
HAL Id: hal-02926738
https://hal.science/hal-02926738v1

Submitted on 1 Sep 2020 (v1), last revised 6 Jul 2021 (v3)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A Multi Ant Colony Optimization Approach For The
Traveling Salesman Problem

Mathurin Soh, Baudoin Nguimeya Tsofack, Clémentin Tayou Djamegni

To cite this version:
Mathurin Soh, Baudoin Nguimeya Tsofack, Clémentin Tayou Djamegni. A Multi Ant Colony Opti-
mization Approach For The Traveling Salesman Problem. Revue Africaine de Recherche en Informa-
tique et Mathématiques Appliquées, A paraître. �hal-02926738v1�

https://hal.science/hal-02926738v1
https://hal.archives-ouvertes.fr

A Multi Ant Colony Optimization Approach For
The Traveling Salesman Problem

Mathurin Soh, Baudouin Nguimeya Tsofack, Clémentin Tayou Djamegni

Research Unit in Fundamental Informatics, Engineering and Applications
University of Dschang
P.O. Box 67 Dschang, Cameroon
mathurinsoh@gmail.com ; mathurin.soh@univ-dschang.org
nguimeyabaudoin@yahoo.fr
dtayou@gmail.com

ABSTRACT. In this paper, we propose a new approach to solving the Traveling Salesman Problem
(TSP), for which no exact algorithm is known that allows to find a solution in polynomial time. The pro-
posed approach is based on optimization by ants. It puts several colonies in competition for improved
solutions (in execution time and solution quality) to large TSP instances, and allows to efficiently ex-
plore the range of possible solutions. The results of our experiments show that the approach leads
to better results compared to other heuristics from the literature, especially in terms of the quality of
solutions obtained and execution time.

RÉSUMÉ. Dans ce papier, nous proposons une nouvelle approche de solution approchée au prob-
lème de voyageur de commerce (Traveling Salesman Problem in english), dont on ne connait pas
d’algorithme exact permettant de trouver une solution en un temps polynomial. L’approche pro-
posée est basée sur l’optimisation par des fourmis. Elle met plusieurs colonies en compétition pour la
recherche des solutions améliorées (en temps d’exécution et en qualité de la solution) aux instances
de TSP de grandes tailles, et permet d’explorer plus efficacement les plages de solutions possibles.
Les résultats issus de nos expériences nous montrent, que l’approche permet de déterminer des ré-
sultats meilleurs par rapport aux autres heuristiques (ACS-LKH, et AG-LKH), issues de la littérature,
notamment en qualité des solutions obtenues et en temps d’exécution.

KEYWORDS : Ants, Colony, Heuristic, Multi-colony, Traveling Salesman Problem

MOTS-CLÉS : Colonie, Fourmis, Heuristique Multi-colonie, Problème du Voyageur de Commerce

1. Introduction
The Traveling Salesman Problem (TSP) is one of the most important combinatorial

optimization problems. Its statement is simple, and yet it remains one of the most difficult
problems in operational research because it is considered NP-difficult. TSP is a classic
combinatorial optimization problem that has been the subject of studies in the field of
operations research and computer science since the beginning of the years 1950s. As
a result, a large number of techniques were developed to solve this problem. Much of
the work on TSP is only motivated not by practical applications, but rather by the fact
that it provides a framework ideal for platforms for the study of general methods that
can be applied to a wide range of combinatorial optimization problems. Indeed, many
applications TSP guidelines bring research to life and help guide future work. In the TSP,
a number of cities are indicated, and are linked to others by arcs. A salesman begins his
or her tour from any city, and traveling only once to each city, he or she returns to the city
of departure once again. The problem is to find the shortest route of the salesman from a
given city, visiting n cities once and then finally returning to the origin city.

Despite the multitude of methods available to solve the basic or applied TSP, none of
the methods have so far been successful in resolving large instances[1, 2]. Indeed, one
is generally confronted with a combinatorial explosion and a limitation of the memory
resources of the computers when the size of the instances increases. However, problems
related to TSP are increasing and are frequent in our society and must be resolved. For
most instances of TSP, the optimal solution is rarely reached even by the best efficient
heuristics developed on this subject. In this work, we are interested in the use of ant
colony optimization. It is a question for us of propose another solution to this problem.
So we develop a new heuristic involving several colonies of ants.

In the rest of this paper, we present in section 2, the TSP and its applications. Section
3 is devoted to a review of the literature on the resolution of TSP by heuristics. In section
4, we present our contribution. Section 5 is devoted to the experimental results, eluci-
dated from tests and discussions that are performed with TSP instances from the TSPLIB
library. Section 6 concludes our work.

2. The Traveling Salesman Problem
The Traveling Salesman Problem (TSP) is defined as follows: given n points (cities)

and the distances between points, find a path of minimum total length that passes exactly
once through each point and return to where it all started[1, 10]. The distance can also be
seen as the cost in general. This combinatorial optimization problem, therefore, consists
in searching for the best solution among several possible choices. However, it is easy
to state but difficult to solve. The problem is to determine an Hamiltonian circuit, i.e.
passing once and only once through the n cities, and that is of minimum cost. It’s clas-
sified as a NP-difficult problem [1, 2, 3], because there not known method of resolution
to obtain exact solutions in reasonable time for large instances (large number of cities) of
the problem. For these large instances, one is very often satisfied with the approximate
solutions because after an explicit enumeration, the number of Hamiltonian paths is equal
to (n-1)!/2 [10].

Mathematically, the TSP can be formulated as follows: Let n cities andCij , the cost or
distance corresponding to i→ j Let the variable Xij , which equals 1 if the tour contains
the arc i→ j, and 0 otherwise. The problem is stated as follows[6]:



MinZ =
∑n
i=1

∑n
j=1 CijXij∑n

J=1Xij = 1 ∀i (1)∑n
i=1Xij = 1 ∀j (2)∑n
i∈Q

∑n
j∈QXij ≥ 1 ∀Q (3)

Xij ∈ {0, 1}∀i,∀j

[1]

Where Q represents a subset of 1,..,n and its complement. The constraints (3) express that
the permutation of the n cities must be a trick, i.e. it can’t not to exist subtours.

TSP has applications in transportation, networks and logistics. For example, finding
the shortest route for pickup buses... school or in industry, for collection/distribution, to
find the shortest distance that the mechanical arm of a machine will have to travel to drill
holes in a printed circuit board[6, 7, 10].

3. Problem position
Existing algorithms for solving TSP are not efficient enough. When the number of

cities increases, the time or space required to solve the problem increases exponentially.
The ant colony system solves the problem within a reasonable period of time, and pro-
duces optimal solutions [2]. But when the size of the problem increases, it takes a long
time to produce the result, which is often not optimal. Thus, a modification is necessary
to solve the larger problem of the traveling salesman.

In this work, we propose an approach to solve the TSP based on Ant Colony Systems
(ACS) heuristic, using several colonies in competition to find competitive results capable
of minimizing known execution times or of giving optimal or almost optimal solutions to
instances where a solution is still difficult to achieve with current methods.

This new approach would allow more effective exploration of the beaches of possible
solutions, and determine satisfactory iteration techniques for build the path to the optimal
solution as quickly as possible out of thousands of possible paths. We are particularly
interested in the multi-colony approach for three reasons: First, we wish to offer greater
exploration in terms of the possibility of ant deployment. Secondly, we want to obtain a
multiplicity of potential solutions to the problem during the optimization process. Thirdly,
we want to get good solutions more quickly, because of the competition at the colony
level.

4. Review of art
Several approaches have been used to address the TSP. From exact to approximate

methods. The simplest approach is the exact methods approach, which consists of listing
all possible solutions and taking the best solution. These exact approaches are effective
only for small instances where the explicit enumeration of solutions is possible in rea-
sonable time [2, 7, 8]. For large instances, most of the work is based on heuristic and
meta-heuristic methods. In the literature, there are two types of heuristics: Those that
build a tour from scratch and those that are effective at improving an existing tour called
Tour Enhancement Heuristics. Research into heuristic methods for solving TSP has in-
cluded Dorigo’s results. et al [2, 6] who, inspired by the collective behaviour of ants
and their similarities with TSP, proposed the first ant colony algorithm for TSP: "‘the Ant
System (AS)". Unfortunately, the purely probabilistic choice of the AS makes it less ef-
ficient in terms of diversification, thus favoring the risks of premature convergence. To
improve the performance of AS on large problems, Dorigo et al [2], modify the AS tran-
sition rule to provide a better balance between exploring new areas of the solution space
and exploiting the accumulated knowledge of the problem to intensify the solution. To
this end, they introduce a new rule that depends on a q0(0 < q0 < 1) parameter. Q is a
randomly generated number, evenly distributed between [0.1]. With this new version, the
choice of the next cities is not only probabilistic but also according to a q parameter. The
resulting algorithm is called ACO [3]. Only ACO has shown some weaknesses in terms
of to explore new avenues and intensify solutions.

Beside these so-called construction heuristics, we have improvement heuristics such
as the K-opt Heuristic (K = 2, 3, ...) which improves solutions by testing whether permu-
tations of k paths produce more optimal rounds [1] or the heuristic of Lin and Kernighan
(LK) [3] which is an improvement of the K-opt heuristic with k variables, or the Lin and
Kernighan heuristic modified by Helsgaun (LKH). These heuristics efficiently improve
solutions starting from an already known solution. Another class of heuristics is hybrid
heuristics, which has become increasingly popular in recent years. These hybrid heuristics
can be divided into several groups. On one side we have the hybridization of construction
heuristics. between them, which consists in replacing a mechanism of one heuristic by a
mechanism of another heuristic. to make up for what is limited in one by what is seen as
an advantage in the other. In this regard, we can quote hybridization (AG-ACO) [4, 10].
On the other hand, we have the hybridization of construction heuristics (AG, ACO ...)
with the heuristics of the researches. local or heuristic enhancement (LK, LKH, RL). An
example of this technique was the one proposed by [10]. This work proposes for the res-
olution of the TSP, two new hybrid heuristics named "AG-LK" and "ACS-LK" resulting
respectively from the hybridization of a Genetic Algorithm (AG) and the heuristic (LK),
and the second between the ant colony algorithm (ACS) and the heuristic (LK). However,
the authors use only one colony. The results obtained from this experiment have suf-
ficiently demonstrated the efficiency of these hybrid approaches on several instances of
TSP [10] [3]. Unfortunately, the resolution time resulting from this experiment remains
enormous.

To improve the efficiency of the hybrid heuristics proposed in [4], Nguimeya and al
in 2016 implemented two hybrid heuristics for TSP. The first one between a Genetic Al-
gorithm (AG) and the heuristic (LKH) which is an improvement of LK by Helsgaun [3]
and the second one between the Ant Colony System algorithm (ACS) and the heuristic
(LKH). The resulting heuristics were called respectively "AG-LKH" and "ACS-LKH".

Hybridization strategies differ from one author to another [4].

As we can see, the search for solutions to TSP is a permanent quest in the field of
computer science, especially in operational research. Several authors have already worked
in this direction by approaching various approaches, as this art review clearly shows.
Only none of these methods has been able to overcome TSP. In the following section, we
propose a new hybrid heuristic for TSP.

5. Proposition of a Multi-Colony Ant Optimization Approach
for TSP

5.1. Basic idea
To achieve the above objectives, we present the basic ACO proposed by Dorigo et al

in [2]. We then modify this algorithm using multiple colonies. This leads us to a new
version that we call MACO (ACO-multi colonies). MACO proposes a new way to iterate
ants from different colonies by defining more or less one iteration step to optimize the
decision of the artificial ants to take preferably the right paths while avoiding the pitfalls
of the local optimum. Strategies exchanges or communication between ants during their
movements will be done in real time in order to help ants detect failures or wrong paths
as quickly as possible. The updating of pheromones by ants is done as in the ACO [2].
The resulting algorithm is implemented in C language and tested on TSP instances from
the TSPLIB library [5].

5.2. Description or Mechanism of ACO Approaches
. For the study, we consider that our problem is modeled in the form of a graph. Each

node of the graph represents a city or task to be performed, dij the distance between cities
i and j, and the couple (i, j) the path between these two cities. We will also consider the
following:

– The ant represents a solution to the problem at hand;
– Computer pheromones are values associated with found solutions. These values

depend on the quality of the solutions.

5.2.1. Step 1: Build a path for each ant (Solution)
To move from one node (city) of the graph to another, the iteration and movement of

the ants is as follows: Initially (at time t = 0), the algorithm sets m ants to n cities and
the intensity of the trace for all city pairs (i, j) is set to a small positive To value in the
pheromone matrix. A taboo list is maintained to ensure that a city cannot be visited twice
during the same tour. Each ant k will therefore have its own list of Vk-tab cities that will
keep in memory the cities already visited. During an iteration of the algorithm, several
ants take turns visiting a sequence of cities. One cycle (NC) is finished by the time the
last of the m ants have finished building.

At t 6=0, from a sequence of cities already visited, each ant k chooses the next city to
add to its list Vk-taboo using a probabilistic rule so the formula is given in equation (1).

ηij = 1
dij

p k
ij = [ηij]

β [τij(t)]
α

Σu∈vk[ηiu]β [τiu(t)]α
(1)

τij(t+ 1) = ρ P k
ij(t) +4 τij (2)

[2]

It’s based on a compromise between visibility (1
dij

) and the amount of pheromone
(tij) present between i and j. The parameters α and β are used to determine the relative
importance of track intensity and visibility, respectively in the construction of a solution.
This mode of iteration allows to privilege the shortest paths since ants will need fewer
iterations to get to the end.

5.2.2. Step 2: Pheromone deposition and solution evaluation
When an ant moves from city i to city j, it leaves a certain amount of pheromone

(value) on the arc (i, j). A so-called pheromone matrix records information about the
use of the (i, j) arc. At each stage of the round, the matrix is updated so that the greater
the use of the (i, j) arc in the past, the more pheromone it has been used, the higher the
probability that these arcs will be used again in the future. In this version of ACO, it says,
there is an overall update of the pheromone trace intensity after each transition based on
the assessment solutions found. For example, an ant moving from node i to j will be
able to signal the following ants that are arriving in i if the displacement in j is a justified
displacement. Equation (2) allows the pheromones to be updated.

τij(t+ 1) = ρ τij(t) +4 τij
[3]

5.2.3. Ant Colony Optimization algorithm (ACO)
The Ant Colony Optimization algorithm is stated in algorithm 5.1

5.3. Multi-colony ant colony optimization approach for TSP
In this section, we present an approach called Multi Ant Colony Optimization for the

TSP (MACO), based on colony optimization of the [2] ants between multiple colonies.
To do so, we first present some characteristics and principles of ACO approaches, then
we approach the description of our MACO resolution approach and finally we present the
MACO algorithm.

We put several colonies of artificial ants in competition with each other depending on
the size of the problem to win in terms of exploring solutions. In this way, the different
colonies build their tour independently and collaborate through a kind of shared memory
(global pheromone matrix) by stimulating a pseudo-parallelism to reach the common goal.
Indeed, each colony is placed in a departure city, a travel step is authorized for each colony
in turn. If an ant belonging to a colony during its iteration finds a better solution than the
one known by the other ants in the different colonies, it quickly informs the others by
updating the solution through the global communication matrix. To optimize the solution
time, information about the pheromone matrix is given in real time immediately after each
transition and not delayed.

Algorithme 5.1 : ACO Algorithm

1 Begin
2 Inputs m : number of ants per colony ;
3 n : number of cities ;
4 N c ← 0 ;
5 Initialize Taboolist // with the origin town of each ant ;
6 Initialize the matrix τij While (Nc < Nmax) and (convergence not reached)

Do
7 For i← 1 to n Do
8 For j← 1 to m Do
9 Select the city j to be added to the current tour with the formula p

k
ij (t) ;

10 Update locally the trace according to cities(i,j) ;
11 EndFor
12 EndFor
13 EndWhile
14 For each ant k Do
15 Evaluate the solution k for each of steps ;
16 Insert the solution k in the TabooList ;
17 Update globally the trace according to the best solution of the cycle ;
18 EndFor
19 NC← NC + 1;
20 End

5.4. New Multi-Colony ACO Approach (MACO)

5.4.1. Description of the approach MACO
Our approach called MACO is based on ACO approaches with the difference that

MACO uses several ant colonies to allow a better exploration of the paths and optimizes
the solutions found by another LKH improvement heuristic. Indeed, one of the major
flaws in single colony [2] ACO is the difficulty for the colony to be able to explore effi-
ciently the solution ranges especially for large instances. With MACO, we intend to solve
the problem using several colonies. The different colonies of the MACO algorithm are
independent and build their solutions independently. while working closely together to
achieve the final goal through communication mechanisms made possible by a communi-
cation matrix and values called pheromone.

Each colony (the ants) represents a solution to the problem being treated. The pheromone
matrix is common to all colonies. It is used as a shared memory to allow the ants to com-
municate with each other to guide each other’s search. This matrix is dynamic and is
used by the colonies to incrementally build solutions. Each ant has a simple behavior, but
the exchanges between ants are made by the intermediary of of the pheromone matrix,
allow the gradual production of a solution that is close, if not optimal. Ants communicate
indirectly via dynamic modifications of the pheromone tracks and thus build a solution to
a problem, based on their collective experiences.

5.5. Description of the principle of the MACO algorithm
Step 1: Initializing the algorithm: Initially, there’s no pheromone on the arcs. The

global pheromone matrix is initialized with 0 values for each pair of nodes. To initialize

this matrix for the first time, the ants move randomly and in parallel per colony and build
their first round. Each colony has its own local communication matrix. Once all the
points have been visited, the ants return to their starting point (city). At the end of this
first stage, the ants modify the global communication matrix by updating its entries with
the best colony found (the best solution at the end of a tour).

Step 2: Construction of solutions: After the initialization phase, from this sequence
of cities already visited, within the different colonies, the ants move this time on the
different nodes of the graph according to a probability and therefore the equation is that
of formula (3). It allows the colonies to favour the shortest paths during the different
iterations. During a tour, each ant k of a colony L records in its taboo list (memory) the
list of cities already visited. The new probabilistic formula for selecting a node by the ant
k of colony L is defined by the expression p k,l

ij (3). This probability is modeled on the
one used in the ACO heuristic [2] described above.

p k,l
ij (t) = { [ηij]

β [τij(t)]
α

Σu∈vkl [ηiu]β [τiu(t)]α
if j∈ vkl

0 else (3)
[4]

where vkl is the set of nodes (cities) not visited by ants in colony L.
Description of the Pheromone Matrix: It’s an array of i rows and j columns. At t = 0

each entry of the matrix is initialized with the value 0. τij(t) represents the intensity of the
pheromones on the (i, j) edge at the t cycle. During the construction of a path, after each
transition of an ant k belonging to a colony L, ants from different colonies use directly
the global communication matrix to communicate and immediately update pheromones
as they evolve. The pheromone matrix evolution equation is described in equation (4) by
:

τij(t+ 1) = ρ τij(t) +4 τij (4)
[5]

Equation (4) is the same as equation (2) in ACO [2]. The main purpose of updating
after each transition is to simulate a kind of parallelism in order to save computing time
by giving the information on the global communication matrix in real time and not in
delayed time. As in ACO, to reduce failures, pheromones evaporate[2]. The pheromones
have to be reduced (value) on each path depending on the quality of the solution. This
allows the ants after a certain time to avoid taking certain paths that can lead to failure.
This characteristic is modeled via the parameter ρ (0 <ρ <1) . The evaporation equation
of the pheromone matrix is described by the formula (5).

τij(t+ 1) = (1 -ρ) τij(t) (5)
[6]

The inverse of the distance between cities ηij = 1
Cij

called visibility is a static infor-
mation used to guide ants to nearby cities and avoid cities that are too far away. The
parameters α and β are used to determine the relative importance of the ant’s presence in
the area. the intensity of the trace and the visibility in the construction of a solution. This
is based on a trade-off between visibility (ηij) and the amount of pheromone (tij) present
between i and j at cycle t. These parameters are the same as those used in ACO[2]. Each
colony corresponds to a potential solution to the problem, i.e. a complete tour. When
recovering a solution, each ant in the different colonies provides part of the solution to the
problem. The assembly of the different sub-solutions provides the solution to the original
problem. If at a given time t all the ants in a colony have the same solution, the iterations
are stopped. The procedure finally obtained for optimization by multi-colony ants is the
algorithm (5.2).

5.6. Complexity of MACO Algorithm
The study of the complexity of our MACO algorithm is done by subdividing the algo-

rithm into 4 sections to calculate the complexity.
- Initialization: Since we have assumed a total interconnection between cities, we

have a complexity of O (n2 + m. L).
-Constructions of the path, and progressive deposition of pheromones plus eval-

uation of solutions: Complexity is O (n2 . m. L).
Pheromone Evaporation: Complexity is O (n2).
- Evaluating paths after each transition: Complexity O (n.m.L). For the L colonies,

we compare the towers of m ants in each colony. Each tower has a length of n elements.
In summary, we obtain the global complexity by adding the complexity of step 1, to

the product of the total number of rounds (i.e. NCmax) by the global complexity of steps
2 to 4. This gives O (n2 + m. L + NCmax . n2 . m.L).
or finally O(NCmax . n2 . m.L).

6. Experimental Results - Discussion and Interpretation
In order to demonstrate the performance of the approach we propose, we perform

computer simulations on a machine with the following characteristics: Intel Dual core,
2Ghz processor, 2Gb RAM, Kali Lunix operating system. In all the experiments in this
section, we let us define as starting parameters in a first time m = 100 and L = 10,
then in a second time m = 100 and L = 50. These experiments are carried out on the
reference problems Lin105, Pr124, LIN318, att532, ALi535, rat783, std1655, Vm1748,
pr2392, Usa13509 and pla33810 all from the TSPLIB[5] library with publicly available
TSP instances.

Under the same conditions, we subjected them to our heuristics and compared the
results obtained with the best current heuristics for TSP at the time of testing. Several
simulations (100 in total) allowed us to assess the relevance and effectiveness of our ap-
proach. By making a comparative study between the MACO heuristic with the basic AS
heuristic and ACS obtained by Dorigo [2] as well as ACS-LK one of the best heuristics
for the TSP from the literature proposed in [10] or those obtained in [4] (AG -LKH, ACS
-LKH) and under identical test conditions we obtain the results of Figures 1, 2, 3 and 4
respectively.

Figure 1. Results AS

Figure 2. Results ACS-DORIGO [2]

Figure 3. Comparison of MACO algorithm with ACS-LK hybrid algorithm

Algorithme 5.2 : MACO Algorithm

1 Begin
2 Input m : number of ants per colony ;
3 L: Number of colonies;
4 n :number of cities;
5 N c ← 0 ;
6 D ij ← 0 // Global matrix ;
7 dij ←t0 // local matrix of pheromones ;
8 Initialize Taboolist // with each ant’s home city;
9 // The initialization of the TabooList and the Dij matrix ;

10 Place each colony randomly in a starting point (city) ;
11 // Parallel construction of the tours by the different colonies;
12 For K← 1 to m Do
13 Construction of a tour by each ant at random;
14 Gradual deposition of pheromones in the dij matrix of each colony;
15 Evaluation and selection of the best colony;
16 Initializing the Dij matrix with the best colony;
17 EndFor
18 // Construction of optimal solution ;
19 The colonies are positioned in a departure city;
20 While (Nc < Nmax) Do
21 For i← 1 to n Do
22 For j← 1 to L Do
23 For K← 1 to m Do
24 Select the city Vi to be added to the current tour with formula

(1);
25 Evaluate the solution of the ant K on route (i,j) ;
26 Perform the global update of the trace according to city pair

(i,j) if it’s better than the previous ants according to formula
5.2 and 5.3 (evaporation) ;

27 Insert as you go (i,j) in the taboo list so as to construct
gradually solution K;

28 EndFor
29 EndFor
30 EndFor
31 EndWhile
32 S← Best solution : Each colony provides a partial solution ;
33 End

In the results presented in figure 6, the green lines represent the cases where the gains
observed with MACO are related to costs and turnaround times. The brown lines symbol-
ize the cases where the observed gain is only at the level of execution time, the optimal
solution having already been reached. We note a better execution time for MACO com-
pared to those obtained so far with the best algorithms (ACS-LK, AG-LK, ACS-LKH,
ACS) at the time of the tests. We also obtain a better and always optimal cost compared
to the best solutions known so far with deviations ranging from 0.1 to nearly 1000 dis-
tance units on some reasonably sized instances (Usa13506, Pr2392...). The numbers in
brackets represent the execution times.

Figure 4. Comparison MACO algorithm with ACS-LKH and AG-LKH algorithms

Figures 5 and 6 present a comparison of the performance of our approach compared to
the improved AG -LKH and ACS -LKH approaches, using the above-mentioned reference
problems and terms of solution quality and runtime respectively.

The results of our experiments clearly show the superiority of our algorithm over
others, especially in terms of solutions quality and in terms of time taken to reach this
optimal solution. However, for some of the instances for which we do not yet know a
solution, our approach could not give an optimal solution.

Figure 5. Comparison MACO, AG-LKH, ACS-LKH in terms of solution quality

Figure 6. Comparison of MACO, ACS-LKH, AG-LKH running times

7. Conclusion and perspectives
In this work, we proposed a new multi-colony ant heuristic (MACO) to improve the

search for optimal solutions to TSP and in optimal time. The proposed MACO algorithm
is based on the use of several ant colonies. It shows clear improvements in both cost and
execution time, proving that it is much more competitive than the best time heuristics for
TSP. A limitation related to our multi-colony approach will probably be the increase in
execution time needed to find a solution in some cases, or the use of much more resources
(memory and processor). We believe that parallelization of the ACS [2] or MACO al-
gorithm would be a considerable contribution to metaheuristics to reduce TSP resolution
times.

8. References

[1] C. REGO, D. GAMBOA, F. GLOVER, C. OSTERMAN, “Traveling salesman problem
heuristics: Leading methods, implementations and latest advances ”, European Journal of
Operational Research , vol. 211, pp 427-441, 2011.

[2] M. DORIGO, T. STUETZLE, “Ant Colony Optimization: Overview and Recent Advances”,
IRIDIA Technical Report Series Technical Report , vol. No.TR/IRIDIA/2009-013), num. 34
pages , 2009.

[3] K. HELSGAUN, “An effective implementation of the Lin-Kernighan traveling salesman
heuristic”, AIEEE Transactions on Evolutionary Computation, Ochoa S.F., Roman GC. (eds)
vol. no 12, num. pp 106-130, 2000.

[4] B. NGUIMEYA TSOFACK, M. SOH, L.P. FOTSO, “Algorithmes hybrides pour la résolu-
tion du problème du voyageur de commerce”, Proceedings of CARI 2016, Ochoa S.F., Roman
GC. (eds) vol. , num. pp 63-74, 2016.

[5] TSPLIB95, “Traveling Salesman Problem Library ”,
http://www.iwr.uniheidelberg.de/iwr/comopt/software/TSPLIB95, Last visit:December 23,2019.

[6] T. STUETZLE, “The Traveling Salesman Problem: State of the Art”, TUD SAP AG Worshop
on Vehicle Routing, Ochoa S.F., Roman GC. (eds) vol. 12, num. july 10, 2003.

[7] BP. DELISLE, “Parallélisation d’un algorithme d’optimisation par Colonies de Fourmis pour
la résolution dun problème d’ordonnancement industriel”, IEEE, vol. 12, num. pp 5366, 2002

[8] C. CHAUHAN , R. GUPTA , K. PATHAK, “Survey of Methods of Solving TSP along
with its Implementation using Dynamic Programming Approach”, International Journal of
Computer Applications (0975 8887) vol. 52, num. 4, pp 12-19, 2012.

[9] I. ALAYA, “Optimisation multi-objectif par colonies de fourmis Cas des problèmes de sac à
dos”, PhD Thesis, Université de la Manouba, vol. num. , 2009.

[10] B. TADUNFOCK TETI, L.P. FOTSO, “Heuristiques du problème du voyageur de com-
merce”, Proceedings of CARI 2006, Fowler, D. and Dawson, L. (eds.) vol. num. pp 1-8,
2006.

