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Vinberg cones and the ambient vector spaces are important in modern statistics of sparse models and of graphical models. The aim of this paper is to study eigenvalue distributions of Gaussian, Wigner and covariance matrices related to growing Vinberg matrices, corresponding to growing daisy graphs. For Gaussian or Wigner ensembles, we give an explicit formula for the limiting distribution. For Wishart ensembles defined naturally on Vinberg cones, their limiting Stieltjes transforms, support and atom at 0 are described explicitly in terms of the Lambert-Tsallis functions, which are defined by using the Tsallis q-exponential functions. Eigenvalue distributions and graphical models and covariance matrices and Wigner matrices and homogeneous cones and Vinberg cones and q-exponential and Lambert-Tsallis functions

Introduction

This paper is a first step towards studying high-dimensional asymptotics of eigenvalue distributions of Gaussian and covariance matrices related to growing statistical graphical models.

Graphical models provide one of the most powerful methods of unsupervised learning and sparse modelization of modern Data Science and high dimensional statistics (cf. [START_REF] Lauritzen | Graphical Models[END_REF]; Maathuis et al. (2018)). Mathematical bases of Wishart distributions on matrix cones related to decomposable and homogeneous graphs considered in this paper were laid down by [START_REF] Lauritzen | Graphical Models[END_REF]; [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF]; [START_REF] Ishi | Homogeneous cones and their applications to statistics[END_REF]; [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF].

Asymptotics of empirical eigenvalue distributions are a classical topic of the random matrix theory (RMT). There are numerous interactions of RMT with important areas of modern multivariate statistics: high dimensional statistical inference, estimation of large covariance matrices, principal component analysis (PCA), time series and many others, see the review papers by Diaconis (2003, Section 2), [START_REF] Johnstone | High dimensional statistical inference and random matrices[END_REF], [START_REF] Paul | Random matrix theory in statistics: a review[END_REF], [START_REF] Bun | Cleaning large correlation matrices: Tools from Random Matrix Theory[END_REF], the book of [START_REF] Yao | Large Sample Covariance Matrices and High-dimensional Data Analysis[END_REF] and the references therein. RMT is also used in signal processing (including MIMO) and compressed sensing (see Hastie et al. (2015, Chapter 10), for example) in the restricted isometry property (RIP) introduced by [START_REF] Candès | Decoding by linear programming[END_REF]. [START_REF] Fujikoshi | High-dimensional consistency of rank estimation criteria in multivariate linear model[END_REF] and [START_REF] Bai | Consistency of AIC and BIC in estimating the number of significant components in high-dimensional principal component analysis[END_REF] used RMT methods to study consistency of the criteria AIC and BIC in estimation of the number of components in PCA. Distribution of the largest eigenvalue of a Wishart matrix was studied in [START_REF] Takayama | Computation of the expected Euler characteristic for the largest eigenvalue of a real non-central Wishart matrix[END_REF].

High-dimensional spectral asymptotics for graphical models seem to have never been studied before and we are convinced that our results will be useful in modern multivariate statistical analysis in the context of graphical models. In this paper, we concentrate on proving fundamental theorems of RMT, the Wigner and Marchenko-Pastur type limit theorems for considered graphical models. We expect to study statistical applications to estimation of large covariance matrices, the number of significative PCA factors and asymptotics of the largest eigenvalue of a sparse Wishart matrix in our subsequent researches.

Growing daisy graphs are among the most natural classes of graphical models. Vinberg matrices are the symmetric matrices corresponding to the growing daisy graphs. Covariance matrices are defined naturally on them by a quadratic construction (see Section 2.4), thanks to quadratic triangular group actions on positive definite Vinberg matrices (cf. Section 2.2).

In Sections 3 and 4, we provide a complete study of limiting eigenvalue distributions related to Vinberg matrices. The main results are contained in Theorem 3.1 for the Wigner Ensembles and in Theorem 4.8 and Corollaries 4.9, 4.11 and 4.14 for the Wishart Ensembles of Vinberg matrices. We are able to treat both real and complex matrix ensembles, but in view of statistical applications, we focus on real random matrices.

As a special case of Corollary 4.9, we provide an elementary and short proof of a result of Dykema and Haagerup (2004, §8) on the asymptotic empirical eigenvalue distribution µ 0 for the covariance of the triangular real Gaussian ensemble. The proof in [START_REF] Dykema | DT-operator and decomposability of Voiculescu's circular operator[END_REF] is based on the theory of free probability with involved calculations, and the Stieltjes transform S 0 (z) is given implicitly by determining all the moments of µ 0 . Later, [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] mentioned that S 0 (z) can be expressed in terms of the Lambert W function.

Our paper contributes to the study of triangular random matrices initiated by [START_REF] Dykema | DT-operator and decomposability of Voiculescu's circular operator[END_REF] and continued in [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF], also in the framework of the theory of Muttalib-Borodin biorthogonal ensembles (see [START_REF] Borodin | Biorthogonal ensembles[END_REF]; [START_REF] Muttalib | Random matrix models with additional interactions[END_REF]; [START_REF] Forrester | Log-Gases and Random Matrices[END_REF]; [START_REF] Forrester | Muttalib-Borodin ensembles in random matrix theory-realisations and correlation functions[END_REF]). This is a part of recent developments in the theory of singular values of non-symmetric random matrices (see the survey by [START_REF] Chafaï | SINGULAR VALUES OF RANDOM MATRICES[END_REF]). In contrast to [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF], we do not dispose of an explicit formula for the joint eigenvalue density.

The analysis, probability and statistics on homogeneous cones develops intensely in recent years [START_REF] Andersson | Wishart distributions on homogeneous cones[END_REF]; [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF]; [START_REF] Graczyk | Wishart laws and variance function on homogeneous cones[END_REF]; [START_REF] Ishi | Homogeneous cones and their applications to statistics[END_REF][START_REF] Ishi | Explicit formula of Koszul-Vinberg characteristic functions for a wide class of regular convex cones[END_REF]; [START_REF] Letac | Wishart distributions for decomposable graphs[END_REF]; [START_REF] Yamasaki | Realization of homogeneous cones through oriented graphs[END_REF]; Nakashima (2020)), and Vinberg cones and dual Vinberg cones are basic examples of homogeneous cones (see Section 2.2). Our results are a first contribution to the RMT on homogeneous cones.

The main method used in our paper is the variance profile method for Gaussian and Wigner matrix ensembles, presented in Section 2.5. It was applied first in [START_REF] Shlyakhtenko | Random Gaussian band matrices and freeness with amalgamation[END_REF] in the Gaussian case and developed in [START_REF] Anderson | A CLT for a band matrix model[END_REF] in the Wigner case. We use the recent approach of [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]. In Theorem 2.3 we slightly strengthen for our needs the main variance profile result of [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]. Theorem 2.3 will be useful for studying of eigenvalue distributions related to general graphical models.

Note that the variance profile methods were also developed directly for Wishart ensembles by [START_REF] Hachem | The empirical eigenvalue distribution of a Gram matrix: from independence to stationarity[END_REF][START_REF] Hachem | The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile[END_REF][START_REF] Hachem | Deterministic equivalents for certain functionals of large random matrices[END_REF]; Hachem et al. (2008) (cf. Remark 4.16). The variance profile methods are related to operator-valued free probability theory (Mingo and Speicher (2017, Chapter 9)).

Our expression of a limiting Stieltjes transform for Wishart Ensembles of Vinberg matrices, is based on the introduction of Lambert-Tsallis functions W κ,γ , see Section 4.1. The Lambert-Tsallis functions are defined by using Tsallis q-exponential functions, now actively studied in Information Geometry (cf. [START_REF] Amari | Geometry of q-exponential family of probability distributions[END_REF]; [START_REF] Zhang | Information geometry on the curved q-exponential family with application to survival data analysis[END_REF].

Outlines of all proofs are given. Technical details are omitted and can be viewed in Supplementary material available from the editor of the journal.

Simulations of histograms of eigenvalues of Vinberg matrices are illustrated by Figures 2-6 in the Wigner case and by Figures 10-12 in the Wishart case.

Preliminaries

We begin this paper with recalling the definition of the empirical eigenvalue distribution of a symmetric matrix. Let X ∈ Sym(n, R) be a symmetric matrix and let λ 1 (X) ≥ • • • ≥ λ n (X) be the ordered eigenvalues of X with counting multiplicities. Denote by δ a the Dirac measure at a. Then, the empirical eigenvalue distribution µ X of X is defined by µ

X = 1 n n i=1 δ λi(X) . If {X n } ∞ n=1 (X n ∈ Sym(n; R)
) is a sequence of Gaussian, Wigner or Wishart matrices, then it is well known that there exists a limit µ of µ Xn as n → ∞, and the sequence of random measures µ Xn converges almost surely weakly to the semi-circle law or the Marchenko-Pastur law, respectively (see for example [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]; [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]). The limits µ of µ Xn , in the almost sure weak sense, are said to be the "limiting eigenvalue distributions µ of X n ." For simplicity, we will say "i.i.d. matrices" instead of "matrices with independent and identically distributed non-null terms".

2.1. Basics on statistical graphical models. Let G be a graph with vertices V = {1, 2, . . . , n} and edges E. We say that a statistical character X = (X 1 , . . . , X n ) has the dependence graph G when each conditional independence of marginals X i and X j with respect to remaining variables corresponds to the absence of the edge {i, j} in E. Thus the dependence graph G is a tool of encoding of the conditional independence of marginals of X . We say that X belongs to the graphical model governed by G.

Let U G be the subspace of Sym(n, R) containing matrices with u ij = 0 if the edge {i, j} ∈ E. Cones P G = Sym(n, R) + ∩ U G and their dual cones Q G are basic objects of graphical model theory. Actually, a Gaussian n-dimensional model N (m, Σ) is governed by the graph G if and only if the inverse covariance matrix Σ -1 ∈ P G (cf. [START_REF] Lauritzen | Graphical Models[END_REF]). An important class of graphical models, called daisy graphs, is defined as follows. Let a + b = n and let D(a, b) be a graph with vertices V = {1, . . . , n}, such that the first a elements form a complete graph and the latter b elements are satellites (petals) of the complete graph, that is, each satellite connects to all elements in the complete graph and does not connect to the other satellites (see Figure 1). The double circle around the vertex a n in Figure 1 indicates the complete graph with a n vertices.

In high dimensional statistics, it is essential to let the number of observed characters n tend to infinity. From the graphical model theory point of view, the pattern of the growing graphs G n and of the corresponding cones P Gn should remain the same. This requirement is met by growing daisy graphs D(a n , b n ) for non-decreasing sequences of positive integers {a n } ∞ n=1 and {b n } ∞ n=1 such that a n + b n = n. Then, P n is an open convex cone in P Gn . Moreover, the cone P n admits a transitive group action, i.e. P n is a homogeneous cone, since the following triangular group

H n :=    h = h 1 y 0 d ∈ GL(n, R); h 1 ∈ GL(a n , R) is upper triangular, y ∈ Mat(a n × b n ; R), d : diagonal of size b n   
acts on P n transitively by the quadratic action ρ(h)U := hU t h for h ∈ H n and U ∈ P n . This is easily verified by using the Cholesky decomposition (cf. Ishi (2016, p. 3)). For definition and basic properties of homogeneous cones, see [START_REF] Vinberg | The theory of convex homogeneous cones[END_REF]; [START_REF] Ishi | Homogeneous cones and their applications to statistics[END_REF].

If n = 3 and (a n , b n ) = (1, 2), then P 3 is the dual Vinberg cone (see Example 2.1) so that, in this paper, we call P n a generalized dual Vinberg cone and elements U ∈ U n Vinberg matrices. Vinberg cones form an important class of matrix cones related to graphical models (cf. Section 2.1). On the other hand, if we set a n = n -1 and b n = 1, then U n is the space Sym(n, R) of symmetric matrices of size n, and hence our discussion covers the classical results. In what follows, we introduce two kinds of random matrices related to the homogeneous cones P n , that is, Gaussian and Wigner matrices and Wishart quadratic (covariance) matrices.

2.3. Gaussian and Wigner matrices in U n . Analogously to the classical Wigner matrices, we say that U n = (u ij ) ∈ U n is a Wigner random matrix if

              
• the diagonal terms (u ii ) are independent of the off-diagonal terms (u ij ) i<j ,

• the diagonal u ii 's are centered i.i.d. variables with variance v and fourth moment M 4 , • the non-nul off-diagonal u ij 's, i < j, are centered i.i.d. variables with variance v and fourth moment M 4 ,

(2.1)

where v, v , M 4 , M 4 are fixed positive real numbers. If the non-nul terms u ij are Gaussian, with ν = 1 and ν = 2, the matrices U n form a Gaussian Orthogonal Ensemble of Vinberg matrices.

In Section 3, we consider empirical eigenvalue distributions of rescaled Wigner matrices

U n / √ n ∈ U n .
2.4. Quadratic construction of Wishart (covariance) matrices in U n . Recall that Wishart matrices are constructed quadratically both in Random Matrix Theory and in statistics. In this section we define, by a quadratic construction, Wishart (covariance) matrices in U n . We first recall the notion of a direct sum of quadratic maps. Let Q i : R mi → R m (i = 1, . . . , k) be quadratic maps. Then, the direct sum

Q 1 ⊕ • • • ⊕ Q k is an R m -valued quadratic map on R m1 ⊕ • • • ⊕ R m k given by Q(x) := Q 1 (x 1 ) + • • • + Q k (x k ) where x = k i=1 x i x i ∈ R mi . If Q 1 = • • • = Q k , then the direct sum Q is denoted by Q ⊕k 1 .
As showed in [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF], any homogeneous cone Ω admits a canonical family of the so-called basic quadratic maps q j (j = 1, . . . , r) defined for each j on a suitable finite dimensional vector space E j and with values in the closure Ω of Ω. The number r is called the rank of Ω and r = n for the cones U n . Using the basic quadratic maps q j , one constructs quadratic maps

Q k for k ∈ Z r ≥0 by Q k := q ⊕k1 1 ⊕ • • • ⊕ q ⊕kr r , defined on E k := E ⊕k1 1 ⊕ • • • ⊕ E ⊕kr r . The maps Q k are Ω-positive, i.e. if ξ ∈ E k \ {0}, then Q k (ξ) ∈ Ω \ {0}.
In our case Ω = P n , the basic quadratic maps are given as follows (cf. [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF]). For j = 1, . . . , n, define E j ⊂ R n by

E j = ξ 0 ∈ R n ; ξ ∈ R j (j ≤ a n ), E j = ξ 0 + ξ e j ∈ R n ; ξ ∈ R an , ξ ∈ R (j > a n ),
where e i (i = 1, . . . , n) is the vector in R n having 1 on the i-th position and zeros elsewhere. We note that each E j corresponds to the j-th column of the Lie algebra h n of H n , that is, we have h n = H = (ξ 1 , . . . , ξ n ); ξ j ∈ E j . Then, the basic quadratic maps q j : E j → U n of the cone P n are defined by q j (ξ j ) := ξ j t ξ j ∈ U n (ξ j ∈ E j ).

Let k ∈ Z n ≥0 . Then, E k can be viewed as a subspace of Mat(n × (k

1 + • • • + k n ); R).
In fact, we have

E k =      η = k1 ξ (1) 1 , . . . , ξ (k1) 1 , ξ (1) 
2 , . . . , ξ (kn-1) n-1 , kn ξ (1) n , . . . , ξ (kn) n ;

ξ (i) j ∈ E j , j = 1, . . . , n, i = 1, . . . , k j      ⊂ Mat(n × (k 1 + • • • + k n ); R), and then Q k (η) = η t η for η ∈ E k .
When η ∈ E k is an i.i.d. random matrix whose non-null terms have the normal law N (0, v), the law of Q k (η) is a Wishart law γ Q k ,1/(2v)Idn on the cone P n . For the definition of all Wishart laws on the cone P n , see [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF]. More generally, in this paper, we consider eigenvalue distributions of rescaled matrix Q k (η)/n under the assumption that η ∈ E k is a centered rectangular i.i.d. matrix whose non-null terms have variance v and finite fourth moments M 4 .

We consider two-dimensional multiparameters k = k(n) ∈ Z n ≥0 of the form k = m 1 (1, . . . , 1) + m 2 ( an 0, . . . , 0, bn 1, . . . , 1 ) (m 1 , m 2 ∈ Z ≥0 ).

(2.2)

Example 2.1. Let n = 3, a 3 = 1 and b 3 = 2. In this case, P 3 is the dual Vinberg cone (cf. Vinberg (1963, p. 397), Ishi (2001, §5.2)):

P 3 =    x =  
x 11 x 12 x 13 x 12 x 22 0 x 13 0 x 33   ; x is positive definite

   .
Consider m 1 = m 2 = 1, so k = (1, 2, 2). Then E k = E (1,2,2) can be written as 

E (1,2,2) =    η =   x y 11 y 12 z 11 z 12 0 y 21 y 22 0 0 0 0 0 z 21 z 22   ; x, y ij , z ij ∈ R    , and 
Q (1,2,2) (η) = η t η is given as Q (1,2,2) (η) =   x 2 +
) = (n -1, 1), m 1 = 0 and m 2 ∼ Cn. The limiting eigenvalue distribution is the Marchenko-Pastur law µ C with parameter C, i.e. denoting a = √ C -1 2 , b = √ C + 1 2 and [x] + := max(x, 0) (x ∈ R), µ C = [1 -C] + δ 0 + (t -a)(b -t) 2πt χ [a,b] (t)dt.
(ii) The Wishart Ensemble related to the Triangular Gaussian Ensemble [START_REF] Dykema | DT-operator and decomposability of Voiculescu's circular operator[END_REF]; [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF]) for (a n , b n ) = (n -1, 1), m 1 = 1 and m 2 = 0. When v = 1, the limiting eigenvalue distribution, which we call the Dykema-Haagerup measure χ 1 , is absolutely continuous with respect to Lebesgue measure and has support equal to the interval [0, e]. Its density function φ is defined on the interval (0, e] by the implicit formula (Dykema and Haagerup (2004, Theorem 8.9))

φ sin x x exp(x cot x) = 1 π sin x exp(-x cot x) (0 ≤ x < π), (2.3) 
with φ(0+) = ∞ and φ(e) = 0. For v = 1, the limiting measure χ v has density φ(y/v)/v on the segment (0, ve].

2.5.

Resolvent method for Wigner ensembles with a variance profile σ. Let C + denote the upper half plane in C. In this paper, the Stieltjes transform S(z) = S µ (z) of a probability measure µ on R is defined to be

S(z) = R µ(dt) t -z (z ∈ C + ).
In the sequel, we will need the following properties of the Stieltjes transform, which are not difficult to prove.

Proposition 2.2. 1. Suppose that s(z) is the Stieltjes transform of a finite measure ν on R. If for all x ∈ R it holds lim y→0+ Im s(x + iy) = 0 then s(z) ≡ 0 and ν is a null measure (ν(B) = 0 for any Borel set B). 2. Suppose f ≥ 0 and f ∈ L 1 (R). Let s(z) be the Stieltjes transform of f . If f is continuous at x then lim y→0+ 1 π Im s(x + iy) = f (x). (2.4) If f is continuous on an interval [a, b], a < b, the convergence (2.4) is uniform for x ∈ [a, b].
Recall that if µ is a probabilistic measure on R, with Stieltjes transform s(z) and the absolutely continuous part of µ has density f , then (2.4) holds for almost all x (Lemma 3.2 (iii) of [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]).

We present now the following, slightly strengthened result from the Lecture Notes of Bordenave (2019, §3.2), that will be a main tool of proofs in this paper.

Let σ : [0, 1] × [0, 1] → [0, ∞) be a bounded Borel measurable symmetric function. For each integer n, we partition the interval [0, 1] into n equal intervals J i , i = 1, . . . , n. Put

Q ij := J i × J j , which is a partition of [0, 1] × [0, 1].
We assume that Y ij (i ≤ j) are independent centered real variables, defined on a common probability space, with variance

EY 2 ij = 1 n Qij σ(x, y) |Q ij | dx dy + δ ij (n) , (2.5)
for a sequence δ ij (n). We note that the law of Y ij depends on n. We set Y ji := Y ij and we consider the symmetric matrix Y n := (Y ij ) 1≤i,j≤n . We note that, if σ is continuous, then, up to a perturbation δ ij (n), the variance of √ nY ij is approximatively σ(i/n, j/n), and hence we call σ a variance profile in this paper.

Theorem 2.3. Let δ 0 (n) := 1 n 2 i,j≤n |δ ij (n)|. Assume (2.5) and suppose that lim n δ 0 (n) = 0 and max i,j≤n E(Y 4 ij ) n(EY 2 ij ) 2 = o(1) (Y ij = 0).
(2.6)

Let µ Yn be the empirical eigenvalue distribution of Y n . Then, there exists a probability measure µ σ depending on σ such that µ Yn converges weakly to µ σ almost surely. The Stieltjes transform S σ of µ σ is given as follows.

(a) For each z with Im z > 1, there exists a unique

C + -valued L 1 -solution η z : [0, 1] → C + , of the equation η z (x) = -z + 1 0 σ(x, y) η z (y) dy -1 (for almost all x ∈ [0, 1]), (2.7) 
and the function z → η z (x) extends to an analytic C + -valued function on C + , for almost all x ∈ [0, 1]. Then,

S σ (z) = 1 0 η z (x) dx.
(b) The function x → η z (x) is also a solution of (2.7) for 0 < Im z ≤ 1.

Proof. The proof is the same as the proof of Bordenave (2019, Theorem 3.1), where a stronger assumption |δ ij (n)| ≤ δ(n) is required for some sequence δ(n) going to 0. It is replaced by the first condition of (2.6). Detailed analysis of the proof of the approximate fixed point equation in Bordenave (2019, page 42) shows that the weakest assumption on the fourth moments EY 4 ij ensuring the concentration of the conditional variance of Z i , R (i) Z i is the second condition of (2.6). The property (b) is observed in Bordenave (2019, page 39) by analiticity.

Theorem 2.3 shows that, to each variance profile function σ, one associates uniquely a Stieltjes transform S σ (z) of a probability measure. For the correspondence between σ and S σ , the conditions (7) are not needed. We define S σ (z) as the Stieltjes transform associated to σ.

Remark 2.4. A prototype of the variance profile method for Wigner ensembles was given by Anderson and Zeitouni (2006, Theorem 3.2). Theorem 3.1 of [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF] and Theorem 2.3 provide a simple general approach. Special cases of variance profile convergence results for Wigner matrices were studied before, as discussed below in (i) and (ii).

(i) If we set σ(x, y) = 1 for all x, y, then √ nY is a Wigner ensemble with v = v = 1. Let S sc (z) be the Stieltjes transform of the semi-circle law on [-2, 2]. Then, the functions x → η z (x) do not depend on x (but do on z) and the functional equation (2.7) gives the equation S sc (z) = -(z + S sc (z)) -1 , which is well known from the detailed study of resolvent matrices (see Tao (2012, §2.4.3)).

(ii) The paper [START_REF] Anderson | A CLT for a band matrix model[END_REF] deals primarily with a variance profile σ such that σ(x, y) dy = 1 for any x, corresponding to a band matrix model. For band matrix ensembles, see also Erdös et al. (2012,b); [START_REF] Nica | Operator-valued distribution I[END_REF]; [START_REF] Shlyakhtenko | Random Gaussian band matrices and freeness with amalgamation[END_REF].

Wigner Ensembles of Vinberg Matrices

In this section, we give explicitly the limiting eigenvalue distributions µ for the scaled Wigner matrices U n ∈ U n defined by (2.1). Let χ I denote the indicator function of a subset I ⊂ R. For a real number a, its cubic root is denoted by 3 √ a ∈ R and set [ a ] + = max(a, 0). We introduce two real numbers α c , β c depending on c ∈ [0, 1) by

α c = 8 + 4c -13c 2 -c(8 -7c) 3 8(1 -c) , β c = 8 + 4c -13c 2 + c(8 -7c) 3 8(1 -c) . (3.8)
It is clear that α 0 = β 0 = 1, α c < β c and β c > 0 for all c ∈ (0, 1). We note that α 1/2 = 0,

α c < 0 when c > 1/2, lim c→1-α c = -∞, lim c→1-(1 -c)α c = -1/4
and lim c→1-β c = 4, so that we set β 1 = 4. It can be shown that c → α c is strictly decreasing and c → β c is strictly increasing on [0, 1] (see Figure 7).

Theorem 3.1. Let U n be a Wigner matrix on U n defined by (2.1). Assume that lim n→+∞ a n /n = c ∈ (0, 1). Then, the limiting eigenvalue distribution µ of the rescaled matrices U n / √ n exists and is given for c ∈ (0, 1) as

µ = f c (t) dt + [1 -2c] + δ 0 with f c (t) := 3 R + (t/ √ v; c) -3 R -(t/ √ v; c) 2 √ 3π t χ [αc,βc] t 2 v , (3.9)
where, for

x 2 ∈ [α c , β c ], R ± (x; c) := x 6 -3(c + 1)x 4 + 3 2 (5c 2 -2c + 2)x 2 + (2c -1) 3 ±3c √ 3 -3c • x (x 2 -α c )(β c -x 2 ).
The support of µ is given as

supp µ =    - √ vβ c , - √ vα c ∪ {0} ∪ √ vα c , √ vβ c (if c ∈ (0, 1 2 )) - √ vβ c , √ vβ c (if c ∈ [ 1 2 , 1)).
(3.10)

If c = 0, then µ = δ 0 . If c = 1, then µ is the semicircle law on [-2 √ v, 2 √ v].
Remark 3.2. The formula (3.9) is valid for the extreme cases c = 0 or c = 1. If c = 0 then there is no density and µ = δ 0 . If c = 1, then it can be checked that [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF].

3 R + (x; 1)-3 R -(x; 1) = √ 3x √ 4 -x 2 so that, for v = 1 we get the semicircle law µ(dt) = (1/2π) √ 4 -t 2 χ [-2,2] (t)dt of
Sketch of the proof. We first derive the Stieltjes transform of the limiting eigenvalue distribution by applying Theorem 2.3 to

Y n = U n / √ n. Let U n = (U ij ) 1≤i,j≤n , so that Y ij = (1/ √ n)U ij . The variance profile is given as σ(x, y) = v if (x, y) ∈ C, 0 otherwise, C := (x, y) ∈ [0, 1] 2 ; min(x, y) ≤ c . (3.11)
We check easily that the conditions (2.6) are satisfied, since, by (2.1) and writing

M := max{|v -v |, v , v}, we get δ 0 (n) ≤ 3M n and max i,j≤n E(Y 4 ij ) n(EY 2 ij ) 2 ≤ max{M 4 , M 4 } n min{v, v } . Let us fix z ∈ C + = {z ∈ C; Im z > 0}.
The functional equation (2.7) from Theorem 2.3 becomes

η z (x) =      -z + v 1 0 η z (y) dy -1 (x ≤ c), -z + v c 0 η z (y) dy -1 (x > c).
Observe that the right-hand sides are independent of x. Integrating both sides of these equations, we obtain the following simultaneous equations If c = 0, then we have A = -1/z so that the limiting measure is µ = δ 0 . If c = 1 then the equation (2.7) reduces to the equation A = -(z + vA) -1 , which corresponds to the Stieltjes transform of the semi-circular law (cf. Tao (2012, p.178)). Thus we assume 0 < c < 1 in what follows.

B = -c z + vA , A -B = c -1 z + vB , ( 3 
Then, the cubic equation for A, resulting from (3.12) writes

zA 3 + (2z 2 + 1 -2c)A 2 + (z 2 + 2 -2c)zA + z 2 -c 2 = 0 (3.13)
and it is an algebraic equation with polynomial coefficients. The last equation (3.13) is reduced to (3.15) and the coefficients p, q are given by the following analytical rational functions on

Y 3 + p (z v ) Y + q (z v ) = 0, (3.14) where we set z v := z/ √ v, Y = Y (z) := vA z + 2 3 - (2c -1)v 3z 2 ,
C * := C \ {0} p(z) := - z 4 -2(c + 1)z 2 + (2c -1) 2 3z 4 , q(z) := - 2 27 • z 6 -3(c + 1)z 4 + 3 2 (5c 2 -2c + 2)z 2 + (2c -1) 3 z 6 .
The discriminant of the cubic equation (3.14) is expressed by p(z) and q(z), using α c , β c in (3.8), as (cf. [START_REF] Ronald | Integers, polynomials, and rings[END_REF])

Disc(z) = -4p(z) 3 + 27q(z) 2 = 4c 2 (1 -c) z 10 (z 2 -α c )(z 2 -β c ).
Let E = {z ∈ C; z = 0 or Disc(z v ) = 0} be the set of exceptional points of (3.14). For z ∈ E, the equation (3.14) has three different solutions (cf. [START_REF] Ronald | Integers, polynomials, and rings[END_REF]). Cardano's method and formula (3.15) imply that, for

z ∈ C + S(z) = z(u + (z) + u -(z)) 3v - 2z 3v + 2c -1 3z (3.16) with u ± (z) := (F c (z v ) ± i D c (z v )) 1 3 , F c (z) := -27 2 q(z) and D c (z) := 27 • Disc(z) 4 • 27 = 3c √ 3 -3c z 5 (z 2 -α c )(z 2 -β c ),
where convenient branches of the cube and the square roots are chosen, respectively, for u ± (z) and D c (z) to be such that S(z) is a Stieltjes transform of a probability measure. In particular, S(z) is holomorphic on C + and

u + (z) • u -(z) = -3p(z)
, and Im S(z) > 0 (z ∈ C + ).

(3.17)

Note that the branches of the roots may be different on different subregions of C + and that U := (u + + u -)/3 is a solution of (3.14). In order to derive the limiting eigenvalue distribution µ from S(z), we will need the following properties of S(z). Set R * := R \ {0}.

Proposition 3.3. The limit S(x) = lim y→+0 S(x + yi) exists for each x ∈ R * . The function S is continuous on R * and S(x) is a solution of (3.13) on R * .

Sketch of the proof of the proposition. It is sufficient to prove it for a solution U (z) of the reduced equation (3.14) on C + , such that U (z) is holomorphic on C + . We apply Theorem X.3.7 of [START_REF] Palka | An Introduction to Complex Function Theory[END_REF] to a convenient connected and simply connected domain D avoiding the set E. By the discussion of Ahlfors (1979, p.304), U has at most an ordinary algebraic singularity at a non-zero exceptional point, so U (z) is continuous on R * .

Without loss of generality, we suppose v = 1. We first assume that x = 0. The detailed local analysis of (3.16) and (3.17) that we omit here, shows that (Z1) if 0 < c < 1 2 , then lim y→+0 yIm S(yi) = 1 -2c, so µ has an atom at 0 with the mass

1 -2c < 1, (Z2) if c = 1 2 , then lim y→+0
Im S(yi) = +∞, lim y→+0 yIm S(yi) = 0 so µ does not have an atom at 0, (Z3) if 1 2 < c < 1, then lim y→+0

Im S(yi) = c(2c -1) -1/2 = πf c (0), so µ does not have an atom at 0. Next we consider the case x = 0. Combining the fact that S(z) is an odd function as a function on C \ R by (3.16) and the property S(z) = S(z) of the Stieltjes transform, we obtain Im S(-x + iy) = Im S(x + iy) so that Im S(-x) = Im S(x). Thus we can assume that x > 0.

Suppose Disc(x) ≥ 0. Since the coefficients p, q of (3.14) are real on R * , the equation (3.14) has only real solutions (cf. [START_REF] Ronald | Integers, polynomials, and rings[END_REF]). Therefore, S(x) is real so that the density of µ vanishes at such points.

Next we assume that Disc(x) < 0. By Proposition 3.3, S(x) is a solution of the cubic equation (3.13) and U (x) = (u + (x) + u -(x))/3 is a solution of the reduced equation (3.14). In particular, the formulas (3.16) and (3.17) hold for S(x), with convenient choices of branches of cubic roots and square roots. Consequently, we have

F c (x) + iD c (x), F c (x) -iD c (x) = R + (x), R -(x)
as a set, where R ± (x) := R ± (x; c)/x 6 ∈ R. Let ω = e 2iπ/3 denote the cube root of 1 with positive imaginary part. Then, (3.16) yields that the sum u + (x) + u -(x) has the following form

u + (x) + u -(x) = ω k+ 3 R + (x) + ω k-3 R -(x) with k + , k -∈ {0, 1, 2}.
By the first condition in (3.17), as p(x) ∈ R, we need to have k + + k -≡ 0 mod 3, that is, (k + , k -) = (0, 0), (1, 2) and (2, 1). Using the fact that R + (x) > R -(x) when x > 0 and Disc(x) < 0, we see that the imaginary part of u + (x) + u -(x) and of lim y→0+ S(x + iy) is, respectively, nul, positive and negative in these three cases. Since Im S(z) > 0, the last case is impossible.

Set h(x) := Im ω 3 R + (x) + ω 2 3 R -(x)
. Notice that h is a strictly positive continuous function on the set {x ∈ R; Disc(x) < 0} and that 1 π h(t) = f c (t), the density part of µ in the formula (3.9). Since the function Im S is continuous on R * by Proposition 3.3, we have Im S ≡ h or Im S ≡ 0 on the set {x ∈ R * ; Disc(x) < 0}.

We now show that the latter case is impossible. Note that µ has no atoms different from zero because S(z) is continuous on C + \ {0}. By Theorem 2.4.3 of Anderson et.al. (2010) so that µ(0, ∞) = 0 and, symmetrically, µ(-∞, 0) = 0. Since µ is a probability measure, we get µ = δ 0 . This contradicts properties (Z1-3) proven in the case x = 0. Thus, we have Im S ≡ h on the set {x ∈ R * ; Disc(x) ≤ 0} and, for x ∈ R * , lim

y→0+ 1 π Im S(x + iy) = 1 π h(x) = f c (x). Note that f c has a compact support {Disc(x) ≤ 0}. For c = 1 2 , the function f c is continuous on R. For c = 1 2 , a detailed analysis shows that lim x→0 f c (0) = ∞, with f c (x) ∼ |x| -1/2 at x = 0 and f c is continuous on R * . By property (Z3), if c > 1 2 then lim y→0+ Im S(iy) = πf c (0). When c = 1/2, Proposition 2.2.1 implies that µ = f c (t) dt + [1 -2c] + δ 0 . Actually, if s(z) is the Stieltjes transform of µ -f c (t) dt -[1 -2c] + δ 0 ,
then, using Proposition 2.2.2, we get lim y→0+ Im s(x + iy) = 0 for all x ∈ R. When c = 1/2, by Proposition 2.2.2, we get lim y→0+ Im s(x + iy) = 0 for all x ∈ R * , uniformly on compact intervals [a, b] ⊂ R * . Like in (3.18), we conclude by Theorem 2.4.3 in Anderson et.al. (2010) that µ = f c (t) dt. The support formula (3.10) follows by supp f c = {Disc(x) ≤ 0}.

In the Figures 23456we present graphical comparison between simulations for n = 4000 and the limiting densities, when c = 1/5, 2/5, 1/2, 3/5, 4/5. Remark 3.4. We can also consider the class of generalized daisy graphs D(a, b, k), with b complete satellites of k vertices, so that there are N = a + kb vertices. If all three sequences a n , b n , k n are non-decreasing, the graphs D(a n , b n , k n ) form a growing sequence of graphical models. Let us assume that k n = k is fixed for n large enough. Proof. The proof of Theorem 3.1 is valid for the matrices U n of size N n × N n . Actually, the variance profiles σ are the same and are given by (3.11) for all cases D(a n , b n , k). There are at most (k 2 + 2)N n non-zero perturbation terms δ ij (N n ) and they are all bounded by

M = max{|v -v |, v , v} so that δ 0 (N n ) = O(1/N n ) → 0.
Remark 3.6. The Wigner case may be considered in a framework of operator-valued free probability theory by methods of the rectangular free probability (cf. Mingo and Speicher (2017, Chapter 9), Benaych-Georges ( 2009)).

Wishart Ensembles of Vinberg Matrices

In this section, we shall consider the quadratic Wishart (covariance) matrices introduced in §2.4. We first prepare some special functions which we need later. They generalize the Lambert W function appearing (see [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF]) in the case P n = Sym(n, R) + and m = (1, . . . , 1). 4.1. Lambert-Tsallis W function and Lambert-Tsallis function W κ,γ . For a non zero real number κ, we set

exp κ (z) := 1 + z κ κ (1 + z κ ∈ C \ R ≤0 ), log κ (z) := z κ -1 κ (z ∈ C \ R ≤0 ),
where we take the main branch of the power function when κ is not integer. If κ = 1 1-q , then it is exactly the so-called Tsallis q-exponential function and q-logarithm, respectively (cf. [START_REF] Amari | Geometry of q-exponential family of probability distributions[END_REF]; [START_REF] Zhang | Information geometry on the curved q-exponential family with application to survival data analysis[END_REF]). We have the following relationship between these two functions:

log 1/κ • exp κ (z) = z (-π < κArg 1 + z κ < π). (4.19)
By virtue of lim κ→∞ exp κ (z) = e z , we regard exp ∞ (z) = e z and log 0 (z) = log(z).

For two real numbers κ, γ such that γ ≤ 1 κ ≤ 1 and γ < 1, we introduce a holomorphic function f κ,γ (z), which we call generalized Tsallis function, by

f κ,γ (z) := z 1 + γz exp κ (z) (1 + z κ ∈ C \ R ≤0 ).
We note that κ ∈ (-∞, 0) ∪ [1, +∞). Analogously to Tsallis q-exponential, we also consider f ∞,γ (z) = ze z 1+γz (z ∈ C). In particular, f ∞,0 (z) = ze z . In our work it is crucial to consider an inverse function to f κ,γ . A multivariate inverse function of f ∞,0 (z) = ze z is called the Lambert W function and studied in [START_REF] Corless | On the Lambert W function[END_REF]. Hence, we call an inverse function to f κ,γ the Lambert-Tsallis W function.

The function f κ,γ (z) has the inverse function w κ,γ in a neighborhood of z = 0, because we have f κ,γ (0) = 1 = 0 by

f κ,γ (z) = γz 2 + 1 + 1/κ z + 1 (1 + γz) 2 1 + z κ κ-1
.

Let us present some properties of f κ,γ . When γκ = 1, the function f κ,γ has a pole at x = -1 γ . By the condition on κ and γ, the function γz 2 + (1 + 1/κ)z + 1 has two real roots, say α 1 ≤ α 2 , when γ = 0. If γ = 0, there is only one real root, that we denote

α 2 = -κ κ+1 . f κ,γ (z) = 0 implies z = α i (i = 1, 2), or z = -κ if κ > 1.
For the case κ < 0, it is convenient to change the variable by a homographic action z = z

1+ z κ . Then f κ,γ (z) = f κ ,γ (z ) where κ = -κ > 0, γ = γ - 1 κ .
Since a homographic action by an element in SL(2, R) leaves C + invariant, the analysis of the case κ < 0 reduces to the case κ > 0 and γ ≤ 0. Then, the set

S := R \ f κ,γ (R) has the following possibilities. (S1) S = (f κ,γ (α 2 ), f κ,γ (α 1 )), where f κ,γ (α 2 ) < f κ,γ (α 1 ) < 0. It occurs when κ ∈ [1, +∞]
and γ < 0, and when κ < 0 and

γ = γ -1 κ < 0. (S2) S = (-∞, f κ,γ (α 2 ))
, where f κ,γ (α 2 ) < 0. It occurs when κ > 1 and γ ≥ 0 and when (κ, γ) = (1, 0). (S3) S = (-∞, f κ,γ (α 1 )), where f κ,γ (α 1 ) < 0. It occurs when κ < 0 and γ = γ -1 κ = 0. (S4) S = (f κ,γ (α 1 ), f κ,γ (α 2 )), where f κ,γ (α 1 ) < f κ,γ (α 2 ) < 0. It occurs when κ = 1 and γ > 0. The cases (S1,S2,S3) are studied in detail in the Supplementary Material. The case (S4) appears in the well known Wishart Ensemble case.

Theorem 4.1. Let S be an interval or half-line given by (S1)-(S4) above, and S ⊂ (-∞, 0) its closure. Then, there exists a complex domain Ω ⊂ C, symmetric with respect to the real axis and containing 0, such that f κ,γ maps Ω bijectively to C \ S. Consequently, the function w κ,γ can be continued in a unique way to a holomorphic function W κ,γ defined on

C \ S. The codomain of W κ,γ is Ω, that is, W κ,γ (C \ S) = Ω.
Proof. The proof is based on the properties of f κ,γ showed in Proposition 4.3.

Recall that the main branch of the Lambert W function is holomorphic on C \ (-∞, -1 e ] (see [START_REF] Corless | On the Lambert W function[END_REF]).

Definition 4.2. The unique holomorphic extension W κ,γ of w κ,γ to C \ S is called the main branch of Lambert-Tsallis W function. In this paper, we only study and use W κ,γ among other branches so that we call W κ,γ the Lambert-Tsallis function for short. Note that in our terminology the Lambert-Tsallis W function is multivalued and the Lambert-Tsallis function W κ,γ is single-valued.

We summarize the basic properties of the Lambert-Tsallis function that we need later. (a) Suppose that κ ≥ 1 and γ < 0, or κ < 0 and γ ≤ 0. In these cases, the set D is bounded

. If κ ≥ 1 then D ⊂ z ∈ C + ; Arg 1 + z κ ∈ (0, π κ+1 ) and z ∈ D satisfies Re z > -κ. If κ = ∞, then D ⊂ {z ∈ C + ; Im z ∈ (0, π)}. If κ < 0 then D ⊂ z ∈ C + ; Arg 1 + z κ -1 ∈ (0, π |κ|+1 ) . Moreover, lim |z|→+∞ W κ,γ (z) = -1 γ (recall that -1 γ is a pole of f κ,γ ). (b) Suppose κ ∈ [1, +∞] and γ = 0. The set D = Ω ∩ C + is unbounded and f κ,0 (∞) = ∞. If κ ∈ [1, +∞) then D ⊂ z ∈ C + ; Arg 1 + z κ ∈ (0, π κ+1 ) . If κ = ∞, then W ∞,0 (z) is the classical Lambert function, and one has D ⊂ {z ∈ C + ; Im z ∈ (0, π)}. (c) Suppose γ > 0. In this case we have κ ∈ [1, 1 γ ]. The set D = Ω ∩ C + is unbounded and f κ,γ (∞) = ∞. Moreover, D = z ∈ C + ; Arg 1 + z κ ∈ (0, π κ ) . Proof.
The main tool is the Argument Principle (cf. Ahlfors (1979, Theorem 18, p.152)). A detailed study of the inverse image f -1 κ,γ (R) is performed. We omit the technical details, provided in Supplementary Material.

Remark 4.4. It is worth underlying that we consider the main branch of the complex power function in the Tsallis q-exponential exp κ (z) appearing inside the generalized Tsallis function f κ,γ . Consequently, the main branch W κ,γ is the unique one such that W (0) = 0. A complete study of all branches of the Lambert-Tsallis W function will be interesting to do. The study of the Lambert-Tsallis function W κ,γ in the full range of parameters κ, γ is also an interesting open problem. We exclude the case κγ > 1 with κ > 0 because we do not need it later. We note that, when κγ > 1 and κ > 1 with a condition (1 + κ) 2 -4γκ 2 > 0, then f κ,γ maps a subregion of C + onto C + .

Applying the Lagrange inversion theorem, we see that the Taylor series of the function W κ,γ near z = 0 is

W κ,γ (z) = z + (γ -1)z 2 + γ 2 -3γ + 3κ + 1 κ z 3 + o(z 3 ).
4.2. Quadratic Wishart matrices. We will now study eigenvalues of Wishart (covariance) matrices in P n ⊂ U n , defined in Section 2.4. We apply the approach of Bordenave (2019, Cor.3.5), based on the variance profile method (Theorem 2.3).

In this subsection, we first consider the case of a n = n -1 and b n = 1, that is, P n is the symmetric cone Sym(n, R) + of positive definite symmetric matrices of size n. Let ξ n be a rectangular matrix of size n × N . In order to study eigenvalue distributions of X n = ξ n t ξ n , we equivalently consider Wigner matrices of the form

Y n := 0 ξ n t ξ n 0 ∈ Sym(n + N, R). (4.20)
If X n has eigenvalues λ j ≥ 0 (j = 1, . . . , n), then those of Y n are exactly ± λ j (j = 1, . . . , n) and zeros with multiplicity |N -n|. Let T n denote the Stieltjes transform of the empirical eigenvalue distribution of rescaled X n /n and S n the Stieltjes transform of rescaled Y n / √ n + N . Then, it is easy to see that these Stieltjes transforms satisfy

T n z 2 p n = 1 2z 1 -2p n z + S n (z) , (4.21) 
where p n := n n+N and q n = N n+N . In fact, we have

S n (z) = 1 n + N   |N -n| 0 -z + min(n,N ) j=1 1 λ j / √ n + N -z + 1 -λ j / √ n + N -z   = p n -q n z + 2zT n z 2 p n .
In order to study eigenvalue distributions of covariance matrices from Section 2.4, with parameters k as in (2.2), we introduce a trapezoidal variance profile σ as follows. Let p, α be real numbers such that 0 < p < 1 and 0 ≤ α ≤ (1 -p)/p. Then, σ is defined by σ(x, y) =      v (x < p and y ≥ p + αx), v (x ≥ p and 0 ≤ y ≤ min{(x -p)/α, p}), 0 (otherwise). Theorem 4.5. Let σ be a variance profile given in (4.22), and set κ := 1/(1 -α) and γ := (2p -1)/p = 1 -(q/p). Then, the Stieltjes transform S σ (z) associated to σ is given as

S σ (z) = - 2p zW κ,γ -vp z 2 + 1 -2p z - 2z v (z ∈ C + ),
where W κ,γ is the Lambert-Tsallis function defined in Section 4.1.

Proof. We use Theorem 2.3. Let z ∈ C + with Im z 1. By (2.7) we have

η z (x) =                    -z + v 1 p+αx η z (y) dy -1 (0 ≤ x ≤ p), -z + v α -1 (x-p) 0 η z (y) dy -1 (p < x ≤ p + αp), -z + v p 0 η z (y) dy -1 (p + αp < x ≤ 1).
For z fixed, we set

a(t) := η z (t), t ∈ [0, p], b(t) := η z (p + αt), t ∈ (0, p].
By differentiating both sides in the above equations, we obtain a system

a (t) = -vαa(t) 2 b(t), b (t) = va(t)b(t) 2 , (4.24) with initial data a(p) = -z + v 1 p+αp η z (y) dy -1 , b(0+) = -1 z .
By the unicity part of Theorem 2.3 holding for η z (x) ∈ C + , it is enough to show that (4.24) is satisfied by

a(t) = -zw(z)X(t) ακ , b(t) = - 1 z • X(t) -κ ,
where we set w(z) := -1 vp W κ,γ -vp z 2 and X(t) := 1 -vw(z) κ t, and that a(t), b(t) ∈ C + for Im z big enough. Here, we choose the main branches for complex power functions. If α = 1 then

a(t) = -zw(z)e -vw(z)t , b(t) = - 1 z • e vw(z)t .
The crucial part of the proof is to show that a(t) satisfies the initial data condition. We only give a proof for this in the case of α = 1. Set w = w(z) and X = X(p) for brevity. Since f κ,γ (-vpw(z)) = -vp z 2 , we have

wX κ 1 + v(1 -2p)w = 1 z 2 ⇐⇒ wz 2 X κ = 1 + v(1 -2p)w ⇐⇒ wz 2 X κ = 1 - vwp κ -(p + αp -1)vw ⇐⇒ X = z 2 wX κ + (p + αp -1)vw ⇐⇒ 1 = zwX κ-1 z + (p + αp -1) v z • X -κ ⇐⇒ -zwX κ-1 = -z + v(p + αp -1) z • X -κ -1
.

In the second and third equivalences, we use the formulas κ = 1/(1 -α) and X = 1 -vwp κ . Since a(p) = -zwX ακ = -zwX κ-1 by ακ = κ -1, we see that

a(p) = -z + v • p + αp -1 zX κ -1
.

Since η z (x) is independent of x when x ∈ [p + αp, 1], we have

1 p+αp η z (y) dy = (1 -p -αp)η z (p + αp) = (1 -p -αp)b(p) = p + αp -1 zX κ .
Thus we conclude that a(t) satisfies the initial condition. We omitted other details of the proof.

Remark 4.6. We call the parameter κ of Lambert-Tsallis functions the angle parameter since it depends only on the angle of the trapeze in (4.23). If κ = 1, then we have α = 0 so that the trapeze reduces to a rectangle. If α = q/p, i.e. κ = p/(p -q) = 1/γ, then the trapeze reduces to a triangle. On the other hand, the parameter γ = 2p-1 p = 1 -C depends directly on the shape parameter C = q/p. We call γ the shape parameter of the Lambert-Tsallis function. Note that the geometric condition 0 ≤ α ≤ p q is equivalent to the condition 1 κ ≥ γ. The formula γ = 1 -q p shows that γ ∈ (-∞, 1). We have

κ ∈ [1, 1 γ ] if 0 ≤ γ < 1, and κ ∈ [1, ∞] ∪ (-∞, 1
γ ] if γ < 0. Now we give the covariance Stieltjes transform T σ (z) for the profile σ.

Proposition 4.7. Let σ be a variance profile defined in (4.22) with parameters p and α. Set κ := 1 1-α and γ := 2p-1 p = 1 -q p . Then, the covariance Stieltjes transform T σ (z) corresponding to the profile σ is described as

T σ (z) = T κ,γ (z) := - 1 v - 1 zW κ,γ -v z - γ z = exp κ W κ,γ (-v/z) -1 v (4.25)
for z ∈ C + , and its R-transform R(z) is given as

R(z) = - 1 z - vγ 1 -vz - v (1 -vz) log 1/κ (1 -vz) (1 -vz ∈ C \ R ≤0 ).
Proof. The first equality of the formula for T σ (z) is given by the formula (4.21), and the second by the definition of the Lambert-Tsallis function. To prove the formula of R-transforms, we use the fact that -π < κArg 1 + W (z) Recall that Ω denotes the codomain of W κ,γ . By Proposition 4.3, for each x ∈ S, there are exactly two solutions of f κ,γ (z) = x in z ∈ ∂Ω, which are conjugate complex numbers, denoted by K + (x), K -(x), such that Im K + (x) > 0. Recall that α 1 ≤ α 2 are zeros of the function γz 2 + (1 + 1/κ)z + 1. Then, we have the following theorem.

Theorem 4.8. Let σ be a trapezoidal variance profile defined by (4.22). Let µ σ be the probability measure corresponding to the associated covariance Stieltjes transform T σ given by (4.25). Then, the density function d σ of µ σ is given as

d σ (x) =    1 2πxi 1 K -(-v x ) - 1 K + (-v x ) (if -v x ∈ S), 0 (if -v x ∈ R \ S).
(4.26)

Moreover, one has the following possibilities.

(1) In the case p < q and q p = α (i.e. κ ≥ 1 and γ < 0, or κ < 0 and γ < 0), the measure µ σ is absolutely continuous and its density d σ (x) is continuous on R. In particular, µ σ has no atoms. Its support is given as

supp µ σ = - v f κ,γ (α 2 ) , - v f κ,γ (α 1 ) = v α 2 2 1 + α 2 κ 1-κ , v α 2 1 1 + α 1 κ 1-κ . (4.27)
(2) In the case p = q = 1 2 or q p = α (i.e. κ ≥ 1 and γ = 0, or κ < 0 and γ = 0), the measure µ σ is absolutely continuous. Its density d σ is continuous on R * and lim x→+0 d σ (x) = +∞. In particular, µ σ has no atoms. Let

α 0 := α 2 if κ ≥ 1 and α 0 := α 1 = -1 if κ < 0. The support of µ σ is given as supp µ σ = 0, - v f κ,γ (α 0 ) = 0, v α 2 0 1 + α 0 κ 1-κ . (4.28) When κ = ∞, the measure µ σ is the Dykema-Haagerup measure χ v with support [0, ve].
(3) In the case p > q (i.e. κ ≥ 1 and 0 < γ < 1), we have

µ σ = d σ (x)dx + (1 -q p )δ 0 . The measure µ σ has an atom at x = 0 with mass 1 -q p . Recall that κ ∈ [1, 1/γ]. When κ > 1, the support of µ σ is given by (4.28). The function d σ is continuous on R * and lim x→+0 d σ (x) = +∞. For κ = 1 and -∞ < γ < 1, the measure µ σ is the Marchenko-Pastur law µ C with parameter C = q p = 1 -γ ∈ (0, 1) and supp d σ = v(1 - √ C) 2 , v(1 + √ C) 2 .
Proof. We use Proposition 4.7. Let z = x + yi. By Proposition 4.3 (i) and the fact that W κ,γ (z) = 0 only if z = 0, we see that l(x) := lim y→+0 Im T σ (x + iy) exists when x = 0 and that l(x) = 0 when -v/x ∈ S.

Assume that x = 0 and -v/x ∈ S. Set a(x) + ib(x) := lim y→0+ W κ,γ (-v/z). Since the function f κ,γ is continuous and injective on the closure D ⊂ C + , the function a + ib is continuous. By Proposition 4.3 (i), we have b(x) > 0 and a(x)

+ ib(x) = K + (-v x ). Since S ⊂ (-∞, 0) by Theorem 4.1, we have -v/x < 0, that is, x > 0. Thus, we obtain for -v/x ∈ S with x = 0 l(x) = lim y→0+ Im T σ (x + yi) = Im - 1 v - 1 x(a(x) + ib(x)) - γ x = - 1 2xi 1 K + (-v x ) - 1 K -(-v x ) = b(x) x(a(x) 2 + b(x) 2 ) > 0, (4.29) and thus l(x) is a continuous function on R * . Therefore, x ∈ R * is included in the support of µ σ if and only if -v/x ∈ S. By (2.4), we have d σ (x) = 1 π l(x)
, so that we obtain (4.26). Let us consider the case (S1). In this case, since S = (f (α 2 ), f (α 1 )) and f (α 1 ) < 0, we have

x ∈ supp µ ⇐⇒ f (α 2 ) ≤ - v x ≤ f (α 1 ) < 0 ⇐⇒ - v f (α 2 ) ≤ x ≤ - v f (α 1 )
.

Recall that α i , i = 1, 2 are the real solutions of the equation γz 2 + (1 + 1/κ)z + 1 = 0. For a solution α of this equation, we have by 1

+ α/κ = -α(1 + γα) f κ,γ (α) = α 1 + γα 1 + α κ κ = -α 2 1 + α κ κ-1
, so that we arrive at the assertion 1. of the theorem. The argument for other two cases is similar, and hence we omit it.

Next we consider the case x = 0. We present the case κ ∈ [1, +∞) and γ = 0. For

z ∈ C + , let us set re iθ = 1+ Wκ,γ (-v/z) κ (r > 0, θ ∈ (0, π)). By Proposition 4.3 (ii-b), the set D = Ω∩C + is unbounded and f κ,γ (∞) = ∞. Consequently, if z → 0 in C + , or equivalently -v/z → ∞ in C + , then we have W κ,0 (-v/z) → ∞ and r → +∞.
Again by Proposition 4.3 (ii-b), we see that θ ∈ (0, π κ+1 ) so that sin κθ > 0 when z = -v/(iy) ∈ C + , and thus

Im T (z) = Im exp κ W κ,γ (-v/z) -1 v = Im (re iθ ) κ -1 v = Im r κ cos κθ -1 + ir κ sin κθ v = r κ sin κθ v → +∞ (y → +0).
On the other hand, µ σ does not have an atom at x = 0 because we have by W κ,0 (-v/z) → ∞ and by γ = 0

yT (iy) = - y v - 1 iW κ,γ (-v/(yi)) - γ i → γi = 0 (y → +0).
The proofs for other cases are similar, and hence we omit them.

The absolute continuity of µ σ follows from Proposition 2.2, by considering µ 0 := µ σd σ (x)dx, or, in the case with atom at x = 0, of µ 0 := µ σ -d σ (x)dx -γδ 0 and using the fact that the Stieltjes transform S 0 (z) of µ 0 satisfies lim y→0+ Im S 0 (x + iy) = 0 for all x ∈ R. The argument is similar as in the proof of Theorem 3.1.

In the following corollary, we give a real implicit equation for the density d σ analogous to the Dykema-Haagerup equation (2.3). To do so, we introduce the following notation

e κ (z) := |exp κ (z)| ≥ 0, θ κ (z) = κArg 1 + z κ (z ∈ C + ).
If κ = ∞, we set e κ (z) := e Re z and θ κ (z) := Im z. Then, we have exp

κ (z) = e κ (z) cos θ κ (z) + i sin θ κ (z) .
Corollary 4.9. (i) Suppose v = 1 for simplicity. For two real numbers κ, γ such that γ ≤ 1 κ ≤ 1 and γ < 1, the density d σ of the limiting law µ σ satisfies the equation

d σ sin θ κ (z) b 1 + γa -γb cot θ κ (z) e κ (z) -1 = 1 π • e κ (z) sin θ κ (z)) (4.30) for z = a + bi ∈ ∂Ω ∩ C + .
In particular, when (κ, γ) = (∞, 0), the density d σ satisfies the equation

(2.3) with b = x and a = -x cot x (x ∈ [0, π)). (ii) If κ ∈ [1, ∞] and γ < 0, then the correspondence a → b = b(a) is unique for each z = a + bi ∈ ∂Ω ∩ C + . Then, a ∈ [α 1 , α 2 ]. The same is true for κ = ∞ and γ = 0 with a ∈ [-1, +∞). Proof. (i) Let z = a + bi ∈ ∂D ∩ C + . Then, it satisfies f κ,γ (z) ∈ S. Suppose f κ,γ (z) = -1 x , and set X = a + γa 2 + γb 2 and Y = |1 + γz| 2 = (1 + γa) 2 + (γb) 2 . Notice that X 2 + b 2 = (a 2 + b 2 )Y . The equation f κ,γ (z) = -1 x means that e κ (z) Y X cos θ κ (z) -b sin θ κ (z) = - 1 x , (4.31) X sin θ κ (z) + b cos θ κ (z) = 0. (4.32)
The latter one (4.32) yields that cos θ κ (z) = -

sin θκ(z) b X so that - 1 x = - e κ (z) Y • sin θ κ (z) b (X 2 + b 2 ) ⇐⇒ 1 x • b a 2 + b 2 = e κ (z) sin θ κ (z) .
On the other hand, (4.32) can be written as X = -b cot θ κ (z) , and using this expression together with (4.31), we obtain

- 1 x = e κ (z) Y -b cot θ κ (z) cos θ κ (z) -b sin θ κ (z) = - b sin θ κ (z) • e κ (z) Y and hence x = sin θ κ (z) b • Y e κ (z) -1 . Figure 8. Domain Ω for κ = -1/3, γ = -4.
It is easy to check that we have Y = 1 + γa + γX. By (4.29), the density can be described as 

d σ (x) = 1 πx • b a 2 +b 2 so that
z κ = 1 + a κ > 0 and hence θ κ (a + ib) = κθ(a, b). Note that ∂ ∂b θ κ (a + ib) = κ • κ+a (κ+a) 2 +b 2 .
For given a > -κ, set g(y; a) := y cot(θ κ (a + iy)). Let y 0 > 0 satisfy θ(a, y 0 ) = π κ+1 . Then, we can show that g(y; a) is monotonic decreasing for y ∈ (0, y 0 ). Set h(y) = h(y; a) := a+γa 2 +γy 2 +g(y) for the fixed a > -κ. Recall that h(y; a) = 0 if and only if z = a + iy ∈ ∂D ∩ C + . As γ < 0, we see that the function h(y) := a + γa 2 + γy 2 + g(y) is decreasing on y ∈ (0, y 0 ) for each fixed a > -κ. Since cot(θ κ (a + iy 0 )) = -κ+a y0 , we see that h(y 0 ; a) < 0. By the fact that lim y→+0 g(y; a) = 1 + a κ , we have lim y→+0 h(y; a) = γ(a -α 1 )(a -α 2 ). Since h is monotonic decreasing on y ∈ (0, y 0 ), if a ∈ (α 1 , α 2 ) then lim y→+0 h(y; a) > 0 so that there exists a unique solution y = b of h(y; a) = 0 in y ∈ (0, y 0 ) for each a ∈ (α 1 , α 2 ) by the intermediate value theorem, whereas if lim y→+0 h(y; a) ≤ 0 then there is no solution of h(y; a) = 0 in y ∈ (0, y 0 ). Thus the correspondence a → b = b(a) is unique for each z = a + bi ∈ ∂Ω ∩ C + .

Remark 4.10. Corollary 4.9 (ii) enables us to write the density d σ with one real parameter in a way similar to Dykema and Haagerup (2004, Theorem 8.9), see formula (2.3). In particular, in the case (a), we obtain the formula

d σ sin b(a) b(a) 1 + γa -γb(a) cot b(a) e -a = 1 π • e a sin b(a) (a ∈ [α 1 , α 2 ]).
A natural conjecture that we always have a 1-1 correspondence a → b or b → a is not confirmed by numerical generation of the domain Ω. For κ = -1/3 and γ = -4 the domain Ω is illustrated in the Figure 8. We do not have unicity of a → b nor b → a.

4.3.

Applications to Wishart Ensembles of Vinberg matrices. Now we apply Theorem 4.8 to the covariance matrix X n = Q k (ξ n ) ∈ P n in two situations. The first (Corollary 4.11) is the case when P n is the symmetric cone Sym(n, R) + with k of the form (4.33) below. The second situation (Theorem 4.14) is the general case when P n ⊂ U n is a dual Vinberg cone with k of the form (2.2). This case contains the first one, that we present separately because of the importance of the symmetric cone Sym(n, R) + .

Let us assume that k

= k(n)= (k 1 , . . . , k n ) in (2.2) is of the form k = m 1 (1, . . . , 1, 1) + m 2 (n)(0, . . . , 0, 1), lim n m 2 (n) n = m, (4.33)
where m 1 ∈ Z ≥0 is a fixed non-negative integer and m ∈ R ≥0 is a non-negative real such that

m 1 + m > 0. Set N := k 1 + • • • + k n = m 1 n + m 2 (n).
We note that the case m 1 = 0 corresponds to the classical Wishart ensembles, and if m 1 ≥ 1 then we have N ≥ n.

Corollary 4.11. Let k be as in (4.33). Suppose that ξ n ∈ E k is an i.i.d. matrix with finite fourth moments and let X n = ξ n t ξ n . Let µ n be the empirical eigenvalue distribution of X n /n. Then, there exists a limiting eigenvalue distribution µ = lim n µ n . The Stieltjes transform T (z) of µ is given by formula (4.25)

T (z) = T κ,γ (z) = exp κ W κ,γ (-v/z) -1 v with κ = 1 1 -m 1 , γ = 1 -m -m 1 .
The measure µ is absolutely continuous and has no atoms. If m 1 = 0 then the measure µ is the Marchenko-Pastur law with parameter m1-1) 1 ]. Otherwise, for m 1 , m > 0, the density d(x) of µ is continuous on R, and its support equals

C = m. The case (m 1 , m) = (1, 0) corresponds to the Dykema-Haagerup measure χ v . If m = 0 then the density d is continuous on R * and lim x→+0 d(x) = +∞. When m 1 ≥ 2 then the support of µ is [0, vm m1/(
[A(α 2 ), A(α 1 )] where A(α i ) := vα -2 i (1 + (1 -m 1 )α i ) m1/(m1-1) and α 1 < α 2 are roots of the function (1 - m 1 -m)x 2 + (2 -m 1 )x + 1.
Proof. We use Theorem 2.3. It is enough to show that the matrix Y n in (4.20) has the variance profile σ in (4.22) and that the conditions (2.6) are satisfied. Since we have for n large enough

δ 0 (n) ≤ 1 n 2 • 2v(m 1 + m + 1)n = 2v(m 1 + m + 1) n → 0 (n → ∞) and if E|Y ij | 2 = 0 then E(Y 4 ij ) n(EY 2 ij ) 2 = M 4 vn → 0 (n → ∞),
we can easily check the conditions (2.6). Thus, we can apply Theorem 4.8. Consider m 1 ≥ 2. Then κ < 0. When m = 0, then we have γ = γ -1 κ = 0 so that we apply Theorem 4.8.2. We have α = -1, 1 -1 κ = m 1 and 1 -κ = m1 m1-1 . By (4.28), the support is given by supp

µ = 0, v α 2 1 + α κ 1-κ = 0, vm m1/(m1-1) 1
. When m > 0, we have γ < 0 so that we apply Theorem 4.8.1. The support of µ is given by the formula (4.27), where α 1 ≤ α 2 are roots of the function γx 2 + (1 + 1/κ)x + 1.

Remark 4.12. If m = 0, our results contain those of Claeys and Romano (2014, Section 4.5.1) and Cheliotis (2018, Theorem 4 and (12)). The result on the limiting densities of biorthogonal ensembles in Cheliotis ( 2018) can be reproduced from Corollary 4.11. In fact, our random matrices Q k (ξ n ) essentially correspond to those considered in [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] through adjusting parameters m 1 = θ -1 and m 2 (n) = b -1 (not depending on n), where θ and b are parameters used in that paper.

Remark 4.13. Until now, we assumed that m 1 ∈ Z ≥0 and hence the parameter α of the variance profile σ needs to be also an integer. However, we can take a sequence {k(n)} ∞ n=1 so that the corresponding α is an arbitrary given positive real number. In fact, when α > 0 is given, we consider a right triangle with lengths 1 and α. For an arbitrary n, we cover the triangle by 1/n × 1/n squares as in the figure. To each j = 1, . . . , n, we associate an integer

k j (n) such that kj (n) n ≤ j n α < kj (n)+1 n , or equivalently k j (n) ≤ jα < k j (n) + 1, and we set k(n) = (k 1 (n), . . . , k n (n)). Note that this condition is independent of n so that k j (m) = k j (n) when m ≥ n ≥ j, and hence {E k(n) } n is a sequence of vector spaces such that E k(n) ⊂ E k(n+1) .
In the Figure 9, we set α = 1.8, n = 11 and k

(n) = (1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2).
Let us return to the quadratic Wishart case for general 

P n with parameter k as in (2.2) such that m 1 , m 2 ∈ Z ≥0 are fixed. Note that m 2 (n) in the previous discussion is now m 2 (n) = m 2 b n . Set N n := m 1 n + m 2 b n . We have E k =        ξ = η ζ ∈ Mat(n × N n , R); η = (η ij ) ∈ Mat(a n × N n , R), ζ = (ζ ij ) ∈ Mat(b n × N n , R) η ij = 0 if j ≤ (m 1 -1)i, ζ ij = 0 if M (i, j) ∈ {1, 2, . . . , m 1 + m 2 }        , where M (i, j) := j -m 1 a n -(m 1 + m 2 )(i -1).
:= 1 -m 1 + m 2 (1 -c) /c. Then, the Stieltjes transform T (z) of the limiting eigenvalue distribution of Q k (ξ n )/n with i.i.d. matrices ξ n ∈ E k is given for z ∈ C + as T (z) = - 1 v - c zW κ,γ (-cv z ) - cγ + 1 -c z = exp κ W κ,γ (-vc/z) -1 v - 1 -c z .
The properties of absolute continuity and support of the limiting measure can be derived analogously to those obtained in Theorem 4.8 for c = 1.

Proof. We construct a variance profile σ from E k likely to (4.22). We embed the rectangular

matrix ξ n ∈ E k in a square matrix Y (ξ n ) = 0 ξ n t ξ n 0 , and set V n = Y (ξ n ); ξ n ∈ E k . Set p = lim n→∞ n n + N n = 1 1 + m 1 + m 2 (1 -c) . Let σ be a function [0, 1] × [0, 1] → R ≥0 defined by σ(x, y) =      v (x < cp and y ≥ p + m 1 x) v (x ≥ p and 0 ≤ y ≤ min{(x -p )/m 1 , cp }), 0 (otherwise).
Then, we can show that σ is the variance profile of V n . On the other hand, let us consider

a subspace E k := ξ = η ζ ∈ E k ; ζ = 0 of E k , and let V n = Y (ξ n ); ξ n ∈ E k . Then,
σ is also the variance profile of V n . Thus, we consider equivalently the limiting eigenvalue distribution of V n , and that of covariance matrices on 

E k . If ξ n = η n 0 ∈ E k , then Q k (ξ n ) = η n t η n 0 0 0 ,
T 1 (z) = T κ,γ (z) with κ = 1 1 -m 1 , γ = 2p -1 p = c -m 1 -m 2 (1 -c) c .
In general, for two symmetric matrices A i (i = 1, 2) of size n i , the Stieltjes transform S(z) of diag(A 1 , A 2 )/(n 1 + n 2 ) can be described by using the Stieltjes transforms S i (z) of A i /n i (i = 1, 2) as

S(z) = S 1 n 1 + n 2 n 1 z + S 2 n 1 + n 2 n 2 z (z ∈ C + ).
In our situation, we have (n 1 , n 2 ) = (a n , b n ) and (A 1 , A 2 ) = (η n t η n , 0). Hence, we have S 2 (z) = -1 z and S 1 (z) is the Stieltjes transform of η n t η n /a n so that lim n→∞ S 1 (z) = T 1 (z). Thus, taking the limit n → ∞, we see that the limiting Stieltjes transform T (z) corresponding to E k , and hence to E k is given as

T (z) = T 1 z c + S 2 z 1 -c = T κ,γ z c - 1 -c z = - 1 v - c zW κ,γ (-vc/z) - cγ + 1 -c z ,
whence we obtain the corollary. 

(u, z) = -z + 1 0 σ(u, v) 1 + c 1 0 σ(x, v)τ (x, z)dx -1 dv -1
is given to get the limiting Stieltjes transform f (z) for the rescaled random matrices Y n Y * n , as the integral 1 0 τ (u, z)du. This equation appears in [START_REF] Girko | Theory of Random Determinants[END_REF] in the setting of Gram matrices based on Gaussian fields (cf. Hachem at al. (2006, Remark 3.1)). However, thanks to symmetry, solving the equations (4.24) resulting from Theorem 2.3 is easier than solving the last functional-integral equation for τ (u, z). Therefore we opted for variance profile method for Gaussian and Wigner ensembles as the main tool of studying Wishart ensembles of Vinberg matrices.

Wigner and Wishart Ensembles related to Generalized Vinberg cones

In this section, we consider the dual cone Q Gn of P n , which is realized as a minimal matrix form in the sense of [START_REF] Yamasaki | Realization of homogeneous cones through oriented graphs[END_REF] as follows. Let V n be a subspace of Sym(a n (b n + 1), R) defined by

V n :=    diag x y 1 t y 1 d 1 , . . . , x y bn t y bn d bn ; x ∈ Sym(a n , R), y 1 , . . . , y bn ∈ R an , d 1 , . . . , d bn ∈ R    .
(5.34)

Then, the dual cone Q Gn is described as

Q Gn := V n ∩ Sym(a n (b n + 1), R) + .
We consider Wigner Ensembles V n ∈ V n and quadratic Wishart Ensembles X n ∈ Q Gn as those in the sense of Sym(a n (b n +1), R). Assume that lim n→+∞ a n = ∞. By the theory of lower rank perturbation (see Tao (2012, §2.4.1), for example), the study of eigenvalue distributions of these ensembles boils down to the study of the eigenvalue distributions of x and, after suitable normalization, the limiting eigenvalue distributions of V n and X n are the same as for x ∈ Sym(a n , R).

This essential difference in the Random Matrix Theory for the cones Q Gn and P n may be explained by a substantial difference between the cones Q Gn and P n in terms of numbers of sources in the sense of [START_REF] Yamasaki | Realization of homogeneous cones through oriented graphs[END_REF]. In the case P n , there is only one source so that P n can be realized in a usual matrix form. On the other hand, Q Gn has b n sources so that b n copies of a usual matrix form appear.
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Preliminaries

We begin this paper with recalling the definition of the empirical eigenvalue distribution of a symmetric matrix. Let X ∈ Sym(n, R) be a symmetric matrix and let λ 1 (X) ≥ • • • ≥ λ n (X) be the ordered eigenvalues of X with counting multiplicities. Denote by δ a the Dirac measure at a. Then, the empirical eigenvalue distribution µ X of X is defined by µ

X = 1 n n i=1 δ λi(X) . If {X n } ∞ n=1 (X n ∈ Sym(n; R)
) is a sequence of Gaussian, Wigner or Wishart matrices, then it is well known that there exists a limit µ of µ Xn as n → ∞, and the sequence of random measures µ Xn converges almost surely weakly to the semi-circle law or the Marchenko-Pastur law, respectively (see for example [START_REF] Bai | Spectral Analysis of Large Dimensional Random Matrices[END_REF]; [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]). The limits µ of µ Xn , in the almost sure weak sense, are said to be the "limiting eigenvalue distributions µ of X n ." For simplicity, we will say "i.i.d. matrices" instead of "matrices with independent and identically distributed non-null terms".

2.1. Basics on statistical graphical models. Let G be a graph with vertices V = {1, 2, . . . , n} and edges E. We say that a statistical character X = (X 1 , . . . , X n ) has the dependence graph G when each conditional independence of marginals X i and X j with respect to remaining variables corresponds to the absence of the edge {i, j} in E. Thus the dependence graph G is a tool of encoding of the conditional independence of marginals of X . We say that X belongs to the graphical model governed by G.

Let U G be the subspace of Sym(n, R) containing matrices with u ij = 0 if the edge {i, j} ∈ E. Cones P G = Sym(n, R) + ∩ U G and their dual cones Q G are basic objects of graphical model theory. Actually, a Gaussian n-dimensional model N (m, Σ) is governed by the graph G if and only if the inverse covariance matrix Σ -1 ∈ P G (cf. [START_REF] Lauritzen | Graphical Models[END_REF]). An important class of graphical models, called daisy graphs, is defined as follows. Let a + b = n and let D(a, b) be a graph with vertices V = {1, . . . , n}, such that the first a elements form a complete graph and the latter b elements are satellites(petals) of the complete graph, that is, each satellite connects to all elements in the complete graph and does not connect to the other satellites (see Figure 1). The double circle around the vertex a n in Figure 1 indicates the complete graph with a n vertices.

In high dimensional statistics, it is essential to let the number of observed characters n tend to infinity. From the graphical model theory point of view, the pattern of the growing graphs G n and of the corresponding cones P Gn should remain the same. This requirement is met by growing daisy graphs D(a n , b n ) for non-decreasing sequences of positive integers {a n } ∞ n=1 and {b n } ∞ n=1 such that a n +b n = n. 

U n := U = x y t y d ; x ∈ Sym(a n , R), y ∈ Mat(a n × b n , R), d is a diagonal matrix of size b n ,
and we set

P n := P Gn = U n ∩ Sym(n, R) + .
The cone P n admits a transitive group action, i.e. P n is a homogeneous cone, since the following triangular group

H n :=    h = h 1 y 0 d ∈ GL(n, R); h 1 ∈ GL(a n , R) is upper triangular, y ∈ Mat(a n × b n ; R), d : diagonal of size b n   
acts on P n transitively by the quadratic action ρ(h)U := hU t h for h ∈ H n and U ∈ P n . This is easily verified by using the Cholesky decomposition (cf. Ishi (2016, p. 3)). For definition and basic properties of homogeneous cones, see [START_REF] Vinberg | The theory of convex homogeneous cones[END_REF]; [START_REF] Ishi | Homogeneous cones and their applications to statistics[END_REF].

If n = 3 and (a n , b n ) = (1, 2), then P 3 is the dual Vinberg cone (see Example 2.1) so that, in this paper, we call P n a generalized dual Vinberg cone and elements U ∈ U n Vinberg matrices. Vinberg cones form an important class of matrix cones related to graphical models (cf. Section 2.1). On the other hand, if we set a n = n -1 and b n = 1, then U n is the space Sym(n, R) of symmetric matrices of size n, and hence our discussion covers the classical results. In what follows, we introduce two kinds of random matrices related to the homogeneous cones P n , that is, Gaussian and Wigner matrices and Wishart quadratic (covariance) matrices.

2.3. Gaussian and Wigner matrices in U n . Analogously to the classical Wigner matrices, we say that We first recall the notion of a direct sum of quadratic maps. Let Q i : R mi → R m (i = 1, . . . , k) be quadratic maps. Then, the direct sum

U n = (u ij ) ∈ U n is a Wigner random matrix if                • the diagonal terms (u ii ) are independent of the off-diagonal terms (u ij ) i<j , • the diagonal u ii '
Q 1 ⊕• • •⊕Q k is an R m -valued quadratic map on R m1 ⊕• • •⊕R m k given by Q(x) := Q 1 (x 1 ) + • • • + Q k (x k ) where x = k i=1 x i x i ∈ R mi . If Q 1 = • • • = Q k , then the direct sum Q is denoted by Q ⊕k 1 .
As showed in [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF], any homogeneous cone Ω admits a canonical family of the so-called basic quadratic maps q j (j = 1, . . . , r) defined for each j on a suitable finite dimensional vector space E j and with values in Ω. The number r is called the rank of Ω and r = n for the cones U n . Using the basic quadratic maps q j , one constructs quadratic maps

Q k for k ∈ Z r ≥0 by Q k := q ⊕k1 1 ⊕ • • • ⊕ q ⊕kr r , defined on E k := E ⊕k1 1 ⊕ • • • ⊕ E ⊕kr r . The maps Q k are Ω-positive, i.e. if ξ ∈ E k \ {0}, then Q k (ξ) ∈ Ω \ {0}.
In our case Ω = P n , the basic quadratic maps are given as follows (cf. [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF]). For j = 1, . . . , n, define E j ⊂ R n by

E j = ξ 0 ∈ R n ; ξ ∈ R j (j ≤ a n ), E j = ξ 0 + ξ e j ∈ R n ; ξ ∈ R an , ξ ∈ R (j > a n ),
where e i (i = 1, . . . , n) is the vector in R n having 1 on the i-th position and zeros elsewhere. We note that each E j corresponds to the j-th column of the Lie algebra h n of H n , that is, we have

h n = H = (ξ 1 , . . . , ξ n ); ξ j ∈ E j .
Then, the basic quadratic maps q j : E j → U n of the cone P n are defined by q j (ξ j ) := ξ j t

ξ j ∈ U n (ξ j ∈ E j ). Let k ∈ Z n ≥0 .
Then, E k can be viewed as a subspace of Mat(n

× (k 1 + • • • + k n ); R).
In fact, we have

E k =      η = k1 ξ (1) 1 , . . . , ξ (k1) 1 , ξ (1) 
2 , . . . , ξ

(kn-1) n-1 , kn ξ (1) n , . . . , ξ (kn) n ; ξ (i) j ∈ E j , j = 1, . . . , n, i = 1, . . . , k j      ⊂ Mat(n × (k 1 + • • • + k n ); R),
and then Q k (η) = η t η for η ∈ E k . When η ∈ E k is an i.i.d. random matrix whose non-null terms have the normal law N (0, v), the law of Q k (η) is a Wishart law γ Q k ,1/(2v)
Idn on the cone P n . For the definition of all Wishart laws on the cone P n , see [START_REF] Graczyk | Riesz measures and Wishart laws associated to quadratic maps[END_REF]. More generally, in this paper, we consider eigenvalue distributions of rescaled matrix Q k (η)/n under the assumption that η ∈ E k is a centered rectangular i.i.d. matrix whose non-null terms have variance v and finite fourth moments M 4 .

We consider two-dimensional multiparameters

k = k(n) ∈ Z n ≥0 of the form k = m 1 (1, . . . , 1) + m 2 ( an 0, . . . , 0, bn 1, . . . , 1 ) (m 1 , m 2 ∈ Z ≥0 ). (2.2)
Example 2.1. Let n = 3, a 3 = 1 and b 3 = 2. In this case, P 3 is the dual Vinberg cone (cf. Vinberg (1963, p. 397), Ishi (2001, §5.2)):

P 3 =    x =   x 11 x 12 x 13 x 12 x 22 0 x 13 0 x 33   ; x is positive definite    . Consider m 1 = m 2 = 1, so k = (1, 2, 2). Then E k = E (1,2,2
) can be written as 

E (1,2,2) =    η =   x y 11 y 12 z 11 z 12 0 y 21 y 22 0 0 0 0 0 z 21 z 22   ; x, y ij , z ij ∈ R    , and 
Q (1,2,2) (η) = η t η is given as Q (1,2,2) (η) =   x 2 +
) = (n-1, 1), m 1 = 0 and m 2 ∼ Cn. The limiting eigenvalue distribution is the Marchenko-Pastur law µ C with parameter C, i.e. denoting a = √ C -1 2 , b = √ C + 1 2 and [x] + := max(x, 0) (x ∈ R), µ C = [1 -C] + δ 0 + (t -a)(b -t) 2πt χ [a,b] (t)dt.
(ii) The Wishart Ensemble related to the Triangular Gaussian Ensemble [START_REF] Dykema | DT-operator and decomposability of Voiculescu's circular operator[END_REF]; Cheliotis (2018)) for (a n , b n ) = (n -1, 1), m 1 = 1 and m 2 = 0. When v = 1, the limiting eigenvalue distribution, which we call the Dykema-Haagerup measure χ 1 , is absolutely continuous with respect to Lebesgue measure and has support equal to the interval [0, e]. Its density function φ is defined on the interval (0, e] by the implicit formula (Dykema and Haagerup (2004, Theorem 8.9))

φ sin x x exp(x cot x) = 1 π sin x exp(-x cot x) (0 ≤ x < π), (2.3) 
with φ(0+) = ∞ and φ(e) = 0. For v = 1, the limiting measure χ v has density φ(y/v)/v on the segment (0, ve].

2.5.

Resolvent method for Wigner ensembles with a variance profile σ. Let C + denote the upper half plane in C. In this paper, the Stieltjes transform S(z) = S µ (z) of a probability measure µ on R is defined to be

S(z) = R µ(dt) t -z (z ∈ C + ).
In the sequel, we will need the following properties of the Stieltjes transform, which are not difficult to prove. (2.4)

If f is continuous on an interval [a, b], a < b, the convergence (2.4) is uniform for x ∈ [a, b].
Recall that if µ is a probabilistic measure on R, with Stieltjes transform s(z) and the absolutely continuous part of µ has density f , then (2.4) holds for almost all x (Lemma 3.2 (iii) of Bordenave ( 2019)).

We present now the following, slightly strengthened result from the Lecture Notes of Bordenave (2019, §3.2), that will be a main tool of proofs in this paper.

Let

σ : [0, 1] × [0, 1] → [0, ∞) be a bounded Borel measurable symmetric function. For each integer n, we partition the interval [0, 1] into n equal intervals J i , i = 1, . . . , n. Put Q ij := J i × J j , which is a partition of [0, 1] × [0, 1].
We assume that Y ij (i ≤ j) are independent centered real variables, defined on a common probability space, with variance

EY 2 ij = 1 n Qij σ(x, y) |Q ij | dx dy + δ ij (n) , (2.5) 
for a sequence δ ij (n). We note that the law of Y ij depends on n. We set Y ji := Y ij and we consider the symmetric matrix Y n := (Y ij ) 1≤i,j≤n . We note that, if σ is continuous, then, up to a perturbation δ ij (n), the variance of √ nY ij is approximatively σ(i/n, j/n), and hence we call σ a variance profile in this paper.

Theorem 2.3. Let δ 0 (n) := 1 n 2 i,j≤n |δ ij (n)|. Assume (2.5) and suppose that lim n δ 0 (n) = 0 and max i,j≤n E(Y 4 ij ) n(EY 2 ij ) 2 = o(1) (Y ij = 0).
(2.6)

Let µ Yn be the empirical eigenvalue distribution of Y n . Then, there exists a probability measure µ σ depending on σ such that µ Yn converges weakly to µ σ almost surely. The Stieltjes transform S σ of µ σ is given as follows.

(a) For each z with Im z > 1, there exists a unique C + -valued L 1 -solution η z : [0, 1] → C + , of the equation (b) The function x → η z (x) is also a solution of (2.7) for 0 < Im z ≤ 1.

η z (x) = -z + 1 0 σ(x, y) η z (y) dy -1 (for almost all x ∈ [0, 1]), ( 2 
The proof is given in the next subsection. Theorem 2.3 shows that, to each variance profile function σ, one associates uniquely a Stieltjes transform S σ (z) of a probability measure. For the correspondence between σ and S σ , the conditions (7) are not needed. We define S σ (z) as the Stieltjes transform associated to σ.

Remark 2.4. A prototype of the variance profile method for Wigner ensembles was given by Anderson and Zeitouni (2006, Theorem 3.2). Theorem 3.1 of [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF] and Theorem 2.3 provide a simple general approach. Special cases of variance profile convergence results for Wigner matrices were studied before, as discussed below in (i) and (ii).

(i) If we set σ(x, y) = 1 for all x, y, then √ nY is a Wigner ensemble with v = v = 1. Let S sc (z) be the Stieltjes transform of the semi-circle law on [-2, 2]. Then, the functions x → η z (x) do not depend on x (but do on z) and the functional equation (2.7) gives the equation S sc (z) = -(z + S sc (z)) -1 , which is well known from the detailed study of resolvent matrices (see Tao (2012, §2.4.3)).

(ii) The paper [START_REF] Anderson | A CLT for a band matrix model[END_REF] deals primarily with a variance profile σ such that σ(x, y) dy = 1 for any x, corresponding to a band matrix model. For band matrix ensembles, see also Erdös et al. (2012,b); [START_REF] Nica | Operator-valued distribution I[END_REF]; [START_REF] Shlyakhtenko | Random Gaussian band matrices and freeness with amalgamation[END_REF].

2.5.1. Proofs of Proposition 2.2 and Theorem 2.3. Proof of Proposition 2.2

1. The zero limit means that the Stieltjes transform s(z) has no discontinuity on R, so s(z) is holomorphic on C and has decay 1/z when |z| → ∞, so is bounded. By Liouville theorem, this implies that s(z) = const = 0 and, by unicity of the Stieltjes transform, ν = 0.

2. is given in the following lemma.

Lemma 2.5. Let f be an L 1 -function on R: |f (x)|dx = F < +∞ and let S be its Stieltjes transform. (a) If f is continuous at x = x 0 , then we have

lim y→+0 1 π Im S(x 0 + yi) = f (x 0 ). (2.8) (b) If f is continuous on an interval [a, b], a < b, then the convergence in (2.8) is uniform for x ∈ [a, b].
Proof. Since S(z) = S(z), we have

Im S(x + yi) = 1 2i R f (t) t -x -yi dt - R f (t) t -x + yi dt = y R f (t) (t -x) 2 + y 2 dt = R f (x + yu)
1 + u 2 du. In the third equality, we change variable t -x = yu.

(a) Let y > 0. We consider

1 π Im S(x 0 + yi) = 1 π R f (x 0 + yu) u 2 + 1 du.
Let us take an enough small ε > 0. Then, there exists δ > 0 such that if |x -

x 0 | < δ then |f (x) -f (x 0 )| < ε.
We divide the integral into two parts:

I 1 = {u; |(x 0 + yu) -x 0 | = |yu| < δ} and its complement I 2 = {u; |(x 0 + yu) -x 0 | = |yu| ≥ δ}: 1 π R f (x 0 + yu) u 2 + 1 du = 1 π I1 f (x 0 + yu) u 2 + 1 du + 1 π I2 f (x 0 + yu) u 2 + 1 du =: J 1 + J 2 . Let us consider J 1 . Since |yu| < δ for u ∈ I 1 , we have f (x 0 ) -ε < f (x 0 + yu) < f (x 0 ) + ε so that f (x 0 ) -ε π |u|< δ y du 1 + u 2 ≤ J 1 ≤ f (x 0 ) + ε π |u|< δ y du 1 + u 2 . Set A = A y,δ = 1 π |u|< δ y du 1 + u 2 = 2 π Arctan δ y ≤ 1.
Then, the above inequality means

|J 1 -f (x 0 )A| ≤ εA ≤ ε
Next we consider J 2 . By changing variable v = yu, we have

|J 2 | = y • |v|≥δ f (x 0 + v) v 2 + y 2 dv ≤ y • |v|≥δ |f (x 0 + v)| v 2 + y 2 dv ≤ y • |v|≥δ |f (x 0 + v)| δ 2 + y 2 dv ≤ y δ 2 + y 2 R |f (x 0 + v)|dv = F y δ 2 + y 2 ≤ F δ 2 • y.
Since we can choose y 0 > 0 such that if 0 < y < y 0 then

|f (x 0 )| • |A -1| ≤ ε, F δ 2 • y ≤ ε (Note that A δ,y → 1 as y → +0 when δ is fixed), we see that |J 1 + J 2 -f (x 0 )| ≤ |J 1 -f (x 0 )| + |J 2 | ≤ |J 1 -f (x 0 )A| + |f (x 0 )| • |A -1| + |J 2 | ≤ ε + ε + ε = 3ε. Since ε is arbitrary, we conclude that 1 π R f (x 0 + yu) u 2 + 1 du → f (x 0 ) as y → +0. (b)
The proof is the same, using the uniform continuity of f on [a, b]. We choose the same δ for all

x ∈ [a, b] and

y 0 such that f 1 [a,b] ∞ |A -1| < for 0 < y < y 0 .
Note that the proof of 2. is shorter when f is bounded continuous.

Since f (x) is continuous, lim y→0+ f (x+yu) 1+u 2 = f (x)
1+u 2 and all these functions are bounded by f ∞ 1+u 2 integrable, we can change the limit and the integral by the dominated convergence theorem so that

lim y→+0 Im S(x + yi) = lim y→+0 R f (x + yu) 1 + u 2 du = R lim y→+0 f (x + yu) 1 + u 2 du = R f (x) 1 + u 2 du = πf (x). Proof of Theorem 2.3
To give a proof of Theorem 2.3, we first prepare some basic lemmas on matrices. For Hermitian symmetric matrix A, we set

A 2 F = tr(A 2 ), A = sup |x|=1 |Ax| x .
Note that A F is called the Frobenius norm of A. For X, Y ∈ C n , we set X | Y = t XY , which is a complex bilinear form.

Lemma 2.6. Let A be a Hermitian symmetric matrix of size n and R = (A -zI n ) -1 its resolvent.

Then, for any z ∈ C + , one has

(i) R(z) 2 F ≤ n (Im z) 2 and R(z) 2 ≤ 1 (Im z) 2 , (ii) R ij (z) ∈ C + for any i, j, (iii) X | R(z)X ∈ C + for any X ∈ R n . Proof. Since A is symmetric, there exists an orthogonal matrix O = (v 1 , . . . , v r ) ∈ O(n) such that A = OΛ t O, Λ = diag(λ 1 , . . . , λ n ), λ j ∈ R.
Then, we have

R(z) = (OΛ t O -zI n ) -1 = O(Λ -zI n ) -1t O = n j=1 1 λ j -z v j t v j ,
and thus

R(z) 2 F = n j=1 1 |λ j -z| 2 ≤ n j=1 1 (Im z) 2 = n (Im z) 2 .
Moreover, since v j t v j are real matrices and

1 λ -z = λ - z |λ -z| 2 ∈ C + , each R ij (z) has positive imaginary parts. We have X | R(z)X = t XO(Λ -zI n ) -1 t OX = t Y (Λ -zI n )Y = n j=1 y 2 j λ -z ∈ C + ,
where we set Y = (y j ) = t OX.

Lemma 2.7. Let n ≥ 2. Let A be a symmetric matrix of size n and R its resolvent.

(i) (Resolvent complement formula) For i = 1, . . . , n, one has

R ii = -(z -A ii + X (i) | R (i) X (i) ) -1 ,
where X (i) = (A ji ) j =i and R (i) is the resolvent of the matrix A (i) obtained from A removing the i-th row and column.

(ii) Moreover,

|R ii | 2 ≤ 1 (Im z) 2 .
Proof. Note that there exists a permutation matrix P such that

A = P A (i) X (i) t X (i) A ii t P,
and thus it is enough to consider the case i = n.

Set A = A (n) , X = X (n) . We have A X t X A nn = I n-1 0 t ((A ) -1 X ) 1 A 0 0 A nn -t X (A ) -1 X I n-1 (A ) -1 X 0 1 , whence A -zI n-1 X t X A nn -z -1 = I n-1 -(A -zI n-1 ) -1 X 0 1 (A -zI n-1 ) -1 0 0 α I n-1 0 t ((A -zI n-1 ) -1 X ) 1
,

where α = (A nn -z -t X (A -zI n-1 ) -1 X ) -1 = -z -A nn + X | (A -zI n-1 ) -1 X -1 .
By Lemma 2.6 (iii), we have

w = a + bi := -A nn + X | (A -zI n-1 ) -1 X ∈ C + .
Then, the (n, n)

entry of R = A -zI n-1 X t X A nn -z -1
is given by α = -1 z+w . Therefore, by setting z = x + yi,

|R ii | 2 = 1 |z + w| 2 = 1 (x + a) 2 + (y + b) 2 ≤ 1 (y + b) 2 ≤ 1 y 2 since b > 0.
Thus we obtain the lemma.

Theorem 2.3 is a slightly strengthened version of Theorem 3.1 in [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]. Our assumptions (2.6) are different from the assumptions of Theorem 3.1 in [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]. The proof is similar to the proof of Theorem 3.1 in [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF]. Below we point out the places where our assumptions intervene and justify their sufficiency. In this proof, we use the notation σ 2 of Bordenave (2019) for variance profile (to simplify, in our paper we use σ for variance profile).

Bordenave (2019, P.41, line 11): an upper estimate of

E λ 2 dµ Y ≤ σ 2 1 + δ 0 (n) = O(1).
Bordenave (2019, P.42, line 5): Estimation of 1

n 2 i,j |ρ 2 ( i n , j n ) -nV ar(Y ij )| (2.9)
Here ρ is a function depending on L, i.e. ρ = ρ L and is constant on squares P kl of size 1/L 2 .

(1) The first idea is to replace each

ρ 2 ( i n , j n ) by 1 |Qij | Qij ρ 2 (x, y)dxdy. Suppose n > L. Note that if Q ij ⊂ P kl then ρ 2 ( i n , j n ) = 1 |Q ij | Qij ρ 2 (x, y)dxdy.
The difference between the last terms may be not zero only if Q ij intersects P kl , but is not included in P kl . This happens on squares Q ij of size 1/n along 2(L-1) segments x = i L and y = i L , i = 1, . . . , L-1 in the unit square.

Denote the union of such error-generating rectangles Q ij by E. There are less than 2nL errorgenerating rectangles in E. In order to control the error we perform the following estimations.

Recall that ρ kl = L 2 P kl σdxdy and that 0 ≤ σ is bounded. We will suppose without loss of generality that σ ≤ 1. Thus max k,l ρ 2 kl ≤ 1. Suppose n ≥ L 2 . We have

1 n 2 Qij ⊂E ρ 2 ( i n , j n ) ≤ 1 n 2 • 2nL ≤ 2L n ≤ 2 L ; 1 n 2 Qij ⊂E 1 |Q ij | Qij ρ 2 (x, y)dxdy = Qij ⊂E Qij ρ 2 (x, y)dxdy = E ρ 2 (x, y)dxdy ≤ λ(E) ≤ 2L n ≤ 2 L . Finally, when n ≥ L 2 , ij 1 |Q ij | Qij ρ 2 (x, y)dxdy -ρ 2 ( i n , j n ) ≤ 4 L = O( 1 L ).
(2) One replaces

nVar(Y ij ) = Qij σ(x, y) 2 |Q ij | dx dy + δ ij (n)
(3) one uses triangular inequality to get

1 n 2 i,j |ρ 2 ( i n , j n ) -nV ar(Y ij )| ≤ 1 n 2 i,j 1 |Q ij | Qij (ρ 2 (x, y) -σ(x, y) 2 )dxdy + δ 0 (n) + O( 1 L ) ≤ i,j Qij |ρ 2 (x, y) -σ(x, y) 2 |dxdy + δ 0 (n) + O( 1 L ) = [0,1] 2 |ρ 2 (x, y) -σ(x, y) 2 |dxdy + δ 0 (n) + O( 1 L )
The hypothesis δ 0 (n) → 0 allows to conclude like in Bordenave (2019, p.42, l.5).

Bordenave (2019, Page 42, lines -3 / -1): For two vectors X, Y , we set

X | Y = j X j Y j . Take z ∈ C + . Set Z = (Z ij ), Z ij = Yij √ nVar(Yij ) ρ( i n , j n ) (Var(Y ij ) = 0) 0 (Var(Y ij ) = 0) and R = R ij 1≤i,j≤n = (Z -zI n ) -1 .
Note that

E|Z ij | 2 = E Y ij nVar(Y ij ) ρ( i n , j n ) 2 = ρ( i n , j n ) 2 E|Y ij | 2 nVar(Y ij ) = ρ( i n , j n ) 2 n .
Fix an integer i such that 1 ≤ i ≤ n. Let X (i) = Z ji j =i ∈ R n-1 and Z (i) be the matrix obtained from Z where the i-th row and i-th column have been removed. Setting

R (i) = (R (i) jk ) j,k = (Z (i) -zI n-1 ) -1 , we have by Lemma 2.7 R ii = -z -Z ii + X (i) | R (i) X (i) -1
.

For three complex numbers z, w, w ∈ C + with positive imaginary parts, we have

1 z + w - 1 z + w = |w -w| |z + w| • |z + w | ≤ |w -w | (Im z) 2 .
By Lemma 2.6, we obtain

-Z ii + X (i) | R (i) X (i) ∈ C + and R (i)
jj ∈ C + , and hence i) .

LHS := R ii +   z + 1 n j =i ρ( i n , j n ) 2 R (i) jj   -1 = -z -Z ii + X | R (i) X -1 +   z + 1 n j =i ρ( i n , j n ) 2 R (i) jj   -1 ≤ 1 (Im z) 2 Z ii -X (i) | R (i) X (i) + 1 n j =i ρ( i n , j n ) 2 R (i) jj ≤ 1 (Im z) 2   |Z ii | + X (i) | R (i) X (i) - 1 n j =i ρ( i n , j n ) 2 R (i) jj   (1) = 1 (Im z) 2   |Z ii | + X (i) | R (i) X (i) - j =i E|Z ij | 2 R (i) jj   (2) = 1 (Im z) 2 |Z ii | + X (i) | R (i) X (i) -E i X (i) | R (i) X (
Here,

E i = E( • |R (i)
) is the conditional expectation with respect to R (i) . We use

E|Z ij | 2 = 1 n ρ( i n , j n
) 2 in the equality (1), and in the equality (2) we use (2.10) below.

The objective, stated by [START_REF] Bordenave | Lecture notes on random matrix theory[END_REF] in the last two lines of p.42, is to show that, for fixed z and i, E(LHS) 2 → 0 when n → ∞. By the last inequality, it is sufficient to show that

EZ 2 ii → 0 and E X (i) | R (i) X (i) -E i X (i) | R (i) X (i) 2 → 0 when n → ∞.
The convergence EZ 2 ii → 0 follows from EZ 2 ii ≤ 1 n . Let Var i be the variance with respect to R (i) . We note that

E X (i) | R (i) X (i) -E i X (i) | R (i) X (i) 2 = E(E i X (i) | R (i) X (i) -E i X (i) | R (i) X (i) 2 ) = E(Var i X (i) | R (i) X (i) ).
We will apply (the proof of) the concentration inequality in Bordenave (2019, Lemma 3.6) in order to estimate Var i X (i) | R (i) X (i) and next the E of it. Let us consider Var i X (i) | R (i) X (i) . We have

X (i) | R (i) X (i) = j,k R (i) jk X j X k .
Here, the sum taken over all j, k different from i, and we use this notation in the sequel. By definition, the vector X (i) is independent of R (i) because there is no variables of X (i) in R (i) . Then,

E i X (i) | R (i) X (i) = E i j,k R (i) jk X j X k = j R (i) jj E i X 2 j = j (EZ 2 ij )R (i) jj .
(2.10)

Similarly as in the proof of Bordenave (2019, Lemma 3.6), we have

Var i X (i) | R (i) X (i) = E i   j1,j2,k1,k2 R (i) j1k1 R (i) j2k2 X j1 X k1 X j2 X k2   -E i j,k R (i) jk X j X k 2 = j1,j2,k1,k2 R (i) j1k1 R (i) j2k2 E X j1 X k1 X j2 X k2 - j,k R (i) jj R (i) kk (E|X j | 2 )(E|X k | 2 ).
The first sum is non zero only if

(i) j 1 = j 2 = k 1 = k 2 , (ii) (j 1 , k 1 ) = (j 2 , k 2 ), (iii) (j 1 , k 1 ) = (k 2 , j 2 ), (iv) (j 1 , j 2 ) = (k 1 , k 2 )
so that, noting that by independence of R (i) and X (i) we have

E i (X 4 j ) = E(X 4 j ), Var i X 2 j = VarX 2 j etc. Var i X (i) | R (i) X (i) = (i) j R (i) jj 2 E(X 4 j ) + (ii) j1 =k1 R (i) j1k1 2 E(X 2 j1 X 2 k1 ) + (iii) j1 =k1 R (i) j1k1 R (i) k1j1 E(X 2 j1 X 2 k1 ) + (iv) j1 =j2 R (i) j1j1 R (i) j2j2 E(X 2 j1 X 2 j2 ) - j R (i) jj 2 EX 2 j 2 - j =k R (i) jj R (i) kk (EX 2 j )(EX 2 k ) = j R (i) jj 2 E(X 4 j ) -EX 2 j 2 + 2 j =k R (i) jk 2 (EX 2 j )(EX 2 k ) = j R (i) jj 2 Var(X 2 j ) + 2 j =k R (i) jk 2 (EX 2 j )(EX 2 k ).
(In the first line, the numbers (i)-(iv) on the summation mean the correspondence to the case of j 1 , j 2 , k 1 , k 2 .) Recall that X j = Z ji . Note that max j,k ρ jk ≤ 1. Then,

EX 2 j = E|Z ji | 2 = 1 n ρ( i n , j n ) 2 ≤ 1 n ,
which implies, using the estimate of the Frobenius matrix norm and by Lemma 2.6 (i),

R (i) 2 F ≤ (n -1) R (i) 2 ≤ n-1 (Im z) 2 2 j =k R (i) jk 2 (EX 2 j )(EX 2 k ) ≤ 2 n 2 j =k R (i) jk 2 F = 2 n 2 R (i) 2 ≤ 2 (Im z) 2 • 1 n ,
Here, for real symmetric matrices H we set

H 2 = trH 2 = jk |H jk | 2 . Using k |R kk | 2 ≤ R 2 F ≤ n (Im z) 2 we get j R (i) jj 2 Var(X 2 j ) ≤ n (Im z) 2 max j Var(X 2 j ).
In the last estimates the dependence on R (i) vanishes, so they provide desired upper bounds for

E(Var i X (i) | R (i) X (i) ).
We have

Var(X 2 j ) = E(X 4 j ) -EX 2 j 2 ≤ E(X 4 j ) = ρ( i n , j n ) 4 n 2 Var(Y ij ) 2 E(Y 4 ij ) ≤ 1 n 2 • E(Y 4 ij ) (EY 2 ij ) 2 j R (i) jj 2 Var(X 2 j ) ≤ n (Im z) 2 max j Var(X 2 j ) ≤ 1 n(Im z) 2 max j E(Y 4 ij ) (EY 2 ij ) 2 .
We see that the weakest sufficient condition on the 4th moments is:

max i,j E(Y 4 ij ) n(EY 2 ij ) 2 = o(1), equivalently: max i,j E(Y 4 ij ) (EY 2 ij ) 2 = o(n).
2.6. Properties of the Stieltjes transform.

Lemma 2.8. 1. Assume that f (x) has a pole at x = x 0 , and is continuous elsewhere. Then lim y→0+ Im s(x 0 + iy) = ∞.

2. Let µ be a finite positive measure on R with Stieltjes transform s(z). Suppose that µ has no atoms different from 0. If lim y→0+ Im s(x + iy) = 0 for all x = 0 uniformly on compact intervals of R * , then µ = cδ 0 for a c > 0 or µ = 0.

3. Let µ be a finite positive measure on R with Stieltjes transform s(z). Suppose that F is a finite subset of R and that µ has no atoms different from elements of F . If lim y→0+ Im s(x + iy) = 0 for all x / ∈ F , uniformly on compact intervals of R \ F , then µ = a∈F c a δ a for some c a ≥ 0, a ∈ F (this includes the case µ = 0).

Proof. Proof of 1. Assume that f (x) has a pole at x = x 0 , and is continuous elsewhere. We consider R f (x 0 + yu) 1 + u 2 du (f (x) has a pole at x = x 0 : for any L > 0 there exists ε > 0 such that if 0 < |y -x 0 | < δ then f (y) > L.) Take large L > 0 and the corresponding ε > 0. Set y = ε > 0. Then, since the integrand is non-negative,

R f (x 0 + εu) 1 + u 2 du ≥ 1 -1 f (x 0 + εu) 1 + u 2 du ≥ 1 2 1 -1 f (x 0 + εu)du = 1 2ε ε -ε f (x 0 + v)dv.
In the second inequality, we use the fact 1 1+u 2 ≥ 1 2 on [-1, 1]. In the last equality, we change variable

v = εu. Then, since |(x 0 + v) -x 0 | < ε for -ε < v < ε, we have f (x 0 + v) > L in the same interval so that R f (x 0 + εu) 1 + u 2 du ≥ 1 2ε ε -ε f (x 0 + v)dv ≥ 1 2ε ε -ε Ldv = L.
Since we can take L arbitrary large enough, we conclude that the integral diverges. Proof of 2. and 3. Let Lemma 2.9. If S(z) is odd, then Im S(-x + yi) = Im S(x + yi) and S im (x) := lim y→+0 Im S(x + yi) is even.

Proof. We know that S(z) = S(z) so that

S im (-x) = lim y→+0 Im S(-x+yi) = -lim y→+0 Im S(x-yi) = -lim y→+0 Im S(x + yi) = --S im (x) = S im (x).
In the second equality, we use the assumption that S(z) is odd.

Lemma 2.10. Let µ be a probability measure and S its Stieltjes transform. Then, for any x ∈ R, one has µ({x}) = lim y→+0 yIm S(x + yi).

Wigner Ensembles of Vinberg Matrices

In this section, we give explicitly the limiting eigenvalue distributions µ for the scaled Wigner matrices U n ∈ U n defined by (2.1). Let χ I denote the indicator function of a subset I ⊂ R. For a real number a, its cubic root is denoted by 3 √ a ∈ R and set [ a ] + = max(a, 0). We introduce two real numbers α c , β c depending on c ∈ [0, 1) by

α c = 8 + 4c -13c 2 -c(8 -7c) 3 8(1 -c) , β c = 8 + 4c -13c 2 + c(8 -7c) 3 8(1 -c) . (3.11)
It is clear that α 0 = β 0 = 1, α c < β c and β c > 0 for all c ∈ (0, 1). We note that α 1/2 = 0, α c < 0 when c > 1/2, lim c→1-α c = -∞, lim c→1-(1 -c)α c = -1/4 and lim c→1-β c = 4, so that we set β 1 = 4. It can be shown that c → α c is strictly decreasing and c → β c is strictly increasing on [0, 1] (see Figure 2).

Theorem 3.1. Let U n be a Wigner matrix on U n defined by (2.1). Assume that lim n→+∞ a n /n = c ∈ (0, 1). Then, the limiting eigenvalue distribution µ of the rescaled matrices U n / √ n exists and is given for c ∈ (0, 1) as

µ = f c (t) dt + [1 -2c] + δ 0 with f c (t) := 3 R + (t/ √ v; c) -3 R -(t/ √ v; c) 2 √ 3π t χ [αc,βc] t 2 v , (3.12)
where, for

x 2 ∈ [α c , β c ], R ± (x; c) := x 6 -3(c + 1)x 4 + 3 2 (5c 2 -2c + 2)x 2 + (2c -1) 3 ±3c √ 3 -3c • x (x 2 -α c )(β c -x 2 ).
The support of µ is given as

supp µ =    - √ vβ c , - √ vα c ∪ {0} ∪ √ vα c , √ vβ c (if c ∈ (0, 1 2 )) - √ vβ c , √ vβ c (if c ∈ [ 1 2 , 1)).
(3.13)

If c = 0, then µ = δ 0 . If c = 1, then µ is the semicircle law on [-2 √ v, 2 √ v].
Remark 3.2. The formula (3.12) is valid for the extreme cases c = 0 or c = 1. If c = 0 then there is no density and µ = δ 0 . If c = 1, then it can be checked that 3 R + (x; 1) [START_REF] Wigner | Characteristic vectors of bordered matrices with infinite dimensions[END_REF]. In order to show that c → α c is strictly decreasing and c → β c is strictly increasing on [0, 1], we compute the derivatives of these functions. Set

-3 R -(x; 1) = √ 3x √ 4 -x 2 so that, for v = 1 we get the semicircle law µ(dt) = (1/2π) √ 4 -t 2 χ [-2,2] (t)dt of
S(c) = 8 + 4c -13c 2 , T (c) = c(8 -7c) 3 , f ε (c) := 8 + 4c -13c 2 + ε c(8 -7c) 3 8(1 -c) (ε = ±).
Of course we have α c = f -(c) and β c = f + (c). Then we have

S (c) = 4 -26c, T (c) = (8 -7c) 3 + c • 3(8 -7c) 2 • (-7) 2 c(8 -7c) 3 = 4 -14c √ c √ 8 -7c, so that f ε (c) = (S + εT )(1 -c) -(S + εT ) • (-1) 8(1 -c) 2 = 4 -26c + ε 4-14c √ c √ 8 -7c (1 -c) + 8 + 4c -13c 2 + ε √ c(8 -7c) √ 8 -7c 8(1 -c) 2 = (4 -26c)(1 -c) + 8 + 4c -13c 2 + ε 8-7c c (4 -14c)(1 -c) + c(8 -7c) 8(1 -c) 2 = 13c 2 -26c + 12 + ε 8-7c c (7c 2 -10c + 4) 8(1 -c) 2 . Put A = 13c 2 -26c + 12, B = 7c 2 -10c + 4.
Notice that B > 0 because B = 7(c -5 7 ) 2 + 3 7 . What we want to show is that

8(1 -c) 2 • f + (c) = A + 8 -7c c B ≥ 0, 8(1 -c) 2 • f -(c) = A - 8 -7c c B ≤ 0. Let us consider A B 2 - 8 -7c c = cA 2 -(8 -7c)B 2 cB 2 .
By using a calculator, we can factorize the numerator cA 2 -(8-7c)B 2 so that we obtain the following inequality

A B 2 - 8 -7c c = cA 2 -(8 -7c)B 2 cB 2 = -128 (1 -c) 3 (2c -1) 2 cB 2 < 0.
Since 8-7c c > 0 for c ∈ (0, 1), this shows the following inequality

- 8 -7c c ≤ A B ≤ 8 -7c c and since B > 0 we obtain -B 8 -7c c ≤ A ≤ B 8 -7c c ,
whence we obtain f + (c) ≥ 0 and f -(c) ≤ 0 for c ∈ [0, 1).

In the Figures 34567we present graphical comparison between simulations for n = 4000 and the limiting densities, when c = 1/5, 2/5, 1/2, 3/5, 4/5. 3.2. Proof of Theorem 3.1. We first derive the Stieltjes transform of the limiting eigenvalue distribution by applying Theorem2.3 to

Y n = U n / √ n. Let U n = (U ij ) 1≤i,j≤n , so that Y ij = (1/ √ n)U ij . Define the set C := {(x, y) ∈ [0, 1] 2 | min(x, y) ≤ c} and the variance profile σ(x, y) = v if (x, y) ∈ C 0 otherwise. (3.14)
Note that

I ij := Qij σ(x, y) |Q ij | dx dy = v |C ∩ Q ij | |Q ij | The perturbation term equals δ ij (n) = nEY 2 ij -I ij = EU 2 ij -I ij and we have δ ij (n) = 0 unless i = j or i, j are such that ∅ = C ∩ Q ij = Q ij .
There are at most 3n perturbation terms δ ij (n) = 0, and they are all bounded by M := max{|v -v |, v , v}. It follows that the first condition lim n δ 0 (n) = 0 of the consition (2.6) is satisfied:

δ 0 (n) = 1 n 2 i,j δ ij (n) ≤ 3M n n 2 .
The second condition in (2.6) is evident since, by (3.14), Assume that Im z > 0. The functional equation (2.7) becomes

max i,j E(Y 4 ij ) n(EY 2 ij ) 2 ≤ max{κ, κ } n min{v, v } = o(1).
η z (x) = -z + v 1 0 η z (y) dy -1 (x ≤ c), η z (x) = -z + v c 0 η z (y) dy -1 (x > c).
Note that the right-hand sides are independent of x. We integrate both sides of these equations to obtain

c 0 η z (x) dx = -c z + v 1 0 η z (y) dy -1 , 1 c η z (x) dx = -(1 -c) z + v c 0 η z (y) dy -1
, so that by setting A = 1 0 η z (x) dx and B = c 0 η z (x) dx, we obtain the following simultaneous equations

B = -c z + vA (a), A -B = c -1 z + vB (b) (3.15)
Note that A is the desired Stieltjes transform S(z).

If c = 0, then we have A = -1/z so that the limiting measure is µ = δ 0 . If c = 1 then the equation (3.15) reduces to the equation A = -(z + vA) -1 , which corresponds to the Stieltjes transform of the semi-circular law (cf. Tao (2012, p.178)). Thus we assume 0 < c < 1 in what follows.

Let us eliminate B from these equations. Substituting (a) into (b), we obtain

A - -c z + vA = c -1 z + v -c z+vA ⇔ (z + vA)A + c z + vA = (c -1)(z + vA) z(z + vA) -cv ⇔ (z + vA)A + c z(z + vA) -cv = (c -1)(z + vA) 2 ⇔ v 2 zA 3 + 2vz 2 + (1 -2c)v 2 A 2 + z 2 + 2v(1 -c) zA + z 2 -c 2 v = 0. If we set z v := z √ v , A v := √ vA, then we have v z v A 3 v + 2z 2 v + (1 -2c) A 2 v + z 2 v + 2(1 -c) z v A v + (z 2 v -c 2 ) = 0, or A v z v 3 + 2 + 1 -2c z 2 v A v z v 2 + 1 + 2(1 -c) z 2 v A v z v + z 2 v -c 2 z 4 v = 0. (3.16)
We now use the Cardano method. Set

Y = A v z v + 1 3 2 + 1 -2c z 2 v
and rewrite (c) by using Y as

Y 3 + p(z v )Y + q(z v ) = 0.
Then,

p(z v ) = 1 + 2(1 -c) z 2 v - 1 3 2 + 1 -2c z 2 v 2 = 1 3 3 + 6 -6c z 2 v -4 - 4 -8c z 2 v - (1 -2c) 2 z 4 v = - 1 3 1 - 2(c + 1) z 2 v + (2c -1) 2 z 4 v and q(z v ) = z 2 v -c 2 z 4 v - 1 3 1 + 2(1 -c) z 2 v 2 + 1 -2c z 2 v + 2 27 2 + 1 -2c z 2 v 3 = 1 z 2 v - c 2 z 4 v - 1 3 2 + 5 -6c z 2 v + 2 -6c + 4c 2 z 4 v + 2 27 8 + 12 -24c z 2 v + 6(1 -4c + 4c 2 ) z 4 v + (1 -2c) 3 z 6 v = - 2 27 + 6c + 6 27z 2 v + -15c 2 + 6c -6 27z 4 v + 2 27 (1 -2c) 3 z 6 v = - 2 27 1 - 3c + 3 z 2 v + 3(5c 2 -2c + 2) 2z 4 v - (1 -2c) 3 z 6 v .
Define, for z = 0,

F c (z) := z 6 -3(c + 1)z 4 + 3 2 (5c 2 -2c + 2)z 2 + (2c -1) 3 z 6 .
Then, we have

Y = vA z + 2 3 - (2c -1)v 3z 2 , p(z) = - 1 3 1 - 2(c + 1) z 2 + (2c -1) 2 z 4 , q(z) = - 2F c (z) 27 , z v = z √ v with Y 3 + p (z v ) Y + q (z v ) = 0.
(3.17)

Cardano's method tells us that the solutions of the equation have the form

Y (z) = U + (z v ) + U -(z v )
where U ± (z) satisfy

U ± (z) 3 = - q(z) 2 ± q(z) 2 2 + p(z) 3 3 , U + (z) • U -(z) = - 1 3 p(z), (3.18) 
and accordingly, A is described as

A = zY (z) v - 2z 3v + 2c -1 3z . (3.19) Let us calculate q(z) 2 2 + p(z) 3 3
. By a simple but little bit cumbersome computation, we have

q(z) 2 2 = 1 27 2 1 - 6(c + 1) z 2 + 15c 2 -6c + 6 + 9(c + 1) 2 z 4 - 2(1 -2c) 3 + 9(c + 1)(5c 2 -2c + 2) z 6 + 9(5c 2 -2c + 2) 2 + 24(c + 1)(1 -2c) 3 4z 8 - 3(5c 2 -2c + 2)(1 -2c) 3 z 10 + (1 -2c) 6 z 12
and p(z)

3 3 = - 1 9 3 1 - 6(c + 1) z 2 + 3(2c -1) 2 + 12(c + 1) 2 z 4 - 12(c + 1)(2c -1) 2 + 8(c + 1) 3 z 6 + 3(2c -1) 4 + 12(c + 1) 2 (2c -1) 2 z 8 - 6(c + 1)(2c -1) 4 z 10 + (2c -1) 6 z 12 .
Put 1 27 2 in factor. The coefficients of 1/z k (k = 0, 2, 12) are zero. Since the coefficients of 1/z k (k = 4, 6, 8, 10) are z 8 : 9(5c 2 -2c + 2) 2 + 24(c + 1)(1 -2c) 3 /4 -3(2c -1) 4 + 12(c + 1) 2 (2c -1) 2 = -27c 2 (13c 2 -4c -8)/4 1 z 10 : - 3(5c 2 -2c + 2)(1 -2c) 3 + 6(c + 1)(2c -1) 4 = 27c 2 (2c -1) 3 , so that q(z)

1 z 4 : (15c 2 -6c + 6 + 9(c + 1) 2 ) -(3(2c -1) 2 + 12(c + 1) 2 ) = 0, 1 z 6 : -(2(1 -2c) 3 + 9(c + 1)(5c 2 -2c + 2)) + 12(c + 1)(2c -1) 2 + 8(c + 1) 3 = 27c 2 (c -1), 1
2 2 + p(z) 3 3 = c 2 27z 6 c -1 - (13c 2 -4c -8) 4z 2 + (2c -1) 3 z 4 = - c 2 (1 -c) 27z 10 z 4 + 13c 2 -4c -8 4(1 -c) z 2 - (2c -1) 3 1 -c .
The last formula implies that

α c β c = - (2c -1) 3 1 -c . (3.20)
Here, since

13c 2 -4c -8 4(1 -c) 2 -4 - (2c -1) 3 1 -c = (13c 2 -4c -8) 2 + 4 3 (1 -c)(2c -1) 3 (4(1 -c)) 2 = (169c 4 -104c 3 -192c 2 + 64c + 64) + 64(-8c 4 + 20c 3 -18c 2 + 7c -1) (4(1 -c)) 2 = -343c 4 + 1176c 3 -1344c 2 + 512c (4(1 -c)) 2 = c(-7 3 c 3 + 3 • 7 2 • 8c 2 -3 • 7 • 8 2 c + 8 3 ) (4(1 -c)) 2 = c(8 -7c) 3 (4(1 -c)) 2 ,
we have q(z)

2 2 + p(z) 3 3 = - c 2 (1 -c) 27z 10 (z 2 -α -)(z 2 -α + ) =: - D c (z) 2 27 ,
where

α ± = 1 2 - 13c 2 -4c -8 4(1 -c) ± c(8 -7c) 3 (4(1 -c)) 2 = 8 + 4c -13c 2 ± c(8 -7c) 3 8(1 -c) (= α c or β c ).
Hence we have

U ± (z) 3 = 1 27 (F c (z) ± i D c (z)) .
Since A is the Stieltjes transform S(z) of a probability measure, by (3.19) we have, with u ± (z) = 3U ± (z),

S(z) = z(u + (z) + u -(z)) 3v - 2z 3v + 2c -1 3z ; u ± (z) := (F c (z v ) ± i D c (z v )) 1 3 , (3.21)
where convenient branches of the cube root are chosen for u ± (z) to be such that S(z) is holomorphic on 

C + and u + (z) • u -(z) = -3p ( 
Lemma 3.3. One has E = {0, ± √ α c , ± √ β c }. More precisely, E =      {0, ± √ α c , ± √ β c } (0 < c < 1 2 ), {0, ± √ β c } (c = 1 2 ), {0, ±i |α c |, ± √ β c } ( 1 2 < c < 1). Set J := {x ∈ R; x ∈ E} and D := C + ∪ {x + iy; x ∈ E, -1 < y ≤ 0} (0 < c ≤ 1 2 ), C + ∪ {x + iy; x ∈ E, -1 < y ≤ 0} \ (i |α c | + iR ≥0 ) ( 1 2 < c < 1).
Then, D is a connected and simply connected domain containing no exceptional points of (3.17), and J ⊂ D.

Lemma 3.4 (Palka (1991, Theorem X.3.7)). Let z 0 ∈ D and X 0 ∈ C a solution of (3.17) at z 0 .

Then there exists a function s(z) holomorphic on D such that s(z) is a solution of (3.17) on D and s(z 0 ) = X 0 . Such function s is unique.

Proof. This is because D is a connected and simply connected domain containing no exceptional points E of (3.17), and hence we can use Palka (1991, Theorem X.3.7).

Proposition 3.5. For each x ∈ R * , there exists the limit S(x) = lim y→+0 S(x + yi). The function S is continuous on R * and S(x) is a solution of (3.16) on R * .

Proof. It is sufficient to prove it for a solution U (z) of the reduced equation (3.17) on C + , such that U (z) is holomorphic on C + . We apply (Palka, 1991, Theorem X.3.7) to a convenient connected and simply connected domain D avoiding the set E. By the discussion of (Ahlfors, 1979, p.304), U has at most an ordinary algebraic singularity at a non-zero exceptional point, so U (z) is continuous on R * .

Note that the branches of the cube root in u ± (z) may be different on different subregions of C + . This is because the functions u ± (z) 3 in the cubic roots may pass through the slit R -so that the cubic root functions need to change branches in order that S(z) is analytic. We also note that the definition of square root is not essential. In fact, in the above solution, two square roots ±D c (z) of D c (z) 2 appear symmetrically so that changing definition of square roots induces at most switching a role of u + (z) and u -(z).

Without loss of generality, we suppose v = 1. We first assume that x = 0. The detailed local analysis of (3.21) and (3.22) that is presented below, shows that

(Z1) if 0 < c < 1 2 , lim y→+0 yIm S(yi) = 1 -2c
, so µ has an atom at 0 with the mass 1

-2c < 1, (Z2) if c = 1 2 , lim y→+0 
Im S(yi) = +∞, lim y→+0 yIm S(yi) = 0 so µ does not have an atom at 0,

(Z3) if 1 2 < c < 1, lim y→+0 
Im S(yi) = c(2c -1) -1/2 = πf c (0), so µ does not have an atom at 0.

Next we consider the case x = 0. Combining the fact that S(z) is an odd function as a function on C \ R by (3.21) and the property S(z) = S(z) of the Stieltjes transform, we obtain Im S(-x + iy) = Im S(x + iy) so that Im S(-x) = Im S(x) (cf. Lemma 2.9). Thus we can assume that x > 0. Suppose Disc(x) ≥ 0. Since the coefficients p, q of (3.17) are real on R * , the equation (3.17) has only real solutions (cf. [START_REF] Ronald | Integers, polynomials, and rings[END_REF]). Therefore, S(x) is real so that the density of µ vanishes at such points.

Next we assume that Disc(x) < 0. By Proposition 3.5, S(x) is a solution of the cubic equation (3.16) and U (x) = (u + (x) + u -(x))/3 is a solution of the reduced equation (3.17). In particular, the formulas (3.21) and (3.22) hold for S(x), with convenient choices of branches of cubic roots and square roots. Consequently, we have

F c (x) + iD c (x), F c (x) -iD c (x) = R + (x), R -(x)
as a set, where R ± (x) := R ± (x; c)/x 6 ∈ R. Let ω = e 2iπ/3 denote the cube root of 1 with positive imaginary part. Then, (3.21) yields that the sum u + (x) + u -(x) has the following form

u + (x) + u -(x) = ω k+ 3 R + (x) + ω k-3 R -(x) with k + , k -∈ {0, 1, 2}.
By the first condition in (3.22), as p(x) ∈ R, we need to have k + + k -≡ 0 mod 3, that is, (k + , k -) = (0, 0), (1, 2) and (2, 1). Using the fact that R + (x) > R -(x) when x > 0 and Disc(x) < 0, we see that the imaginary part of u + (x) + u -(x) and of lim y→0+ S(x + iy) is, respectively, nul, positive and negative in these three cases. Since Im S(z) > 0, the last case is impossible. Set h(x) := Im ω 3 R + (x) + ω 2 3 R -(x) . Notice that h is a strictly positive continuous function on the set {x ∈ R; Disc(x) < 0} and that 1 π h(t) = f c (t), the density part of µ in the formula (3.12). Since the function Im S is continuous on R * by Proposition 3.5, we have Im S ≡ h or Im S ≡ 0 on the set {x ∈ R * ; Disc(x) < 0}.

We now show that the latter case Im S ≡ 0 is impossible. Note that µ has no atoms different from zero because S(z) is continuous on C + \ {0}. By Anderson et.al. (2010, Theorem 2.4.3) so that µ(0, ∞) = 0 and, symmetrically, µ(-∞, 0) = 0. Since µ is a probability measure, we get µ = δ 0 . This contradicts properties (Z1-3) proven in the case x = 0. Thus, we have Im S ≡ h on the set {x ∈ R * ; Disc(x) ≤ 0} and, for x ∈ R * , lim (Z1) the case 0 < c < 1 2 . In this case, α c , β c ≥ 0. Note that by (3.20),

y→0+ 1 π Im S(x + iy) = 1 π h(x) = f c (x). Note that f c has a compact support {Disc(x) ≤ 0}. For c = 1 2 , the function f c is continuous on R. For c = 1 2 , a detailed analysis shows that lim x→0 f c (0) = ∞, with f c (x) ∼ |x| -1/2 at x = 0 and f c is continuous on R * . By property (Z3), if c > 1 2 then lim y→0+ Im S(iy) = πf c (0). When c = 1/2, Proposition 2.2.1 implies that µ = f c (t) dt + [1 -2c] + δ 0 . Actually, if s(z) is the Stieltjes transform of µ -f c (t) dt -[1 -2c] + δ 0 , then,
α c β c = (1 -2c) 3 1 -c . Then, we have D c (z) = 3c √ 3 -3c z 5 z 2 -α c z 2 -β c = 3c √ 3 -3c z 5 • √ -α c -β c 1 - z 2 α c 1 - z 2 β c = - 3c √ 3 -3c z 5 • (1 -2c) 3 2 √ 1 -c 1 - z 2 α c 1 - z 2 β c = - 3 √ 3 c(1 -2c) 3 2 z 5 1 - z 2 α c 1 - z 2 β c ,
and hence around z = 0

z 6 D c (z) = -3 √ 3 c (1 -2c) 3 2 (z + o(z)
). On the other hand,

z 6 F c (z) = (2c -1) 3 + 3 2 (5c 2 -2c + 2)z 2 -3(c + 1)z 4 + z 6 = (2c -1) 3 1 + 3(5c 2 -2c + 2) 2(2c -1) 3 z 2 - 3(c + 1) (2c -1) 3 z 4 + z 6 (2c -1) 3 and hence, around z = 0 z 6 F c (z) = (2c -1) 3 (1 + o(z)). (3.24)
Combining those, we obtain

(F c (z) + εiD c (z)) 1 3 = (2c -1) 3 -εi • 3 √ 3 c (1 -2c) 3 2 z + o(z) z 6 1 3 = 2c -1 z 2 1 + εi • 3 √ 3c (1 -2c) 3 2 z + o(z) 1 3 = 2c -1 z 2 ω k(ε) 1 + εi • √ 3c (1 -2c) 3 2 z + o(z)
around z = 0. Here, ε = ±1 and k(ε) ∈ {0, 1, 2}. Let us consider the first condition in (3.22). Recall that

-3p(z) = z 4 -2(c + 1)z 2 + (2c -1) 2 z 4 = (2c -1) 2 z 4 (1 + o(z)).
Therefore, since

(F c (z) + iD c (z)) 1 3 • (F c (z) -iD c (z)) 1 3 = (2c -1) 2 z 4 ω k(+)+k(-) (1 + o(z)) , k(+) + k(-) ≡ 0 mod 3.
Next, let us consider the latter condition in (3.22). By (3.21), we have (recall that v = 1)

S(z) = z 3 (F c (z) + iD c (z)) 1 3 + (F c (z) -iD c (z)) 1 3 - 2z 3 + 2c -1 3z = 2c -1 3z ω k(+) 1 + i • √ 3c (1 -2c) 3 2 z + ω k(-) 1 -i • √ 3c (1 -2c) 3 2 z + o(z) - 2z 3 + 2c -1 3z = 2c -1 3z (ω k(+) + ω k(-) + 1) + 2c -1 3 • i √ 3c (1 -2c) 3 2 (ω k(+) -ω k(-) ) - 2z 3 + o(1).
Here, since k(+) + k(-) ≡ 0 mod 3, we have Im i(ω k(+) -ω k(-) ) = 0 for any choice. Now we assume that x = 0, we can set z = yi and then

Im S(yi) = i 1 -2c 3y (ω k(+) + ω K(-) + 1) - 2 3 y . If (k(+), k(-)) = (1, 2) or (2, 1), then ω k(+) + ω k(-) + 1 = 0 so that Im S(z) = -2 3 y < 0, which is not suitable. Therefore (k(+), k(-)) = (0, 0) and lim y→+0 yIm S(yi) = (1 -2c) lim y→+0 y • 1 y = 1 -2c,
and hence µ has an atomic component (1 -2c)δ 0 by Lemma 2.10.

(Z2) the case 1 2 < c < 1. In this case, we have α c < 0 and

β c > 0. Note that -α c β c = (2c -1) 3 1 -c .
Then we have

D c (z) = 3c √ 3 -3c z 5 • √ -α c -β c 1 - z 2 α c 1 - z 2 β c = i • 3c √ 3 -3c z 5 • (2c -1) 3 2 √ 1 -c 1 - z 2 α c 1 - z 2 β c = i • 3 √ 3 c(2c -1) 3 2 z 5 1 - z 2 α c 1 - z 2 β c ,
and hence around z = 0

z 6 D c (z) = i • 3 √ 3 c (2c -1) 3 2 (z + o(z))
. By (3.24), we obtain

(F c (z) + εiD c (z)) 1 3 = (2c -1) 3 + εi • i • 3 √ 3 c (2c -1) 3 2 z + o(z) z 6 1 3 = 2c -1 z 2 1 -ε • 3 √ 3c (2c -1) 3 2 z + o(z) 1 3 = 2c -1 z 2 ω k(ε) 1 -ε • √ 3c (2c -1) 3 2 z + o(z)
around z = 0. Here, ε = ±1 and k(ε) ∈ {0, 1, 2}. Let us consider the first condition in (3.22). Since

(F c (z) + iD c (z)) 1 3 • (F c (z) -iD c (z)) 1 3 = (2c -1) 2 z 4 ω k(+)+k(-) (1 + o(z)) , k(+) + k(-) ≡ 0 mod 3.
Next, let us consider the latter condition in (3.22). By (3.21), we have

S(z) = z 3 (F c (z) + iD c (z)) 1 3 + (F c (z) -iD c (z)) 1 3 - 2z 3 + 2c -1 3z = 2c -1 3z ω k(+) 1 - √ 3c (2c -1) 3 2 z + ω k(-) 1 + √ 3c (2c -1) 3 2 z + o(z) - 2z 3 + 2c -1 3z = 2c -1 3z (ω k(+) + ω k(-) + 1) + 2c -1 3 • √ 3c (2c -1) 3 2 (ω k(-) -ω k(+) ) - 2z 3 + o(1).
Let z = yi with y > 0. Then, since 2c -1 3z = -2c -1 3y i

and -(2c -1) < 0, we need to have ω k(+) + ω K(-) + 1 = 0, that is, (k(+), k(-)) = (1, 2) or (2, 1). In this case, the second term above can be described as

2c -1 3 • √ 3c (2c -1) 3 2 (ω k(-) -ω k(+) ) = c √ 3 √ 2c -1 • ε √ 3 i (ε = ±1),
and hence we obtain (k(+), k(-)) = (2, 1). Thus,

lim y→+0 Im S(yi) = c √ 3 √ 2c -1 • √ 3 -lim y→+0 2y 3 = c √ 2c -1 .
We note that the density f c of µ in (3.12) satisfies

lim x→0 f c (x) = c π √ 2c -1 .
(Z3) the case c = 1 2 . In this case, we have α 1/2 = 0,

β := β 1/2 = 27 8 = ( 3 2 ) 3 . Moreover, since F (z) := F 1/2 (z) = β -9 2 z 2 + z 4 z 4 = 1 z 4 β - 9 2 z 2 + z 4 and D(z) := D 1/2 (z) = √ β z 4 z 2 -β = i • β z 4 1 - z 2 β = i • β z 4 1 - z 2 2β - z 4 8β 2 + o(z 4 )
around z = 0, we obtain

F (z) + iD(z) = 1 z 4 β - 9 2 z 2 + z 4 -β 1 - z 2 2β - z 4 8β 2 + o(z 4 ) = 1 z 4 -4z 2 + 1 + 1 8β z 4 + o(z 4 ) = -4 z 2 1 - 8β + 1 32β z 2 + o(z 2 ) = - 4 z 2 1 - 7 27 z 2 + o(z 2 )
and

F (z) -iD(z) = 1 z 4 β - 9 2 z 2 + z 4 + β 1 - z 2 2β - z 4 8β 2 + o(z 4 ) = 1 z 4 2β -5z 2 + 1 - 1 8β z 4 + o(z 4 ) = 2β z 4 1 - 5 2β z 2 + 8β -1 16β 2 z 4 + o(z 4 ) = 27 4z 4 1 - 20 27 z 2 + 13 • 8 27 2 z 4 + o(z 4 ) .
Thus, (F (z) + iD(z))

1 3 = -ω k+ 3 √ 4 z 2 3 1 - 7 81 z 2 + o(z 2 ) , (F (z) -iD(z)) 1 3 = ω k-3 3 √ 4z 4 3 1 - 20 81 z 2 + o(z 2 ) ,
where k + , k -∈ {0, 1, 2}. Let us consider the first condition in (3.22). Since (F (z) + iD(z))

1 3 • (F (z) -iD(z)) 1 3 = -ω k++k-3 z 2 1 - z 2 3 + o(z 2 ) = ω k++k-- 3 z 2 + 1 + o(1)
and -3p(z) = 1 -3 z 2 , we have k + + k -≡ 0 mod 3. Next, let us consider the latter condition in (3.22). By (3.21), we have

S(z) = z 3 -ω k+ 3 √ 4 z 2 3 1 - 7 81 z 2 + o(z 2 ) + ω k-3 3 √ 4z 4 3 1 - 20 81 z 2 + o(z 2 ) - 2z 3 = ω k- 3 √ 4 z -1 3 +O(z 1 
3 ) Now z = yi with y > 0, z -1 3 = (1/ 3 √ y)e -πi/6 so that k -must be equal to 1. In fact, in this case,

ω k-z -1 3 = i/ 3 √ y and thus Im S(z) = 1 3 √ 4y + O(y 1 
3 ) > 0 (if y enough small) and

µ({0}) = lim y→+0 Im yS(x + yi) = lim y→+0 3 y 2 4 + O(y 4 
3 ) = 0.

By Lemma 2.10, this formula also yields that lim y→+0

Im S(yi) = +∞ and µ does not have an atom at x = 0.

(3.25) 3.3. Supplement for Remark 3.2 (the case of c = 1). If we take c → 1 -0, then we have

lim c→1-0 3c √ 3 -3c x (x 2 -α c )(β c -x 2 ) = lim c→1-0 3 √ 3cx ((1 -c)x 2 -(1 -c)α c )(β c -x 2 ) = 3 √ 3x 1 4 (4 -x 2 ),
and hence

R ± (x; 1) = x 6 -6x 4 + 15 2 x 2 + 1 ± 3 √ 3x 2 4 -x 2 .
Since R ± (x; 1) can be factored as

R ± (x; 1) = - 1 2 x 2 + 1 ± √ 3x 2 4 -x 2 3 , we obtain 3 R + (x; 1)-3 R -(x; 1) = - 1 2 x 2 + 1 + √ 3x 2 4 -x 2 -- 1 2 x 2 + 1 - √ 3x 2 4 -x 2 = √ 3x 4 -x 2 ,
and hence

µ(dt) = √ 3(t/ √ v) 4 -t 2 /v 2 √ 3πt χ(t) = 1 2πv 4v -t 2 χ(t).

Wishart Ensembles of Vinberg Matrices

In this section, we shall consider the quadratic Wishart (covariance) matrices introduced in §2.4. We first prepare some special functions which we need later. They generalize the Lambert W function appearing (see [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF]) in the case P n = Sym(n, R) + and m = (1, . . . , 1). 4.1. Lambert-Tsallis W function and Lambert-Tsallis function W κ,γ . For a non zero real number κ, we set

exp κ (z) := 1 + z κ κ (1 + z κ ∈ C \ R ≤0 ) log κ (z) := z κ -1 κ (z ∈ C \ R ≤0 ),
where we take the main branch of the power function when κ is not integer. If κ = 1 1-q , then it is exactly the so-called Tsallis q-exponential function and q-logarithm, respectively (cf. [START_REF] Amari | Geometry of q-exponential family of probability distributions[END_REF]; [START_REF] Zhang | Information geometry on the curved q-exponential family with application to survival data analysis[END_REF]). We have the following relationship between these two functions:

log 1/κ • exp κ (z) = z (-π < κArg 1 + z κ < π). (4.26)
By virtue of lim κ→∞ exp κ (z) = e z , we regard exp ∞ (z) = e z and log 0 (z) = log(z).

For two real numbers κ, γ such that γ ≤ 1 κ ≤ 1 and γ < 1, we introduce a holomorphic function f κ,γ (z), which we call generalized Tsallis function, by

f κ,γ (z) := z 1 + γz exp κ (z) (1 + z κ ∈ C \ R ≤0 ).
We note that κ ∈ (-∞, 0)∪[1, +∞). Analogously to Tsallis q-exponential, we also consider

f ∞,γ (z) = ze z 1+γz (z ∈ C). In particular, f ∞,0 (z) = ze z .
In our work it is crucial to consider an inverse function to f κ,γ . A multivariate inverse function of f ∞,0 (z) = ze z is called the Lambert W function and studied in [START_REF] Corless | On the Lambert W function[END_REF]. Hence, we call an inverse function to f κ,γ the Lambert-Tsallis W function.

The function f κ,γ (z) has the inverse function w κ,γ in a neighborhood of z = 0, because we have

f κ,γ (0) = 1 = 0 by f κ,γ (z) = γz 2 + 1 + 1/κ z + 1 (1 + γz) 2 1 + z κ κ-1
.

The condition on κ and γ comes from the variance profile σ of the form

σ = with p + q = 1, p, q > 0 0 ≤ tan θ = α ≤ q p
Then, we are going to deal with the function f κ,γ (z) for the parameters

κ = 1 1 -α , γ = p -q p = 2p -1 p .
By definition of κ and γ and by the range of tan θ, we have

1 ≥ 1 κ = 1 -tan θ ≥ 1 - 1 -p p = 2p -1 p = γ and -∞ < γ < 1.
Thus the condition we consider is

γ < 1 and 1 ≥ 1 κ ≥ γ, or equivalently γ < 1, 1 κ -γ ≥ 0 and 1 κ ≤ 1
(see Figure 8). If α ∈ [0, 1), or equivalently 0 ≤ α < 1, then κ ∈ [1, ∞) and κγ ≤ 1. If α > 1, or equivalently α > 1, then κ ∈ (-∞, 0), and by setting κ = -κ > 0 and γ = γ -1/κ, they satisfy

κ γ = -κ(γ -1/κ) = 1 -κγ ≤ 0
so that this case is reduced to the case κ > 0 (see §5.5). In the case of α = 1, we consider f ∞,γ =

x 1+γx e x . In this case we have γ ≤ 0. Let us present some properties of f κ,γ . When γκ = 1, the function f κ,γ has a pole at x = -1 γ . By the condition on κ and γ, the function γz 2 + (1 + 1/κ)z + 1 has two real roots, say α 1 ≤ α 2 when γ = 0. If γ = 0, there is only one real root, that we denote

α 2 = -κ κ+1 . f κ,γ (z) = 0 implies z = α i (i = 1, 2), or z = -κ if κ > 1.
For the case κ < 0, it is convenient to change the variable by a homographic action z = z

1+ z κ . Then f κ,γ (z) = f κ ,γ (z ) where κ = -κ > 0, γ = γ - 1 κ .
Since a homographic action by element in SL(2, R) leaves C + invariant, the analysis of the case κ < 0 reduces to the case κ > 0 and γ ≤ 0. Then, the set S := R \ f κ,γ (R) has the following possibilities.

Theorem S. The set S := R \ f κ,γ (R) is expressed by following formulas. (S1) S = (f κ,γ (α 2 ), f κ,γ (α 1 )), where f κ,γ (α 2 ) < f κ,γ (α 1 ) < 0. It occurs when κ ∈ [1, +∞] and γ < 0, and when κ < 0 and γ = γ -1 κ < 0. (S2) S = (-∞, f κ,γ (α 2 )), where f κ,γ (α 2 ) < 0. It occurs when κ > 1 and γ ≥ 0 and when (κ, γ) = (1, 0). (S3) S = (-∞, f κ,γ (α 1 )), where f κ,γ (α 1 ) < 0. It occurs when κ < 0 and γ = γ -1 κ = 0. (S4) S = (f κ,γ (α 1 ), f κ,γ (α 2 )), where f κ,γ (α 1 ) < f κ,γ (α 2 ) < 0. It occurs when κ = 1 and γ > 0. We study in detail the cases (S1,S2,S3). The case (S4) appears in the well known Wishart Ensemble case.

Theorem 4.1. Let S be an interval or half-line given by (S1)-(S4) above, and S ⊂ (-∞, 0) its closure. Then, there exists a complex domain Ω ⊂ C, symmetric with respect to the real axis and containing 0, such that f κ,γ maps Ω bijectively to C \ S. Consequently, the function w κ,γ can be continued in a unique way to a holomorphic function W κ,γ defined on

C \ S. The codomain of W κ,γ is Ω, that is, W κ,γ (C \ S) = Ω.
Definition 4.2. The unique holomorphic extension W κ,γ of w κ,γ to C \ S is called the main branch of Lambert-Tsallis W function. In this paper, we only study and use W κ,γ among other branches so that we call W κ,γ the Lambert-Tsallis function for short. Note that in our terminology the Lambert-Tsallis W function is multivalued and the Lambert-Tsallis function W κ,γ is single-valued.

We summarize the basic properties of the Lambert-Tsallis function that we need later. (a) Suppose that κ ≥ 1 and γ < 0, or κ < 0 and γ ≤ 0. In these cases, the set

D = Ω ∩ C + is bounded. If κ ≥ 1 then we have D ⊂ z ∈ C + ; Arg 1 + z κ ∈ (0, π κ+1 ) and z ∈ D satisfies Re z > -κ. If κ = ∞, then one has Im W κ,γ (z) ∈ (0, π) for z ∈ C + . If κ < 0 then we have D ⊂ z ∈ C + ; Arg 1 + z κ -1 ∈ (0, π |κ|+1 ) . Moreover, lim |z|→+∞ W κ,γ (z) = -1 γ (recall that -1 γ is a pole of f κ,γ ). (b) Suppose κ ∈ [1, +∞] and γ = 0. The set D = Ω ∩ C + is unbounded and f κ,0 (∞) = ∞. If κ ∈ [1, +∞) then D ⊂ z ∈ C + ; Arg 1 + z κ ∈ (0, π κ+1 ) . If κ = ∞, then W ∞,0 (z) is the classical Lambert function, and one has Im W ∞,0 (z) ∈ (0, π) for z ∈ C + . (c) Suppose γ > 0. In this case we have κ ∈ [1, 1 γ ]. The set D = Ω ∩ C + is unbounded and f κ,γ (∞) = ∞. Moreover, one has D = z ∈ C + ; Arg 1 + z κ ∈ (0, π κ
) . The proofs of Theorem S, Theorem 4.1 and Proposition 4.3 will be given in Appendix (see page 57).

Remark 4.4. It is worth underlying that we consider the main branch of the complex power function in the Tsallis q-exponential exp κ (z) appearing inside the generalized Tsallis function f κ,γ . Consequently, the main branch W κ,γ is the unique one such that W (0) = 0. A complete study of all branches of the Lambert-Tsallis W function will be interesting to do. The study of the Lambert-Tsallis function W κ,γ in the full range of parameters κ, γ is also an interesting open problem. We exclude the case κγ > 1 with κ > 0 because we do not need it later. We note that, when κγ > 1 and κ > 1 with a condition (1 + κ) 2 -4γκ 2 > 0, then f κ,γ maps a subregion of C + onto C + .

Applying the Lagrange inversion theorem, we see that the Taylor series of the function W κ,γ near z = 0 is

W κ,γ (z) = z + (γ -1)z 2 + γ 2 -3γ + 3κ + 1 κ z 3 + o(z 3 ). (4.27)
4.2. Quadratic Wishart matrices. We will now study eigenvalues of Wishart (covariance) matrices in P n ⊂ U n , defined in Section 2.4. We apply the approach of Bordenave (2019, Cor.3.5), based on the variance profile method (Theorem 2.3).

In this subsection, we first consider the case of a n = n -1 and b n = 1, that is, P n is the symmetric cone Sym(n, R) + of positive definite symmetric matrices of size n. Let ξ n be a rectangular matrix of size n × N . In order to study eigenvalue distributions of X n = ξ n t ξ n , we equivalently consider Wigner matrices of the form

Y n := 0 ξ n t ξ n 0 ∈ Sym(n + N, R). (4.28)
If X n has eigenvalues λ j ≥ 0 (j = 1, . . . , n), then those of Y n are exactly ± λ j (j = 1, . . . , n) and zeros with multiplicity |N -n|. This is because, by the singular value decomposition, there exist orthogonal matrices U, V ∈ O(n) and non-negative µ 1 , . . . , µ n ≥ 0 such that

ξ n = U D n 0 V, D n = diag(µ 1 , . . . , µ n ).
Here we assume that N ≥ n for simplicity. Since

X n = ξ n t ξ n = U D n 0 V • t V D n 0 t U = U D 2 n t U,
we see that λ j is one of µ 2 k for some k, and we can assume that λ j = µ 2 j because we can arrange the ordering of eigenvalues by the action of O(n). Since

Y n = 0 ξ n t ξ n 0 =   0 U D n 0 V t V D n 0 t U 0   = U 0 0 t V   0 D n 0 D n 0 0 0 0 0   t U 0 0 V
(in the right hand side, the matrix in the center is a block matrix with partition n, n and N -n), the characteristic polynomial g(t) of Y n is given as

g(t) = t N -n n i=1 (t 2 -µ 2 i )
, so that eigenvalues of Y n are ± µ i = ± λ i and 0.

Let T n denote the Stieltjes transform of the empirical eigenvalue distribution of rescaled X n /n and S n the Stieltjes transform of rescaled Y n / √ n + N . Then, it is easy to see that these Stieltjes transforms satisfy

T n z 2 p n = 1 2z 1 -2p n z + S n (z) , (4.29) 
where p n := n n+N and q n = N n+N . In fact, we have for

n ≤ N S n (z) = 1 n + N    N -n 0 -z + n j=1 1 √ λj √ n+N -z + 1 - √ λj √ n+N -z    = - 1 n + N • n + N -2n z + 1 n + N n j=1 -2z z 2 - λj n+N = - 1 -2p n z + n n + N • 1 n n j=1 -2z z 2 -n n+N • λj n = - 1 -2p n z + 2p n z n n j=1 1 p n • λj n -z 2 = - 1 -2p n z + 2z • 1 n n j=1 1 1 n λ j -z 2 pn = - 1 -2p n z + 2zT n z 2 p n , and for n ≤ N S n (z) = 1 n + N   N j=1 1 λ j / √ n + N -z + 1 -λ j / √ n + N -z + n -N 0 -z   = 1 n + N N j=1 -2z z 2 -λ j /(n + N ) - n -N n + N • 1 z = 1 n N j=1 2z λj n -n+N n z 2 - p n -q n z = 2z    1 n   N j=1 1 λj n -z 2 pn + n -N 0 -z 2 pn   - 1 n • n -N 0 -z 2 pn    - p n -q n z = 2z T n z 2 p n + p n -q n p n • p n z 2 - p n -q n z = 2zT n z 2 p n + 2(p n -q n ) z - p n -q n z = 2zT n z 2 p n + p n -q n z .
In order to study eigenvalue distributions of covariance matrices from Section 2.4, with parameters k as in (2.2), we introduce a trapezoidal variance profile σ as follows. Let p, α be real numbers such that 0 < p < 1 and 0 ≤ α ≤ (1 -p)/p. Then, σ is defined by σ(x, y) = v (x < p and y ≥ p + αx, or x ≥ p and 0 ≤ y ≤ min{(x -p)/α, p}), 0 (otherwise). (4.30)

Graphically, σ is of the form

σ = with p + q = 1, p, q > 0 0 ≤ tan θ = α ≤ q p (4.31)
If lim n p n = p, by Theorem 2.3, this variance profile determines the limiting distribution of empirical eigenvalue distributions of the Wigner matrices Y n in (4.28). Recall that, to a variance profile σ, Theorem 2.3 associates the Stieltjes transform S σ (z). It will be determined in Theorem 4.5. Analogously, to a variance profile σ of ξ n , we associate the "covariance Stieltjes transform" T σ (z) of the corresponding covariance matrices Q k (ξ n ) =ξ n t ξ n . The covariance Stieltjes transform T σ (z) is related to S σ (z) by the formula (4.29). It will be determined in Proposition 4.7.

Theorem 4.5. Let σ be a variance profile given in (4.30), and set κ := 1/(1-α) and γ := (2p-1)/p = 1 -(q/p). Then, the Stieltjes transform S σ (z) associated to σ is given as

S σ (z) = - 2p zW κ,γ -vp z 2 + 1 -2p z - 2z v (z ∈ C + ), (4.32) 
where W κ,γ is the Lambert-Tsallis function defined in Section 4.1.

Proof. We use Theorem 2.3. Take z ∈ C + such that Im z is large enough. By definition of σ and η z , we have

η z (x) =                    -z + v 1 p+αx η z (y) dy -1 (0 ≤ x ≤ p), -z + v α -1 (x-p) 0 η z (y) dy -1 (p < x ≤ p + αp), -z + v p 0 η z (y) dy -1 (p + αp < x ≤ 1). (4.33)
For z fixed, we set

a(t) := η z (t), t ∈ [0, p], b(t) := η z (p + αt), t ∈ (0, p].
By differentiating both sides in the above equations, we obtain a differential equation

a (t) = -vαa(t) 2 b(t), b (t) = va(t)b(t) 2 , (4.34) 
with initial data

a(p) = -z + v 1 p+αp η z (y) dy -1 , b(0+) = - 1 z .
In what follows, we shall show that, if α = 1 then

a(t) = -zw(z)X(t) ακ , b(t) = - 1 z • X(t) -κ ,
where w(z

) := -1 vp W κ,γ -vp z 2
and X(t) := 1 -vw(z) κ t satisfy (4.34). Here, we choose the main branches for complex power functions. If α = 1 then

a(t) = -zw(z)e -vw(z)t , b(t) = - 1 z • e vw(z)t .
We omit the proof for α = 1 because it can be done by a similar argument. Recall that we can take z ∈ C + such that -vp/z 2 is in a neighbourhood of 0. By (4.27), we obtain

a(t) = - 1 z + (γ -1)vp + αvt z 3 + o(1/z 3 ), b(t) = - 1 z - vt z 3 + o(1/z 3 ). (4.35)
In fact, by (4.27), we have

w(z) = - 1 vp W κ,γ - vp z 2 = - 1 vp - vp z 2 + (γ -1) - vp z 2 2 + o(1/z 4 ) = 1 z 2 - vp(γ -1) z 4 + o(1/z 4 ),
and thus

-zw(z) = - 1 z - vp(γ -1) z 3 + o(1/z 3 ).
On the other hand, by the Taylor expansion of the complex power function we have

X(t) ακ = 1 - vwt κ ακ = 1 - vt κ 1 z 2 + o(1/z 2 ) ακ = 1 - αvt z 2 + o(1/z 2 ) so that a(t) = -zwX(t) ακ = - 1 z - vp(γ -1) z 3 + o(1/z 3 ) 1 - αvt z 2 + o(1/z 2 ) = - 1 z + (γ -1)vp + αvt z 3 +o(1/z 3 ).
Similarly, we obtain

b(t) = - 1 z 1 - vw(z)t κ -κ = - 1 z 1 - vt κ • 1 z 2 + o(1/z 2 ) -κ = - 1 z 1 + vt z 2 + o(1/z 2 ) = - 1 z - vt z 3 +o(1/z 3 ). Since η z (x) is independent of x when x ∈ [p + αp, 1], we see that η z (x) = b(p) for x ∈ (p + αp, 1].
We deduce from (4.35) that when Im z is large enough, then

η z (x) ∈ C + for all x ∈ [0, 1]. Actually, we have Im -1/z > 0 if z ∈ C + . If Im z is large enough, then Im(o(1/z)) is small compared with -1/z so that Im(-1/z + o(1/z)) > 0. Since W κ,γ is holomorphic around z = 0 and W κ,γ (0) = 0, we can choose z ∈ C + such that sup t |µArg X(t)| < π for all µ = 2ακ, -2κ, ακ -1, -κ -1, 2ακ -κ, ακ -2κ.
This means that we are able to calculate X(t) µ X(t) ν = X(t) µ+µ for µ,µ being any of numbers in the above list. By differentiating a(t) and b(t), we obtain

a (t) = -zw(z) • - vακw(z) κ X(t) ακ-1 = vαzw(z) 2 X(t) ακ-1 , b (t) = - 1 z • - -vκw(z) κ X(t) -κ-1 = - vw(z) z X(t) -κ-1 .
On the other hand, since we take the main branch of complex power functions, we have by ακ = κ -1

-vαa(t) 2 b(t) = -vαzw(z) 2 X(t) ακ-1 and va(t)b(t) 2 = - vw(z) z X(t) -κ-1 .
Therefore, we confirm that a (t) = -vαa(t) 2 b(t) and b (t) = va(t)b(t) 2 . Next we consider the initial conditions. It is obvious that b(0) = -1 z . Since f κ,γ (-vpw(z)) = -vp z 2 , we have, setting w = w(z) and X = X(p) for simplicity,

wX κ 1 + v(1 -2p)w = 1 z 2 ⇐⇒ wz 2 X κ = 1 + v(1 -2p)w ⇐⇒ wz 2 X κ = 1 - vwp κ -(p + αp -1)vw ∵ κ = 1 1 -α ⇐⇒ X = z 2 wX κ + (p + αp -1)vw ∵ X = 1 - vwp κ ⇐⇒ 1 = zwX κ-1 z + (p + αp -1) v z • X -κ ⇐⇒ -zwX κ-1 = -z + v(p + αp -1) z • X -κ -1
.

Since a(p) = -zwX ακ = -zwX κ-1 by ακ = κ -1, we see that

a(p) = -z + v • p + αp -1 zX κ -1
.

On the other hand, since η z (x) is independent of x when x ∈ [p + αp, 1], we have

1 p+αp η z (y) dy = (1 -p -αp)η z (p + αp) = (1 -p -αp)b(p) = p + αp -1 zX κ .
Thus we conclude that a(t) satisfies the initial condition, and hence a(t) and b(t) give indeed a solution of (4.34) and of (4.33). The property η z (x) ∈ C + and the unicity part of Theorem 2.3 imply that a(t) and b(t) give the C + -valued solution η z (x) of (4.33) such that the desired Stieltjes transform equals S σ (z) = By formulas f κ,γ (-vpw(z)) = -vp z 2 and a(p) = -zwX κ-1 , we obtain

p 0 a(t) dt = z v (X κ -1) = z v 1 wz 2 + (1 -2p)v z 2 -1 , p 0 b(t) dt = 1 vαzw (1-X 1-κ ) = 1 vαzw 1 + wz a(p) ,
and by the initial data of a(t)

1 p+αp η z (x) dx = - 1 v 1 a(p) + z .
Thus, we have

S σ (z) = z v (X κ -1) + 1 vzw 1 -X 1-κ + 1 p+αp η z (x) dx = - 2p zW κ,γ -vp z 2 + 1 -2p z - 2z v . (4.36)
Since the image of C + with respect to the map z → -vp/z 2 is C \ R ≤0 , we see that -vp z 2 (z ∈ C + ) is included in C \ S, the domain of W κ,γ , because S ⊂ (-∞, 0) by Theorem 4.1. Therefore, the formula (4.36) is valid for all z ∈ C + , and hence S σ (z) can be analytically continued to a holomorphic function on C + . We conclude that S σ (z) is given as (4.32).

Remark 4.6. We call the parameter κ of Lambert-Tsallis functions the angle parameter since it depends only on the angle of the trapeze in (4.31). If κ = 1, then we have α = 0 so that the trapeze reduces to a rectangle. If α = q/p, i.e. κ = p/(p-q) = 1/γ, then the trapeze reduces to a triangle. On the other hand, the parameter γ = 2p-1 p = 1 -C depends directly on the shape parameter C = q/p. We call γ the shape parameter of the Lambert-Tsallis function. Note that the geometric condition 0 ≤ α ≤ p q is equivalent to the condition 1 κ ≥ γ. The formula γ = 1 -q p shows that γ ∈ (-∞, 1). We have

κ ∈ [1, 1 γ ] if 0 ≤ γ < 1, and κ ∈ [1, ∞] ∪ (-∞, 1 γ ] if γ < 0.
The covariance Stieltjes transform T σ (z) associated to the profile σ is given as follows.

Proposition 4.7. Let σ be a variance profile defined in (4.30) with parameters p and α. Set κ := 1 1-α and γ := 2p-1 p = 1 -q p . Then, the covariance Stieltjes transform T σ (z) corresponding to the profile σ is described as

T σ (z) = T κ,γ (z) := - 1 v - 1 zW κ,γ -v z - γ z = exp κ W κ,γ (-v/z) -1 v (z ∈ C + ), (4.37) 
and its R-transform R(z) is given as

R(z) = - 1 z - vγ 1 -vz - v (1 -vz) log 1/κ (1 -vz) (1 -vz ∈ C \ R ≤0 ).
Proof. Let z ∈ C + and set W (z) = W κ,γ (z). If p n → p as n → +∞, the formula (4.29) converges as n → ∞ to

T z 2 p = 1 2z 1 -2p z + S(z) .
By Theorem 4.5, we obtain

T z 2 p = 1 -2p 2z 2 + 1 2z - 2p zW (-vp/z 2 ) + 1 -2p z - 2z v = 1 -2p 2z 2 - p z 2 W (-vp/z 2 ) + 1 -2p 2z 2 - 1 v = 1 -2p p • p z 2 - p z 2 • 1 W (-v(p/z 2 )) - 1 v .
Let z = z 2 /p. Then we have

T (z ) = 1 -2p p • 1 z - 1 z W (-v/z ) - 1 v .
Since z runs through all elements in C + and since γ = 2p-1 p , we obtain the first equation. For the second equality, let us put W = W (-v/z) for simplicity. By definition of the Lambert-Tsallis function, we have

- v z = W 1 + γW exp κ (W ) = exp κ (W ) γ + 1/W , and hence γ + 1 W = - z v exp κ (W ).
This yields that

T (z) = - 1 v - 1 zW - γ z = - 1 v - 1 z 1 W + γ = - 1 v - 1 z - z v exp κ (W ) = - 1 v + exp κ (W ) v ,
whence we obtain the second equality.

Recall the relation between the R-transform R(z) and the Stieltjes transform S(z), that is, R(z) = S -1 (-z) -1/z (cf. Mingo and Speicher (2017, Chapter 3)).

Let us assume that κ = ∞. Since we have W κ,γ (z) ∈ D for z ∈ C + , Proposition 4.3 (ii) tells us that -π < κArg 1 + W (z) κ < π for any z ∈ C + so that we obtain by using (4.26)

T (z) = - 1 v + 1 v 1 + W (-v/z) κ κ ⇐⇒ vT (z) + 1 = exp κ (W (-v/z)) ⇐⇒ W (-v/z) = log 1/κ (vT (z) + 1) ⇐⇒ - v z = f κ,γ (log 1/κ (vT (z) + 1)) ⇐⇒ z = - v f κ,γ (log 1/κ (vT (z) + 1)
) .

Thus, we see that

T -1 (z) = - v f κ,γ (log 1/κ (vz + 1)) ,
and hence

R(z) = T -1 (-z) - 1 z = -v log 1/κ (1 -vz) 1 + γ log 1/κ (1 -vz) × exp κ (log 1/κ (1 -vz)) -1 - 1 z = -v • 1 + γ log 1/κ (1 -vz) (1 -vz) log 1/κ (1 -vz) - 1 z = - 1 z - vγ 1 -vz - v (1 -vz) log 1/κ (1 -vz) .
By this expression, R(z) can be defined on a domain such that 1 -vz ∈ C \ R ≤0 . If κ = ∞, then we can argue similarly since Proposition 4.3 (ii) states that Im W ∞,γ (z) ∈ (0, π) for z ∈ C + .

Recall that Ω denotes the codomain of W κ,γ . By Proposition 4.3, for each x ∈ S, there are exactly two solutions of f κ,γ (z) = x in z ∈ ∂Ω, which are conjugate complex numbers, denoted by K + (x), K -(x), such that Im K + (x) > 0. Recall that α 1 ≤ α 2 are zeros of the function γz 2 + (1 + 1/κ)z + 1. Then, we have the following theorem.

Theorem 4.8. Let σ be a trapezoidal variance profile defined by (4.30). Let µ σ be the probability measure corresponding to the associated covariance Stieltjes transform T σ given by (4.37). Then, the density function d σ of µ σ is given as

d σ (x) =    1 2πxi 1 K -(-v x ) - 1 K + (-v x ) (if -v x ∈ S), 0 (if -v x ∈ R \ S).
(4.38)

Moreover, one has the following possibilities.

(1) In the case p < q and q p = α (i.e. κ ≥ 1 and γ < 0, or κ < 0 and γ < 0), the measure µ σ is absolutely continuous and its density d σ (x) is continuous on R. In particular, µ σ has no atoms. Its support is given as

supp µ σ = - v f κ,γ (α 2 ) , - v f κ,γ (α 1 ) = v α 2 2 1 + α 2 κ 1-κ , v α 2 1 1 + α 1 κ 1-κ . (4.39)
(2) In the case p = q = 1 2 or q p = α (i.e. κ ≥ 1 and γ = 0, or κ < 0 and γ = 0), the measure µ σ is absolutely continuous. Its density d σ is continuous on R * and lim x→+0 d σ (x) = +∞. In particular, µ σ has no atoms. Let α 0 := α 2 if κ ≥ 1 and α 0 := α 1 = -1 if κ < 0. The support of µ σ is given as

supp µ σ = 0, - v f κ,γ (α 0 ) = 0, v α 2 0 1 + α 0 κ 1-κ . (4.40)
When κ = ∞, the measure µ σ is the Dykema-Haagerup measure χ v with support [0, ve].

(3) In the case p > q (i.e. κ ≥ 1 and 0 < γ < 1), we have µ σ = d σ (x)dx+(1 -q p )δ 0 . The measure µ σ has an atom at x = 0 with mass 1 -q p . Recall that κ ∈ [1, 1/γ]. When κ > 1, the support of µ σ is given by (4.40). The function d σ is continuous on R * and lim x→+0 d σ (x) = +∞.

For κ = 1 and -∞ < γ < 1, the measure µ σ is the Marchenko-Pastur law µ C with parameter C = q p = 1 -γ ∈ (0, 1) and supp

d σ = v(1 - √ C) 2 , v(1 + √ C) 2 .
Proof. We use the formula of T σ (z) from Proposition 4.7. Let z = x + yi. By Proposition 4.3 (i) and the fact that W κ,γ (z) = 0 only if z = 0, we see that l(x) := lim y→+0 Im T σ (x + iy) exists when x = 0 and that l(x) = 0 when -v/x ∈ S.

Assume that x = 0 and -v/x ∈ S. Let us set a(x) + ib(x) := lim y→0+ W κ,γ (-v/z). Since the function f κ,γ is continuous and injective on the closure D ⊂ C + , the function a + ib is continuous. By Proposition 4.3 (i), we have b(x) > 0 and a(x) + ib(x) = K + (-v x ) . Since S ⊂ (-∞, 0) by Theorem 4.1, we have -v/x < 0, that is, x > 0. Thus, we obtain for -v/x ∈ S with x = 0 (4.41) and thus l(x) is a continuous function on R * . Therefore, x ∈ R * is included in the support of µ σ if and only if -v/x ∈ S. By (2.4), we have d σ (x) = 1 π l(x), so that we obtain (4.38). Let us consider the case (S1). In this case, since S = (f (α 2 ), f (α 1 )) and f (α 1 ) < 0, we have

l(x) = lim y→0+ Im T σ (x + yi) = Im - 1 v - 1 x(a(x) + ib(x)) - γ x = - 1 2xi 1 K + (-v x ) - 1 K -(-v x ) = b(x) x(a(x) 2 + b(x) 2 ) > 0,
x ∈ supp µ ⇐⇒ f (α 2 ) ≤ - v x ≤ f (α 1 ) < 0 ⇐⇒ -f (α 2 ) ≥ v x ≥ -f (α 1 ) > 0 ⇐⇒ - v f (α 2 ) ≤ x ≤ - v f (α 1 )
.

Recall that α i , i = 1, 2 are the real solutions of the equation γz 2 + (1 + 1/κ)z + 1 = 0. For a solution α of this equation, we have by 1

+ α/κ = -α(1 + γα) f κ,γ (α) = α 1 + γα 1 + α κ κ = -α 2 1 + α κ κ-1
, so that we arrive at the assertion 1. of the theorem. The argument for other two cases is similar, and hence we omit it.

Next we consider the case x = 0. We separate cases according to γ. First, let us assume that κ ≥ 1 and γ < 0, or κ < 0 and γ < 0. In this case, we know that lim |z|→+∞ W κ,γ (z) = -1 γ (see Proposition 4.3 (ii-a)), and hence lim y→+0

T (yi) = lim y→+0 exp κ W κ,γ (-v/(yi)) -1 v = exp κ (-1/γ) -1 v ∈ R.
Note that since γ < 0, we have 1 -1 κγ ≥ 0, so that the condition 1 + z κ ∈ R -is satisfied for z = -1 γ . Thus, in this case, we have l(0) = lim y→+0 Im T (yi) = 0 and the function l is continuous at x = 0.

Next, let γ = 0. In this case, we have

κ ∈ [1, ∞) or κ = ∞. Consider first κ ∈ [1, ∞). For z ∈ C + , let us set re iθ = 1 + Wκ,γ (-v/z) κ (r > 0, θ ∈ (0, π))
. By Proposition 4.3 (ii-b), the set D = Ω ∩ C + is unbounded and f κ,γ (∞) = ∞. Consequently, if z → 0 in C + , or equivalently -v/z → ∞ in C + , then we have W κ,0 (-v/z) → ∞ and r → +∞. Again by Proposition 4.3 (ii-b), we see that θ ∈ (0, π κ+1 ) so that sin κθ > 0 when z = -v/(iy) ∈ C + , and thus

Im T (z) = Im exp κ W κ,γ (-v/z) -1 v = Im (re iθ ) κ -1 v = Im r κ cos κθ -1 + ir κ sin κθ v = r κ sin κθ v → +∞ (y → +0).
On the other hand, µ σ does not have an atom at x = 0 because we have by W κ,0 (-v/z) → ∞ and by γ = 0

yT (iy) = - y v - 1 iW κ,γ (-v/(yi)) - γ i → γi = 0 (y → +0).
In the case (κ, γ) = (∞, 0), W (z) = W ∞,0 (z) is the classical Lambert function. If z is in the image of iR + by W , then Re ze z = 0, i.e.

e x (x cos y -y sin y) = 0 ⇐⇒ x = y tan y.

We have W (e x (x sin y + y cos y)i) = x + iy = z so Im W (e y tan y y cos y i) = y. This means that lim y→+∞ Im W (iy) = π On the other hand, we see that µ does not have an atom at x = 0 since Im yT (iy) = Im y -

1 v - 1 iyW (-v/(iy)) = Im - y v + i a(y) + ib(y) = a(y) a 2 (y) + b 2 (y) → 0 (y → 0+).
Let us consider the case κ < 0 and γ = γ -1 κ = 0. In this case, we know that lim |z|→∞ W κ,γ (z) = -1 γ = -κ by Proposition 4.3 (ii-a). Since κ < 0, it is easy to verify that lim w→-κ | exp κ (w)| = ∞ so that by continuity of exp κ and W κ,γ

lim y→+0 T (yi) = lim y→+0 exp κ W κ,γ (-v/(yi)) -1 v = lim w→-κ exp κ (w) -1 v = ∞.
On the other hand, µ σ does not have an atom at x = 0 because we have by

W κ,γ (-v/z) → -1 γ yT (iy) = - y v - 1 iW κ,γ (-v/(yi)) - γ i → - 1 i(-1/γ) - γ i = 0 (y → +0).
Last, we assume that 0 < γ < 1. If κ > 1, we apply Proposition 4.3 (ii-c). When z → 0, we have -v/z → ∞ and W κ,γ (-v z ) → ∞, so that we obtain

yT σ (iy) = - y v - 1 iW κ,γ (-v/(iy)) - γ i → γi (y → +0),
whence µ σ has an atom at x = 0 with mass γ = 1 -q p > 0. We omit the proof in the case κ = 1, as it corresponds to the classical Wishart matrices with parameter C = q p < 1. Note that κ = ∞ does not occur because κ ≤ 1 γ . The absolute continuity of µ σ follows from Proposition 2.2, by considering µ 0 := µ σ -d σ (x)dx, or, in the case with atom at x = 0, of µ 0 := µ σ -d σ (x)dx -γδ 0 and using the fact that the Stieltjes transform S 0 (z) of µ 0 satisfies lim y→0+ Im S 0 (x + iy) = 0 for all x ∈ R. The argument is similar as in the proof of Theorem 3.1.

In the following Corollary, we give a real implicit equation for the density d σ analogous to the Dykema-Haagerup equation (2.3). To do so, we introduce the following notation

e κ (z) := |exp κ (z)| ≥ 0, θ κ (z) = κArg 1 + z κ (z ∈ C + ).
If κ = ∞, we set e κ (z) := e Re z and θ κ (z) := Im z. Then, we have exp κ (z) = e κ (z) cos θ κ (z) + i sin θ κ (z) .

Corollary 4.9. (i) Suppose v = 1 for simplicity. For two real numbers κ, γ such that γ ≤ 1 κ ≤ 1 and γ < 1, the density d σ of the limiting law µ σ satisfies the equation

d σ sin θ κ (z) b 1 + γa -γb cot θ κ (z) e κ (z) -1 = 1 π • e κ (z) sin θ κ (z)) (z= a + bi ∈ ∂D ∩ C + ).
(4.42) In particular, when (κ, γ) = (∞, 0), the density d σ satisfies the equation

(2.3) with b = x and a = -x cot x (x ∈ [0, π)). (ii) If κ ∈ [1, ∞] and γ < 0, then the correspondence a → b = b(a) is unique for each z = a + bi ∈ ∂D ∩ C + . Then, a ∈ [α 1 , α 2 ]. The same is true for κ = ∞ and γ = 0 with a ∈ [-1, +∞). Proof. (i) Let z = a + bi ∈ ∂D ∩ C + . Then, it satisfies f κ,γ (z) ∈ S. Suppose f κ,γ (z) = -1
x , and set

X = a + γa 2 + γb 2 , Y = |1 + γz| 2 = (1 + γa) 2 + (γb) 2 . Notice that X 2 + b 2 = (a 2 + b 2 )Y . The equation f κ,γ (z) = -1 x means that - 1 x = e κ (z) Y X cos θ κ (z) -b sin θ κ (z) , 0 = X sin θ κ (z) + b cos θ κ (z) . (4.43)
The latter one yields that cos θ κ (z) = -

sin θκ(z) b X so that - 1 x = - e κ (z) Y • sin θ κ (z) b (X 2 + b 2 ) ⇐⇒ 1 x • b a 2 + b 2 = e κ (z) sin θ κ (z) .
On the other hand, the latter equation in (4.43) can be written as X = -b cot θ κ (z) , and using this expression, we obtain

- 1 x = e κ (z) Y -b cot θ κ (z) cos θ κ (z) -b sin θ κ (z) = - b sin θ κ (z) • e κ (z) Y ⇐⇒ x = sin θ κ (z) b •Y e κ (z) -1 .
It is easy to check that we have Y = 1 + γa + γX. By (4.41), the density can be described as d σ (x) = 1 πx • b a 2 +b 2 so that we obtain the formula (4.42). (ii) Assume first that κ = ∞ so that γ ≤ 0. Set z = a + bi. Since S ⊂ R, f ∞,γ (z) ∈ S means Im f ∞,γ (z) = 0, that is, a+γa 2 +γb 2 +b cot b = 0. This equation can be rewritten as g(b) = -a-γa 2 , where g(b) := γb 2 + b cot b. It is easy to show that g (b) < 0 for b ∈ (0, π), so the function g(b) is monotonic decreasing for b ∈ (0, π). We have lim b→0+ g(b) = 1 and lim b→π-g(b) = -∞. Thus, the equation g(b) = -a -γa 2 has a solution if -a -γa 2 ≤ 1, or equivalently, in case γ < 0, α 1 ≤ a ≤ α 2 . Since g is monotonic, for each a ∈ [α 1 , α 2 ] we can find the unique solution of the equation, which is denoted by b(a). In the case γ = 0 the argument is the same with a ∈

[-1, ∞). Assume that κ ∈ (1, ∞). Since z = x + yi ∈ D = Ω ∩ C + satisfies Arg 1 + z κ ∈ (0, π κ+1 ) (see Proposition 4.3(a)
), and by the assumption κ > 1, we see that Re 1 +

z κ = 1 + x κ > 0. Thus, θ κ (x, y) = κArctan y κ+x . Note that ∂ ∂y θ κ (x, y) = κ • κ+x (κ+x) 2 +y 2 .
For given x such that 1 + x κ > 0, set g(y) = y cot(θ κ (x, y)). We need to study the function g(y) on R + . Set θ = θ(x, y)

:= Arg(1 + x+yi κ ) then θ(x, y) = Arctan y κ+x so that tan θ = y κ+x since θ ∈ (0, π 2 ). Note that θ κ (z) = κθ(x, y) if z = x + yi. Then, since (κ + x)y (κ + x) 2 + y 2 = y κ+x 1 + y κ+x 2 = tan θ 1 + tan 2 θ = sin θ cos θ = sin 2θ 2 ,
we compute and estimate the derivative g (y) as follows

g (y) = cot(θ κ ) + y - d dy θ κ (x, y) sin 2 (θ κ ) = sin(θ κ ) cos(θ κ ) -y d dy θ κ (x, y) sin 2 (θ κ ) = sin(2κθ) -κ sin(2θ) 2 sin 2 (κθ) ≤ 0.
In the last inequality we prove and use the fact that the function H κ (2θ) := sin(2κθ) -κ sin(2θ) is negative when 0 < θ < π κ+1 (see (5.53)). Thus, we proved that g is monotonic decreasing on R + . Since, when y is near to 0, then Arctan y κ+x = y κ+x + o(y), we see that lim (4.44) Our objective now is to study the function h(y) = h(y; x) := x + γx 2 + γy 2 + g(y) for a fixed x > -κ. Recall that h(y; x) = 0 if and only if z = x + iy ∈ ∂D ∩ C + . We will show that: (a) there is exactly one solution of h(y; x) = 0 when x ∈ (α 1 , α 2 ). (b) if x ∈ (α 1 , α 2 ) then the equation h(y; x) = 0 does not have a solution such that θ(x, y) ∈ (0, π κ+1 ). As γ < 0, we see that the function h(y) := x + γx 2 + γy 2 + g(y) is decreasing on y ∈ (0, y 0 ) for each fixed x > -κ. As κ > 1, there exists y 0 > 0 such that θ(x, y 0 ) = Arg(1 + x+iy0 κ ) = π κ+1 . We shall show that h(y 0 ; x) < 0. Since θ κ (x, y) = κθ(x, y) and since κπ κ+1 = π -π κ+1 , we have

cot(θ κ (x, y 0 )) = cos κπ κ+1 sin κπ κ+1 = -cos π κ+1 sin π κ+1 = - 1 tan θ(x, y 0 ) = - κ + x y 0 (∵ tan θ(x, y 0 ) = y 0 κ + x ),
and hence

h(y 0 ; x) = x+γx 2 +γy 2 0 +y 0 - κ + x y 0 = x+γx 2 +γy 2 0 -κ-x = γx 2 +γy 2 0 -κ < 0 (∵ γ < 0 and κ > 1).
By (4.44), we have lim y→+0 h(y) = γx 2 + (1 + 1 κ )x + 1 = γ(x -α 1 )(x -α 2 ). (a) Suppose that x ∈ (α 1 , α 2 ), i.e. lim y→+0 h(y) > 0. Since h is monotonic decreasing, by the intermediate value theorem, there exists a unique solution h(y; x) = 0 in y ∈ (0, y 0 ) for each x ∈ (α 1 , α 2 ).

(b) If lim y→+0 h(y; x) ≤ 0 then there is no solution of h(y) = 0 such that 0 < θ(x, y) < π κ+1 , and hence there is no z = x + yi ∈ ∂D ∩ C + such that h(0+; x) < 0.

If κ = 1, we have the classical Wishart case and we do not need to deal with it.

Let x be an i.i.d. Gaussian random row vector in R n (x j ∼ N (0, 1)). Then, there exists an orthogonal matrix P such that xP = (0, . . . , 0, |x|), and |x| n) . Note that the number of zeros in the k-th row is (k -1)m 1 . Let us write

= x 2 1 + • • • + x 2 n is a random variable of chi-square distribution χ 2 n/2 of parameter n/2. Let us consider E k (recall that N = m 1 n + m 2 (n)) with each entry obeying N (0, 1). Each element ξ ∈ E k can be written as ξ =    ξ 1 . . . ξ n   , where ξ k ∈ R N is a row vector of the form ξ k = (0, . . . , 0, η k ) where η k ∈ R N -(k-1)m1 = R (n-k+1)m1+m2 ( 
ξ = ξ [n-1] A n 0 η n ξ [n-1] ∈ Mat((n -1) × ((n -1)m 1 ); R), A n ∈ Mat((n -1) × (m 1 + m 2 (n)); R).
For η n , there exists an orthogonal matrix P n such that η n P n = (0, . . . , 0, |η n |), and one has

|η n | ∼ χ 2 (N -(n-1)m1)/2 = χ 2 (m1+m2(n))/2 . We have ξP = ξ [(n-1)] A n P n 0 0 • • • 0|η n | where P = I (n-1)m1 0 0 P n .
Since P n is orthogonal, each element in A n = A n P n obeys N (0, 1). We can then apply the same argument to the matrix ξ = ξ [n-1] A n where A n is an (n -1) × (m 1 + m 2 (n) -1) matrix obtained from A n removing the last column, and repeating this argument, we see that that for each ξ ∈ E k there exists an orthogonal matrix P such that ξP has the form

ξP = (O n×(N -n) , T ), T =       λ 1 t 12 • • • t 1n 0 λ 2 . . . . . . . . . . . . . . . t n-1,n 0 • • • 0 λ n       ; λ j ∼ χ 2 ((n-k+1)(m1-1)+m2(n)+1)/2 (j = 1, . . . , n), t ij ∼ N (0, 1) (1 ≤ i < j ≤ n).
Here, O n×(N -n) is the zero matrix of size n × (N -n). Thus, in the notation θ, b in [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] we have θ = m 1 -1 and b = m 2 (n) + 1. Note that we take T upper triangular whereas Cheliotis (2018) lower triangular.

Remark 4.13. Until now, we assumed that m 1 ∈ Z ≥0 and hence the parameter α of the variance profile σ needs to be also an integer. However, we can take a sequence {k(n)} ∞ n=1 so that the corresponding α is an arbitrary given positive real number. In fact, when α > 0 is given, we consider a right triangle with lengths 1 and α. For an arbitrary n, we cover the triangle by 1/n × 1/n squares as in the figure. To each j = 1, . . . , n, we associate an integer k j (n) such that

kj (n) n ≤ j n α < kj (n)+1 n , or equivalently k j (n) ≤ jα < k j (n) + 1, and we set k(n) = (k 1 (n), . . . , k n (n)). Note that this condition is independent of n so that k j (m) = k j (n) when m ≥ n ≥ j, and hence {E k(n) } n is a sequence of vector spaces such that E k(n) ⊂ E k(n+1) .
In the Figure 10, we set α = 1.8, n = 11 and k

(n) = (1, 2, 2, 1, 2, 2, 1, 2, 2, 1, 2).
Let us return to the quadratic Wishart case for general P n with parameter k as in (2.2) such that

m 1 , m 2 ∈ Z ≥0 are fixed. Note that m 2 (n) in the previous discussion is now m 2 (n) = m 2 b n (n). Set N n := m 1 n + m 2 b n . We have E k =    ξ = η ζ ∈ Mat(n × N n , R); η = (η ij ) ∈ Mat(a n × N n , R), ζ = (ζ ij ) ∈ Mat(b n × N n , R) η ij = 0 if j ≤ (m 1 -1)i, ζ ij = 0 if j -m 1 a n -(m 1 + m 2 )(i -1) ∈ {1, 2, . . . , m 1 + m 2 }    .
Theorem 4.14. Let {P n } n be a sequence of generalized dual Vinberg cones such that lim n→∞ a n /n = c ∈ (0, 1]. Let k be a vector as in (2.2) such that m 1 , m 2 are fixed. Set κ := 1/(1 -m 1 ) and γ := 1 -m 1 + m 2 (1 -c) /c. Then, the Stieltjes transform T (z) of the limiting eigenvalue distribution of Q k (ξ n )/n with i.i.d. matrices ξ n ∈ E k is given as [START_REF] Girko | Theory of Random Determinants[END_REF] in the setting of Gram matrices based on Gaussian fields, cf. (Hachem at al., 2006, Remark 3.1).

T (z) = - 1 v - c zW κ,γ (-cv z ) - cγ + 1 -c z = exp κ W κ,γ (-vc/z) -1 v - 1 -c z . (z ∈ C + )
However, thanks to symmetry, solving the equations (4.34) resulting from Theorem 2.3 is easier than solving the last functional-integral equation for τ (u, z). Therefore we opted for variance profile method for Gaussian and Wigner ensembles as the main tool of studying Wishart ensembles of Vinberg matrices.

Recall that we now assume κ > 0. Set a := κγ. We will consider the cases (i) a < 0, (ii) 0 < a < 1 and κ > 1, and some other exceptional cases. It is usually sufficient to consider D because Ω has a symmetry with respect to the real axis. For brevity, we set θ 0 := π κ and θ 1 := π κ+1 . Note that θ 0 > θ 1 .

5.2. The case of a = κγ < 0, κ > 0. In this case, α 1 < α 2 because (1 + κ) 2 -4aκ > 0. Since a < 0 we have γ < 0 and g(0) = κ > 0, g(-κ) = (a -1)κ 2 < 0, g(-1/γ) = κ -1/γ > 0. This means that

-κ < α 1 < 0 < - 1 γ < α 2 .
Note that D(0) = (1 + 1/κ) 2 -4a/κ > 0 and

D(θ 1 ) = (-2a cos θ 1 ) 2 -4a(a -1) = 4a 2 cos 2 θ 1 -4a 2 + 4a = 4a -4a 2 sin 2 θ 1 = 4a(1 -a sin 2 θ 1 ) < 0.
This implies that there exists a θ ∈ (0, θ 1 ) such that D(θ) = 0. We denote by θ * ∈ (0, θ 1 ) the smallest positive real such that D(θ * ) = 0.

We show now that D is bounded and D ⊂ z ∈ C + ; Arg(1 + z κ ) ∈ (0, π κ+1 ) We shall show that D(θ) is monotonic decreasing in the interval (0, θ * ). We have b (θ) = (κ+1) cos((κ + 1)θ) sin κθ -κ sin((κ+1))θ cos κθ sin 2 κθ + 2a sin θ = -κ sin θ + cos((κ + 1)θ) sin κθ sin 2 κθ + 2a sin θ = -κ sin θ + 1 2 (sin((2κ + 1)θ) -sin θ) sin 2 κθ + 2a sin θ = sin((2κ + 1)θ) -(2κ + 1) sin θ 2 sin 2 κθ + 2a sin θ.

Note that 2κ + 1 > 1 since now we assume that κ > 0. Let us consider the function H α (θ) := sin αθ -α sin θ for α > 1.

(5.53)

For a small enough θ we have

H α (θ) = αθ - (αθ) 3 6 -α(θ - θ 3 6 ) + o(θ 3 ) = -α α 2 -1 6 θ 3 + o(θ 3 ) < 0
and by

H α (θ) = α cos(αθ) -α cos θ = -2α sin α + 1 2 θ sin α -1 2 θ,
we see that H α is decreasing in the interval (0, 2π/(α + 1)), and in particular is negative. Therefore, since a sin θ < 0, b (θ) is also negative in the interval (0, θ 1 ). This means that b(θ) is decreasing. Note that b(0) = 1 + 1/κ -2a > 0 and the sign s of b(θ 1 ) = -2a cos θ 1 depends on κ.

If s ≥ 0 then we see that D (θ) = 2b(θ)b (θ) < 0 so that D is monotonic decreasing. Let us assume that s < 0. In this case, since b is monotonic decreasing, there is a unique ϕ such that b(ϕ) = 0. Since D (θ) = 2b(θ)b (θ), we need to have θ * < ϕ. In fact, if not so, then we have D(ϕ) > 0 by definition of θ * . Since b(θ) is monotonic b(θ) < 0 for any θ ∈ (ϕ, θ 1 ), we see that D (θ) = 2b(θ)b (θ) > 0 in the same interval. But it contradicts the fact that D(θ 1 ) < 0.

Set ϕ = θ 1 when s ≥ 0. Therefore, we obtain that D is monotonic decreasing in the interval (0, ϕ) containing θ * . In particular, D is monotonic decreasing in the interval (0, θ * ) in both cases, and D(θ * + δ) < 0 for small enough δ > 0; more precisely, θ * + δ < ϕ. Therefore, r ± are defined on (0, θ * ] and r ± are not defined for θ ∈ (θ * , ϕ). Since r + (θ * ) = r -(θ * ) by the fact D(θ * ) = 0, the curves r + (θ), θ ∈ (0, θ * ] followed by r -(θ * -θ), θ ∈ (0, θ * ], form a continuous curve going from α 2 to α 1 in the upper half-plane. Denote it by r +-.

Since r + • r -=1 -1 a > 0 and -(r + + r -) = b(θ) a < 0 for θ ∈ (0, θ * ), Vieta's formulas tell us that two solutions of (5.51) are both positive. Consequently, r + (θ) is increasing while r -is decreasing by (5.52).

In order to study the set S, let us consider f (x) for the real x ∈ [α 1 , α 2 ]. By differentiating, we have

f κ,γ (x) = γx 2 + 1 + 1/κ x + 1 (1 + γx) 2 1 + x κ κ-1 = γ(x -α 1 )(x -α 2 ) (1 + γx) 2 1 + x κ κ-1 . Since γ < 0, we have x α 1 • • • 0 • • • -1 γ • • • α 2 f + × + 0 f f (α 1 ) 0 ∞ × -∞ f (α 2 )
where lim

h→-0 f (-1 γ + h) = +∞, lim h→+0 f (-1 γ + h) = -∞.
Here, × means that f and f is not defined at that point. See Figure 18.

Claim. One has 0 > f (α 1 ) > f (α 2 ).

Proof of the claim. 0 > f (α 1 ) is obvious by the above table. We shall show f (α 1 ) > f (α 2 ). By the fact that α

1 α 2 = 1 γ , we have f (α 2 ) f (α 1 ) = α 2 (1 + γα 1 ) (1 + γα 2 )α 1 • 1 + α 2 /κ 1 + α 1 /κ κ = α 2 + 1 α 1 + 1 • 1 + α 2 /κ 1 + α 1 /κ κ .
Since 1+γα 2 < 0 and α 1 < 0, we have α 1 +1 = (1+γα 2 )α 1 > 0. Moreover, the facts that 1+α 1 /κ> 0 and α 2 > α 1 yield that

α 2 + 1 α 1 + 1 > 1 and 1 + α 2 /κ 1 + α 1 /κ > 1, whence we obtain f (α 2 ) f (α 1 ) > 1. Since f (α 2 ) < 0 because α 2 > -1 γ and γ < 0, we conclude that 0 > f (α 1 ) > f (α 2 ).
Thus, for the case κ > 0 and γ < 0 we have (S1) S = (f κ,γ (α 2 ), f κ,γ (α 1 )), where f κ,γ (α 2 ) < f κ,γ (α 1 ) < 0. Now we show that f κ,γ : D → C + is bijective. We take a path C = C(t) (t ∈ [0, 1]) in such a way that by starting from z = -1 γ , it goes to z = α 2 along the real axis, next goes to z = α 1 along the curve r +-defined by (5.47) and connecting α 2 and α 1 in the upper half plane, and then it goes to z = -1 γ along the real axis (see Figure 15). Here, we can assume that C (t) = 0 whenever C(t) = α i , i = 1, 2. Actually, the curve v(x, y) = 0 has a tangent line unless f vanishes. If we take an arc-length parameter t, then C (t) represents the direction of the tangent line at (x, y) = C(t). We note that C(t) describes the boundary of D.

We first show that f κ,γ maps the boundary of D to R bijectively. We take t i , i = 1, 2 as C(t i ) = α i . Note that the sub-curve C(t), t ∈ (t 2 , t 1 ) describes the curve r +-(t), and f κ,γ does not have a pole or singular point on C(t), t ∈ (t 2 , t 1 ). Set f (z) = u(x, y) + iv(x, y). By Lemma 5.2, the implicit function v(x, y) = 0 may have an intersection point only if f (x + iy) = 0, i.e. at x + iy = α i (i = 1, 2) or at x + iy = -κ if κ > 1. Then, the function g(t) = u(C(t)), t ∈ [t 2 , t 1 ] attains maximum and minimum in the interval because it is a continuous function on a compact set. Moreover, g never vanishes in (t 2 , t 1 ) by the above argument and by the fact that f (C(t)) = 0 for t ∈ (t 2 , t 1 ). Therefore, g is monotone and hence it takes maximal and minimal values at the endpoints t = t 2 , t 1 . Now we have f (α 1 ) > f (α 2 ) by the last claim so that the image of g is [f (α 2 ), f (α 1 )], and the function g is bijective.

We shall show that for any w 0 ∈ C + there exists one and only one z 0 ∈ D such that f (z 0 ) = w 0 . Let us take an R > 0 such that |w 0 | < R. For δ > 0, let C =C δ be a path obtained from C in such a way that the pole z = -1/γ is avoided by a semi-circle -1 γ + δe iθ , θ ∈ (0, π) of radius δ (see Figure 16). Denote by D the domain surrounded by the curve C .

Then, we can choose δ > 0 such that f -1 γ + δe iθ > R (for all θ ∈ (0, π)). In fact, if z = -1 γ + δe iθ , then we have

1 + γz = |γ|δ, z = -1 γ + δe iθ > 1 2|γ| (if δ < 1 2|γ| ), and 1 + z κ = 1 -1 κγ + δ κ e iθ > κγ -1 2κγ (if δ < κ 2 1 -1 κγ ), so that f -1 γ + δe iθ > 1 2|γ| 2 κγ -1 2κγ κ • 1 δ .
Thus it is enough to take δ = min

1 2|γ| 2 R κγ-1 2κγ κ , 1 2|γ| , κ 2 1 -1 κγ .
Since f is non-singular on the semi-circle -1 γ + δe iθ , θ ∈ [0, π], the curve θ → f (-1 γ + δe iθ ) does not have a singular angular point, so that it is homotopic to a large semicircle (with radius larger than R) in the upper half-plane (see Figure 17).

Note that Im f (x + yi) =

(1 + x/κ) 2 + (y/κ) 2 κ 2

(1 + γx) 2 + γ 2 y 2 (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y)) .

By changing variables as in (5.48), we have Im f (re iθ ) = positive factor × sin(κθ) • (ar 2 + b(θ)r + a -1) = positive factor × sin(κθ) • a(r -r -(θ))(r -r + (θ)).

Note that the inside of the path C can be written as re iθ ; θ ∈ (0, θ * ), r ∈ (r -(θ), r + (θ)) in (r, θ) coordinates. Since a < 0 and sin(κθ) > 0 when θ ∈ (0, θ * ), we see that Im f (z) > 0 if z is inside of the path C. In particular, the inside set of the curve f (C ) is a bounded domain in C + including w 0 .

Since the winding number of the path f (C ) with respect to w = w 0 is exactly one, we see that

1 2πi C f (z) f (z) -w 0 dz = 1 2πi f (C ) dw w -w 0 = 1.
By definition of f , we see that f (z) -w 0 does not have a pole in D . Therefore, by the argument principle, the function f (z)-w 0 has only one zero point, say z 0 ∈ D ⊂ D. Thus, we obtain f (z 0 ) = w 0 , and such z 0 ∈ D is unique. We conclude that the map f is a bijection from D to the upper half-plane C + . 5.3. The case of 0 < a = κγ < 1. In this case, we have (1 + κ) 2 -4aκ = (1 + κ -2a) 2 + 4a(1 -a) > 0 so that α 1 < α 2 are real. Since 0 < a < 1 we have γ > 0 and -1/γ < -κ. Since g(0) = κ > 0, g(-κ) = (a -1)κ 2 < 0 and g(-1/γ) = -1/γ + κ < 0, we have

α 1 < - 1 γ < -κ < α 2 < 0.
Let us prove that D is unbounded and D ⊂ z ∈ C + ; Arg(1 + z κ ) ∈ (0, π κ ) . Since D(θ) = b(θ) 2 + 4a(1 -a) > 0, we always have two real solutions for the equation (5.51). By r + • r -= a-1 < 0, only one of r + , r -is a positive solution. Since |b(θ)| < D(θ), we see that

r = r + (θ) = D(θ) -b(θ) 2a
is the only positive real solution of (5.51). In the same way as in (5.50) we see that lim θ→+0 r + (θ) = α 2 . Recall that κ > 1.

We use a calculation from Section 5.2. Now we show that b (θ) is negative on the interval (θ 1 , θ 0 ) (θ 0 = π/κ and θ 1 = π/(κ + 1)). Recall that b(θ) = cos θ + sin θ cot(κθ) -2a cos θ = (1 -2a) cos θ + sin θ cot(κθ).

Using this expression, we have b (θ) = (2a -1) sin θ + cos θ cot(κθ) + (sin θ) -(1 + cot 2 (κθ)) • κ = (2a -1 -κ) sin θ + cos θ cot(κθ) -κ sin θ cot 2 (κθ) = (2a -1 -κ) sin θ + {cos θ cot(κθ) -sin θ cot 2 (κθ)} -(κ -1) sin θ cot 2 (κθ) = (2a -1 -κ) sin θ + cos θ sin(κθ) -sin θ cos(κθ) sin(κθ)

• cot(κθ) -(κ -1) sin θ cot 2 (κθ) = (2a -1 -κ) sin θ + sin((κ -1)θ) sin(κθ)

• cot(κθ) -(κ -1) sin θ cot 2 (κθ).

Let us assume that θ ∈ (θ 1 , θ 0 ). Then, since the assumption κ > 1 yields that

0 < π κ + 1 < θ < π κ < π, π 2 < κπ κ + 1 < κθ < π, 0 < (κ -1)π κ + 1 < (κ -1)θ < (κ -1)π κ < π,
we see that for θ ∈ (θ 1 , θ 0 ) sin θ > 0, sin((κ -1)θ) > 0, sin(κθ) > 0, cos(κθ) < 0, cot(κθ) < 0. Moreover, if θ < θ 0 is enough close to θ 0 , then sin((κ + 1)θ) = sin((κ + 1)θ 0 ) + ε = sin π + π κ + ε = -sin θ 0 + ε.

This tells us that

x sin θ 0 -y cos θ 0 = -κ sin(θ -θ 0 ) sin κθ • sin θ 0 a + ε + sin θ 0 .

Since sin(κθ) = sin(π -κθ) = -sin κ(θ -θ 0 ) , we see that lim This means that A = 1 a -κ and hence the solution of (5.51) has an asymptotic line x sin θ 0 -y cos θ 0 = ( 1 a -κ) sin θ 0 , or y = tan θ 0 (x + κ -1 a ). If 1 < κ ≤ 2, then the asymptotic line is in the second quadrant. If κ > 2, the asymptotic line enters the first quadrant. This is a reason why we need the assumption κ > 1. In fact, if κ < 1 then its asymptotic line is in the third quadrant (if we extend f by analytic continuation) and so we cannot conclude that f maps C + onto C + .

In order to determine the set S, let us consider f (x) for real x ∈ [α 2 , +∞). Note that γ > 0. In this case, we have

x α 2 • • • 0 • • • +∞ f 0 + f f (α 2 ) 0 +∞ lim x→+∞ f (x) = +∞.
See Figure 23. Thus, if κ > 1 and γ > 0 then we have (S2) S = (-∞, f κ,γ (α 2 )), where f κ,γ (α 2 ) < 0.

Now we show that f κ,γ : D → C + is bijective. We take a path C = C(t), t ∈ (0, 1] in such a way that by starting from z = ∞, it goes to z = α 2 along the curve r + defined by (5.47) in the upper half plane, and then goes to z = ∞ along the real axis (see Figure 20). Here, we can assume that C (t) = 0 whenever C(t) = α i , i = 1, 2. Actually, the curve v(x, y) = 0 has a tangent line unless f vanishes. If we take an arc-length parameter t, then C (t) represents the direction of the tangent line at (x, y) = C(t). We note that C(t) describes the boundary of D.

We first show that f κ,γ maps the boundary of D onto R bijectively. We take t 2 such that C(t 2 ) = α 2 . Then, the subcurve C(t), t ∈ (0, t 2 ) describes the curve r = r + (θ), θ ∈ (0, θ 0 ). Let us see that f Therefore, f (z) diverges when |z| → +∞. We now consider the limit |z| → ∞ along to the path C(t) as t → +0. Recall that C(t) has an asymptotic line y = (tan θ 0 )(x + κ -1 a ). If z with 1 + z κ = Le iθ is on the curve C(t), t ∈ (0, t 2 ), and goes to ∞ under the condition θ → θ 0 -0 (that is, we consider the limit along the curve C(t)), then we have This shows that if 0 < t < t 2 (recall that C(t 2 ) = α 2 ), then g(t) < f (α 2 ) and g(t) = f (C(t)) is monotonic increasing. If not so, it leads to a contradiction by Lemma 5.2, using the fact that C does not include a singular point except for z = α 2 . Finally we see that g(t) = f (C(t)), t ∈ (0, 1) is monotonic from -∞ to +∞. We shall show that for any w 0 ∈ C + there exists one and only one z 0 ∈ D such that f (z 0 ) = w 0 . Let us take an R > 0 such that |w 0 | < R. For L > 0, let Γ L be the the circle -κ + Le iθ of origin z = -κ with radius L. Let L -κ and z L be two distinct intersection points of C and Γ L . Let C := C L be a closed path obtained from C by connecting L -κ and z L via the arc A of Γ L included in the upper half plane, see Figure 21.

1 + z κ κ = L κ • e iθκ -→ -∞, z 1 + γz = 1 (1/z) + γ -→ 1 
Since f is non-singular on the arc A, the curve f (A) does not have a singular point so that it is homotopic to a large semi-circle (whose radius is larger than R) in the upper half plane. Note that the domain D that we consider is given in (r, θ) coordinates as {(r, θ); θ ∈ (0, θ 0 ), r > r + (θ)}. Since Im f (re iθ ) = positive factor × sin(κθ) • (ar 2 + b(θ)r + a -1) = positive factor × sin(κθ) • a(r -r -(θ))(r -r + (θ))

and since a > 0 and sin(κθ) > 0 for θ ∈ (0, θ 0 ), we see that Im f (re iθ ) is positive on the domain D.

(see Figure 22). In particular, the inside set f (D ) of the curve f (C ) is a bounded domain including w 0 ∈ C + . Since the winding number of the path f (C ) about w = w 0 is exactly one, we see that

1 2πi C f (z) f (z) -w 0 dz = 1 2πi f (C ) dw w -w 0 = 1.
We know by definition of f that f does not have a pole on D . Therefore, by the argument principle, the function f (z) -w 0 has the only one zero point, say z 0 ∈ D . Then, we obtain f (z 0 ) = w 0 , and such z 0 is unique. We conclude that the map f is bijection from the interior set D of C to the upper half plane. (x + iy) cos(κθ(x, y)) + i sin(κθ(x, y))

= 1 + x κ 2 + y 2 κ 2 κ 2
x cos(κθ(x, y)) -y sin(κθ(x, y)) +i(x sin(κθ(x, y)) + y cos(κθ(x, y)))

and

f (z) = (κ + 1)z + κ κ 1 + z κ κ-1
.

Note that if f (z) = 0 then z = -κ/(κ + 1) (set α 2 = -κ/(κ + 1)) or z = -κ if κ > 1, and

-κ < - κ κ + 1 < 0.
We show that D is unbounded and D ⊂ z ∈ C + ; Arg(1 + z κ ) ∈ (0, π κ+1 ) . Let us consider the curve Im f (z) = 0, that is,

x sin(κθ(x, y)) + y cos(κθ(x, y)) = 0.

If sin(κθ(x, y)) = 0, then cos(κθ(x, y)) does not vanish so that y needs to be zero, and in this case we also have x ≥ -κ (if κ is not integer). This is because if x < -κ then θ(x, y) → π as y → +0, but then sin(κπ) = 0 whenever κ is not integer. Assume that sin(κθ(x, y)) = 0, and change variables by re iθ = 1 + z/κ. Then, we have 0 = κ(r cos θ-1)•sin(κθ)+κr sin θ•cos(κθ) = r(cos θ sin(κθ)+sin θ cos(κθ))-sin(κθ) = r sin((κ+1)θ)-sin(κθ), whence r = r(θ) = sin(κθ) sin((κ + 1)θ) .

Since sin(κθ) and sin((κ + 1)θ) are both positive in the interval (0, π κ+1 ), and since lim θ→ π κ+1 -0 sin((κ + 1)θ) = 0, we see that lim

θ→ π κ+1 -0 r(θ) = +∞,
thus it has an asymptotic line with slope tan π κ+1 . Let θ 1 = π κ+1 . Note that κθ 1 = π -θ 1 so that cot(κθ 1 ) = -cot θ 1 . Let y = (tan π κ+1 )x + A. Then, A needs to satisfy x + ((tan θ 1 )x + A) cot(κθ 1 ) = 0 ⇐⇒ x -(x + A cot θ 1 ) = 0, so that A = 0. Thus, there is an asymptotic line y = (tan θ 1 )x.

In order to study the set S, we consider f (x) for real (x ∈ (α, +∞). In this case, we have

x α • • • 0 • • • +∞ f 0 + f f (α) 0 +∞ lim x→+∞ f (x) = +∞.
Thus in this case we have (S2) S = (-∞, f κ,γ (α 2 )), where f κ,γ (α 2 ) < 0. We can confirm it directly. Since we have x = -y cot(κθ), we have by the change of variables 1 + z/κ = re iθ Thus, when θ ∈ (0, π κ+1 ), we have κ sin θ sin(κθ) > 0 so that lim θ→ π κ+1 -0 f (r(θ)e iθ ) = -∞.

In order to show that f κ,0 : D → C + is bijective, note that r(θ) = 1/b(θ) (where b(θ) is as in (5.49) for γ = 0) and b(θ) is monotonic decreasing, so that r(θ) is an increasing function. The discussion of bijectivity of f κ,0 : D → C + is similar to the case (ii) in Section 5.3.

5.4.2. Case κγ = 1, κ > 1. In this case, we have

f κ,1/κ (z) = z 1 + z κ 1+ z κ κ = z 1+ z κ κ-1 = κ κ -1 • κ -1 κ z 1+ κ-1 κ z κ -1 κ-1 = κ κ -1 •f κ-1,0 κ -1 κ z ,
and hence we can use the result in the case γ = 0 (since κ -1 > 0). 5.4.3. Case κ = +∞. In this case, we have f (z) = z 1 + γz e z = (x + γx 2 + γy 2 ) + iy (1 + γx) 2 + γ 2 y 2 • e x (cos y + i sin y) = e x (1 + γx) 2 + γ 2 y 2 (x + γx 2 + γy 2 ) cos y -y sin y +i (x + γx 2 + γy 2 ) sin y + y cos y .

If γ = 0 then f (z) = ze z and we are in the well-known Lambert case (see next subsection). So we assume that γ = 0. We will show that D is bounded and D ⊂ {z ∈ C + ; Im z ∈ (0, π)}. We have

f (z) = γz 2 + z + 1 (1 + γz) 2 e z ,
and f (z) = 0 implies

z = -1 ± √ 1 -4γ 2γ
.

Note that κ = ∞ means α = 1 so that γ = p-q p = 1 -q p ≤ 0 by the assumption α ≤ q p . Thus we consider only the case γ ≤ 0. Let us consider the curve Im f (z) = 0, that is, (x + γx 2 + γy 2 ) sin y + y cos y = 0.

If sin y = 0, then y = 0. Assume that sin y = 0. Then x + γx 2 + γy 2 + y cot y = 0, and this equation can be solved in x in such a way that The fact that f κ,γ : D → C + is bijective comes from the result for κ > 0 and from the fact that homographic transformations are bijective.

Figure 24

Figure 25 5.6. The domain Ω of definition of W κ,γ . In the previous section, we showed that the function W κ,γ is well defined on C + . Recall that Ω is defined on p.58 before (5.51). We have Ω = {z = x + yi ∈ C; z ∈ D or z ∈ D} ∪ (Cl(D) ∩ R). Then, Ω is a symmetric domain Ω = Ω (here the bar means complex conjugate). Let Ω + = D. By the Schwarz reflection principle (Ahlfors (1979, Theorem 24, p. 172)), we see that f = f κ,γ is analytically continued to the domain Ω and f (z) = f (z) (z ∈ Ω). Hence, f = f κ,γ maps D onto C -, and moreover, if we set S = R \ f (R), then f maps Ω onto C \ S and this correspondence is one-to-one (D is mapped one-to-one to C + , and so D is mapped onto one-to-one C -. We have verified that Ω ∩ R is mapped one-to-one onto f (R) in Sections 5.2 and 5.3). Thus, W κ,γ is well defined on C \ S. We can also verify it directly from (5.47). 
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 2 Generalized dual Vinberg cones and Vinberg matrices. Let {a n } ∞ n=1 and {b n } ∞ n=1 be non-decreasing sequences of positive integers such that a n + b n = n and the ratio a n /n converges to c ∈ [0, 1]. Let G n = D(a n , b n ) be the corresponding daisy graph. Then, the corresponding matrix space U n of the graph G n is a subspace of Sym(n, R) defined byU n := U = x y t y d ; x ∈ Sym(a n , R), y ∈ Mat(a n × b n , R), d is a diagonal matrix of size b n ,and we set P n := P Gn = U n ∩ Sym(n, R) + .

  (x) dx and B = c 0 η z (x) dx. Note that A is the desired Stieltjes transform S(z).

  and by the dominated convergence, we have for closed intervals [a, b] ⊂ R * µ([a, b])
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  Proposition 4.3. (i) Let D = Ω ∩ C + . The function f κ,γ is continuous and injective on the closure D. Consequently, W κ,γ extends continuously from C + to C + ∪ R, and one has f κ,γ (∂Ω ∩ C + ) = S. (ii) The Lambert-Tsallis function W κ,γ has the following properties.

  lim n p n = p, by Theorem 2.3, this variance profile determines the limiting distribution of empirical eigenvalue distributions of the Wigner matrices Y n in (4.20). Recall that, to a variance profile σ, Theorem 2.3 associates the Stieltjes transform S σ (z). It will be determined in Theorem 4.5. Analogously, to a variance profile σ of ξ n , we associate the "covariance Stieltjes transform" T σ (z) of the corresponding covariance matrices Q k (ξ n ) =ξ n t ξ n . The covariance Stieltjes transform T σ (z) is related to S σ (z) by the formula (4.21). It will be determined in Proposition 4.7.

κ<π

  for any z ∈ C + coming by Proposition 4.3 (ii) and we use relation (4.19).

  we obtain the formula (4.30). (ii) We shall show the part (ii) for κ ∈ (1, ∞) and γ < 0. The other cases can be done by a similar way. Let z = a + bi ∈ D = Ω ∩ C + . Set θ(a, b) = Arctan b κ+a for a > -κ and b > 0. By Proposition 4.3 (ii-a), we see that Re 1 +

Figure 9 .

 9 Figure 9. Realization of noninteger α

  and thus it is enough to study the limiting eigenvalue distribution of η n t η n . The variance profile of η n t η n has a trapezoidal form (4.22) (illustrated by (4.23)) with parameters α = m 1 and p = lim n an an+Nn = c c+m1+m2(1-c) . Applying Proposition 4.7, we see that the corresponding Stieltjes transform T 1 (z) is given by

Figure 10 .

 10 Figure 10. Simulation for α = 1/2 Figure 11. Simulation for α = 1 Figure 12. Simulation for α = 2

  Remark 4.15. In the Figures 10-12 we present simulations of k-indexed Wish-art ensembles X n = Q k (ξ n ) on the symmetric cone Sym(n, R) + (i.e. c = 1), for n = 4000 and N = |k| = 2n with parameters α = m 1 = 1/2, 1 and 2, respectively. We have γ = -1 and κ = 2, ∞, -1 respectively. The red line is the graph of d(x) generated by the R program from its Stieltjes transform given in Corollary 4.11. In two first cases, the limiting density d(x) is continuous on R with compact support contained in (0, ∞). The last case (κ, γ) = (-1, -1) corresponds to (κ , γ ) = (1, 0) which is the classical Wishart case with C = 1. Thus its density explodes to ∞ at 0. Remark 4.16. Let Y n be a rectangular n × p i.i.d. matrix with variance profile σ(x, y), and assume that lim n→∞ p/n = c. In papers[START_REF] Hachem | The empirical eigenvalue distribution of a Gram matrix: from independence to stationarity[END_REF][START_REF] Hachem | The empirical distribution of the eigenvalues of a Gram matrix with a given variance profile[END_REF];[START_REF] Hachem | A CLT for information-theoretic statistics of Gram random matrices with a given variance profile[END_REF] a functional equation τ

Figure 1 .

 1 Figure 1. Daisy Graph

2. 2 .

 2 Generalized dual Vinberg cones and Vinberg matrices. Let {a n } ∞ n=1 and {b n } ∞ n=1 be non-decreasing sequences of positive integers such that a n + b n = n and the ratio a n /n converges to c ∈ [0, 1]. Let G n = D(a n , b n ) be the corresponding daisy graph. Then, the corresponding matrix space U n of the graph G n is a subspace of Sym(n, R) defined by

  Proposition 2.2. 1. Suppose that s(z) is the Stieltjes transform of a finite measure ν on R. If for all x ∈ R it holds lim y→0+ Im s(x + iy) = 0 then s(z) ≡ 0 and ν is a null measure (ν(B) = 0 for any Borel set B). 2. Suppose f ≥ 0 and f ∈ L 1 (R). Let s(z) be the Stieltjes transform of f . If f is continuous at x then lim y→0+ 1 π Im s(x + iy) = f (x).

  .7) and the function z → η z (x) extends to an analytic C + -valued function on C + , for almost all x ∈ [0, 1]. Then, S σ (z) = 1 0 η z (x) dx.

  [a, b] be a segment included in R \ F. By the assumption, µ({a}) = µ({b}) = 0. By Theorem 2.4.3 inAnderson et.al. (2010) and by dominated convergence, we have + iy)dx = 0, so that µ(R \ F ) = 0. If µ = 0 then µ is purely atomic with atoms in F .

3. 1 .

 1 Properties of functions c → α c , β c . The limit lim c→1+ β c is computed easily by the De l'Hospital rule. In order to prove that β c > 0, we writeβ c = R(c) -S(c) with R(c) = c(8 -7c) 3 an S(c) = 13c 2 -4c -8and we show that R(c) > S(c) on [0, 1). The function R(c) ≥ 0, whereas S(c) changes the sign from negative to positive at c S = (2 + 6 √ 3)/13, and grows on [c S , 1] from 0 to 1. On the interval [c S , 1] the function R(c) is decreasing, so R(c) ≥ R(1) = 1 and R(c) -S(c) > 0.
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 254552657 Figure 2. Graphs of αc and βc Figure 3. Simulation for c = 1/5 Figure 4. Simulation for c = 2/5

  z), and Im S(z) > 0 (z ∈ C + ). (3.22) are satisfied on C + . Let E = {z ∈ C; z = 0 or Disc(z) = 0} be the set of exceptional points.

  and by the dominated convergence, we have for closed intervals [a, b] ⊂ R *

  using Proposition 2.2.2, we get lim y→0+ Im s(x + iy) = 0 for all x ∈ R. When c = 1/2, by Proposition 2.2.2, we get lim y→0+ Im s(x + iy) = 0 for all x ∈ R * , uniformly on compact intervals [a, b] ⊂ R * . Like in (3.23), we conclude by Theorem 2.4.3 in Anderson et.al. (2010) that µ = f c (t) dt. The support formula (3.13) follows by supp f c = {Disc(x) ≤ 0}.Detailed analysis of the case x = 0.
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 8 Figure 8. Region of κ and γ

  Proposition 4.3. (i) Let D = Ω ∩ C + . The function f κ,γ is continuous and injective on the closure D. Consequently, W κ,γ extends continuously from C + to C + ∪ R, and one has f κ,γ (∂Ω ∩ C + ) = S. (ii) The Lambert-Tsallis function W κ,γ has the following properties.

  2 . Since W (∞) = ∞ by Proposition 4.3 (ii-b), we see that W (-v/(iy)) = a(y) + ib(y) satisfies lim y→+0 a(y) = +∞ and lim y→+0 b(y) y) cos b(y) -1 + ie a(y) sin b(y

  Figure 11. Simulation for α = 1/2

Figure 14 .

 14 Figure 14. The case of (i) Figure 15. The case of (i)

  Since 2a -1 -κ < 0 and κ -1 > 0 by a < 1 and κ > 1, we arrive at b (θ) = (-) × (+) + (+) × (-) -(+) × (+) × (+) < 0 (θ ∈ (θ 1 , θ 2 )).Thus b(θ) is decreasing on the interval (θ 1 , θ 0 ) and since sin θ > 0 for θ ∈ (θ 1 , θ 0 ), we havelim θ→θ0-0 b(θ) = -∞.Recall that D (θ) = 2b(θ)b (θ). Since we have b(θ 1 ) = -2a cos θ 1 < 0 and b is decreasing, we see that b < 0 on the interval (θ 1 , θ 0 ). Accordingly, D(θ) and r + (θ) are increasing when θ ∈ (θ 1 , θ 0 ) by (5.52). Since lim θ→θ0-0 r + (θ) = +∞, the solution of (5.51) has an asymptotic line with gradient θ = θ 2 = π κ in (r, θ) coordinates. It corresponds to the line x sin θ 0 -y cos θ 2 = A with a suitable constant A. Let us determine A. Since x = κ(r(θ) cos θ -1) and y = κr(θ) sin θ, we havex sin θ 0 -y cos θ 0 = κ sin θ 0 (r(θ) cos θ -1) -cos θ 0 r(θ) sin θ = κ r(θ)(cos θ sin θ 0 -sin θ cos θ 0 ) -sin θ 0 = -κ r(θ) sin(θ -θ 0 ) + sin θ 0 .Next, we estimate r(θ) as θ → θ 0 -0. Since sin κθ → +0 as θ → θ 0 -0 (i.e. sin(κθ) = o(θ -θ 0 )), we have (sin(κθ))b(θ) = sin((κ + 1)θ) + ε sin((κ + 1)θ) + ε and (sin(κθ)) 2 D(θ) = (sin(κθ) b(θ)) 2 + 4a(1 -a)(sin(κθ)) 2 = (sin((κ + 1)θ) + ε) 2 + 4a(1 -a)(sin(κθ)) 2 = (sin((κ + 1)θ)) 2 + ε, where ε = o(θ -θ 0 ). Therefore, since sin((κ + 1)θ) < 0 when θ 1 < θ < θ 0 , we obtain sin(κθ) r(θ) = (sin(κθ)) 2 D(θ) -sin(κθ) b(θ) 2a = | sin((κ + 1)θ)| -sin((κ + 1)θ) + ε 2a = -sin((κ + 1)θ) a +ε.

  (θ -θ 0 ) sin κθ • sin θ 0 a + ε + sin θ 0 = -κ -1 κ • sin θ 0 a + sin θ 0 = 1 a -κ sin θ 0 .

  (z) (z ∈ C) diverges when |z| → +∞. In fact, let 1 + z κ = Le iθ with L > 1. Since L = 1

FigureFigure 20 .

 20 Figure 19. The case of (ii),when κ > 2

  (κθ(x, y)) -y sin(κθ(x, y))) = r(θ) κ (-y cot(κθ) cos(κθ) -y sin(κθ)) = -r(θ) κ y sin(κθ) = -κ sin θ sin(κθ) r(θ) κ+1(because y = κr(θ) sin(θ)).

  sin y + cos y 2 4γ 2 sin 2 y .

Figure 26 .

 26 Figure 26. Case (i) Figure 27. Case (ii)

  21 + y 12 y 22 z 11 z 21 + z 12 z 22 y 11 y 21 + y 12 y 22 If x, y ij , z ij are N (0, v) i.i.d. Gaussian variables, the random matrix Q (1,2,2) (η) has a Wishart law on P 3 . The form (2.2) of the Wishart multiparameter k englobes and generalizes the following cases. In both cases, with rescaling 1/n, the limiting eigenvalue distribution is known. (i) The classical Wishart Ensemble M t M on Sym(n, R) + , where M = M n×N is an i.i.d. matrix with finite fourth moment M 4 , with parameter C := lim n

	y 2 11 + y 2 12 + z 2 11 + z 2 12 z 11 z 21 + z 12 z 22	y 11 y y 2 21 + y 2 22 0	0 21 + z 2 z 2 22	  .
			N n > 0 (see Anderson
	et.al. (2010); Faraut (2014)) for (a n , b n			

  s are centered i.i.d. variables with variance v and fourth moment M 4 ,• the non-nul off-diagonal u ij 's, i < j, are centered i.i.d. variables with variance v and fourth moment M 4 , Quadratic construction of Wishart (covariance) matrices in U n . Recall that Wishart matrices are constructed quadratically both in Random Matrix Theory and in statistics. In this section we define, by a quadratic construction, Wishart (covariance) matrices in U n .

	√	n ∈
	U n .	
	2.4.	

(2.1) where v, v , M 4 , M 4 are fixed positive real numbers. If the non-nul terms u ij are Gaussian, with ν = 1 and ν = 2, the matrices U n form a Gaussian Orthogonal Ensemble of Vinberg matrices.

In Section 3, we consider empirical eigenvalue distributions of rescaled Wigner matrices U n /

  11 y 21 + y 12 y 22 z 11 z 21 + z 12 z 22 y 11 y 21 + y 12 y 22 In both cases, with rescaling 1/n, the limiting eigenvalue distribution is known. (i) The classical Wishart Ensemble M t M on Sym(n, R) + , where M n×N is an i.i.d. matrix with finite fourth moment M 4 , with parameter C := lim n

	y 2 11 + y 2 12 + z 2 11 + z 2 12 y y 2 21 + y 2 22 z 11 z 21 + z 12 z 22 0	0 21 + z 2 z 2 22	  .
	N n > 0 (see Anderson et.al. (2010); Faraut
	(2014)) for (a n , b n		

If x, y ij , z ij are N (0, v) i.i.d. Gaussian variables, the random matrix Q (1,2,2) (η) has a Wishart law on P 3 .

The form (2.2) of the Wishart multiparameter k englobes and generalizes the following cases.
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Remark 4.10. Corollary 4.9 (ii) enables us to write the density d σ with one real parameter in a way similar to Dykema-Haagerup (Dykema and Haagerup, 2004, Theorem 8.9), see formula (2.3). In particular, in the case (a), we obtain the formula A natural conjecture that we always have a 1-1 correspondence a → b or b → a is not confirmed by numerical generation of the domain Ω. For κ = -1/3 and γ = -4 the domain Ω is illustrated in the Figure 9. We do not have unicity of a → b nor b → a.

4.3. Applications to Wishart Ensembles of Vinberg matrices. Now we apply Theorem 4.8 to the covariance matrix X n = Q k (ξ n ) ∈ P n in two situations. The first (Corollary 4.11) is the case when P n is the symmetric cone Sym(n, R) + with k of the form (4.45) below. The second situation (Theorem 4.14) is the general case when P n ⊂ U n is a dual Vinberg cone with k of the form (2.2). This case contains the first one, that we present separately because of the importance of the symmetric cone Sym + (n, R).

Let us assume that k = k(n)= (k 1 , . . . , k n ) in (2.2) is of the form k = m 1 (1, . . . , 1, 1) + m 2 (n)(0, . . . , 0, 1), lim (4.45) where m 1 ∈ Z ≥0 is a fixed non-negative integer and m ∈ R ≥0 is a non-negative real such that

We note that the case m 1 = 0 corresponds to the classical Wishart ensembles, and if m 1 ≥ 1 then we have N ≥ n.

Corollary 4.11. Let k be as in (4.45). Suppose that ξ n ∈ E k is an i.i.d. matrix with finite fourth moments and let X n = ξ n t ξ n . Let µ n be the empirical eigenvalue of X n /n. Then, there exists a limiting eigenvalue distribution µ = lim n µ n . The Stieltjes transform T (z) of µ is given by formula (4.37)

The ]. Otherwise, for m 1 , m > 0, the density d(x) of µ is continuous on R, and its support equals

Proof. We use Theorem 2.3. It is enough to show that the matrix Y n in (4.28) has the variance profile σ in (4.30) and that the conditions (2.6) are satisfied. Since we have for n large enough

we can easily check the conditions (2.6). Thus, we can apply Theorem 4.8. Consider m 1 ≥ 2. Then κ < 0. When m = 0, then we have γ = γ -1 κ = 0 so that we apply Theorem 4.8.2. We have α = -1, 1 -1 κ = m 1 and 1 -κ = m1 m1-1 . By (4.40), the support is given by supp

. When m > 0, we have γ < 0 so that we apply Theorem 4.8.1. The support of µ is given by the formula (4.39), where α 1 ≤ α 2 are roots of the function γx 2 + (1 + 1/κ)x + 1.

Remark 4.12. If m = 0, our results contain those of Claeys and Romano (2014, Section 4.5.1) and Cheliotis (2018, Th. 4 and (12)). The result on the limiting densities of biorthogonal ensembles in Cheliotis (2018) can be reproduced from Corollary 4.11. In fact, our random matrices Q k (ξ n ) essentially correspond to those considered in [START_REF] Cheliotis | Triangular random matrices and biorthogonal ensembles[END_REF] through adjusting parameters m 1 = θ-1 and m 2 (n) = b -1 (not depending on n), where θ and b are parameters used in that paper. The properties of absolute continuity and support of the limiting measure can be derived analogously to those obtained in Theorem 4.8 for c = 1.

Proof. We construct a variance profile σ from E k likely to (4.30). We embed the rectangular

, and set

Then, we can show that σ is the variance profile of V n . On the other hand, let us consider a subspace

Then, σ is also the variance profile of V n . Thus, we consider equivalently the limiting eigenvalue distribution of V n , and that of covariance matrices on Applying Proposition 4.7, we see that the corresponding Stieltjes transform T 1 (z) is given by

In general, for two symmetric matrices A i (i = 1, 2) of size n i , the Stieltjes transform S(z) of diag(A 1 , A 2 )/(n 1 + n 2 ) can be described by using the Stieltjes transforms S i (z) of A i /n i (i = 1, 2) as

In our situation, we have (n

η n /a n so that lim n→∞ S 1 (z) = T 1 (z). Thus, taking the limit n → ∞, we see that the limiting Stieltjes transform T (z) corresponding to E k , and hence to E k is given as

whence we obtain the theorem. 

Appendix

In this Appendix, we give proofs of Theorem S, Theorem 4.1 and Proposition 4.3.

5.1. Proofs. By definition, f κ,γ (z) has a pole at z = -1/γ when γ = 1 κ , and z = -κ may be a branch point of f . We first assume that κ > 0. Although the condition on κ is κ ≥ 1 when κ is positive, we also deal with the case 0 < κ < 1 in order to apply it to the case κ < 0. We have

.

Let α 1 , α 2 be the two solutions of g(z

Here Arg(w) stands for the principal argument of w; -π < Arg(w) ≤ π. Note that we now take the main branch of power function. Thus,

(1 + γx) 2 + γ 2 y 2 (x + γx 2 + γy 2 ) cos(κθ(x, y)) -y sin(κθ(x, y)) +i (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y))

(5.46) We want to know the inverse image of the real axis, that is, f -1 (R).

To do so, we consider the implicit function (x + γx 2 + γy 2 ) sin(κθ(x, y)) + y cos(κθ(x, y)) = 0.

If sin(κθ(x, y)) = 0, then cos(κθ(x, y)) does not vanish so that y needs to be zero. Moreover, in this case we also have x ≥ -κ if κ is not integer; otherwise, if x < -κ then θ(x, y) → π as y → +0, but then sin(κπ) = 0 whenever κ / ∈ Z. Assume that sin(κθ(x, y)) = 0. Then the equation can be rewritten as (x + γx 2 + γy 2 ) + y cot(κθ(x, y)) = 0.

(5.47)

If we change variables by

, or equivalently x = κ(r cos θ -1), y = κr sin θ, (5.48) then the equation (5.47) can be written as

In the last, we use cos θ + sin θ cot(κθ) = cos θ sin(κθ) + sin θ cos(κθ) sin(κθ) = sin((κ + 1)θ) sin(κθ) .

Set b(θ) := sin((κ + 1)θ) sin(κθ) -2γκ cos θ.

(5.49)

We have lim

and the solution in r of the equation in the case θ = 0

Note that these two r = r ± correspond in (x, y) coordinates to α 1 , α 2 because 1 + x κ = r and because the equation defining r ± can be rewritten as

(5.50)

We also note that, if we set (x, y) = (0, 0), or equivalently (r, θ) = (1, 0) then

Let Ω be the connected component of z ∈ C; (x + γx 2 + γy 2 ) + y cot(κθ(x, y)) > 0 including z = 0. Let D = Ω ∩ C + . For θ > 0, the equation

We want r to be positive real. Set D(θ) = b(θ) 2 -4a(a -1). We have for ε = ±1

(5.52)

We shall show that f κ,γ maps D → C + bijectively, and its main tool is the following Argument Principle (see Ahlfors (1979, Theorem 18, p.152), for example).

Theorem 5.1 (Ahlfors (1979, Theorem 18, p.152)). The argument principle. If f (z) is meromorphic in a domain Ω with the zeros a j and the poles b k , then

for every cycle γ which is homologous to zero in Ω and does not pass through any of the zeros or poles. Here, n(γ, a) is the winding number of γ with respect to a.

We also use the following lemma.

Lemma 5.2. Let f (z) = u(x, y) + iv(x, y) be a holomorphic function. The implicit function v(x, y) = 0 has an intersection point at z

We assume that (x (t), y (t)) = (0, 0). Set

Obviously, we have h (t) ≡ 0 for any t, and

Assume that g (t 0 ) = 0 for some point t 0 ∈ [0, 1]. Then

the condition g (t 0 ) = 0 implies that the vector (v x , v y ) is orthogonal both to (x (t 0 ), y (t 0 )) and (-y (t 0 ), x (t 0 )), which are non-zero vectors and mutually orthogonal. Such vector is only zero vector in R 2 , that is, (v x , v y ) = (0, 0), and hence (u x , u y ) = (0, 0) by Cauchy-Riemann equations. Thus, if g (t 0 ) = 0 then p(t 0 ) needs to satisfy f (p(t 0 )) = 0.

Note that

In order to solve the equation in x, the function h(y) needs to be non-negative, and it is equivalent to the condition that the absolute value of the function g(y) := cos y + 2γy sin y is less than or equal to 1. We will show that g(y) is monotonic decreasing in some interval. At first, we observe that g(0) = 1 and for y small enough

If 1 -4γ ≥ 0, g takes a maximal value at y = 0 (if γ = 1/4 then 1 -8γ = -1 < 0). Its derivative is

Here we have

If cos y = 0 then we have g (y) = 0 so that g (y) = 0 implies cy+tan y = 0. Since -1 ≤ c < 1, it follows (by derivation) that cy + tan y is increasing. Thus, we have a unique solution y * of cy + tan y = 0 in the interval y * ∈ (π/2, π). Note that since 1 -2γ > 0, we have g (y) < 0 for y ∈ (0, π/2). Moreover, since for π 2 < y < y * < 3 2 π we have cos y < 0 and cy + tan y < 0 (lim y→π/2+0 tan y = -∞ and cy + tan y is increasing), we see that g (y) is also negative for y ∈ (π/2, y * ).

Since we now assume that γ < 0, we have

so that there exists one and only one y 0 in (0, y * ) such that g(y 0 ) = -1 and g(y 0 + ε) < -1 for ε ∈ (0, y * -y 0 ). We have proved that h(y) is non-negative on y ∈ [0, y 0 ], and h(y 0 + ε) < 0 for any ε ∈ (0, y * -y 0 ). Therefore, in this interval, we can take a square root of h(y), and we can solve the equation in x as

Since h(y 0 ) = 0, these two paths (x ± (y), y) form a continuous curve connecting x + (0) and x -(0). By construction, it is obvious that the curve (x ± (y), y) is in C + . Now we study the set S Let us consider f (x) for real x. Since γ < 0 and γ(-

The discussion of bijectivity of f : D → C + is similar to the case (ii) in Section 5.3.

5.4.4. Case (κ, γ) = (∞, 0). This case corresponds to the classical Lambert function. Although the detailed analysis of the classical Lambert W function is found in [START_REF] Corless | On the Lambert W function[END_REF], we give it here for the completeness. Let f (z) = ze z . Set z = x + yi and compute Re f and Im f . f (z) = (x + yi)e x+yi = e x (x + yi)(cos y + i sin y) = e x {(x cos y -y sin y) + i(x sin y + y cos y)}.

Assume that Im f (z) = 0. Then, we have

x sin y + y cos y = 0.

Obviously, real numbers z = x + 0i satisfy this equation. Assume that y = 0. Then, we see that sin y = 0. Otherwise, cos y needs to be equal to zero but it is impossible. Thus we have 

.

Then, it can be written as

(recall that we are taking the main branch so that log z = -log(z -1 )), we obtain

.

Set γ = γ + 1/κ . Since we now assume that 1 κ -γ ≥ 0, we have 1 κ -γ ≥ 0 ⇐⇒ 1 ≤ κγ ⇐⇒ γ κ ≤ 0, and hence by the homographic action, the case κ < 0 reduces to the case κ > 0 and κ γ ≤ 0.

We will show that D is bounded and D ⊂ z ∈ C; Arg(1 + z κ ) -1 ∈ (0, π κ+1 ) . Let ρ denote the inverse transformation of z = z 1+z/κ , that is, ρ(z ) = z 1+z /κ . We know by Section 5.2 that D = ρ -1 (D) is bounded and included in the domain z ∈ C + ; Arg(1 + z κ ) ∈ (0, π κ+1 ) (see Figure 24). The line p(t) = -κ + te iθ * = κ + te iθ * is mapped by ρ to the line ρ(p(t)) = κ + te iθ * 1 -(κ + te iθ * )/κ = κ + te iθ * -te iθ * /κ = -κ -κ 2 t e -iθ * .

By ρ, the point z = κ = -κ transforms to z = ∞, and this point is not included in D. Consequently, Ω = ρ(Ω ) is bounded and included in z ∈ C; Arg(1 + z κ ) -1 ∈ (0, π κ+1 ) (see Figure 25). Now we determine the set S.

If γ < 0, then α i transform to α i for each i = 1, 2, and we have S = (f κ ,γ (α 2 ), f κ ,γ (α 1 )) = (f κ,γ (α 2 ), f κ,γ (α 1 )). Next we consider the case γ = 0. In this case, the intersection point α of Im f κ ,γ = 0 is given as α = -κ κ +1 . Let p(t), t ∈ [0, 1) be the path of ∂D ∩ C + such that p(0) = α . Since ρ(∞) = -κ, we see that ρ(r(t)), t ∈ [0, 1) is a path connecting α = ρ(α ) = -1 and -κ. In particular, D is bounded. Then, we have S = (f κ,γ (-κ), f κ,γ (α)) = (f κ ,γ (∞), f κ ,γ (α )) = (-∞, f κ ,γ (α )). We note that the solution of the equation γz 2 +(1+1/κ)z +1 = 0 with the condition γ = 1/κ is given as z = -1, -κ. Since -1 < -κ, we have α 1 = -1 so that (S3) S = (-∞, f κ,γ (α 1 )), where f κ,γ (α 1 ) < 0.