|Zji|2 =

1

n
ρ( in ,

j
n )2 ≤ 1

n
,

which implies, using the estimate of the Frobenius matrix norm and by Lemma 2.6 (i), ‖R(i)‖2F ≤
(n− 1)‖R(i)‖2 ≤ n−1

(Im z)2

2
∑
j 6=k

∣∣∣R(i)
jk

∣∣∣2 (EX2
j )(EX2

k) ≤ 2

n2

∑
j 6=k

∣∣∣R(i)
jk

∣∣∣2
F

=
2

n2

∥∥∥R(i)
∥∥∥2 ≤ 2

(Im z)2
· 1

n
,

Here, for real symmetric matrices H we set ‖H‖2 = trH2 =
∑
jk |Hjk|2.

Using
∑
k

|Rkk|2 ≤ ‖R‖2F ≤
n

(Im z)2
we get

∑
j

∣∣∣R(i)
jj

∣∣∣2 Var(X2
j ) ≤ n

(Im z)2
max
j

Var(X2
j ).

In the last estimates the dependence on R(i) vanishes, so they provide desired upper bounds for
E(Vari

〈
X(i) |R(i)X(i)

〉
).

We have

Var(X2
j ) = E(X4

j )−
(
EX2

j

)2 ≤ E(X4
j ) =

ρ( in ,
j
n )4

n2Var(Yij)2
E(Y 4

ij) ≤
1

n2
·
E(Y 4

ij)

(EY 2
ij)

2∑
j

∣∣∣R(i)
jj

∣∣∣2 Var(X2
j ) ≤ n

(Im z)2
max
j

Var(X2
j ) ≤ 1

n(Im z)2
max
j

E(Y 4
ij)

(EY 2
ij)

2
.

We see that the weakest sufficient condition on the 4th moments is:

max
i,j

E(Y 4
ij)

n(EY 2
ij)

2
= o(1), equivalently: max

i,j

E(Y 4
ij)

(EY 2
ij)

2
= o(n).
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2.6. Properties of the Stieltjes transform.

Lemma 2.8. 1. Assume that f(x) has a pole at x = x0, and is continuous elsewhere. Then
limy→0+ Im s(x0 + iy) =∞.
2. Let µ be a finite positive measure on R with Stieltjes transform s(z). Suppose that µ has no atoms
different from 0. If limy→0+ Im s(x + iy) = 0 for all x 6= 0 uniformly on compact intervals of R∗,
then µ = cδ0 for a c > 0 or µ = 0.
3. Let µ be a finite positive measure on R with Stieltjes transform s(z). Suppose that F is a finite
subset of R and that µ has no atoms different from elements of F . If limy→0+ Im s(x + iy) = 0 for
all x /∈ F , uniformly on compact intervals of R \F , then µ =

∑
a∈F caδa for some ca ≥ 0, a ∈ F (this

includes the case µ = 0).

Proof. Proof of 1. Assume that f(x) has a pole at x = x0, and is continuous elsewhere. We consider∫
R

f(x0 + yu)

1 + u2
du

(f(x) has a pole at x = x0: for any L > 0 there exists ε > 0 such that if 0 < |y − x0| < δ then
f(y) > L.) Take large L > 0 and the corresponding ε > 0. Set y = ε > 0. Then, since the integrand
is non-negative,∫

R

f(x0 + εu)

1 + u2
du ≥

∫ 1

−1

f(x0 + εu)

1 + u2
du ≥ 1

2

∫ 1

−1
f(x0 + εu)du =

1

2ε

∫ ε

−ε
f(x0 + v)dv.

In the second inequality, we use the fact 1
1+u2 ≥ 1

2 on [−1, 1]. In the last equality, we change variable

v = εu. Then, since |(x0 + v)− x0| < ε for −ε < v < ε, we have f(x0 + v) > L in the same interval
so that ∫

R

f(x0 + εu)

1 + u2
du ≥ 1

2ε

∫ ε

−ε
f(x0 + v)dv ≥ 1

2ε

∫ ε

−ε
Ldv = L.

Since we can take L arbitrary large enough, we conclude that the integral diverges.
Proof of 2. and 3. Let [a, b] be a segment included in R\F. By the assumption, µ({a}) = µ({b}) = 0.
By Theorem 2.4.3 in Anderson et.al. (2010) and by dominated convergence, we have

µ([a, b]) =
1

π
lim
y→0+

∫ b

a

s(x+ iy)dx =
1

π

∫ b

a

lim
y→0+

s(x+ iy)dx = 0,

so that µ(R \ F ) = 0. If µ 6= 0 then µ is purely atomic with atoms in F . �

Lemma 2.9. If S(z) is odd, then ImS(−x+ yi) = ImS(x+ yi) and Sim(x) := limy→+0 ImS(x+ yi)
is even.

Proof. We know that S(z̄) = S(z) so that

Sim(−x) = lim
y→+0

ImS(−x+yi) = − lim
y→+0

ImS(x−yi) = − lim
y→+0

ImS(x+ yi) = −
(
−Sim(x)

)
= Sim(x).

In the second equality, we use the assumption that S(z) is odd. �

Lemma 2.10. Let µ be a probability measure and S its Stieltjes transform. Then, for any x ∈ R,
one has µ({x}) = lim

y→+0
yImS(x+ yi).
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3. Wigner Ensembles of Vinberg Matrices

In this section, we give explicitly the limiting eigenvalue distributions µ for the scaled Wigner
matrices Un ∈ Un defined by (2.1). Let χI denote the indicator function of a subset I ⊂ R. For a
real number a, its cubic root is denoted by 3

√
a ∈ R and set [ a ]+ = max(a, 0). We introduce two real

numbers αc, βc depending on c ∈ [0, 1) by

αc =
8 + 4c− 13c2 −

√
c(8− 7c)3

8(1− c)
, βc =

8 + 4c− 13c2 +
√
c(8− 7c)3

8(1− c)
. (3.11)

It is clear that α0 = β0 = 1, αc < βc and βc > 0 for all c ∈ (0, 1). We note that α1/2 = 0, αc < 0
when c > 1/2, limc→1− αc = −∞, limc→1−(1 − c)αc = −1/4 and limc→1− βc = 4, so that we set
β1 = 4. It can be shown that c 7→ αc is strictly decreasing and c 7→ βc is strictly increasing on [0, 1]
(see Figure 2).

Theorem 3.1. Let Un be a Wigner matrix on Un defined by (2.1). Assume that limn→+∞ an/n =
c ∈ (0, 1). Then, the limiting eigenvalue distribution µ of the rescaled matrices Un/

√
n exists and is

given for c ∈ (0, 1) as

µ = fc(t) dt+ [1− 2c]+δ0

with

fc(t) :=
3
√
R+ (t/

√
v; c)− 3

√
R− (t/

√
v; c)

2
√

3π t
χ[αc,βc]

(
t2

v

)
, (3.12)

where, for x2 ∈ [αc, βc],

R±(x; c) := x6 − 3(c+ 1)x4 + 3
2 (5c2 − 2c+ 2)x2 + (2c− 1)3

±3c
√

3− 3c · x
√

(x2 − αc)(βc − x2).

The support of µ is given as

suppµ =


[
−
√
vβc, −

√
vαc

]
∪ {0} ∪

[√
vαc,

√
vβc

]
(if c ∈ (0, 12 ))[

−
√
vβc,

√
vβc

]
(if c ∈ [ 12 , 1)).

(3.13)

If c = 0, then µ = δ0. If c = 1, then µ is the semicircle law on [−2
√
v, 2
√
v].

Remark 3.2. The formula (3.12) is valid for the extreme cases c = 0 or c = 1. If c = 0 then there is

no density and µ = δ0. If c = 1, then it can be checked that 3
√
R+(x; 1)− 3

√
R−(x; 1) =

√
3x
√

4− x2
so that, for v = 1 we get the semicircle law µ(dt) = (1/2π)

√
4− t2χ[−2,2](t)dt of Wigner (1955).

3.1. Properties of functions c 7→ αc, βc. The limit limc→1+ βc is computed easily by the De
l’Hospital rule.
In order to prove that βc > 0, we write βc = R(c) − S(c) with R(c) =

√
c(8− 7c)3 an S(c) =

13c2 − 4c− 8 and we show that R(c) > S(c) on [0, 1). The function R(c) ≥ 0, whereas S(c) changes

the sign from negative to positive at cS = (2 + 6
√

3)/13, and grows on [cS , 1] from 0 to 1. On the
interval [cS , 1] the function R(c) is decreasing, so R(c) ≥ R(1) = 1 and R(c)− S(c) > 0.
In order to show that c 7→ αc is strictly decreasing and c 7→ βc is strictly increasing on [0, 1], we
compute the derivatives of these functions. Set

S(c) = 8 + 4c− 13c2, T (c) =
√
c(8− 7c)3, fε(c) :=

8 + 4c− 13c2 + ε
√
c(8− 7c)3

8(1− c)
(ε = ±).

Of course we have αc = f−(c) and βc = f+(c). Then we have

S′(c) = 4− 26c, T ′(c) =
(8− 7c)3 + c · 3(8− 7c)2 · (−7)

2
√
c(8− 7c)3

=
4− 14c√

c

√
8− 7c,
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so that

f ′ε(c) =
(S′ + εT ′)(1− c)− (S + εT ) · (−1)

8(1− c)2

=

(
4− 26c+ ε 4−14c√

c

√
8− 7c

)
(1− c) + 8 + 4c− 13c2 + ε

√
c(8− 7c)

√
8− 7c

8(1− c)2

=
(4− 26c)(1− c) + 8 + 4c− 13c2 + ε

√
8−7c
c

(
(4− 14c)(1− c) + c(8− 7c)

)
8(1− c)2

=
13c2 − 26c+ 12 + ε

√
8−7c
c (7c2 − 10c+ 4)

8(1− c)2
.

Put

A = 13c2 − 26c+ 12, B = 7c2 − 10c+ 4.

Notice that B > 0 because B = 7(c− 5
7 )2 + 3

7 . What we want to show is that

8(1− c)2 · f ′+(c) = A+

√
8− 7c

c
B ≥ 0, 8(1− c)2 · f ′−(c) = A−

√
8− 7c

c
B ≤ 0.

Let us consider (
A

B

)2

− 8− 7c

c
=
cA2 − (8− 7c)B2

cB2
.

By using a calculator, we can factorize the numerator cA2−(8−7c)B2 so that we obtain the following
inequality (

A

B

)2

− 8− 7c

c
=
cA2 − (8− 7c)B2

cB2
= −128

(1− c)3(2c− 1)2

cB2
< 0.

Since 8−7c
c > 0 for c ∈ (0, 1), this shows the following inequality

−
√

8− 7c

c
≤ A

B
≤
√

8− 7c

c

and since B > 0 we obtain

−B
√

8− 7c

c
≤ A ≤ B

√
8− 7c

c
,

whence we obtain f ′+(c) ≥ 0 and f ′−(c) ≤ 0 for c ∈ [0, 1).
In the Figures 3–7 we present graphical comparison between simulations for n = 4000 and the

limiting densities, when c = 1/5, 2/5, 1/2, 3/5, 4/5.

3.2. Proof of Theorem 3.1. We first derive the Stieltjes transform of the limiting eigenvalue dis-
tribution by applying Theorem2.3 to Yn = Un/

√
n. Let Un = (Uij)1≤i,j≤n, so that Yij = (1/

√
n)Uij .

Define the set C := {(x, y) ∈ [0, 1]2 | min(x, y) ≤ c} and the variance profile

σ(x, y) =

{
v if (x, y) ∈ C
0 otherwise.

(3.14)

Note that

Iij :=

∫
Qij

σ(x, y)

|Qij |
dx dy = v

|C ∩Qij |
|Qij |

The perturbation term equals δij(n) = nEY 2
ij − Iij = EU2

ij − Iij and we have δij(n) = 0 unless i = j
or i, j are such that ∅ 6= C ∩ Qij 6= Qij . There are at most 3n perturbation terms δij(n) 6= 0, and
they are all bounded by M := max{|v − v′|, v′, v}. It follows that the first condition limn δ0(n) = 0
of the consition (2.6) is satisfied:

δ0(n) =
1

n2

∑
i,j

δij(n) ≤ 3Mn

n2
.

The second condition in (2.6) is evident since, by (3.14),

max
i,j

E(Y 4
ij)

n(EY 2
ij)

2
≤ max{κ, κ′}
nmin{v, v′}

= o(1).
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Figure 2. Graphs of αc and βc
Figure 3. Simulation for c =
1/5

Figure 4. Simulation for c =
2/5

Figure 5. Simulation for c =
1/2

Figure 6. Simulation for c =
3/5

Figure 7. Simulation for c =
4/5

Assume that Im z > 0. The functional equation (2.7) becomes

ηz(x) = −
(
z + v

∫ 1

0

ηz(y) dy

)−1
(x ≤ c), ηz(x) = −

(
z + v

∫ c

0

ηz(y) dy

)−1
(x > c).

Note that the right-hand sides are independent of x. We integrate both sides of these equations to
obtain∫ c

0

ηz(x) dx = −c
(
z + v

∫ 1

0

ηz(y) dy

)−1
,

∫ 1

c

ηz(x) dx = −(1− c)
(
z + v

∫ c

0

ηz(y) dy

)−1
,

so that by setting A =
∫ 1

0
ηz(x) dx and B =

∫ c
0
ηz(x) dx, we obtain the following simultaneous

equations

B =
−c

z + vA
(a), A−B =

c− 1

z + vB
(b) (3.15)

Note that A is the desired Stieltjes transform S(z).

If c = 0, then we have A = −1/z so that the limiting measure is µ = δ0. If c = 1 then the equation
(3.15) reduces to the equation A = −(z + vA)−1, which corresponds to the Stieltjes transform of the
semi-circular law (cf. Tao (2012, p.178)). Thus we assume 0 < c < 1 in what follows.

Let us eliminate B from these equations. Substituting (a) into (b), we obtain

A− −c
z + vA

=
c− 1

z + v −c
z+vA

⇔ (z + vA)A+ c

z + vA
=

(c− 1)(z + vA)

z(z + vA)− cv
⇔

(
(z + vA)A+ c

)(
z(z + vA)− cv

)
= (c− 1)(z + vA)2

⇔ v2zA3 +
(
2vz2 + (1− 2c)v2

)
A2 +

(
z2 + 2v(1− c)

)
zA+ z2 − c2v = 0.

If we set
zv :=

z√
v
, Av :=

√
vA,

then we have

v
(
zvA

3
v +

(
2z2v + (1− 2c)

)
A2
v +

(
z2v + 2(1− c)

)
zvAv + (z2v − c2)

)
= 0,
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or (
Av
zv

)3

+
(

2 +
1− 2c

z2v

)(Av
zv

)2

+
(

1 +
2(1− c)
z2v

)Av
zv

+
z2v − c2

z4v
= 0. (3.16)

We now use the Cardano method. Set

Y =
Av
zv

+
1

3

(
2 +

1− 2c

z2v

)
and rewrite (c) by using Y as

Y 3 + p(zv)Y + q(zv) = 0.

Then,

p(zv) =

(
1 +

2(1− c)
z2v

)
− 1

3

(
2 +

1− 2c

z2v

)2

=
1

3

(
3 +

6− 6c

z2v
− 4− 4− 8c

z2v
− (1− 2c)2

z4v

)
= −1

3

(
1− 2(c+ 1)

z2v
+

(2c− 1)2

z4v

)
and

q(zv) =
z2v − c2

z4v
− 1

3

(
1 +

2(1− c)
z2v

)(
2 +

1− 2c

z2v

)
+

2

27

(
2 +

1− 2c

z2v

)3

=

(
1

z2v
− c2

z4v

)
− 1

3

(
2 +

5− 6c

z2v
+

2− 6c+ 4c2

z4v

)
+

2

27

(
8 +

12− 24c

z2v
+

6(1− 4c+ 4c2)

z4v
+

(1− 2c)3

z6v

)
= − 2

27
+

6c+ 6

27z2v
+
−15c2 + 6c− 6

27z4v
+

2

27

(1− 2c)3

z6v

= − 2

27

(
1− 3c+ 3

z2v
+

3(5c2 − 2c+ 2)

2z4v
− (1− 2c)3

z6v

)
.

Define, for z 6= 0,

Fc(z) :=
z6 − 3(c+ 1)z4 + 3

2 (5c2 − 2c+ 2)z2 + (2c− 1)3

z6
.

Then, we have

Y =
vA

z
+

2

3
− (2c− 1)v

3z2
, p(z) = −1

3

(
1− 2(c+ 1)

z2
+

(2c− 1)2

z4

)
, q(z) = −2Fc(z)

27
, zv =

z√
v

with

Y 3 + p (zv)Y + q (zv) = 0. (3.17)

Cardano’s method tells us that the solutions of the equation have the form Y (z) = U+(zv) + U−(zv)
where U±(z) satisfy

U±(z)3 = −q(z)
2
±

√(
q(z)

2

)2

+

(
p(z)

3

)3

, U+(z) · U−(z) = −1

3
p(z), (3.18)

and accordingly, A is described as

A =
zY (z)

v
− 2z

3v
+

2c− 1

3z
. (3.19)

Let us calculate
(
q(z)
2

)2
+
(
p(z)
3

)3
. By a simple but little bit cumbersome computation, we have(

q(z)

2

)2

=
1

272

(
1− 6(c+ 1)

z2
+

15c2 − 6c+ 6 + 9(c+ 1)2

z4
− 2(1− 2c)3 + 9(c+ 1)(5c2 − 2c+ 2)

z6

+
9(5c2 − 2c+ 2)2 + 24(c+ 1)(1− 2c)3

4z8
− 3(5c2 − 2c+ 2)(1− 2c)3

z10
+

(1− 2c)6

z12

)
and (

p(z)

3

)3

= − 1

93

(
1− 6(c+ 1)

z2
+

3(2c− 1)2 + 12(c+ 1)2

z4
− 12(c+ 1)(2c− 1)2 + 8(c+ 1)3

z6

+
3(2c− 1)4 + 12(c+ 1)2(2c− 1)2

z8
− 6(c+ 1)(2c− 1)4

z10
+

(2c− 1)6

z12

)
.
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Put 1
272 in factor. The coefficients of 1/zk (k = 0, 2, 12) are zero. Since the coefficients of 1/zk

(k = 4, 6, 8, 10) are

1

z4
: (15c2 − 6c+ 6 + 9(c+ 1)2)− (3(2c− 1)2 + 12(c+ 1)2) = 0,

1

z6
: −(2(1− 2c)3 + 9(c+ 1)(5c2 − 2c+ 2)) + 12(c+ 1)(2c− 1)2 + 8(c+ 1)3 = 27c2(c− 1),

1

z8
:
(
9(5c2 − 2c+ 2)2 + 24(c+ 1)(1− 2c)3

)
/4−

(
3(2c− 1)4 + 12(c+ 1)2(2c− 1)2

)
= −27c2(13c2 − 4c− 8)/4

1

z10
: −3(5c2 − 2c+ 2)(1− 2c)3 + 6(c+ 1)(2c− 1)4 = 27c2(2c− 1)3,

so that (
q(z)

2

)2

+

(
p(z)

3

)3

=
c2

27z6

(
c− 1− (13c2 − 4c− 8)

4z2
+

(2c− 1)3

z4

)
= −c

2(1− c)
27z10

(
z4 +

13c2 − 4c− 8

4(1− c)
z2 − (2c− 1)3

1− c

)
.

The last formula implies that

αcβc = − (2c− 1)3

1− c
. (3.20)

Here, since(
13c2 − 4c− 8

4(1− c)

)2

− 4

(
− (2c− 1)3

1− c

)
=

(13c2 − 4c− 8)2 + 43(1− c)(2c− 1)3

(4(1− c))2

=
(169c4 − 104c3 − 192c2 + 64c+ 64) + 64(−8c4 + 20c3 − 18c2 + 7c− 1)

(4(1− c))2

=
−343c4 + 1176c3 − 1344c2 + 512c

(4(1− c))2
=
c(−73c3 + 3 · 72 · 8c2 − 3 · 7 · 82c+ 83)

(4(1− c))2

=
c(8− 7c)3

(4(1− c))2
,

we have (
q(z)

2

)2

+

(
p(z)

3

)3

= −c
2(1− c)
27z10

(z2 − α−)(z2 − α+) =: −Dc(z)
2

27
,

where

α± =
1

2

(
−13c2 − 4c− 8

4(1− c)
±

√
c(8− 7c)3

(4(1− c))2

)
=

8 + 4c− 13c2 ±
√
c(8− 7c)3

8(1− c)
(= αc or βc).

Hence we have

U±(z)3 =
1

27
(Fc(z)± iDc(z)) .

Since A is the Stieltjes transform S(z) of a probability measure, by (3.19) we have, with u±(z) =
3U±(z),

S(z) =
z(u+(z) + u−(z))

3v
− 2z

3v
+

2c− 1

3z
; u±(z) := (Fc(zv)± iDc(zv))

1
3 , (3.21)

where convenient branches of the cube root are chosen for u±(z) to be such that S(z) is holomorphic
on C+ and

u+(z) · u−(z) = −3p(z), and ImS(z) > 0 (z ∈ C+). (3.22)

are satisfied on C+. Let E = {z ∈ C; z = 0 or Disc(z) = 0} be the set of exceptional points.

Lemma 3.3. One has E = {0,±√αc, ±
√
βc}. More precisely,

E =


{0,±√αc, ±

√
βc} (0 < c < 1

2 ),

{0, ±
√
βc} (c = 1

2 ),

{0,±i
√
|αc|, ±

√
βc} ( 1

2 < c < 1).

Set J := {x ∈ R; x 6∈ E} and

D :=

{
C+ ∪ {x+ iy; x 6∈ E , −1 < y ≤ 0} (0 < c ≤ 1

2 ),

C+ ∪ {x+ iy; x 6∈ E , −1 < y ≤ 0} \ (i
√
|αc|+ iR≥0) ( 1

2 < c < 1).
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Then, D is a connected and simply connected domain containing no exceptional points of (3.17), and
J ⊂ D.

Lemma 3.4 (Palka (1991, Theorem X.3.7)). Let z0 ∈ D and X0 ∈ C a solution of (3.17) at z0.
Then there exists a function s(z) holomorphic on D such that s(z) is a solution of (3.17) on D and
s(z0) = X0. Such function s is unique.

Proof. This is because D is a connected and simply connected domain containing no exceptional
points E of (3.17), and hence we can use Palka (1991, Theorem X.3.7). �

Proposition 3.5. For each x ∈ R∗, there exists the limit S(x) = lim
y→+0

S(x+ yi). The function S is

continuous on R∗ and S(x) is a solution of (3.16) on R∗.

Proof. It is sufficient to prove it for a solution U(z) of the reduced equation (3.17) on C+, such that
U(z) is holomorphic on C+. We apply (Palka, 1991, Theorem X.3.7) to a convenient connected and
simply connected domain D avoiding the set E . By the discussion of (Ahlfors, 1979, p.304), U has
at most an ordinary algebraic singularity at a non-zero exceptional point, so U(z) is continuous on
R∗. �

Note that the branches of the cube root in u±(z) may be different on different subregions of C+.
This is because the functions u±(z)3 in the cubic roots may pass through the slit R− so that the
cubic root functions need to change branches in order that S(z) is analytic. We also note that the
definition of square root is not essential. In fact, in the above solution, two square roots ±Dc(z) of
Dc(z)

2 appear symmetrically so that changing definition of square roots induces at most switching a
role of u+(z) and u−(z).

Without loss of generality, we suppose v = 1. We first assume that x = 0. The detailed local
analysis of (3.21) and (3.22) that is presented below, shows that

(Z1) if 0 < c < 1
2 , lim

y→+0
yImS(yi) = 1− 2c, so µ has an atom at 0 with the mass 1− 2c < 1,

(Z2) if c = 1
2 , lim

y→+0
ImS(yi) = +∞, lim

y→+0
yImS(yi) = 0 so µ does not have an atom at 0,

(Z3) if 1
2 < c < 1, lim

y→+0
ImS(yi) = c(2c− 1)−1/2 = πfc(0), so µ does not have an atom at 0.

Next we consider the case x 6= 0. Combining the fact that S(z) is an odd function as a function on

C \ R by (3.21) and the property S(z) = S(z) of the Stieltjes transform, we obtain ImS(−x+ iy) =
ImS(x+ iy) so that ImS(−x) = ImS(x) (cf. Lemma 2.9). Thus we can assume that x > 0.

Suppose Disc(x) ≥ 0. Since the coefficients p, q of (3.17) are real on R∗, the equation (3.17) has
only real solutions (cf. Ronald (2004)). Therefore, S(x) is real so that the density of µ vanishes at
such points.

Next we assume that Disc(x) < 0. By Proposition 3.5, S(x) is a solution of the cubic equation
(3.16) and U(x) = (u+(x) + u−(x))/3 is a solution of the reduced equation (3.17). In particular,
the formulas (3.21) and (3.22) hold for S(x), with convenient choices of branches of cubic roots and
square roots. Consequently, we have{

Fc(x) + iDc(x), Fc(x)− iDc(x)
}

=
{
R′+(x), R′−(x)

}
as a set, where R′±(x) := R±(x; c)/x6 ∈ R. Let ω = e2iπ/3 denote the cube root of 1 with positive
imaginary part. Then, (3.21) yields that the sum u+(x) + u−(x) has the following form

u+(x) + u−(x) = ωk+ 3

√
R′+(x) + ωk− 3

√
R′−(x) with k+, k− ∈ {0, 1, 2}.

By the first condition in (3.22), as p(x) ∈ R, we need to have k+ + k− ≡ 0 mod 3, that is, (k+, k−) =
(0, 0), (1, 2) and (2, 1). Using the fact that R′+(x) > R′−(x) when x > 0 and Disc(x) < 0, we see
that the imaginary part of u+(x) + u−(x) and of limy→0+ S(x + iy) is, respectively, nul, positive
and negative in these three cases. Since ImS(z) > 0, the last case is impossible. Set h(x) :=
Im
(
ω 3
√
R′+(x) + ω2 3

√
R′−(x)

)
. Notice that h is a strictly positive continuous function on the set

{x ∈ R; Disc(x) < 0} and that 1
πh(t) = fc(t), the density part of µ in the formula (3.12). Since the

function ImS is continuous on R∗ by Proposition 3.5, we have ImS ≡ h or ImS ≡ 0 on the set
{x ∈ R∗; Disc(x) < 0}.
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We now show that the latter case ImS ≡ 0 is impossible. Note that µ has no atoms different from
zero because S(z) is continuous on C+ \ {0}. By Anderson et.al. (2010, Theorem 2.4.3) and by the
dominated convergence, we have for closed intervals [a, b] ⊂ R∗

µ([a, b]) =
1

π
lim
y→0+

∫ b

a

S(x+ iy) dx =
1

π

∫ b

a

lim
y→0+

S(x+ iy) dx = 0, (3.23)

so that µ(0,∞) = 0 and, symmetrically, µ(−∞, 0) = 0. Since µ is a probability measure, we get
µ = δ0. This contradicts properties (Z1-3) proven in the case x = 0. Thus, we have ImS ≡ h on the

set {x ∈ R∗; Disc(x) ≤ 0} and, for x ∈ R∗, lim
y→0+

1

π
ImS(x+ iy) =

1

π
h(x) = fc(x). Note that fc has a

compact support {Disc(x) ≤ 0}. For c 6= 1
2 , the function fc is continuous on R. For c = 1

2 , a detailed

analysis shows that limx→0 fc(0) =∞, with fc(x) ∼ |x|−1/2 at x = 0 and fc is continuous on R∗. By
property (Z3), if c > 1

2 then limy→0+ ImS(iy) = πfc(0). When c 6= 1/2, Proposition 2.2.1 implies
that µ = fc(t) dt+ [1− 2c]+δ0. Actually, if s(z) is the Stieltjes transform of µ− fc(t) dt− [1− 2c]+δ0,
then, using Proposition 2.2.2, we get limy→0+ Im s(x + iy) = 0 for all x ∈ R. When c = 1/2, by
Proposition 2.2.2, we get limy→0+ Im s(x + iy) = 0 for all x ∈ R∗, uniformly on compact intervals
[a, b] ⊂ R∗. Like in (3.23), we conclude by Theorem 2.4.3 in Anderson et.al. (2010) that µ = fc(t) dt.
The support formula (3.13) follows by supp fc = {Disc(x) ≤ 0}. �

Detailed analysis of the case x = 0.

(Z1) the case 0 < c < 1
2 . In this case, αc, βc ≥ 0. Note that by (3.20), αcβc =

(1− 2c)3

1− c
. Then, we

have

Dc(z) =
3c
√

3− 3c

z5

√
z2 − αc

√
z2 − βc =

3c
√

3− 3c

z5
·
√
−αc

√
−βc

√
1− z2

αc

√
1− z2

βc

= −3c
√

3− 3c

z5
· (1− 2c)

3
2

√
1− c

√
1− z2

αc

√
1− z2

βc
= −3

√
3 c(1− 2c)

3
2

z5

√
1− z2

αc

√
1− z2

βc
,

and hence around z = 0

z6Dc(z) = −3
√

3 c (1− 2c)
3
2 (z + o(z)).

On the other hand,

z6Fc(z) = (2c− 1)3 +
3

2
(5c2 − 2c+ 2)z2 − 3(c+ 1)z4 + z6

= (2c− 1)3
(

1 +
3(5c2 − 2c+ 2)

2(2c− 1)3
z2 − 3(c+ 1)

(2c− 1)3
z4 +

z6

(2c− 1)3

)
and hence, around z = 0

z6Fc(z) = (2c− 1)3(1 + o(z)). (3.24)

Combining those, we obtain

(Fc(z) + εiDc(z))
1
3 =

(
(2c− 1)3 − εi · 3

√
3 c (1− 2c)

3
2 z + o(z)

z6

) 1
3

=
2c− 1

z2

(
1 + εi · 3

√
3c

(1− 2c)
3
2

z + o(z)

) 1
3

=
2c− 1

z2
ωk(ε)

(
1 + εi ·

√
3c

(1− 2c)
3
2

z + o(z)

)
around z = 0. Here, ε = ±1 and k(ε) ∈ {0, 1, 2}. Let us consider the first condition in (3.22). Recall
that

−3p(z) =
z4 − 2(c+ 1)z2 + (2c− 1)2

z4
=

(2c− 1)2

z4
(1 + o(z)).

Therefore, since

(Fc(z) + iDc(z))
1
3 · (Fc(z)− iDc(z))

1
3 =

(2c− 1)2

z4
ωk(+)+k(−) (1 + o(z)) ,
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k(+) + k(−) ≡ 0 mod 3. Next, let us consider the latter condition in (3.22). By (3.21), we have
(recall that v = 1)

S(z) =
z

3

(
(Fc(z) + iDc(z))

1
3 + (Fc(z)− iDc(z))

1
3

)
− 2z

3
+

2c− 1

3z

=
2c− 1

3z

(
ωk(+)

(
1 + i ·

√
3c

(1− 2c)
3
2

z

)
+ ωk(−)

(
1− i ·

√
3c

(1− 2c)
3
2

z

)
+ o(z)

)
− 2z

3
+

2c− 1

3z

=
2c− 1

3z
(ωk(+) + ωk(−) + 1) +

2c− 1

3
· i

√
3c

(1− 2c)
3
2

(ωk(+) − ωk(−))− 2z

3
+ o(1).

Here, since k(+) + k(−) ≡ 0 mod 3, we have Im i(ωk(+) − ωk(−)) = 0 for any choice. Now we assume
that x = 0, we can set z = yi and then

ImS(yi) = i

(
1− 2c

3y
(ωk(+) + ωK(−) + 1)− 2

3
y

)
.

If (k(+), k(−)) = (1, 2) or (2, 1), then ωk(+) +ωk(−) + 1 = 0 so that ImS(z) = − 2
3y < 0, which is not

suitable. Therefore (k(+), k(−)) = (0, 0) and

lim
y→+0

yImS(yi) = (1− 2c) lim
y→+0

y · 1

y
= 1− 2c,

and hence µ has an atomic component (1− 2c)δ0 by Lemma 2.10.

(Z2) the case 1
2 < c < 1. In this case, we have αc < 0 and βc > 0. Note that −αcβc =

(2c− 1)3

1− c
.

Then we have

Dc(z) =
3c
√

3− 3c

z5
·
√
−αc

√
−βc

√
1− z2

αc

√
1− z2

βc
= i · 3c

√
3− 3c

z5
· (2c− 1)

3
2

√
1− c

√
1− z2

αc

√
1− z2

βc

= i · 3
√

3 c(2c− 1)
3
2

z5

√
1− z2

αc

√
1− z2

βc
,

and hence around z = 0

z6Dc(z) = i · 3
√

3 c (2c− 1)
3
2 (z + o(z)).

By (3.24), we obtain

(Fc(z) + εiDc(z))
1
3 =

(
(2c− 1)3 + εi · i · 3

√
3 c (2c− 1)

3
2 z + o(z)

z6

) 1
3

=
2c− 1

z2

(
1− ε · 3

√
3c

(2c− 1)
3
2

z + o(z)

) 1
3

=
2c− 1

z2
ωk(ε)

(
1− ε ·

√
3c

(2c− 1)
3
2

z + o(z)

)
around z = 0. Here, ε = ±1 and k(ε) ∈ {0, 1, 2}. Let us consider the first condition in (3.22). Since

(Fc(z) + iDc(z))
1
3 · (Fc(z)− iDc(z))

1
3 =

(2c− 1)2

z4
ωk(+)+k(−) (1 + o(z)) ,

k(+) + k(−) ≡ 0 mod 3. Next, let us consider the latter condition in (3.22). By (3.21), we have

S(z) =
z

3

(
(Fc(z) + iDc(z))

1
3 + (Fc(z)− iDc(z))

1
3

)
− 2z

3
+

2c− 1

3z

=
2c− 1

3z

(
ωk(+)

(
1−

√
3c

(2c− 1)
3
2

z

)
+ ωk(−)

(
1 +

√
3c

(2c− 1)
3
2

z

)
+ o(z)

)
− 2z

3
+

2c− 1

3z

=
2c− 1

3z
(ωk(+) + ωk(−) + 1) +

2c− 1

3
·
√

3c

(2c− 1)
3
2

(ωk(−) − ωk(+))− 2z

3
+ o(1).

Let z = yi with y > 0. Then, since
2c− 1

3z
= −2c− 1

3y
i
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and −(2c− 1) < 0, we need to have ωk(+) +ωK(−) + 1 = 0, that is, (k(+), k(−)) = (1, 2) or (2, 1). In
this case, the second term above can be described as

2c− 1

3
·
√

3c

(2c− 1)
3
2

(ωk(−) − ωk(+)) =
c√

3
√

2c− 1
· ε′
√

3 i (ε′ = ±1),

and hence we obtain (k(+), k(−)) = (2, 1). Thus,

lim
y→+0

ImS(yi) =
c√

3
√

2c− 1
·
√

3− lim
y→+0

2y

3
=

c√
2c− 1

.

We note that the density fc of µ in (3.12) satisfies

lim
x→0

fc(x) =
c

π
√

2c− 1
.

(Z3) the case c = 1
2 . In this case, we have α1/2 = 0, β := β1/2 = 27

8 = ( 3
2 )3. Moreover, since

F (z) := F1/2(z) =
β − 9

2z
2 + z4

z4
=

1

z4

(
β − 9

2
z2 + z4

)
and

D(z) := D1/2(z) =

√
β

z4

√
z2 − β = i · β

z4

√
1− z2

β
= i · β

z4

(
1− z2

2β
− z4

8β2
+ o(z4)

)
around z = 0, we obtain

F (z) + iD(z) =
1

z4

(
β − 9

2
z2 + z4 − β

(
1− z2

2β
− z4

8β2
+ o(z4)

))
=

1

z4

(
−4z2 +

(
1 +

1

8β

)
z4 + o(z4)

)
=
−4

z2

(
1− 8β + 1

32β
z2 + o(z2)

)
= − 4

z2

(
1− 7

27
z2 + o(z2)

)
and

F (z)− iD(z) =
1

z4

(
β − 9

2
z2 + z4 + β

(
1− z2

2β
− z4

8β2
+ o(z4)

))
=

1

z4

(
2β − 5z2 +

(
1− 1

8β

)
z4 + o(z4)

)
=

2β

z4

(
1− 5

2β
z2 +

8β − 1

16β2
z4 + o(z4)

)
=

27

4z4

(
1− 20

27
z2 +

13 · 8
272

z4 + o(z4)

)
.

Thus,

(F (z) + iD(z))
1
3 = −ωk+

3
√

4

z
2
3

(
1− 7

81
z2 + o(z2)

)
, (F (z)− iD(z))

1
3 = ωk−

3
3
√

4z
4
3

(
1− 20

81
z2 + o(z2)

)
,

where k+, k− ∈ {0, 1, 2}. Let us consider the first condition in (3.22). Since

(F (z) + iD(z))
1
3 · (F (z)− iD(z))

1
3 = −ωk++k−

3

z2

(
1− z2

3
+ o(z2)

)
= ωk++k−

(
− 3

z2
+ 1 + o(1)

)
and

−3p(z) = 1− 3

z2
,

we have k+ + k− ≡ 0 mod 3. Next, let us consider the latter condition in (3.22). By (3.21), we have

S(z) =
z

3

(
−ωk+

3
√

4

z
2
3

(
1− 7

81
z2 + o(z2)

)
+ ωk−

3
3
√

4z
4
3

(
1− 20

81
z2 + o(z2)

))
−2z

3
=
ωk−

3
√

4
z−

1
3 +O(z

1
3 )

Now z = yi with y > 0, z−
1
3 = (1/ 3

√
y)e−πi/6 so that k− must be equal to 1. In fact, in this case,

ωk−z−
1
3 = i/ 3

√
y and thus

ImS(z) =
1

3
√

4y
+O(y

1
3 ) > 0 (if y enough small)

and

µ({0}) = lim
y→+0

Im yS(x+ yi) = lim
y→+0

3

√
y2

4
+O(y

4
3 ) = 0.

By Lemma 2.10, this formula also yields that

lim
y→+0

ImS(yi) = +∞ and µ does not have an atom at x = 0. (3.25)
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3.3. Supplement for Remark 3.2 (the case of c = 1). If we take c→ 1− 0, then we have

lim
c→1−0

3c
√

3− 3c x
√

(x2 − αc)(βc − x2) = lim
c→1−0

3
√

3cx
√

((1− c)x2 − (1− c)αc)(βc − x2) = 3
√

3x

√
1

4
(4− x2),

and hence

R±(x; 1) = x6 − 6x4 +
15

2
x2 + 1± 3

√
3x

2

√
4− x2.

Since R±(x; 1) can be factored as

R±(x; 1) =

(
−1

2
x2 + 1±

√
3x

2

√
4− x2

)3

,

we obtain

3
√
R+(x; 1)− 3

√
R−(x; 1) =

(
−1

2
x2 + 1 +

√
3x

2

√
4− x2

)
−

(
−1

2
x2 + 1−

√
3x

2

√
4− x2

)
=
√

3x
√

4− x2,

and hence

µ(dt) =

√
3(t/
√
v)
√

4− t2/v
2
√

3πt
χ(t) =

1

2πv

√
4v − t2 χ(t).
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4. Wishart Ensembles of Vinberg Matrices

In this section, we shall consider the quadratic Wishart (covariance) matrices introduced in §2.4.
We first prepare some special functions which we need later. They generalize the Lambert W function
appearing (see Cheliotis (2018)) in the case Pn = Sym(n,R)+ and m = (1, . . . , 1).

4.1. Lambert–Tsallis W function and Lambert–Tsallis function Wκ,γ. For a non zero real
number κ, we set

expκ(z) :=
(

1 +
z

κ

)κ
(1 +

z

κ
∈ C \ R≤0) log〈κ〉(z) :=

zκ − 1

κ
(z ∈ C \ R≤0),

where we take the main branch of the power function when κ is not integer. If κ = 1
1−q , then it

is exactly the so-called Tsallis q-exponential function and q-logarithm, respectively (cf. Amari and
Ohara (2011); Zhang et al. (2018)). We have the following relationship between these two functions:

log〈1/κ〉 ◦ expκ(z) = z (−π < κArg
(

1 +
z

κ

)
< π). (4.26)

By virtue of lim
κ→∞

expκ(z) = ez, we regard exp∞(z) = ez and log〈0〉(z) = log(z).

For two real numbers κ, γ such that γ ≤ 1
κ ≤ 1 and γ < 1, we introduce a holomorphic function

fκ,γ(z), which we call generalized Tsallis function, by

fκ,γ(z) :=
z

1 + γz
expκ(z) (1 +

z

κ
∈ C \ R≤0).

We note that κ ∈ (−∞, 0)∪[1,+∞). Analogously to Tsallis q-exponential, we also consider f∞,γ(z) =
zez

1+γz (z ∈ C). In particular, f∞,0(z) = zez.

In our work it is crucial to consider an inverse function to fκ,γ . A multivariate inverse function of
f∞,0(z) = zez is called the Lambert W function and studied in Corless et al. (1996). Hence, we call
an inverse function to fκ,γ the Lambert–Tsallis W function.

The function fκ,γ(z) has the inverse function wκ,γ in a neighborhood of z = 0, because we have
f ′κ,γ(0) = 1 6= 0 by

f ′κ,γ(z) =
γz2 +

(
1 + 1/κ

)
z + 1

(1 + γz)2

(
1 +

z

κ

)κ−1
.

The condition on κ and γ comes from the variance profile σ of the form

σ = with
p+ q = 1, p, q > 0
0 ≤ tan θ = α ≤ q

p

Then, we are going to deal with the function fκ,γ(z) for the parameters

κ =
1

1− α
, γ =

p− q
p

=
2p− 1

p
.

By definition of κ and γ and by the range of tan θ, we have

1 ≥ 1

κ
= 1− tan θ ≥ 1− 1− p

p
=

2p− 1

p
= γ and −∞ < γ < 1.

Thus the condition we consider is

γ < 1 and 1 ≥ 1

κ
≥ γ, or equivalently γ < 1,

1

κ
− γ ≥ 0 and

1

κ
≤ 1

(see Figure 8). If α ∈ [0, 1), or equivalently 0 ≤ α < 1, then κ ∈ [1,∞) and κγ ≤ 1. If α > 1, or
equivalently α > 1, then κ ∈ (−∞, 0), and by setting κ′ = −κ > 0 and γ′ = γ − 1/κ, they satisfy

κ′γ′ = −κ(γ − 1/κ) = 1− κγ ≤ 0
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so that this case is reduced to the case κ > 0 (see §5.5). In the case of α = 1, we consider f∞,γ =
x

1+γxe
x. In this case we have γ ≤ 0.

Figure 8. Region of κ and γ

Let us present some properties of fκ,γ . When γκ 6= 1, the function fκ,γ has a pole at x = − 1
γ . By

the condition on κ and γ, the function γz2 + (1 + 1/κ)z + 1 has two real roots, say α1 ≤ α2 when
γ 6= 0. If γ = 0, there is only one real root, that we denote α2 = − κ

κ+1 .

f ′κ,γ(z) = 0 implies z = αi (i = 1, 2), or z = −κ if κ > 1. For the case κ < 0, it is convenient to
change the variable by a homographic action z′ = z

1+ z
κ

. Then

fκ,γ(z) = fκ′,γ′(z
′) where κ′ = −κ > 0, γ′ = γ − 1

κ
.

Since a homographic action by element in SL(2,R) leaves C+ invariant, the analysis of the case κ < 0
reduces to the case κ′ > 0 and γ′ ≤ 0. Then, the set S := R \ fκ,γ(R) has the following possibilities.

Theorem S. The set S := R \ fκ,γ(R) is expressed by following formulas.

(S1) S = (fκ,γ(α2), fκ,γ(α1)), where fκ,γ(α2) < fκ,γ(α1) < 0. It occurs when κ ∈ [1,+∞] and
γ < 0, and when κ < 0 and γ′ = γ − 1

κ < 0.
(S2) S = (−∞, fκ,γ(α2)), where fκ,γ(α2) < 0. It occurs when κ > 1 and γ ≥ 0 and when

(κ, γ) = (1, 0).
(S3) S = (−∞, fκ,γ(α1)), where fκ,γ(α1) < 0. It occurs when κ < 0 and γ′ = γ − 1

κ = 0.
(S4) S = (fκ,γ(α1), fκ,γ(α2)), where fκ,γ(α1) < fκ,γ(α2) < 0. It occurs when κ = 1 and γ > 0.

We study in detail the cases (S1,S2,S3). The case (S4) appears in the well known Wishart Ensemble
case.

Theorem 4.1. Let S be an interval or half-line given by (S1)-(S4) above, and S ⊂ (−∞, 0) its
closure. Then, there exists a complex domain Ω ⊂ C, symmetric with respect to the real axis and
containing 0, such that fκ,γ maps Ω bijectively to C \ S. Consequently, the function wκ,γ can be

continued in a unique way to a holomorphic function Wκ,γ defined on C \ S. The codomain of Wκ,γ

is Ω, that is, Wκ,γ(C \ S) = Ω.

Definition 4.2. The unique holomorphic extension Wκ,γ of wκ,γ to C\S is called the main branch of
Lambert-Tsallis W function. In this paper, we only study and use Wκ,γ among other branches so that
we call Wκ,γ the Lambert–Tsallis function for short. Note that in our terminology the Lambert-Tsallis
W function is multivalued and the Lambert-Tsallis function Wκ,γ is single-valued.

We summarize the basic properties of the Lambert-Tsallis function that we need later.

Proposition 4.3. (i) Let D = Ω∩C+. The function fκ,γ is continuous and injective on the closure

D. Consequently, Wκ,γ extends continuously from C+ to C+ ∪ R, and one has fκ,γ(∂Ω ∩ C+) = S.
(ii) The Lambert-Tsallis function Wκ,γ has the following properties.
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(a) Suppose that κ ≥ 1 and γ < 0, or κ < 0 and γ′ ≤ 0. In these cases, the set D = Ω ∩ C+ is

bounded. If κ ≥ 1 then we have D ⊂
{
z ∈ C+; Arg

(
1 + z

κ

)
∈ (0, π

κ+1 )
}

and z ∈ D satisfies

Re z > −κ. If κ = ∞, then one has ImWκ,γ(z) ∈ (0, π) for z ∈ C+. If κ < 0 then we have

D ⊂
{
z ∈ C+; Arg

((
1 + z

κ

)−1) ∈ (0, π
|κ|+1 )

}
. Moreover, lim|z|→+∞Wκ,γ(z) = − 1

γ (recall

that − 1
γ is a pole of fκ,γ).

(b) Suppose κ ∈ [1,+∞] and γ = 0. The set D = Ω ∩ C+ is unbounded and fκ,0(∞) = ∞. If

κ ∈ [1,+∞) then D ⊂
{
z ∈ C+; Arg

(
1 + z

κ ∈ (0, π
κ+1 )

)}
. If κ = ∞, then W∞,0(z) is the

classical Lambert function, and one has ImW∞,0(z) ∈ (0, π) for z ∈ C+.
(c) Suppose γ > 0. In this case we have κ ∈ [1, 1γ ]. The set D = Ω ∩ C+ is unbounded and

fκ,γ(∞) =∞. Moreover, one has D =
{
z ∈ C+; Arg

(
1 + z

κ

)
∈ (0, πκ )

}
.

The proofs of Theorem S, Theorem 4.1 and Proposition 4.3 will be given in Appendix (see page
57).

Remark 4.4. It is worth underlying that we consider the main branch of the complex power function
in the Tsallis q-exponential expκ(z) appearing inside the generalized Tsallis function fκ,γ . Conse-
quently, the main branch Wκ,γ is the unique one such that W (0) = 0. A complete study of all
branches of the Lambert-Tsallis W function will be interesting to do. The study of the Lambert-
Tsallis function Wκ,γ in the full range of parameters κ, γ is also an interesting open problem. We
exclude the case κγ > 1 with κ > 0 because we do not need it later. We note that, when κγ > 1 and
κ > 1 with a condition (1 + κ)2 − 4γκ2 > 0, then fκ,γ maps a subregion of C+ onto C+.

Applying the Lagrange inversion theorem, we see that the Taylor series of the function Wκ,γ near
z = 0 is

Wκ,γ(z) = z + (γ − 1)z2 +

(
γ2 − 3γ +

3κ+ 1

κ

)
z3 + o(z3). (4.27)

4.2. Quadratic Wishart matrices. We will now study eigenvalues of Wishart (covariance) matrices
in Pn ⊂ Un, defined in Section 2.4. We apply the approach of Bordenave (2019, Cor.3.5), based on
the variance profile method (Theorem 2.3).

In this subsection, we first consider the case of an = n−1 and bn = 1, that is, Pn is the symmetric
cone Sym(n,R)+ of positive definite symmetric matrices of size n. Let ξn be a rectangular matrix
of size n × N . In order to study eigenvalue distributions of Xn = ξn

tξn, we equivalently consider
Wigner matrices of the form

Yn :=

(
0 ξn
tξn 0

)
∈ Sym(n+N, R). (4.28)

If Xn has eigenvalues λj ≥ 0 (j = 1, . . . , n), then those of Yn are exactly ±
√
λj (j = 1, . . . , n) and

zeros with multiplicity |N − n|. This is because, by the singular value decomposition, there exist
orthogonal matrices U, V ∈ O(n) and non-negative µ1, . . . , µn ≥ 0 such that

ξn = U
(
Dn 0

)
V, Dn = diag(µ1, . . . , µn).

Here we assume that N ≥ n for simplicity. Since

Xn = ξn
tξn = U

(
Dn 0

)
V · tV

(
Dn

0

)
tU = UD2

n
tU,

we see that λj is one of µ2
k for some k, and we can assume that λj = µ2

j because we can arrange the
ordering of eigenvalues by the action of O(n). Since

Yn =

(
0 ξn
tξn 0

)
=

 0 U
(
Dn 0

)
V

tV

(
Dn

0

)
tU 0

 =

(
U 0
0 tV

) 0 Dn 0
Dn 0 0
0 0 0

(tU 0
0 V

)
(in the right hand side, the matrix in the center is a block matrix with partition n, n and N − n),
the characteristic polynomial g(t) of Yn is given as

g(t) = tN−n
n∏
i=1

(t2 − µ2
i ), so that eigenvalues of Yn are ± µi = ±

√
λi and 0.
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Let Tn denote the Stieltjes transform of the empirical eigenvalue distribution of rescaled Xn/n and Sn
the Stieltjes transform of rescaled Yn/

√
n+N . Then, it is easy to see that these Stieltjes transforms

satisfy

Tn

(
z2

pn

)
=

1

2z

(
1− 2pn

z
+ Sn(z)

)
, (4.29)

where pn := n
n+N and qn = N

n+N . In fact, we have for n ≤ N

Sn(z) =
1

n+N

N − n
0− z

+

n∑
j=1

1√
λj√

n+N
− z

+
1

−
√
λj√

n+N
− z


= − 1

n+N
· n+N − 2n

z
+

1

n+N

n∑
j=1

−2z

z2 − λj
n+N

= −1− 2pn
z

+
n

n+N
· 1

n

n∑
j=1

−2z

z2 − n
n+N ·

λj
n

= −1− 2pn
z

+
2pnz

n

n∑
j=1

1

pn · λjn − z2

= −1− 2pn
z

+ 2z · 1

n

n∑
j=1

1
1
nλj −

z2

pn

= −1− 2pn
z

+ 2zTn

(
z2

pn

)
,

and for n ≤ N

Sn(z) =
1

n+N

 N∑
j=1

1√
λj/
√
n+N − z

+
1

−
√
λj/
√
n+N − z

+
n−N
0− z


=

1

n+N

N∑
j=1

−2z

z2 − λj/(n+N)
− n−N
n+N

· 1

z
=

1

n

N∑
j=1

2z
λj
n −

n+N
n z2

− pn − qn
z

= 2z

 1

n

 N∑
j=1

1
λj
n −

z2

pn

+
n−N
0− z2

pn

− 1

n
· n−N

0− z2

pn

− pn − qn
z

= 2z

(
Tn

( z2
pn

)
+
pn − qn
pn

· pn
z2

)
− pn − qn

z
= 2zTn

(
z2

pn

)
+

2(pn − qn)

z
− pn − qn

z

= 2zTn

(
z2

pn

)
+
pn − qn

z
.

In order to study eigenvalue distributions of covariance matrices from Section 2.4, with parameters
k as in (2.2), we introduce a trapezoidal variance profile σ as follows. Let p, α be real numbers such
that 0 < p < 1 and 0 ≤ α ≤ (1− p)/p. Then, σ is defined by

σ(x, y) =

{
v (x < p and y ≥ p+ αx, or x ≥ p and 0 ≤ y ≤ min{(x− p)/α, p}),
0 (otherwise).

(4.30)

Graphically, σ is of the form

σ = with
p+ q = 1, p, q > 0
0 ≤ tan θ = α ≤ q

p
(4.31)
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If limn pn = p, by Theorem 2.3, this variance profile determines the limiting distribution of empir-
ical eigenvalue distributions of the Wigner matrices Yn in (4.28). Recall that, to a variance profile σ,
Theorem 2.3 associates the Stieltjes transform Sσ(z). It will be determined in Theorem 4.5. Anal-
ogously, to a variance profile σ of ξn, we associate the “covariance Stieltjes transform” Tσ(z) of the
corresponding covariance matrices Qk(ξn) =ξn

tξn. The covariance Stieltjes transform Tσ(z) is related
to Sσ(z) by the formula (4.29). It will be determined in Proposition 4.7.

Theorem 4.5. Let σ be a variance profile given in (4.30), and set κ := 1/(1−α) and γ := (2p−1)/p =
1− (q/p). Then, the Stieltjes transform Sσ(z) associated to σ is given as

Sσ(z) = − 2p

zWκ,γ

(
−vpz2

) +
1− 2p

z
− 2z

v
(z ∈ C+), (4.32)

where Wκ,γ is the Lambert-Tsallis function defined in Section 4.1.

Proof. We use Theorem 2.3. Take z ∈ C+ such that Im z is large enough. By definition of σ and ηz,
we have

ηz(x) =



−
(
z + v

∫ 1

p+αx

ηz(y) dy

)−1
(0 ≤ x ≤ p),

−

(
z + v

∫ α−1(x−p)

0

ηz(y) dy

)−1
(p < x ≤ p+ αp),

−
(
z + v

∫ p

0

ηz(y) dy

)−1
(p+ αp < x ≤ 1).

(4.33)

For z fixed, we set

a(t) := ηz(t), t ∈ [0, p], b(t) := ηz(p+ αt), t ∈ (0, p].

By differentiating both sides in the above equations, we obtain a differential equation{
a′(t) = −vαa(t)2b(t),
b′(t) = va(t)b(t)2,

(4.34)

with initial data

a(p) = −
(
z + v

∫ 1

p+αp

ηz(y) dy

)−1
, b(0+) = −1

z
.

In what follows, we shall show that, if α 6= 1 then

a(t) = −zw(z)X(t)ακ, b(t) = −1

z
·X(t)−κ,

where w(z) := − 1
vpWκ,γ

(
−vpz2

)
and X(t) := 1 − vw(z)

κ t satisfy (4.34). Here, we choose the main

branches for complex power functions. If α = 1 then

a(t) = −zw(z)e−vw(z)t, b(t) = −1

z
· evw(z)t.

We omit the proof for α = 1 because it can be done by a similar argument. Recall that we can take
z ∈ C+ such that −vp/z2 is in a neighbourhood of 0. By (4.27), we obtain

a(t) = −1

z
+

(γ − 1)vp+ αvt

z3
+ o(1/z3), b(t) = −1

z
− vt

z3
+ o(1/z3). (4.35)

In fact, by (4.27), we have

w(z) = − 1

vp
Wκ,γ

(
−vp
z2

)
= − 1

vp

(
−vp
z2

+ (γ − 1)
(
−vp
z2

)2
+ o(1/z4)

)
=

1

z2
− vp(γ − 1)

z4
+ o(1/z4),

and thus

−zw(z) = −1

z
− vp(γ − 1)

z3
+ o(1/z3).

On the other hand, by the Taylor expansion of the complex power function we have

X(t)ακ =

(
1− vwt

κ

)ακ
=

(
1− vt

κ

( 1

z2
+ o(1/z2)

))ακ
= 1− αvt

z2
+ o(1/z2)

so that

a(t) = −zwX(t)ακ =

(
−1

z
− vp(γ − 1)

z3
+ o(1/z3)

)(
1− αvt

z2
+ o(1/z2)

)
= −1

z
+

(γ − 1)vp+ αvt

z3
+o(1/z3).
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Similarly, we obtain

b(t) = −1

z

(
1− vw(z)t

κ

)−κ
= −1

z

(
1− vt

κ
· 1

z2
+ o(1/z2)

)−κ
= −1

z

(
1 +

vt

z2
+ o(1/z2)

)
= −1

z
− vt
z3

+o(1/z3).

Since ηz(x) is independent of x when x ∈ [p + αp, 1], we see that ηz(x) = b(p) for x ∈ (p + αp, 1].
We deduce from (4.35) that when Im z is large enough, then ηz(x) ∈ C+ for all x ∈ [0, 1]. Actually,
we have Im − 1/z > 0 if z ∈ C+. If Im z is large enough, then Im(o(1/z)) is small compared with
−1/z so that Im(−1/z + o(1/z)) > 0.

Since Wκ,γ is holomorphic around z = 0 and Wκ,γ(0) = 0, we can choose z ∈ C+ such that

sup
t
|µArgX(t)| < π for all µ = 2ακ,−2κ, ακ− 1,−κ− 1, 2ακ− κ, ακ− 2κ.

This means that we are able to calculate X(t)µX(t)ν
′

= X(t)µ+µ
′

for µ,µ′ being any of numbers in
the above list. By differentiating a(t) and b(t), we obtain

a′(t) = −zw(z) ·
(
−vακw(z)

κ
X(t)ακ−1

)
= vαzw(z)2X(t)ακ−1,

b′(t) = −1

z
·
(
−−vκw(z)

κ
X(t)−κ−1

)
= −vw(z)

z
X(t)−κ−1.

On the other hand, since we take the main branch of complex power functions, we have by ακ = κ−1

−vαa(t)2b(t) = −vαzw(z)2X(t)ακ−1 and va(t)b(t)2 = −vw(z)

z
X(t)−κ−1.

Therefore, we confirm that a′(t) = −vαa(t)2b(t) and b′(t) = va(t)b(t)2. Next we consider the initial
conditions. It is obvious that b(0) = − 1

z . Since fκ,γ(−vpw(z)) = −vpz2 , we have, setting w = w(z)
and X = X(p) for simplicity,

wXκ

1 + v(1− 2p)w
=

1

z2
⇐⇒ wz2Xκ = 1 + v(1− 2p)w

⇐⇒ wz2Xκ = 1− vwp

κ
− (p+ αp− 1)vw

(
∵ κ =

1

1− α

)
⇐⇒ X = z2wXκ + (p+ αp− 1)vw

(
∵ X = 1− vwp

κ

)
⇐⇒ 1 = zwXκ−1

(
z + (p+ αp− 1)

v

z
·X−κ

)
⇐⇒ −zwXκ−1 = −

(
z +

v(p+ αp− 1)

z
·X−κ

)−1
.

Since a(p) = −zwXακ = −zwXκ−1 by ακ = κ− 1, we see that

a(p) = −
(
z + v · p+ αp− 1

zXκ

)−1
.

On the other hand, since ηz(x) is independent of x when x ∈ [p+ αp, 1], we have∫ 1

p+αp

ηz(y) dy = (1− p− αp)ηz(p+ αp) = (1− p− αp)b(p) =
p+ αp− 1

zXκ
.

Thus we conclude that a(t) satisfies the initial condition, and hence a(t) and b(t) give indeed a solution
of (4.34) and of (4.33). The property ηz(x) ∈ C+ and the unicity part of Theorem 2.3 imply that a(t)
and b(t) give the C+-valued solution ηz(x) of (4.33) such that the desired Stieltjes transform equals

Sσ(z) =
∫ 1

0
ηz(x)dx. Then, we have

Sσ(z) =

∫ 1

0

ηz(x) dx =

(∫ p

0

+

∫ p+αp

p

+

∫ 1

p+αp

)
ηz(x) dx =

∫ p

0

a(t) dt+α

∫ p

0

b(t) dt+

∫ 1

p+αp

ηz(x) dx.

By formulas fκ,γ(−vpw(z)) = − vpz2 and a(p) = −zwXκ−1, we obtain∫ p

0

a(t) dt =
z

v
(Xκ − 1) =

z

v

(
1

wz2
+

(1− 2p)v

z2
− 1

)
,

∫ p

0

b(t) dt =
1

vαzw
(1−X1−κ) =

1

vαzw

(
1 +

wz

a(p)

)
,

and by the initial data of a(t) ∫ 1

p+αp

ηz(x) dx = −1

v

(
1

a(p)
+ z

)
.
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Thus, we have

Sσ(z) =
z

v
(Xκ − 1) +

1

vzw

(
1−X1−κ)+

∫ 1

p+αp

ηz(x) dx = − 2p

zWκ,γ

(
− vpz2

) +
1− 2p

z
− 2z

v
. (4.36)

Since the image of C+ with respect to the map z 7→ −vp/z2 is C \R≤0, we see that −vpz2 (z ∈ C+) is

included in C \S, the domain of Wκ,γ , because S ⊂ (−∞, 0) by Theorem 4.1. Therefore, the formula
(4.36) is valid for all z ∈ C+, and hence Sσ(z) can be analytically continued to a holomorphic function
on C+. We conclude that Sσ(z) is given as (4.32). �

Remark 4.6. We call the parameter κ of Lambert-Tsallis functions the angle parameter since it
depends only on the angle of the trapeze in (4.31). If κ = 1, then we have α = 0 so that the trapeze
reduces to a rectangle. If α = q/p, i.e. κ = p/(p−q) = 1/γ, then the trapeze reduces to a triangle. On
the other hand, the parameter γ = 2p−1

p = 1− C depends directly on the shape parameter C = q/p.

We call γ the shape parameter of the Lambert-Tsallis function. Note that the geometric condition
0 ≤ α ≤ p

q is equivalent to the condition 1
κ ≥ γ. The formula γ = 1− q

p shows that γ ∈ (−∞, 1). We

have
κ ∈ [1, 1γ ] if 0 ≤ γ < 1, and κ ∈ [1,∞] ∪ (−∞, 1γ ] if γ < 0.

The covariance Stieltjes transform Tσ(z) associated to the profile σ is given as follows.

Proposition 4.7. Let σ be a variance profile defined in (4.30) with parameters p and α. Set κ := 1
1−α

and γ := 2p−1
p = 1− q

p . Then, the covariance Stieltjes transform Tσ(z) corresponding to the profile σ

is described as

Tσ(z) = Tκ,γ(z) := −1

v
− 1

zWκ,γ

(
−vz
) − γ

z
=

expκ
(
Wκ,γ(−v/z)

)
− 1

v
(z ∈ C+), (4.37)

and its R-transform R(z) is given as

R(z) = −1

z
− vγ

1− vz
− v

(1− vz) log〈1/κ〉(1− vz)
(1− vz ∈ C \ R≤0).

Proof. Let z ∈ C+ and set W (z) = Wκ,γ(z). If pn → p as n→ +∞, the formula (4.29) converges as
n→∞ to

T
(z2
p

)
=

1

2z

(
1− 2p

z
+ S(z)

)
.

By Theorem 4.5, we obtain

T
(z2
p

)
=

1− 2p

2z2
+

1

2z

(
− 2p

zW (−vp/z2)
+

1− 2p

z
− 2z

v

)
=

1− 2p

2z2
− p

z2W (−vp/z2)
+

1− 2p

2z2
− 1

v

=
1− 2p

p
· p
z2
− p

z2
· 1

W (−v(p/z2))
− 1

v
.

Let z′ = z2/p. Then we have

T (z′) =
1− 2p

p
· 1

z′
− 1

z′W (−v/z′)
− 1

v
.

Since z′ runs through all elements in C+ and since γ = 2p−1
p , we obtain the first equation. For

the second equality, let us put W = W (−v/z) for simplicity. By definition of the Lambert-Tsallis
function, we have

−v
z

=
W

1 + γW
expκ(W ) =

expκ(W )

γ + 1/W
, and hence γ +

1

W
= −z

v
expκ(W ).

This yields that

T (z) = −1

v
− 1

zW
− γ

z
= −1

v
− 1

z

(
1

W
+ γ

)
= −1

v
− 1

z

(
−z
v

expκ(W )
)

= −1

v
+

expκ(W )

v
,

whence we obtain the second equality.
Recall the relation between the R-transform R(z) and the Stieltjes transform S(z), that is, R(z) =

S−1(−z)− 1/z (cf. Mingo and Speicher (2017, Chapter 3)).
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Let us assume that κ 6= ∞. Since we have Wκ,γ(z) ∈ D for z ∈ C+, Proposition 4.3 (ii) tells us

that −π < κArg
(

1 + W (z)
κ

)
< π for any z ∈ C+ so that we obtain by using (4.26)

T (z) = −1

v
+

1

v

(
1 +

W (−v/z)
κ

)κ
⇐⇒ vT (z) + 1 = expκ(W (−v/z))

⇐⇒ W (−v/z) = log〈1/κ〉(vT (z) + 1)

⇐⇒ −v
z

= fκ,γ(log〈1/κ〉(vT (z) + 1))

⇐⇒ z = − v

fκ,γ(log〈1/κ〉(vT (z) + 1))
.

Thus, we see that

T−1(z) = − v

fκ,γ(log〈1/κ〉(vz + 1))
,

and hence

R(z) = T−1(−z)− 1

z
= −v

(
log〈1/κ〉(1− vz)

1 + γ log〈1/κ〉(1− vz)
× expκ(log〈1/κ〉(1− vz))

)−1
− 1

z

= −v · 1 + γ log〈1/κ〉(1− vz)
(1− vz) log〈1/κ〉(1− vz)

− 1

z

= −1

z
− vγ

1− vz
− v

(1− vz) log〈1/κ〉(1− vz)
.

By this expression, R(z) can be defined on a domain such that 1− vz ∈ C \R≤0. If κ =∞, then we
can argue similarly since Proposition 4.3 (ii) states that ImW∞,γ(z) ∈ (0, π) for z ∈ C+. �

Recall that Ω denotes the codomain of Wκ,γ . By Proposition 4.3, for each x ∈ S, there are exactly
two solutions of fκ,γ(z) = x in z ∈ ∂Ω, which are conjugate complex numbers, denoted by K+(x),
K−(x), such that ImK+(x) > 0. Recall that α1 ≤ α2 are zeros of the function γz2 + (1 + 1/κ)z + 1.
Then, we have the following theorem.

Theorem 4.8. Let σ be a trapezoidal variance profile defined by (4.30). Let µσ be the probability
measure corresponding to the associated covariance Stieltjes transform Tσ given by (4.37). Then,
the density function dσ of µσ is given as

dσ(x) =


1

2πxi

(
1

K−(− v
x )
− 1

K+(− v
x )

)
(if − v

x ∈ S),

0 (if − v
x ∈ R \ S).

(4.38)

Moreover, one has the following possibilities.

(1) In the case p < q and q
p 6= α (i.e. κ ≥ 1 and γ < 0, or κ < 0 and γ′ < 0), the measure µσ

is absolutely continuous and its density dσ(x) is continuous on R. In particular, µσ has no
atoms. Its support is given as

suppµσ =

[
− v

fκ,γ(α2)
,− v

fκ,γ(α1)

]
=

[
v

α2
2

(
1 +

α2

κ

)1−κ
,
v

α2
1

(
1 +

α1

κ

)1−κ]
. (4.39)

(2) In the case p = q = 1
2 or q

p = α (i.e. κ ≥ 1 and γ = 0, or κ < 0 and γ′ = 0), the measure µσ
is absolutely continuous. Its density dσ is continuous on R∗ and limx→+0 dσ(x) = +∞. In
particular, µσ has no atoms. Let α0 := α2 if κ ≥ 1 and α0 := α1 = −1 if κ < 0. The support
of µσ is given as

suppµσ =

[
0,− v

fκ,γ(α0)

]
=

[
0,

v

α2
0

(
1 +

α0

κ

)1−κ]
. (4.40)

When κ =∞, the measure µσ is the Dykema-Haagerup measure χv with support [0, ve].
(3) In the case p > q (i.e. κ ≥ 1 and 0 < γ < 1), we have µσ = dσ(x)dx+(1− q

p )δ0. The measure

µσ has an atom at x = 0 with mass 1− q
p . Recall that κ ∈ [1, 1/γ]. When κ > 1, the support

of µσ is given by (4.40). The function dσ is continuous on R∗ and limx→+0 dσ(x) = +∞.
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For κ = 1 and −∞ < γ < 1, the measure µσ is the Marchenko-Pastur law µC with parameter

C = q
p = 1− γ ∈ (0, 1) and supp dσ =

[
v(1−

√
C)2, v(1 +

√
C)2

]
.

Proof. We use the formula of Tσ(z) from Proposition 4.7. Let z = x+ yi. By Proposition 4.3 (i) and
the fact that Wκ,γ(z) = 0 only if z = 0, we see that l(x) := limy→+0 ImTσ(x+ iy) exists when x 6= 0
and that l(x) = 0 when −v/x 6∈ S.

Assume that x 6= 0 and −v/x ∈ S. Let us set a(x) + ib(x) := limy→0+Wκ,γ(−v/z). Since the

function fκ,γ is continuous and injective on the closure D ⊂ C+, the function a + ib is continuous.

By Proposition 4.3 (i), we have b(x) > 0 and a(x) + ib(x) = K+(− v
x ) . Since S ⊂ (−∞, 0) by

Theorem 4.1, we have −v/x < 0, that is, x > 0. Thus, we obtain for −v/x ∈ S with x 6= 0

l(x) = lim
y→0+

ImTσ(x+ yi) = Im

(
−1

v
− 1

x(a(x) + ib(x))
− γ

x

)
= − 1

2xi

(
1

K+(− v
x )
− 1

K−(− v
x )

)
=

b(x)

x(a(x)2 + b(x)2)
> 0,

(4.41)

and thus l(x) is a continuous function on R∗. Therefore, x ∈ R∗ is included in the support of µσ if
and only if −v/x ∈ S. By (2.4), we have dσ(x) = 1

π l(x), so that we obtain (4.38).
Let us consider the case (S1). In this case, since S = (f(α2), f(α1)) and f(α1) < 0, we have

x ∈ suppµ ⇐⇒ f(α2) ≤ −v
x
≤ f(α1) < 0 ⇐⇒ −f(α2) ≥ v

x
≥ −f(α1) > 0 ⇐⇒ − v

f(α2)
≤ x ≤ − v

f(α1)
.

Recall that αi, i = 1, 2 are the real solutions of the equation γz2 + (1 + 1/κ)z+ 1 = 0. For a solution
α of this equation, we have by 1 + α/κ = −α(1 + γα)

fκ,γ(α) =
α

1 + γα

(
1 +

α

κ

)κ
= −α2

(
1 +

α

κ

)κ−1
,

so that we arrive at the assertion 1. of the theorem. The argument for other two cases is similar, and
hence we omit it.

Next we consider the case x = 0. We separate cases according to γ. First, let us assume that
κ ≥ 1 and γ < 0, or κ < 0 and γ′ < 0. In this case, we know that lim|z|→+∞Wκ,γ(z) = − 1

γ (see

Proposition 4.3 (ii-a)), and hence

lim
y→+0

T (yi) = lim
y→+0

expκ
(
Wκ,γ(−v/(yi))

)
− 1

v
=

expκ(−1/γ)− 1

v
∈ R.

Note that since γ < 0, we have 1− 1
κγ ≥ 0, so that the condition 1 + z

κ 6∈ R− is satisfied for z = − 1
γ .

Thus, in this case, we have l(0) = limy→+0 ImT (yi) = 0 and the function l is continuous at x = 0.
Next, let γ = 0. In this case, we have κ ∈ [1,∞) or κ =∞. Consider first κ ∈ [1,∞). For z ∈ C+,

let us set reiθ = 1 +
Wκ,γ(−v/z)

κ (r > 0, θ ∈ (0, π)). By Proposition 4.3 (ii-b), the set D = Ω ∩ C+ is
unbounded and fκ,γ(∞) =∞. Consequently, if z → 0 in C+, or equivalently −v/z →∞ in C+, then
we have Wκ,0(−v/z)→∞ and r → +∞. Again by Proposition 4.3 (ii-b), we see that θ ∈ (0, π

κ+1 ) so

that sinκθ > 0 when z = −v/(iy) ∈ C+, and thus

ImT (z) = Im
expκ

(
Wκ,γ(−v/z)

)
− 1

v
= Im

(reiθ)κ − 1

v

= Im
rκ cosκθ − 1 + irκ sinκθ

v
=
rκ sinκθ

v
→ +∞ (y → +0).

On the other hand, µσ does not have an atom at x = 0 because we have by Wκ,0(−v/z) → ∞ and
by γ = 0

yT (iy) = −y
v
− 1

iWκ,γ(−v/(yi))
− γ

i
→ γi = 0 (y → +0).

In the case (κ, γ) = (∞, 0), W (z) = W∞,0(z) is the classical Lambert function. If z is in the image
of iR+ by W , then Re zez = 0, i.e.

ex(x cos y − y sin y) = 0 ⇐⇒ x = y tan y.

We have W (ex(x sin y + y cos y)i) = x + iy = z so ImW (ey tan y y
cos y i) = y. This means that

limy→+∞ ImW (iy) = π
2 . Since W (∞) = ∞ by Proposition 4.3 (ii-b), we see that W (−v/(iy)) =
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a(y) + ib(y) satisfies limy→+0 a(y) = +∞ and limy→+0 b(y) = π
2 so that

lim
y→+0

ImT (yi) = lim
y→+0

Im
eW (−v/(yi)) − 1

v
= lim
y→+0

Im
ea(y) cos b(y)− 1 + iea(y) sin b(y)

v
= lim
y→+0

ea(y)

v
sin b(y) = +∞.

On the other hand, we see that µ does not have an atom at x = 0 since

Im yT (iy) = Im y

(
−1

v
− 1

iyW (−v/(iy))

)
= Im

(
−y
v

+
i

a(y) + ib(y)

)
=

a(y)

a2(y) + b2(y)
→ 0 (y → 0+).

Let us consider the case κ < 0 and γ′ = γ− 1
κ = 0. In this case, we know that lim|z|→∞Wκ,γ(z) =

− 1
γ = −κ by Proposition 4.3 (ii-a). Since κ < 0, it is easy to verify that limw→−κ | expκ(w)| =∞ so

that by continuity of expκ and Wκ,γ

lim
y→+0

T (yi) = lim
y→+0

expκ
(
Wκ,γ(−v/(yi))

)
− 1

v
= lim
w→−κ

expκ(w)− 1

v
=∞.

On the other hand, µσ does not have an atom at x = 0 because we have by Wκ,γ(−v/z)→ − 1
γ

yT (iy) = −y
v
− 1

iWκ,γ(−v/(yi))
− γ

i
→ − 1

i(−1/γ)
− γ

i
= 0 (y → +0).

Last, we assume that 0 < γ < 1. If κ > 1, we apply Proposition 4.3 (ii-c). When z → 0, we have
−v/z →∞ and Wκ,γ(−vz )→∞, so that we obtain

yTσ(iy) = −y
v
− 1

iWκ,γ(−v/(iy))
− γ

i
→ γi (y → +0),

whence µσ has an atom at x = 0 with mass γ = 1− q
p > 0. We omit the proof in the case κ = 1, as

it corresponds to the classical Wishart matrices with parameter C = q
p < 1. Note that κ = ∞ does

not occur because κ ≤ 1
γ .

The absolute continuity of µσ follows from Proposition 2.2, by considering µ0 := µσ − dσ(x)dx,
or, in the case with atom at x = 0, of µ0 := µσ − dσ(x)dx− γδ0 and using the fact that the Stieltjes
transform S0(z) of µ0 satisfies limy→0+ ImS0(x + iy) = 0 for all x ∈ R. The argument is similar as
in the proof of Theorem 3.1. �

In the following Corollary, we give a real implicit equation for the density dσ analogous to the
Dykema-Haagerup equation (2.3). To do so, we introduce the following notation

eκ(z) := |expκ(z)| ≥ 0, θκ(z) = κArg
(

1 +
z

κ

)
(z ∈ C+).

If κ = ∞, we set eκ(z) := eRe z and θκ(z) := Im z. Then, we have expκ(z) = eκ(z)
(
cos
(
θκ(z)

)
+

i sin
(
θκ(z)

))
.

Corollary 4.9. (i) Suppose v = 1 for simplicity. For two real numbers κ, γ such that γ ≤ 1
κ ≤ 1 and

γ < 1, the density dσ of the limiting law µσ satisfies the equation

dσ

(
sin
(
θκ(z)

)
b

(
1 + γa− γb cot

(
θκ(z)

))(
eκ(z)

)−1)
=

1

π
· eκ(z) sin

(
θκ(z)) (z= a+ bi ∈ ∂D ∩ C+).

(4.42)
In particular, when (κ, γ) = (∞, 0), the density dσ satisfies the equation (2.3) with b = x and
a = −x cotx (x ∈ [0, π)).
(ii) If κ ∈ [1,∞] and γ < 0, then the correspondence a 7→ b = b(a) is unique for each z = a + bi ∈
∂D ∩ C+. Then, a ∈ [α1, α2]. The same is true for κ =∞ and γ = 0 with a ∈ [−1,+∞).

Proof. (i) Let z = a+ bi ∈ ∂D ∩ C+. Then, it satisfies fκ,γ(z) ∈ S. Suppose fκ,γ(z) = − 1
x , and set

X = a+ γa2 + γb2, Y = |1 + γz|2 = (1 + γa)2 + (γb)2.

Notice that X2 + b2 = (a2 + b2)Y . The equation fκ,γ(z) = − 1
x means that

− 1

x
=
eκ(z)

Y

(
X cos

(
θκ(z)

)
− b sin

(
θκ(z)

))
, 0 = X sin

(
θκ(z)

)
+ b cos

(
θκ(z)

)
. (4.43)

The latter one yields that cos
(
θκ(z)

)
= − sin

(
θκ(z)

)
b X so that

− 1

x
= −eκ(z)

Y
·

sin
(
θκ(z)

)
b

(X2 + b2) ⇐⇒ 1

x
· b

a2 + b2
= eκ(z) sin

(
θκ(z)

)
.
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On the other hand, the latter equation in (4.43) can be written as X = −b cot
(
θκ(z)

)
, and using this

expression, we obtain

− 1

x
=
eκ(z)

Y

(
−b cot

(
θκ(z)

)
cos
(
θκ(z)

)
−b sin

(
θκ(z)

))
= − b

sin
(
θκ(z)

) ·eκ(z)

Y
⇐⇒ x =

sin
(
θκ(z)

)
b

·Y
(
eκ(z)

)−1
.

It is easy to check that we have Y = 1 + γa + γX. By (4.41), the density can be described as
dσ(x) = 1

πx ·
b

a2+b2 so that we obtain the formula (4.42).

(ii) Assume first that κ = ∞ so that γ ≤ 0. Set z = a + bi. Since S ⊂ R, f∞,γ(z) ∈ S means
Im f∞,γ(z) = 0, that is, a+γa2+γb2+b cot b = 0. This equation can be rewritten as g(b) = −a−γa2,
where g(b) := γb2 + b cot b. It is easy to show that g′(b) < 0 for b ∈ (0, π), so the function g(b) is
monotonic decreasing for b ∈ (0, π). We have limb→0+ g(b) = 1 and limb→π− g(b) = −∞. Thus, the
equation g(b) = −a− γa2 has a solution if −a− γa2 ≤ 1, or equivalently, in case γ < 0, α1 ≤ a ≤ α2.
Since g is monotonic, for each a ∈ [α1, α2] we can find the unique solution of the equation, which is
denoted by b(a). In the case γ = 0 the argument is the same with a ∈ [−1,∞).

Assume that κ ∈ (1,∞). Since z = x + yi ∈ D = Ω ∩ C+ satisfies Arg
(
1 + z

κ

)
∈ (0, π

κ+1 ) (see

Proposition 4.3(a)), and by the assumption κ > 1, we see that Re
(

1 + z
κ

)
= 1 + x

κ > 0. Thus,

θκ(x, y) = κArctan y
κ+x . Note that ∂

∂y θκ(x, y) = κ · κ+x
(κ+x)2+y2 . For given x such that 1 + x

κ > 0, set

g(y) = y cot(θκ(x, y)). We need to study the function g(y) on R+. Set θ = θ(x, y) := Arg(1 + x+yi
κ )

then θ(x, y) = Arctan y
κ+x so that tan θ = y

κ+x since θ ∈ (0, π2 ). Note that θκ(z) = κθ(x, y) if
z = x+ yi. Then, since

(κ+ x)y

(κ+ x)2 + y2
=

y
κ+x

1 +
(

y
κ+x

)2 =
tan θ

1 + tan2 θ
= sin θ cos θ =

sin 2θ

2
,

we compute and estimate the derivative g′(y) as follows

g′(y) = cot(θκ) + y

(
−

d
dy θκ(x, y)

sin2(θκ)

)
=

sin(θκ) cos(θκ)− y d
dy θκ(x, y)

sin2(θκ)
=

sin(2κθ)− κ sin(2θ)

2 sin2(κθ)
≤ 0.

In the last inequality we prove and use the fact that the function Hκ(2θ) := sin(2κθ) − κ sin(2θ) is
negative when 0 < θ < π

κ+1 (see (5.53)). Thus, we proved that g is monotonic decreasing on R+.

Since, when y is near to 0, then Arctan y
κ+x = y

κ+x + o(y), we see that

lim
y→+0

g(y) = lim
y→+0

y

sin(κArctan y
κ+x )

·cos(κArctan
y

κ+ x
) = lim

y→+0

y

sin κy
κ+x

= lim
y→+0

κy
κ+x

sin κy
κ+x

·κ+ x

κ
= 1+

x

κ
.

(4.44)
Our objective now is to study the function h(y) = h(y; x) := x + γx2 + γy2 + g(y) for a fixed

x > −κ. Recall that h(y; x) = 0 if and only if z = x+ iy ∈ ∂D ∩ C+. We will show that:
(a) there is exactly one solution of h(y; x) = 0 when x ∈ (α1, α2).
(b) if x 6∈ (α1, α2) then the equation h(y; x) = 0 does not have a solution such that θ(x, y) ∈ (0, π

κ+1 ).

As γ < 0, we see that the function h(y) := x + γx2 + γy2 + g(y) is decreasing on y ∈ (0, y0) for

each fixed x > −κ. As κ > 1, there exists y0 > 0 such that θ(x, y0) = Arg(1 + x+iy0
κ ) = π

κ+1 . We

shall show that h(y0; x) < 0. Since θκ(x, y) = κθ(x, y) and since κπ
κ+1 = π − π

κ+1 , we have

cot(θκ(x, y0)) =
cos κπ

κ+1

sin κπ
κ+1

=
− cos π

κ+1

sin π
κ+1

= − 1

tan θ(x, y0)
= −κ+ x

y0
(∵ tan θ(x, y0) =

y0
κ+ x

),

and hence

h(y0; x) = x+γx2+γy20+y0

(
−κ+ x

y0

)
= x+γx2+γy20−κ−x = γx2+γy20−κ < 0 (∵ γ < 0 and κ > 1).

By (4.44), we have limy→+0 h(y) = γx2 + (1 + 1
κ )x+ 1 = γ(x− α1)(x− α2).

(a) Suppose that x ∈ (α1, α2), i.e. limy→+0 h(y) > 0. Since h is monotonic decreasing, by
the intermediate value theorem, there exists a unique solution h(y; x) = 0 in y ∈ (0, y0) for each
x ∈ (α1, α2).

(b) If limy→+0 h(y;x) ≤ 0 then there is no solution of h(y) = 0 such that 0 < θ(x, y) < π
κ+1 , and

hence there is no z = x+ yi ∈ ∂D ∩ C+ such that h(0+; x) < 0.
If κ = 1, we have the classical Wishart case and we do not need to deal with it. �
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Remark 4.10. Corollary 4.9 (ii) enables us to write the density dσ with one real parameter in a
way similar to Dykema–Haagerup (Dykema and Haagerup, 2004, Theorem 8.9), see formula (2.3). In
particular, in the case (a), we obtain the formula

dσ

(
sin b(a)

b(a)

(
1 + γa− γb(a) cot b(a)

)
e−a
)

=
1

π
· ea sin b(a) (a ∈ [α1, α2]).

A natural conjecture that we always have a 1-1 correspondence a → b or b → a is not confirmed
by numerical generation of the domain Ω. For κ = −1/3 and γ = −4 the domain Ω is illustrated in
the Figure 9. We do not have unicity of a→ b nor b→ a.

4.3. Applications to Wishart Ensembles of Vinberg matrices. Now we apply Theorem 4.8
to the covariance matrix Xn = Qk(ξn) ∈ Pn in two situations. The first (Corollary 4.11) is the case
when Pn is the symmetric cone Sym(n,R)+ with k of the form (4.45) below. The second situation
(Theorem 4.14) is the general case when Pn ⊂ Un is a dual Vinberg cone with k of the form (2.2). This
case contains the first one, that we present separately because of the importance of the symmetric
cone Sym+(n,R).

Let us assume that k = k(n)= (k1, . . . , kn) in (2.2) is of the form

k = m1(1, . . . , 1, 1) +m2(n)(0, . . . , 0, 1), lim
n

m2(n)

n
= m, (4.45)

where m1 ∈ Z≥0 is a fixed non-negative integer and m ∈ R≥0 is a non-negative real such that
m1 +m > 0. Set N := k1 + · · ·+ kn = m1n+m2(n). We note that the case m1 = 0 corresponds to
the classical Wishart ensembles, and if m1 ≥ 1 then we have N ≥ n.

Corollary 4.11. Let k be as in (4.45). Suppose that ξn ∈ Ek is an i.i.d. matrix with finite fourth
moments and let Xn = ξn

tξn. Let µn be the empirical eigenvalue distribution of Xn/n. Then, there
exists a limiting eigenvalue distribution µ = limn µn. The Stieltjes transform T (z) of µ is given by
formula (4.37)

T (z) = Tκ,γ(z) =
expκ

(
Wκ,γ(−v/z)

)
− 1

v
with κ =

1

1−m1
, γ = 1−m−m1.

The measure µ is absolutely continuous and has no atoms. If m1 = 0 then the measure µ is the
Marchenko-Pastur law with parameter C = m. The case (m1,m) = (1, 0) corresponds to the Dykema–
Haagerup measure χv. If m = 0 then the density d is continuous on R∗ and limx→+0 d(x) = +∞.

When m1 ≥ 2 then the support of µ is [0, vm
m1/(m1−1)
1 ]. Otherwise, for m1,m > 0, the density

d(x) of µ is continuous on R, and its support equals [A(α2), A(α1)] where A(αi) := vα−2i (1 + (1 −
m1)αi)

m1/(m1−1) and α1 < α2 are roots of the function (1−m1 −m)x2 + (2−m1)x+ 1.

Proof. We use Theorem 2.3. It is enough to show that the matrix Yn in (4.28) has the variance profile
σ in (4.30) and that the conditions (2.6) are satisfied. Since we have for n large enough∣∣δ0(n)

∣∣ ≤ 1

n2
· 2v(m1 +m+ 1)n =

2v(m1 +m+ 1)

n
→ 0 (n→∞)

and if E|Yij |2 6= 0 then

E(Y 4
ij)

n(EY 2
ij)

2
=
M4

vn
→ 0 (n→∞),

we can easily check the conditions (2.6). Thus, we can apply Theorem 4.8. Consider m1 ≥ 2. Then
κ < 0. When m = 0, then we have γ′ = γ− 1

κ = 0 so that we apply Theorem 4.8.2. We have α = −1,

1 − 1
κ = m1 and 1 − κ = m1

m1−1 . By (4.40), the support is given by suppµ =
[
0, vα2

(
1 + α

κ

)1−κ]
=[

0, vm
m1/(m1−1)
1

]
. When m > 0, we have γ′ < 0 so that we apply Theorem 4.8.1. The support of µ

is given by the formula (4.39), where α1 ≤ α2 are roots of the function γx2 + (1 + 1/κ)x+ 1. �

Remark 4.12. If m = 0, our results contain those of Claeys and Romano (2014, Section 4.5.1) and
Cheliotis (2018, Th. 4 and (12)). The result on the limiting densities of biorthogonal ensembles
in Cheliotis (2018) can be reproduced from Corollary 4.11. In fact, our random matrices Qk(ξn)
essentially correspond to those considered in Cheliotis (2018) through adjusting parameters m1 = θ−1
and m2(n) = b− 1 (not depending on n), where θ and b are parameters used in that paper.
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Let x be an i.i.d. Gaussian random row vector in Rn (xj ∼ N(0, 1)). Then, there exists an

orthogonal matrix P such that xP = (0, . . . , 0, |x|), and |x| =
√
x21 + · · ·+ x2n is a random variable

of chi-square distribution χ2
n/2 of parameter n/2.

Let us consider Ek (recall that N = m1n+m2(n)) with each entry obeying N(0, 1). Each element

ξ ∈ Ek can be written as ξ =

ξ1...
ξn

, where ξk ∈ RN is a row vector of the form ξk = (0, . . . , 0, ηk)

where ηk ∈ RN−(k−1)m1 = R(n−k+1)m1+m2(n). Note that the number of zeros in the k-th row is
(k − 1)m1. Let us write

ξ =

(
ξ[n−1] An

0 ηn

)
ξ[n−1] ∈ Mat((n−1)× ((n−1)m1); R), An ∈ Mat((n−1)× (m1 +m2(n)); R).

For ηn, there exists an orthogonal matrix P ′n such that ηnP
′
n = (0, . . . , 0, |ηn|), and one has

|ηn| ∼ χ2
(N−(n−1)m1)/2

= χ2
(m1+m2(n))/2

.

We have

ξP =

(
ξ[(n−1)] AnP

′
n

0 0 · · · 0|ηn|

)
where P =

(
I(n−1)m1

0
0 P ′n

)
.

Since P ′n is orthogonal, each element in A′n = AnP
′
n obeys N(0, 1). We can then apply the same

argument to the matrix
ξ′ =

(
ξ[n−1] A′′n

)
where A′′n is an (n− 1)× (m1 +m2(n)− 1) matrix obtained from A′n removing the last column, and
repeating this argument, we see that that for each ξ ∈ Ek there exists an orthogonal matrix P such
that ξP has the form

ξP = (On×(N−n), T ), T =


λ1 t12 · · · t1n

0 λ2
. . .

...
...

. . .
. . . tn−1,n

0 · · · 0 λn

 ;

{
λj ∼ χ2

((n−k+1)(m1−1)+m2(n)+1)/2 (j = 1, . . . , n),

tij ∼ N(0, 1) (1 ≤ i < j ≤ n).

Here, On×(N−n) is the zero matrix of size n× (N − n). Thus, in the notation θ, b in Cheliotis (2018)
we have θ = m1 − 1 and b = m2(n) + 1. Note that we take T upper triangular whereas Cheliotis
(2018) lower triangular.

Remark 4.13. Until now, we assumed that m1 ∈ Z≥0 and hence the parameter α of the variance
profile σ needs to be also an integer. However, we can take a sequence {k(n)}∞n=1 so that the
corresponding α is an arbitrary given positive real number. In fact, when α > 0 is given, we consider
a right triangle with lengths 1 and α. For an arbitrary n, we cover the triangle by 1/n× 1/n squares

as in the figure. To each j = 1, . . . , n, we associate an integer kj(n) such that
kj(n)
n ≤ j

nα <
kj(n)+1

n ,
or equivalently kj(n) ≤ jα < kj(n) + 1, and we set k(n) = (k1(n), . . . , kn(n)). Note that this
condition is independent of n so that kj(m) = kj(n) when m ≥ n ≥ j, and hence {Ek(n)}n is a
sequence of vector spaces such that Ek(n) ⊂ Ek(n+1). In the Figure 10, we set α = 1.8, n = 11 and
k(n) = (1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2).

Let us return to the quadratic Wishart case for general Pn with parameter k as in (2.2) such that
m1,m2 ∈ Z≥0 are fixed. Note that m2(n) in the previous discussion is now m2(n) = m2bn(n). Set
Nn := m1n+m2bn. We have

Ek =

ξ =

(
η
ζ

)
∈ Mat(n×Nn, R);

η = (ηij) ∈ Mat(an ×Nn, R), ζ = (ζij) ∈ Mat(bn ×Nn, R)
ηij = 0 if j ≤ (m1 − 1)i,
ζij = 0 if j −m1an − (m1 +m2)(i− 1) 6∈ {1, 2, . . . ,m1 +m2}

 .

Theorem 4.14. Let {Pn}n be a sequence of generalized dual Vinberg cones such that limn→∞ an/n =
c ∈ (0, 1]. Let k be a vector as in (2.2) such that m1,m2 are fixed. Set κ := 1/(1 − m1) and
γ := 1−

(
m1+m2(1−c)

)
/c. Then, the Stieltjes transform T (z) of the limiting eigenvalue distribution

of Qk(ξn)/n with i.i.d. matrices ξn ∈ Ek is given as

T (z) = −1

v
− c

zWκ,γ(− cvz )
− cγ + 1− c

z
=

expκ
(
Wκ,γ(−vc/z)

)
− 1

v
− 1− c

z
. (z ∈ C+)
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Figure 9.
Domain Ω for (κ, γ) = (− 1

3
,−4).

Figure 10.
Realization of non-integer α

The properties of absolute continuity and support of the limiting measure can be derived analo-
gously to those obtained in Theorem 4.8 for c = 1.

Proof. We construct a variance profile σ from Ek likely to (4.30). We embed the rectangular

matrix ξn ∈ Ek in a square matrix Y (ξn) =

(
0 ξn
tξn 0

)
, and set Vn =

{
Y (ξn); ξn ∈ Ek

}
. Set

p′ = lim
n→∞

n

n+Nn
=

1

1 +m1 +m2(1− c)
. Let σ be a function [0, 1]× [0, 1]→ R≥0 defined by

σ(x, y) =

{
v (x < cp′ and y ≥ p′ +m1x, or x ≥ p′ and 0 ≤ y ≤ min{(x− p′)/m1, cp

′}),
0 (otherwise).

Then, we can show that σ is the variance profile of Vn. On the other hand, let us consider a subspace

E′k :=

{
ξ =

(
η
ζ

)
∈ Ek; ζ = 0

}
of Ek, and let V ′n =

{
Y (ξn); ξn ∈ E′k

}
. Then, σ is also the variance

profile of V ′n. Thus, we consider equivalently the limiting eigenvalue distribution of V ′n, and that of

covariance matrices on E′k. If ξn =

(
ηn
0

)
∈ E′k, then Qk(ξn) =

(
ηn

tηn 0
0 0

)
, and thus it is enough to

study the limiting eigenvalue distribution of ηn
tηn. The variance profile of ηn

tηn has a trapezoidal
form (4.30) (illustrated by (4.31)) with parameters α = m1 and p = limn

an
an+Nn

= c
c+m1+m2(1−c) .

Applying Proposition 4.7, we see that the corresponding Stieltjes transform T1(z) is given by

T1(z) = Tκ,γ(z) with κ =
1

1−m1
, γ =

2p− 1

p
=
c−m1 −m2(1− c)

c
.

In general, for two symmetric matrices Ai (i = 1, 2) of size ni, the Stieltjes transform S(z) of
diag(A1, A2)/(n1 +n2) can be described by using the Stieltjes transforms Si(z) of Ai/ni (i = 1, 2) as

S(z) = S1

(
n1 + n2
n1

z

)
+ S2

(
n1 + n2
n2

z

)
(z ∈ C+).

In our situation, we have (n1, n2) = (an, bn) and (A1, A2) = (ηn
tηn, 0). Hence, we have S2(z) = − 1

z

and S1(z) is the Stieltjes transform of ηn
tηn/an so that limn→∞ S1(z) = T1(z). Thus, taking the

limit n→∞, we see that the limiting Stieltjes transform T (z) corresponding to E′k, and hence to Ek
is given as

T (z) = T1

(z
c

)
+ S2

(
z

1− c

)
= Tκ,γ

(z
c

)
− 1− c

z
= −1

v
− c

zWκ,γ(−vc/z)
− cγ + 1− c

z
,

whence we obtain the theorem. �

Remark 4.15. In the Figures 11-13 we present simulations of k-indexed Wishart ensembles Xn =
Qk(ξn) on the symmetric cone Sym+(n,R) (i.e. c = 1), for n = 4000 and N = |k| = 2n with
parameters α = m1 = 1/2, 1 and 2, respectively. We have γ = −1 and κ = 2,∞,−1 respectively.
The red line is the graph of d(x) generated by the R program from its Stieltjes transform given in
Corollary 4.11. In two first cases, the limiting density d(x) is continuous on R with compact support
contained in (0,∞). The last case (κ, γ) = (−1,−1) corresponds to (κ′, γ′) = (1, 0) which is the
classical Wishart case with C = 1. Thus its density explodes to ∞ at 0.
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Figure 11.
Simulation for α = 1/2

Figure 12.
Simulation for α = 1

Figure 13.
Simulation for α = 2

Remark 4.16. Let Yn be a rectangular n× p i.i.d. matrix with variance profile σ2(x, y), and assume
that limn→∞ p/n = c. In papers Hachem at al. (2005, 2006); Hachem et al. (2008) a functional

equation τ(u, z) =
(
−z +

∫ 1

0
σ2(u, v)

(
1 + c

∫ 1

0
σ2(x, v)τ(x, z)dx

)−1
dv
)−1

is given to get the limiting

Stieltjes transform f(z) for the rescaled random matrices YnY
∗
n , as the integral

∫ 1

0
τ(u, z)du. This

equation appears in Girko (1990) in the setting of Gram matrices based on Gaussian fields, cf.
(Hachem at al., 2006, Remark 3.1).

However, thanks to symmetry, solving the equations (4.34) resulting from Theorem 2.3 is easier
than solving the last functional-integral equation for τ(u, z). Therefore we opted for variance profile
method for Gaussian and Wigner ensembles as the main tool of studying Wishart ensembles of
Vinberg matrices.
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5. Appendix

In this Appendix, we give proofs of Theorem S, Theorem 4.1 and Proposition 4.3.

5.1. Proofs. By definition, fκ,γ(z) has a pole at z = −1/γ when γ 6= 1
κ , and z = −κ may be a

branch point of f . We first assume that κ > 0. Although the condition on κ is κ ≥ 1 when κ is
positive, we also deal with the case 0 < κ < 1 in order to apply it to the case κ < 0. We have

f ′(z) =
κγz2 +

(
1 + κ

)
z + κ

κ(1 + γz)2

(
1 +

z

κ

)κ−1
.

Let α1, α2 be the two solutions of g(z) := κγz2 +
(
1 + κ

)
z + κ = 0. Then, f ′(z) = 0 implies z = αi

(i = 1, 2) or z = −κ if κ > 1.
Set z = x+ yi. We have

z

1 + γz
=
z(1 + γz̄)

|1 + γz|2
=

(x+ γx2 + γy2) + i(y + γxy − γxy)

(1 + γx)2 + γ2y2
=

(x+ γx2 + γy2) + iy

(1 + γx)2 + γ2y2

and (
1 +

z

κ

)κ
= exp

(
κ
(

log
∣∣∣1 +

z

κ

∣∣∣+ iArg
(

1 +
z

κ

)))
=

((
1 +

x

κ

)2
+
y2

κ2

)κ
2

eiκθ(x,y)

=

((
1 +

x

κ

)2
+
y2

κ2

)κ
2 (

cos(κθ(x, y)) + i sin(κθ(x, y))
)
,

where

θ(x, y) = Arg
(

1 +
z

κ

)
.

Here Arg(w) stands for the principal argument of w; −π < Arg(w) ≤ π. Note that we now take the
main branch of power function. Thus,

f(z) =

(
(1 + x/κ)2 + (y/κ)2

)κ
2

(1 + γx)2 + γy2
(x+ γx2 + γ2y2 + iy)

(
cos(κθ(x, y)) + i sin(κθ(x, y))

)

=

(
(1 + x/κ)2 + (y/κ)2

)κ
2

(1 + γx)2 + γ2y2

(
(x+ γx2 + γy2) cos(κθ(x, y))− y sin(κθ(x, y))

+i
{

(x+ γx2 + γy2) sin(κθ(x, y)) + y cos(κθ(x, y))
} )

(5.46)
We want to know the inverse image of the real axis, that is, f−1(R).

To do so, we consider the implicit function

(x+ γx2 + γy2) sin(κθ(x, y)) + y cos(κθ(x, y)) = 0.

If sin(κθ(x, y)) = 0, then cos(κθ(x, y)) does not vanish so that y needs to be zero. Moreover, in this
case we also have x ≥ −κ if κ is not integer; otherwise, if x < −κ then θ(x, y) → π as y → +0, but
then sin(κπ) 6= 0 whenever κ /∈ Z.

Assume that sin(κθ(x, y)) 6= 0. Then the equation can be rewritten as

(x+ γx2 + γy2) + y cot(κθ(x, y)) = 0. (5.47)

If we change variables by

reiθ = 1 +
z

κ
, or equivalently x = κ(r cos θ − 1), y = κr sin θ, (5.48)

then the equation (5.47) can be written as

κ(r cos θ − 1) + γ
{

(κ(r cos θ − 1))2 + (κr sin θ)2
}

+ κr sin θ cot(κθ) = 0
⇐⇒ γκ2r2 +

{
κ cos θ − 2γκ2 cos θ + κ sin θ cot(κθ)

}
r + (γκ2 − κ) = 0

⇐⇒ γκr2 +
{ sin((κ+ 1)θ)

sin(κθ)
− 2γκ cos θ

}
r + γκ− 1 = 0.

In the last, we use

cos θ + sin θ cot(κθ) =
cos θ sin(κθ) + sin θ cos(κθ)

sin(κθ)
=

sin((κ+ 1)θ)

sin(κθ)
.

Set

b(θ) :=
sin((κ+ 1)θ)

sin(κθ)
− 2γκ cos θ. (5.49)
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We have

lim
θ→0

b(θ) =
κ+ 1

κ
− 2γκ =: b(0),

and the solution in r of the equation in the case θ = 0

0 = γκr2 +(
κ+ 1

κ
−2γκ)r+γκ−1 = γκ(r2−2r+1)+(1+

1

κ
)r−1 = γκ(r−1)2 +(1+

1

κ
)(r−1)+

1

κ
is given as

r = 1 +
−(1 + 1/κ)±

√
(1 + 1/κ)2 − 4γ

2γκ
.

Note that these two r = r± correspond in (x, y) coordinates to α1, α2 because 1 + x
κ = r and because

the equation defining r± can be rewritten as

0 = γκ(r − 1)2 + (1 + 1
κ )(r − 1) + 1

κ = γκ · x
2

κ2
+ (1 + 1

κ )
x

κ
+

1

κ
=
γκx2 + (κ+ 1)x+ κ

κ2
. (5.50)

We also note that, if we set (x, y) = (0, 0), or equivalently (r, θ) = (1, 0) then

x+ γx2 + γy2 + y cot(κθ(x, y)) = κ
(
γκr2 + b(θ)r + γκ− 1

)
= 1 > 0.

Let Ω be the connected component of
{
z ∈ C; (x+ γx2 + γy2) + y cot(κθ(x, y)) > 0

}
including

z = 0. Let D = Ω ∩ C+. For θ > 0, the equation

γκr2 + b(θ)r + γκ− 1 = 0 (5.51)

has a (formal) solution

r = r±(θ) =
−b(θ)±

√
b(θ)2 − 4γκ(γκ− 1)

2γκ
.

We want r to be positive real. Set D(θ) = b(θ)2 − 4a(a− 1). We have for ε = ±1

r′ε(θ) =
1

2a

(
−b′(θ) + ε

2b(θ)b′(θ)

2
√
D(θ)

)
=
−εb′(θ)

2a
·
−b(θ) + ε

√
D(θ)√

D(θ)
= −εb′(θ) rε(θ)√

D(θ)
. (5.52)

We shall show that fκ,γ maps D → C+ bijectively, and its main tool is the following Argument
Principle (see Ahlfors (1979, Theorem 18, p.152), for example).

Theorem 5.1 (Ahlfors (1979, Theorem 18, p.152)). The argument principle. If f(z) is mero-
morphic in a domain Ω with the zeros aj and the poles bk, then

1

2πi

∫
γ

f ′(z)

f(z)
dz =

∑
j

n(γ, aj)−
∑
k

n(γ, bk)

for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or
poles. Here, n(γ, a) is the winding number of γ with respect to a.

We also use the following lemma.

Lemma 5.2. Let f(z) = u(x, y)+ iv(x, y) be a holomorphic function. The implicit function v(x, y) =
0 has an intersection point at z = x+ yi only if f ′(z) = 0.

Proof. Let p(t) = (x(t), y(t)) be a continuous path in C ∼= R2 satisfying v
(
p(t)

)
= 0 for all t ∈ [0, 1].

We assume that (x′(t), y′(t)) 6= (0, 0). Set

g(t) := u(p(t)) = u(x(t), y(t)), h(t) := v(p(t)) = v(x(t), y(t)).

Obviously, we have h′(t) ≡ 0 for any t, and

h′(t) = vxx
′(t) + vyy

′(t) = (vx, vy) · (x′(t), y′(t)).
Assume that g′(t0) = 0 for some point t0 ∈ [0, 1]. Then

g′(t) = uxx
′(t) + uyy

′(t) = (ux, uy) · (x′(t), y′(t))

= (vx, vy)

(
0 −1
1 0

)
· (x′(t), y′(t)) = (vx, vy) · (−y′(t), x′(t)),

the condition g′(t0) = 0 implies that the vector (vx, vy) is orthogonal both to (x′(t0), y′(t0)) and
(−y′(t0), x′(t0)), which are non-zero vectors and mutually orthogonal. Such vector is only zero vector
in R2, that is, (vx, vy) = (0, 0), and hence (ux, uy) = (0, 0) by Cauchy-Riemann equations. Thus, if
g′(t0) = 0 then p(t0) needs to satisfy f ′(p(t0)) = 0. �
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Recall that we now assume κ > 0. Set a := κγ. We will consider the cases (i) a < 0, (ii) 0 < a < 1
and κ > 1, and some other exceptional cases. It is usually sufficient to consider D because Ω has a
symmetry with respect to the real axis. For brevity, we set θ0 := π

κ and θ1 := π
κ+1 . Note that θ0 > θ1.

5.2. The case of a = κγ < 0, κ > 0. In this case, α1 < α2 because (1 + κ)2 − 4aκ > 0. Since a < 0
we have γ < 0 and g(0) = κ > 0, g(−κ) = (a− 1)κ2 < 0, g(−1/γ) = κ− 1/γ > 0. This means that

−κ < α1 < 0 < − 1

γ
< α2.

Note that D(0) = (1 + 1/κ)2 − 4a/κ > 0 and

D(θ1) = (−2a cos θ1)2 − 4a(a− 1) = 4a2 cos2 θ1 − 4a2 + 4a
= 4a− 4a2 sin2 θ1 = 4a(1− a sin2 θ1) < 0.

This implies that there exists a θ ∈ (0, θ1) such that D(θ) = 0. We denote by θ∗ ∈ (0, θ1) the smallest
positive real such that D(θ∗) = 0.

We show now that D is bounded and D ⊂
{
z ∈ C+; Arg(1 + z

κ ) ∈ (0, π
κ+1 )

}
We shall show that D(θ) is monotonic decreasing in the interval (0, θ∗). We have

b′(θ) =
(κ+1) cos((κ+ 1)θ) sinκθ − κ sin((κ+1))θ cosκθ

sin2 κθ
+ 2a sin θ

=
−κ sin θ + cos((κ+ 1)θ) sinκθ

sin2 κθ
+ 2a sin θ

=
−κ sin θ + 1

2 (sin((2κ+ 1)θ)− sin θ)

sin2 κθ
+ 2a sin θ

=
sin((2κ+ 1)θ)− (2κ+ 1) sin θ

2 sin2 κθ
+ 2a sin θ.

Note that 2κ+ 1 > 1 since now we assume that κ > 0. Let us consider the function

Hα(θ) := sinαθ − α sin θ for α > 1. (5.53)

For a small enough θ we have

Hα(θ) = αθ − (αθ)3

6
− α(θ − θ3

6
) + o(θ3) = −αα

2 − 1

6
θ3 + o(θ3) < 0

and by

H ′α(θ) = α cos(αθ)− α cos θ = −2α sin
α+ 1

2
θ sin

α− 1

2
θ,

we see that Hα is decreasing in the interval (0, 2π/(α+ 1)), and in particular is negative. Therefore,
since a sin θ < 0, b′(θ) is also negative in the interval (0, θ1). This means that b(θ) is decreasing. Note
that b(0) = 1 + 1/κ− 2a > 0 and the sign s of b(θ1) = −2a cos θ1 depends on κ.

If s ≥ 0 then we see that D′(θ) = 2b(θ)b′(θ) < 0 so that D is monotonic decreasing. Let us assume
that s < 0. In this case, since b is monotonic decreasing, there is a unique ϕ such that b(ϕ) = 0. Since
D′(θ) = 2b(θ)b′(θ), we need to have θ∗ < ϕ. In fact, if not so, then we have D(ϕ) > 0 by definition
of θ∗. Since b(θ) is monotonic b(θ) < 0 for any θ ∈ (ϕ, θ1), we see that D′(θ) = 2b(θ)b′(θ) > 0 in the
same interval. But it contradicts the fact that D(θ1) < 0.

Set ϕ = θ1 when s ≥ 0. Therefore, we obtain that D is monotonic decreasing in the interval
(0, ϕ) containing θ∗. In particular, D is monotonic decreasing in the interval (0, θ∗) in both cases,
and D(θ∗ + δ) < 0 for small enough δ > 0; more precisely, θ∗ + δ < ϕ. Therefore, r± are defined on
(0, θ∗] and r± are not defined for θ ∈ (θ∗, ϕ). Since r+(θ∗) = r−(θ∗) by the fact D(θ∗) = 0, the curves
r+(θ), θ ∈ (0, θ∗] followed by r−(θ∗ − θ), θ ∈ (0, θ∗], form a continuous curve going from α2 to α1 in
the upper half-plane. Denote it by r+−.

Since r+ · r− =1 − 1
a > 0 and −(r+ + r−) = b(θ)

a < 0 for θ ∈ (0, θ∗), Vieta’s formulas tell us that
two solutions of (5.51) are both positive. Consequently, r+(θ) is increasing while r− is decreasing by
(5.52).

In order to study the set S, let us consider f(x) for the real x ∈ [α1, α2]. By differentiating, we
have

f ′κ,γ(x) =
γx2 +

(
1 + 1/κ

)
x+ 1

(1 + γx)2

(
1 +

x

κ

)κ−1
=
γ(x− α1)(x− α2)

(1 + γx)2

(
1 +

x

κ

)κ−1
.
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Since γ < 0, we have

x α1 · · · 0 · · · − 1
γ · · · α2

f ′ + × + 0
f f(α1) ↗ 0 ↗∞ × −∞↗ f(α2)

where
lim
h→−0

f(− 1
γ + h) = +∞, lim

h→+0
f(− 1

γ + h) = −∞.

Here, × means that f and f ′ is not defined at that point. See Figure 18.

Claim. One has 0 > f(α1) > f(α2).

Proof of the claim. 0 > f(α1) is obvious by the above table. We shall show f(α1) > f(α2). By the
fact that α1α2 = 1

γ , we have

f(α2)

f(α1)
=
α2(1 + γα1)

(1 + γα2)α1
·
(

1 + α2/κ

1 + α1/κ

)κ
=
α2 + 1

α1 + 1
·
(

1 + α2/κ

1 + α1/κ

)κ
.

Since 1+γα2 < 0 and α1 < 0, we have α1+1 = (1+γα2)α1 > 0. Moreover, the facts that 1+α1/κ> 0
and α2 > α1 yield that

α2 + 1

α1 + 1
> 1 and

1 + α2/κ

1 + α1/κ
> 1,

whence we obtain
f(α2)

f(α1)
> 1. Since f(α2) < 0 because α2 > − 1

γ and γ < 0, we conclude that

0 > f(α1) > f(α2). �

Thus, for the case κ > 0 and γ < 0 we have (S1) S = (fκ,γ(α2), fκ,γ(α1)), where fκ,γ(α2) <
fκ,γ(α1) < 0.

Now we show that fκ,γ : D → C+ is bijective.
We take a path C = C(t) (t ∈ [0, 1]) in such a way that by starting from z = − 1

γ , it goes to z = α2

along the real axis, next goes to z = α1 along the curve r+− defined by (5.47) and connecting α2 and
α1 in the upper half plane, and then it goes to z = − 1

γ along the real axis (see Figure 15). Here, we

can assume that C ′(t) 6= 0 whenever C(t) 6= αi, i = 1, 2. Actually, the curve v(x, y) = 0 has a tangent
line unless f ′ vanishes. If we take an arc-length parameter t, then C ′(t) represents the direction of
the tangent line at (x, y) = C(t). We note that C(t) describes the boundary of D.

We first show that fκ,γ maps the boundary of D to R bijectively. We take ti, i = 1, 2 as C(ti) = αi.
Note that the sub-curve C(t), t ∈ (t2, t1) describes the curve r+−(t), and fκ,γ does not have a pole or
singular point on C(t), t ∈ (t2, t1). Set f(z) = u(x, y)+ iv(x, y). By Lemma 5.2, the implicit function
v(x, y) = 0 may have an intersection point only if f ′(x + iy) = 0, i.e. at x + iy = αi (i = 1, 2) or at
x+ iy = −κ if κ > 1. Then, the function g(t) = u(C(t)), t ∈ [t2, t1] attains maximum and minimum
in the interval because it is a continuous function on a compact set. Moreover, g′ never vanishes
in (t2, t1) by the above argument and by the fact that f ′(C(t)) 6= 0 for t ∈ (t2, t1). Therefore, g
is monotone and hence it takes maximal and minimal values at the endpoints t = t2, t1. Now we
have f(α1) > f(α2) by the last claim so that the image of g is [f(α2), f(α1)], and the function g is
bijective.

We shall show that for any w0 ∈ C+ there exists one and only one z0 ∈ D such that f(z0) = w0.
Let us take an R > 0 such that |w0| < R. For δ > 0, let C ′ =Cδ be a path obtained from C in such
a way that the pole z = −1/γ is avoided by a semi-circle − 1

γ + δeiθ, θ ∈ (0, π) of radius δ (see Figure

16). Denote by D′ the domain surrounded by the curve C ′.
Then, we can choose δ > 0 such that∣∣∣f(− 1

γ + δeiθ
)∣∣∣ > R (for all θ ∈ (0, π)).

In fact, if z = − 1
γ + δeiθ, then we have∣∣1 + γz

∣∣ = |γ|δ,
∣∣z∣∣ =

∣∣− 1
γ + δeiθ

∣∣ > 1

2|γ|
(if δ < 1

2|γ| ),

and ∣∣1 + z
κ

∣∣ =
∣∣1− 1

κγ + δ
κe
iθ
∣∣ > κγ − 1

2κγ
(if δ < κ

2

∣∣1− 1
κγ

∣∣),
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so that ∣∣∣f(− 1
γ + δeiθ

)∣∣∣ > 1

2|γ|2
(κγ − 1

2κγ

)κ
· 1

δ
.

Thus it is enough to take

δ = min
(

1
2|γ|2R

(
κγ−1
2κγ

)κ
, 1

2|γ| ,
κ
2

∣∣1− 1
κγ

∣∣).
Since f is non-singular on the semi-circle − 1

γ + δeiθ, θ ∈ [0, π], the curve θ 7→ f(− 1
γ + δeiθ) does not

have a singular angular point, so that it is homotopic to a large semicircle (with radius larger than
R) in the upper half-plane (see Figure 17).

Note that

Im f(x+ yi) =

(
(1 + x/κ)2 + (y/κ)2

)κ
2

(1 + γx)2 + γ2y2
{

(x+ γx2 + γy2) sin(κθ(x, y)) + y cos(κθ(x, y))
}
.

By changing variables as in (5.48), we have

Im f(reiθ) = positive factor× sin(κθ) · (ar2 + b(θ)r + a− 1)
= positive factor× sin(κθ) · a(r − r−(θ))(r − r+(θ)).

Note that the inside of the path C can be written as
{
reiθ; θ ∈ (0, θ∗), r ∈ (r−(θ), r+(θ))

}
in (r, θ)

coordinates. Since a < 0 and sin(κθ) > 0 when θ ∈ (0, θ∗), we see that Im f(z) > 0 if z is inside of
the path C. In particular, the inside set of the curve f(C ′) is a bounded domain in C+ including w0.

Since the winding number of the path f(C ′) with respect to w = w0 is exactly one, we see that

1

2πi

∫
C′

f ′(z)

f(z)− w0
dz =

1

2πi

∫
f(C′)

dw

w − w0
= 1.

By definition of f , we see that f(z)− w0 does not have a pole in D′. Therefore, by the argument
principle, the function f(z)−w0 has only one zero point, say z0∈ D′ ⊂ D. Thus, we obtain f(z0) = w0,
and such z0∈ D is unique. We conclude that the map f is a bijection from D to the upper half-plane
C+.

Figure 14. The case of (i) Figure 15. The case of (i)
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Figure 16. Curve C′ in case (i)
Figure 17. Curve f(C′) in case
(i)

Figure 18. f(x) for x ≥ −κ,
case (i)

5.3. The case of 0 < a = κγ < 1. In this case, we have (1+κ)2−4aκ = (1+κ−2a)2 +4a(1−a) > 0
so that α1 < α2 are real. Since 0 < a < 1 we have γ > 0 and −1/γ < −κ. Since g(0) = κ > 0,
g(−κ) = (a− 1)κ2 < 0 and g(−1/γ) = −1/γ + κ < 0, we have

α1 < −
1

γ
< −κ < α2 < 0.

Let us prove that D is unbounded and D ⊂
{
z ∈ C+; Arg(1 + z

κ ) ∈ (0, πκ )
}

.

Since D(θ) = b(θ)2 + 4a(1− a) > 0, we always have two real solutions for the equation (5.51). By

r+ · r− = a−1
a < 0, only one of r+, r− is a positive solution. Since |b(θ)| <

√
D(θ), we see that

r = r+(θ) =

√
D(θ)− b(θ)

2a

is the only positive real solution of (5.51). In the same way as in (5.50) we see that limθ→+0 r+(θ) =
α2. Recall that κ > 1.

We use a calculation from Section 5.2. Now we show that b′(θ) is negative on the interval (θ1, θ0)
(θ0 = π/κ and θ1 = π/(κ+ 1)). Recall that

b(θ) = cos θ + sin θ cot(κθ)− 2a cos θ = (1− 2a) cos θ + sin θ cot(κθ).
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Using this expression, we have

b′(θ) = (2a− 1) sin θ + cos θ cot(κθ) + (sin θ)
(
−(1 + cot2(κθ)) · κ

)
= (2a− 1− κ) sin θ + cos θ cot(κθ)− κ sin θ cot2(κθ)

= (2a− 1− κ) sin θ + {cos θ cot(κθ)− sin θ cot2(κθ)} − (κ− 1) sin θ cot2(κθ)

= (2a− 1− κ) sin θ +
cos θ sin(κθ)− sin θ cos(κθ)

sin(κθ)
· cot(κθ)− (κ− 1) sin θ cot2(κθ)

= (2a− 1− κ) sin θ +
sin((κ− 1)θ)

sin(κθ)
· cot(κθ)− (κ− 1) sin θ cot2(κθ).

Let us assume that θ ∈ (θ1, θ0). Then, since the assumption κ > 1 yields that

0 <
π

κ+ 1
< θ <

π

κ
< π,

π

2
<

κπ

κ+ 1
< κθ < π, 0 <

(κ− 1)π

κ+ 1
< (κ− 1)θ <

(κ− 1)π

κ
< π,

we see that for θ ∈ (θ1, θ0)

sin θ > 0, sin((κ− 1)θ) > 0, sin(κθ) > 0, cos(κθ) < 0, cot(κθ) < 0.

Since 2a− 1− κ < 0 and κ− 1 > 0 by a < 1 and κ > 1, we arrive at

b′(θ)
(

= (−)× (+) + (+)× (−)− (+)× (+)× (+)
)
< 0 (θ ∈ (θ1, θ2)).

Thus b(θ) is decreasing on the interval (θ1, θ0) and since sin θ > 0 for θ ∈ (θ1, θ0), we have

lim
θ→θ0−0

b(θ) = −∞.

Recall that D′(θ) = 2b(θ)b′(θ). Since we have b(θ1) = −2a cos θ1 < 0 and b is decreasing, we see that
b < 0 on the interval (θ1, θ0). Accordingly, D(θ) and r+(θ) are increasing when θ ∈ (θ1, θ0) by (5.52).
Since limθ→θ0−0 r+(θ) = +∞, the solution of (5.51) has an asymptotic line with gradient θ = θ2 = π

κ
in (r, θ) coordinates. It corresponds to the line x sin θ0− y cos θ2 = A with a suitable constant A. Let
us determine A. Since x = κ(r(θ) cos θ − 1) and y = κr(θ) sin θ, we have

x sin θ0 − y cos θ0 = κ
{

sin θ0(r(θ) cos θ − 1)− cos θ0r(θ) sin θ
}

= κ
{
r(θ)(cos θ sin θ0 − sin θ cos θ0)− sin θ0

}
= −κ

{
r(θ) sin(θ − θ0) + sin θ0

}
.

Next, we estimate r(θ) as θ → θ0 − 0. Since sinκθ → +0 as θ → θ0 − 0 (i.e. sin(κθ) = o(θ − θ0)), we
have

(sin(κθ))b(θ) = sin((κ+ 1)θ) + ε sin((κ+ 1)θ) + ε

and
(sin(κθ))2D(θ) = (sin(κθ) b(θ))2 + 4a(1− a)(sin(κθ))2

= (sin((κ+ 1)θ) + ε)2 + 4a(1− a)(sin(κθ))2

= (sin((κ+ 1)θ))2 + ε,

where ε = o(θ − θ0). Therefore, since sin((κ+ 1)θ) < 0 when θ1 < θ < θ0, we obtain

sin(κθ) r(θ) =

√
(sin(κθ))2D(θ)− sin(κθ) b(θ)

2a
=
| sin((κ+ 1)θ)| − sin((κ+ 1)θ) + ε

2a
=
− sin((κ+ 1)θ)

a
+ε.

Moreover, if θ < θ0 is enough close to θ0, then

sin((κ+ 1)θ) = sin((κ+ 1)θ0) + ε = sin
(
π +

π

κ

)
+ ε = − sin θ0 + ε.

This tells us that

x sin θ0 − y cos θ0 = −κ
{

sin(θ − θ0)

sinκθ
·
( sin θ0

a
+ ε
)

+ sin θ0

}
.

Since sin(κθ) = sin(π − κθ) = − sin
(
κ(θ − θ0)

)
, we see that

lim
θ→θ0−0

sin(θ − θ0)

sinκθ
= lim
θ→θ0−0

− sin(θ − θ0)

sin
(
κ(θ − θ0)

) = lim
θ→θ0−0

− θ − θ0
κ(θ − θ0)

= − 1

κ
,

and hence

lim
θ→θ0−0

−κ
{

sin(θ − θ0)

sinκθ
·
( sin θ0

a
+ ε
)

+ sin θ0

}
= −κ

(
− 1

κ
· sin θ0

a
+ sin θ0

)
=
(1

a
− κ
)

sin θ0.



65

This means that A = 1
a−κ and hence the solution of (5.51) has an asymptotic line x sin θ0−y cos θ0 =

( 1
a − κ) sin θ0, or y = tan θ0(x+ κ− 1

a ).
If 1 < κ ≤ 2, then the asymptotic line is in the second quadrant. If κ > 2, the asymptotic line

enters the first quadrant. This is a reason why we need the assumption κ > 1. In fact, if κ < 1
then its asymptotic line is in the third quadrant (if we extend f by analytic continuation) and so we
cannot conclude that f maps C+ onto C+.

In order to determine the set S, let us consider f(x) for real x ∈ [α2,+∞). Note that γ > 0. In
this case, we have

x α2 · · · 0 · · · +∞
f ′ 0 +
f f(α2) ↗ 0 ↗ +∞

lim
x→+∞

f(x) = +∞.

See Figure 23. Thus, if κ > 1 and γ > 0 then we have (S2) S = (−∞, fκ,γ(α2)), where fκ,γ(α2) < 0.

Now we show that fκ,γ : D → C+ is bijective.
We take a path C = C(t), t ∈ (0, 1] in such a way that by starting from z =∞, it goes to z = α2

along the curve r+ defined by (5.47) in the upper half plane, and then goes to z =∞ along the real
axis (see Figure 20). Here, we can assume that C ′(t) 6= 0 whenever C(t) 6= αi, i = 1, 2. Actually, the
curve v(x, y) = 0 has a tangent line unless f ′ vanishes. If we take an arc-length parameter t, then
C ′(t) represents the direction of the tangent line at (x, y) = C(t). We note that C(t) describes the
boundary of D.

We first show that fκ,γ maps the boundary of D onto R bijectively. We take t2 such that C(t2) =
α2. Then, the subcurve C(t), t ∈ (0, t2) describes the curve r = r+(θ), θ ∈ (0, θ0). Let us see that f(z)

(z ∈ C) diverges when |z| → +∞. In fact, let 1 + z
κ = Leiθ with L > 1. Since L =

∣∣1 + z
κ

∣∣ ≤ 1 + |z|
κ ,

we have
|z|
κ
≥ L− 1, and hence

1

|z|
≤ 1

κ(L− 1)
≤ 1

L− 1
(because κ > 1).

If we take L big enough so that 1
L−1 < γ, then∣∣∣1

z
+ γ
∣∣∣ ≤ 1

|z|
+ γ ≤ 1

L− 1
+ γ ≤ 2γ, or

1

|(1/z) + γ|
≥ 1

2γ
,

and hence ∣∣f(z)
∣∣ =

∣∣∣∣ 1

(1/z) + γ

∣∣∣∣ · ∣∣∣1 +
z

κ

∣∣∣κ ≥ Lκ

2γ
−→ +∞ (as L→ +∞) (5.54)

Therefore, f(z) diverges when |z| → +∞. We now consider the limit |z| → ∞ along to the path C(t)
as t→ +0. Recall that C(t) has an asymptotic line y = (tan θ0)(x+ κ− 1

a ). If z with 1 + z
κ = Leiθ

is on the curve C(t), t ∈ (0, t2), and goes to ∞ under the condition θ → θ0 − 0 (that is, we consider
the limit along the curve C(t)), then we have(

1 +
z

κ

)κ
= Lκ · eiθκ −→ −∞, z

1 + γz
=

1

(1/z) + γ
−→ 1

γ
,

and thus the function g(t) := f(C(t)) satisfies

lim
t→+0

g(t) = lim
t→+0

f
(
C(t)

)
= −∞.

This shows that if 0 < t < t2 (recall that C(t2) = α2), then g(t) < f(α2) and g(t) = f(C(t)) is
monotonic increasing. If not so, it leads to a contradiction by Lemma 5.2, using the fact that C
does not include a singular point except for z = α2. Finally we see that g(t) = f(C(t)), t ∈ (0, 1) is
monotonic from −∞ to +∞.

We shall show that for any w0 ∈ C+ there exists one and only one z0 ∈ D such that f(z0) = w0.
Let us take an R > 0 such that |w0| < R. For L > 0, let ΓL be the the circle −κ + Leiθ of origin
z = −κ with radius L. Let L − κ and zL be two distinct intersection points of C and ΓL. Let
C ′ := CL be a closed path obtained from C by connecting L−κ and zL via the arc A of ΓL included
in the upper half plane, see Figure 21.

Since f is non-singular on the arc A, the curve f(A) does not have a singular point so that it is
homotopic to a large semi-circle (whose radius is larger than R) in the upper half plane. Note that
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the domain D that we consider is given in (r, θ) coordinates as {(r, θ); θ ∈ (0, θ0), r > r+(θ)}. Since

Im f(reiθ) = positive factor× sin(κθ) · (ar2 + b(θ)r + a− 1)
= positive factor× sin(κθ) · a(r − r−(θ))(r − r+(θ))

and since a > 0 and sin(κθ) > 0 for θ ∈ (0, θ0), we see that Im f(reiθ) is positive on the domain D.
(see Figure 22). In particular, the inside set f(D′) of the curve f(C ′) is a bounded domain including
w0 ∈ C+. Since the winding number of the path f(C ′) about w = w0 is exactly one, we see that

1

2πi

∫
C′

f ′(z)

f(z)− w0
dz =

1

2πi

∫
f(C′)

dw

w − w0
= 1.

We know by definition of f that f does not have a pole on D′. Therefore, by the argument principle,
the function f(z) − w0 has the only one zero point, say z0∈ D′. Then, we obtain f(z0) = w0, and
such z0 is unique. We conclude that the map f is bijection from the interior set D of C to the upper
half plane.

Figure 19. The case of
(ii),when κ > 2

Figure 20. The case of (ii),
when κ > 2

Figure 21. Curve C′ in case (ii)
Figure 22. Curve f(C′) in case
(ii)
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Figure 23. f(x) for x ≥ −κ,
case (ii)

5.4. Extremal cases (κ = ±∞, γ = 0, κγ = 1).

5.4.1. Case γ = 0, κ > 0. In this case, we have by (5.46)

f(z) = z
(

1 +
z

κ

)κ
=

((
1 +

x

κ

)2
+
y2

κ2

)κ
2

(x+ iy)
(

cos(κθ(x, y)) + i sin(κθ(x, y))
)

=

((
1 +

x

κ

)2
+
y2

κ2

)κ
2
(
x cos(κθ(x, y))− y sin(κθ(x, y))

+i(x sin(κθ(x, y)) + y cos(κθ(x, y)))

)
and

f ′(z) =
(κ+ 1)z + κ

κ

(
1 +

z

κ

)κ−1
.

Note that if f ′(z) = 0 then z = −κ/(κ+ 1) (set α2 = −κ/(κ+ 1)) or z = −κ if κ > 1, and

−κ < − κ

κ+ 1
< 0.

We show that D is unbounded and D ⊂
{
z ∈ C+; Arg(1 + z

κ ) ∈ (0, π
κ+1 )

}
.

Let us consider the curve Im f(z) = 0, that is,

x sin(κθ(x, y)) + y cos(κθ(x, y)) = 0.

If sin(κθ(x, y)) = 0, then cos(κθ(x, y)) does not vanish so that y needs to be zero, and in this case we
also have x ≥ −κ (if κ is not integer). This is because if x < −κ then θ(x, y) → π as y → +0, but
then sin(κπ) 6= 0 whenever κ is not integer. Assume that sin(κθ(x, y)) 6= 0, and change variables by
reiθ = 1 + z/κ. Then, we have

0 = κ(r cos θ−1)·sin(κθ)+κr sin θ·cos(κθ) = r(cos θ sin(κθ)+sin θ cos(κθ))−sin(κθ) = r sin((κ+1)θ)−sin(κθ),

whence

r = r(θ) =
sin(κθ)

sin((κ+ 1)θ)
.

Since sin(κθ) and sin((κ+ 1)θ) are both positive in the interval (0, π
κ+1 ), and since lim

θ→ π
κ+1−0

sin((κ+

1)θ) = 0, we see that

lim
θ→ π

κ+1−0
r(θ) = +∞,

thus it has an asymptotic line with slope tan π
κ+1 . Let θ1 = π

κ+1 . Note that κθ1 = π − θ1 so that

cot(κθ1) = − cot θ1. Let y = (tan π
κ+1 )x+A. Then, A needs to satisfy

x+ ((tan θ1)x+A) cot(κθ1) = 0 ⇐⇒ x− (x+A cot θ1) = 0,

so that A = 0. Thus, there is an asymptotic line y = (tan θ1)x.
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In order to study the set S, we consider f(x) for real (x ∈ (α,+∞). In this case, we have

x α · · · 0 · · · +∞
f ′ 0 +
f f(α) ↗ 0 ↗ +∞

lim
x→+∞

f(x) = +∞.

Thus in this case we have (S2) S = (−∞, fκ,γ(α2)), where fκ,γ(α2) < 0.
We can confirm it directly. Since we have x = −y cot(κθ), we have by the change of variables

1 + z/κ = reiθ

Re f(z) =

((
1 +

x

κ

)2
+
y2

κ2

)κ
2

(x cos(κθ(x, y))− y sin(κθ(x, y)))

= r(θ)κ(−y cot(κθ) cos(κθ)− y sin(κθ)) = − r(θ)
κy

sin(κθ)

= − κ sin θ

sin(κθ)
r(θ)κ+1 (because y = κr(θ) sin(θ)).

Thus, when θ ∈ (0, π
κ+1 ), we have κ sin θ

sin(κθ) > 0 so that

lim
θ→ π

κ+1−0
f(r(θ)eiθ) = −∞.

In order to show that fκ,0 : D → C+ is bijective, note that r(θ) = 1/b(θ) (where b(θ) is as in (5.49)
for γ = 0) and b(θ) is monotonic decreasing, so that r(θ) is an increasing function. The discussion of
bijectivity of fκ,0 : D → C+ is similar to the case (ii) in Section 5.3.

5.4.2. Case κγ = 1, κ > 1. In this case, we have

fκ,1/κ(z) =
z

1 + z
κ

(
1+

z

κ

)κ
= z
(

1+
z

κ

)κ−1
=

κ

κ− 1
·κ− 1

κ
z

(
1+

κ−1
κ z

κ− 1

)κ−1
=

κ

κ− 1
·fκ−1,0

(κ− 1

κ
z
)
,

and hence we can use the result in the case γ = 0 (since κ− 1 > 0).

5.4.3. Case κ = +∞. In this case, we have

f(z) =
z

1 + γz
ez =

(x+ γx2 + γy2) + iy

(1 + γx)2 + γ2y2
· ex(cos y + i sin y)

=
ex

(1 + γx)2 + γ2y2

{
(x+ γx2 + γy2) cos y − y sin y
+i
(
(x+ γx2 + γy2) sin y + y cos y

) } .
If γ = 0 then f(z) = zez and we are in the well-known Lambert case (see next subsection). So we
assume that γ 6= 0.

We will show that D is bounded and D ⊂ {z ∈ C+; Im z ∈ (0, π)}. We have

f ′(z) =
γz2 + z + 1

(1 + γz)2
ez,

and f ′(z) = 0 implies

z =
−1±

√
1− 4γ

2γ
.

Note that κ = ∞ means α = 1 so that γ = p−q
p = 1 − q

p ≤ 0 by the assumption α ≤ q
p . Thus we

consider only the case γ ≤ 0. Let us consider the curve Im f(z) = 0, that is,

(x+ γx2 + γy2) sin y + y cos y = 0.

If sin y = 0, then y = 0. Assume that sin y 6= 0. Then

x+ γx2 + γy2 + y cot y = 0,

and this equation can be solved in x in such a way that

x2+
x

γ
+y2+

y cot y

γ
= 0 ⇐⇒

(
x+

1

2γ

)2
− 1

4γ2
= −y2−y cot y

γ
⇐⇒

(
x+

1

2γ

)2
=

1

4γ2
−y2−y cot y

γ
.

Let us consider the function

h(y) :=
1

4γ2
−y2−y cot y

γ
=

1

4γ2
−
(
y+

cot y

2γ

)2
+

cot2 y

4γ2
=

1

4γ2 sin2 y
−
(
y+

cot y

2γ

)2
=

1−
(
2γy sin y + cos y

)2
4γ2 sin2 y

.
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Note that

h(0) = lim
y→0

h(y) =
1

4γ2
− 1

γ
lim
y→0

y

sin y
=

1− 4γ

4γ2
≥ 0.

In order to solve the equation in x, the function h(y) needs to be non-negative, and it is equivalent to
the condition that the absolute value of the function g(y) := cos y + 2γy sin y is less than or equal to
1. We will show that g(y) is monotonic decreasing in some interval. At first, we observe that g(0) = 1
and for y small enough

g(y) =
(

1− y2

2
+
y4

4!

)
+ 2γy

(
y − y3

6

)
+ o(y4) = 1− 1− 4γ

2
y2 +

1− 8γ

4!
y4 + o(y4).

If 1− 4γ ≥ 0, g takes a maximal value at y = 0 (if γ = 1/4 then 1− 8γ = −1 < 0). Its derivative is

g′(y) = − sin y+ 2γ(sin y+ y cos y) = −(1− 2γ) sin y+ 2γy cos y = −(1− 2γ)
( 2γ

2γ − 1
y+ tan y

)
cos y.

Here we have −1 ≤ c := 2γ
2γ−1 < 1 by

1− 4γ ≥ 0 ⇐⇒ 1− 2γ ≥ 2γ and 2γ − 1 < 2γ.

If cos y = 0 then we have g′(y) 6= 0 so that g′(y) = 0 implies cy+tan y = 0. Since −1 ≤ c < 1, it follows
(by derivation) that cy + tan y is increasing. Thus, we have a unique solution y∗ of cy + tan y = 0 in
the interval y∗ ∈ (π/2, π). Note that since 1− 2γ > 0, we have g′(y) < 0 for y ∈ (0, π/2). Moreover,
since for π

2 < y < y∗ <
3
2π we have cos y < 0 and cy + tan y < 0 (limy→π/2+0 tan y = −∞ and

cy + tan y is increasing), we see that g′(y) is also negative for y ∈ (π/2, y∗).
Since we now assume that γ < 0, we have

g(y∗) = cos y∗ + 2γ sin y∗ ·
(1− 2γ

2γ
tan y∗

)
=

cos2 y∗ + (1− 2γ) sin2 y∗
cos y∗

=
1− 2γ sin2 y∗

cos y∗
< −1,

so that there exists one and only one y0 in (0, y∗) such that g(y0) = −1 and g(y0 + ε) < −1 for
ε ∈ (0, y∗ − y0). We have proved that h(y) is non-negative on y ∈ [0, y0], and h(y0 + ε) < 0 for any
ε ∈ (0, y∗ − y0). Therefore, in this interval, we can take a square root of h(y), and we can solve the
equation in x as

x = x±(y) = − 1

2γ
±
√
h(y) (y ∈ [0, y0]).

Since h(y0) = 0, these two paths (x±(y), y) form a continuous curve connecting x+(0) and x−(0). By
construction, it is obvious that the curve (x±(y), y) is in C+.
Now we study the set S Let us consider f(x) for real x. Since γ < 0 and γ(− 1

γ )2 + (− 1
γ ) + 1 = 1 > 0,

we have the following variation table of f(x):

x −∞ · · · α1 · · · 0 · · · − 1
γ · · · α2 · · · +∞

f ′ − 0 + × + 0 −
f 0 ↘ f(α1) ↗ 0 ↗ × ↗ f(α2) ↘ −∞

Since γαi + 1 = − 1
αi

, we see that f(αi) = −α2
i e
αi < 0. By α1α2 = 1

γ , we have

f(α2)

f(α1)
=
α2(1 + γα1)

α1(1 + γα2)
eα2−α1 =

α2 + 1

α1 + 1
eα2−α1 > 1,

whence f(α2) < f(α1) < 0. Thus, we have (S2) S = (fκ,γ(α2), fκ,γ(α1)), where fκ,γ(α2) < fκ,γ(α1) <
0.

The discussion of bijectivity of f : D → C+ is similar to the case (ii) in Section 5.3.

5.4.4. Case (κ, γ) = (∞, 0). This case corresponds to the classical Lambert function. Although the
detailed analysis of the classical Lambert W function is found in Corless et al. (1996), we give it here
for the completeness. Let f(z) = zez. Set z = x+ yi and compute Re f and Im f .

f(z) = (x+ yi)ex+yi = ex(x+ yi)(cos y + i sin y)
= ex{(x cos y − y sin y) + i(x sin y + y cos y)}.

Assume that Im f(z) = 0. Then, we have

x sin y + y cos y = 0.
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Obviously, real numbers z = x + 0i satisfy this equation. Assume that y 6= 0. Then, we see that
sin y 6= 0. Otherwise, cos y needs to be equal to zero but it is impossible. Thus we have

x = −y cos y

sin y
= −y cot y.

We show that D is unbounded and D ⊂ {z ∈ C+; Im z ∈ (0, π)}.
Set g(y) = −y cot y. It is defined on R \ {nπ; n ∈ Z}. Note that

lim
y→0

g(y) = −1.

We have

g′(y) = − cot y + y(1 + cot2 y) = −cos y

sin y
+

y

sin2 y
=
− sin y cos y + y

sin2 y
=

2y − sin 2y

2 sin2 y
.

Thus

g′(y) = 0 ⇒ y = 0, g′(y) > 0 ⇒ y > 0, g′(y) < 0 ⇒ y < 0

and

lim
h→+0

g(nπ + h) =

{
−∞ (n > 0)

+∞ (n < 0)
lim
h→−0

g(nπ + h) =

{
+∞ (n > 0)

−∞ (n < 0)

Thus we have D = {z = x+ yi ∈ C+; 0 < y < π, x > −y cot y}. The graph of x = −y cot y is as
follows.

Now we describe the set S. We shall consider the value f(z) for z being on the path p(y) = g(y) + iy
(y ∈ [0, π)). We have

f(p(y)) = ex(x cos y − y sin y) = eg(y)(−y cot y cos y − y sin y) = −ye
g(y)

sin y
.

Since limy→0 g(y) = −1, we have limy→+0 f(p(y)) = −e−1 = − 1
e . By differentiating both sides in y,

we see that
d

dy
f(p(y)) = −eg(y)

(
sin y − y cos y

sin2 y
+ g′(y) · y

sin y

)
= −eg(y)

(
1

sin y
− y cos y

sin2 y
− y cos y

sin2 y
+

y2

sin3 y

)
= −e

g(y)

sin y

(
1− 2y cos y

sin y
+

y2

sin2 y

)
= −e

g(y)

sin y

(( y

sin y
− cos y

)2
− cos2 y + 1

)
= −e

g(y)

sin y

(( y

sin y
− cos y

)2
+ sin2 y

)
< 0.

Thus, f(p(y)) is decreasing for y ∈ [0, π). Moreover, we have

lim
y→π−0

f(p(y)) = −∞ (∵ lim
y→π−0

g(y) = +∞ and lim
y→π−0

1

sin y
= +∞).



71

Thus, we have (S2) S = (−∞,− 1
e ) ⊂ R<0.

The discussion of bijectivity of f0,∞ : D → C+ is similar to the case (ii) in Section 5.3.

5.5. The case of κ < 0. Recall the homographic (linear fractional) action of SL(2,R) on C. For(
a b
c d

)
∈ SL(2,R) and z ∈ C+, we set(

a b
c d

)
· z :=

az + b

cz + d
.

Let κ = −κ′ with positive κ′ > 0. Consider the transformation

1 +
z′

κ′
=
(

1 +
z

κ

)−1
.

Then, it can be written as

z′ =

(
1 0

1/κ 1

)
· z =

z

1 + z/κ
⇐⇒ z =

(
1 0
−1/κ 1

)
· z′ =

z′

1− z′/κ
.

Note that since

(
1 0

1/κ 1

)
∈ SL(2,R), it maps C+ to C+ bijectively. Then, since

z

1 + γz
=

(
1 0
γ 1

)
· z =

(
1 0
γ 1

)(
1 0
−1/κ 1

)
· z′ =

(
1 0

γ − 1/κ 1

)
· z′

=
z′

1 + (γ − 1/κ)z′
=

z′

1 + (γ + 1/κ′)z′

and (
1 +

z

κ

)κ
=

((
1 +

z

κ

)−1)−κ
=
(

1 +
z′

κ′

)κ′
(recall that we are taking the main branch so that log z = − log(z−1)), we obtain

fγ,κ(z) =
z

1 + γz

(
1 +

z

κ

)κ
=

z′

1 + (γ + 1/κ′)z′

(
1 +

z′

κ′

)κ′
= fγ+1/κ′, κ′(z

′).

Set γ′ = γ + 1/κ′. Since we now assume that 1
κ − γ ≥ 0, we have

1

κ
− γ ≥ 0 ⇐⇒ 1 ≤ κγ ⇐⇒ γ′κ′ ≤ 0,

and hence by the homographic action, the case κ < 0 reduces to the case κ′ > 0 and κ′γ′ ≤ 0.

We will show thatD is bounded and D ⊂
{
z ∈ C; Arg(1 + z

κ )−1 ∈ (0, π
κ+1 )

}
. Let ρ denote the inverse

transformation of z′ = z
1+z/κ , that is, ρ(z′) = z′

1+z′/κ′ . We know by Section 5.2 that D′ = ρ−1(D) is

bounded and included in the domain
{
z′ ∈ C+; Arg(1 + z′

κ′ ) ∈ (0, π
κ+1 )

}
(see Figure 24). The line

p(t) = −κ′ + teiθ∗ = κ+ teiθ∗ is mapped by ρ to the line

ρ(p(t)) =
κ+ teiθ∗

1− (κ+ teiθ∗)/κ
=
κ+ teiθ∗

−teiθ∗/κ
= −κ− κ2

t
e−iθ∗ .

By ρ, the point z = κ = −κ′ transforms to z =∞, and this point is not included in D. Consequently,

Ω = ρ(Ω′) is bounded and included in
{
z ∈ C; Arg(1 + z

κ )−1 ∈ (0, π
κ+1 )

}
(see Figure 25).

Now we determine the set S.
If γ′ < 0, then α′i transform to αi for each i = 1, 2, and we have S = (fκ′,γ′(α

′
2), fκ′,γ′(α

′
1)) =

(fκ,γ(α2), fκ,γ(α1)). Next we consider the case γ′ = 0. In this case, the intersection point α′ of

Im fκ′,γ′ = 0 is given as α′ = − κ′

κ′+1 . Let p(t), t ∈ [0, 1) be the path of ∂D ∩ C+ such that

p(0) = α′. Since ρ(∞) = −κ, we see that ρ(r(t)), t ∈ [0, 1) is a path connecting α = ρ(α′) = −1 and
−κ. In particular, D is bounded. Then, we have S = (fκ,γ(−κ), fκ,γ(α)) = (fκ′,γ′(∞), fκ′,γ′(α

′)) =
(−∞, fκ′,γ′(α′)). We note that the solution of the equation γz2+(1+1/κ)z+1 = 0 with the condition
γ = 1/κ is given as z = −1, −κ. Since −1 < −κ, we have α1 = −1 so that (S3) S = (−∞, fκ,γ(α1)),
where fκ,γ(α1) < 0.
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The fact that fκ,γ : D → C+ is bijective comes from the result for κ′ > 0 and from the fact that
homographic transformations are bijective.

Figure 24 Figure 25

5.6. The domain Ω of definition of Wκ,γ. In the previous section, we showed that the func-
tion Wκ,γ is well defined on C+. Recall that Ω is defined on p.58 before (5.51). We have Ω =

{z = x+ yi ∈ C; z ∈ D or z̄ ∈ D} ∪ (Cl(D) ∩ R). Then, Ω is a symmetric domain Ω = Ω (here the
bar means complex conjugate). Let Ω+ = D. By the Schwarz reflection principle (Ahlfors (1979,

Theorem 24, p. 172)), we see that f = fκ,γ is analytically continued to the domain Ω and f(z̄) = f(z)

(z ∈ Ω). Hence, f = fκ,γ maps D onto C−, and moreover, if we set S = R\f(R), then f maps Ω onto

C \ S and this correspondence is one-to-one (D is mapped one-to-one to C+, and so D is mapped
onto one-to-one C−. We have verified that Ω∩R is mapped one-to-one onto f(R) in Sections 5.2 and
5.3). Thus, Wκ,γ is well defined on C \ S. We can also verify it directly from (5.47).

Figure 26. Case (i) Figure 27. Case (ii)
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