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Abstract. This article presents an adaptive approach for solving linear systems arising from self-adjoint
Partial Differential Equations (PDE) problems discretized by cell-centered finite volume method and stemming
from single-phase flow simulations. This approach aims at reducing the algebraic error in targeted parts of the
domain using a posteriori error estimates. Numerical results of a reservoir simulation example for heterogeneous
porous media in two dimensions are discussed. Using the adaptive solve procedure, we obtain a significant gain
in terms of the number of time steps and iterations compared to a standard solve.

1 Introduction

In this paper, we focus on solving large sparse linear systems
of equations that arise from solving partial differential
equations stemming from porous media flow models. These
linear systems are ill-conditioned due to data anisotropy
and heterogeneity. They are in general solved by using iter-
ative Krylov subspace solvers [1] and the solution phase is
generally the most memory and time consuming part of
the simulation and can even contribute to 80% of the
simulation time. With iterative methods, an approximate
solution is computed by taking into account the tolerance
of the convergence chosen by the user. The solver is stopped
when the tolerance threshold is reached. The numerical effi-
ciency of these methods is strongly related to the properties
of the linear systems handled. In this article, we explore a
faster way to solve those systems during simulations by
focusing on the study of a posteriori error estimators as
an indicator of the complexity of the systems and as a
means of providing guidance during the solve. Here, we
propose an efficient adaptive procedure for solving linear
systems stemming from finite-volume discretization of
PDEs. In earlier works, adaptivity has been used for solving
algebraic systems in the multigrid context. Adaptive alge-
braic multigrid methods based on aggregation, which can
be applied as a solver or as a preconditioner, have been
devised in [2]. In [3], an algorithm based on error estimates
in a finite element framework is designed to generate aggre-
gations adaptive to the matrix and the right-hand side as
well. In [4], an algebraic multigrid method based on adap-
tive construction of a multilevel hierarchy is proposed to
solve linear systems of weighted graph Laplacians and also

discretized second order elliptic partial differential equa-
tions. For the ease of presentation, the following section
starts by introducing a steady model of single phase
flow in porous media, then an unsteady model of the
same problem extends the scope of the experimentation
(in Sect. 5.2.1).

This article is structured as follows. Section 2 introduces
the steady problem of single phase flow in porous media
with finite volume discretization, Section 3 formulates the
starting hypothesis and presents some elements related to
the field of a posteriori error analysis that justify the need
for an adaptive solving procedure. Section 4 provides details
of that error reducing approach. Finally, the numerical
results of the procedure are shown in Section 5.

1.1 Some notations

Let X � Rd , 1 � d � 3 be a polytopal domain (open,
bounded and connected set). We denote by X, Xo, oX
and T h the closure, interior, boundary and a matching
simplicial mesh of X, respectively. We consider that the
domain X can be decomposed into n non-overlapping
Lipschitz polyhedra Ki such that K o

i \K o
j ¼ ; andS

iK i ¼ X. For a polyhedron Ki, hi designates its diameter,
|Ki| its d-Lebesgue measure and V(i) the set of indices of
neighboring polyhedra. This tessellation of X is denoted
T h with h = maxi hi.

Let us denote by F ¼ F int [ F ext the set of mesh edges
where F int (resp. F ext) is the set of inner (resp. boundary)
egdes. For a mesh element Ki, F i is the set of all its edges,
and for an edge r 2 F i, |r| denotes the (d � 1)-Lebesgue
measure of r while nr,i and di,r respectively denote the unit
normal vector to the edge r and outward to Ki, and the dis-
tance between the cell center of Ki and the edge center of r.
We use the standard notation L2(X) for the space of* Corresponding author: zjorti@hotmail.fr
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integrable functions on X. For a vector w of length n 2 N
and a subset L � s1, nt, we denote by wL the restriction
of w to its components whose indexes belong to L.

2 Cell-centered finite volume discretization

We first introduce the steady single phase flow model
problem in a simple cell-centered finite volume discretiza-
tion, then define the resulting linear system of algebraic
equations and present the key assumption that motivates
the need for an adaptive solving procedure.

Consider the problem that consists in seeking p : X ! R
such that:

�r � ðKrpÞ ¼ f inX;

p ¼ 0 on oX;

(
ð1Þ

where f : X ! R is a source term in L2(X), and K ¼ jI is
an uniformly bounded and positive definite permeability
tensor. For the sake of simplicity we assume that f and
j are cellwise constant with respect to the mesh T h, and
denote by fi and ji their values on a mesh element Ki.
The existence of a solution and the convergence of the
scheme were proven in [5]. We refer the reader to the
latter book for a more rigorous framework of the dis-
cretization by finite volume method.

By integrating the law (1) over a mesh element Ki, and
applying the Stokes formula we obtain:Z

@Ki

ðKrpÞ � nids þ
Z

Ki

fdx

¼
X
r2F i

Z
r
ðKrpÞ � nr;idrþ

Z
Ki

fdx ¼ 0: ð2Þ

If we introduce the discrete unknowns pi per mesh element
Ki and define a cellwise constant function ph that takes the
values pi on the mesh elements Ki, then the fluxesR
rðKrpÞ � nr;idr can be approximated as functions of the
discrete unknowns:Z

r
ðKrpÞ � nr;idr � Fi;rðphÞ;

where we have in a finite volume scheme with two point
flux approximation for example:

Fi;rðphÞ ¼
T ri pið Þ with Tri ¼

jrjji

di;r
if r ¼ ri � oX;

T ri;j ðpi � pjÞ if r ¼ rij 6� oX;

8><
>:

ð3Þ
with

Tri;j ¼ jrj ji

di;r
þ jj

dj;r

� ��1 ji

di;r
� jj

dj;r

� �
:

In (3), Fi;rðphÞ denotes a flux through the edge r, whereas
Tri;j and Tri are transmissivities. Therefore, (2) becomes:

X
ri2F i\F int

Fi;rðphÞ þ
X

r2F i\F ext

Fi;rðphÞ ¼ jKijfi

X
r2F i\F ext

Tri þ
X

ri;j2F i\F int

Tri;j

 !
pi �

X
ri;j2F i\F int

Tri;j pj ¼ jKijfi:
ð4Þ

This means that the vector x = (pi)1�i�n is the solution of
the linear system A�x = b where:

8i; j 2 s1; nt; i 6¼ j : bi :¼ jKijfi; ð5Þ

Aii ¼
X

ri2F i\F ext

Tri þ
X

ri;j2F i\F int

Tri;j ;

Aij ¼
Tri;j if j 2 V ðiÞ;
0 otherwise:

(
ð6Þ

Remark 2.1. According to (3), we notice that Tri;j ¼ Trj;i
for arbitrary neighbors i and j. Therefore, it should be noted
from the definition (6) that the matrix A is symmetric. In
addition, it is diagonally dominant with positive diagonal
entries. A is thus symmetric positive definite.

3 Matrix decomposition and local error
reduction

An iterative Krylov solver is used to solve the system
A�x = b. At each iteration j of the iterative solver, we
denote by x(j) the approximate solution obtained, and by
pðjÞ
h

the associated approximate function.
For a finite element discretization, a way to build adap-

tive preconditioners, based on a posteriori error estimators,
in order to effectively decrease the energy norm of the error
was introduced in [6]. We briefly recall this approach here.
First, the initial domain is decomposed into two disjoint
open subdomains X1 and X2. The former is an aggregate
of mesh elements where the algebraic error estimates are
significant, the latter is an aggregate of the remaining mesh
elements. This error-based classification allows to first for-
mulate a sum-splitting of the operator:

A ¼ Að1Þ
p þAð2Þ

p ; ð7Þ

whereAð1Þ
p andAð2Þ

p are the extensions of the local stiffness
matrices for the subdomains X1 and X2 to the whole
domain X. Then, it is possible to derive a 2 � 2 block par-

titioning of the matrix A ¼ AL ALR

ARL AR

� �
, where the

L-part stands for the set of vertices that belong to the
closure of X1 and the R-part for the vertices of the interior
of X2. The adaptive preconditioners have the following

shape M ¼ AL ALR

ARL MS þARLA�1
L ALR

� �
, where MS is

an arbitrary preconditioner whose size is consistent with
that of AR. When applied on a PCG solver with a specific
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initial guess xðOÞ ¼ A�1
L � ðbL �ALR � yÞ

y

� �
where y is an

arbitrary vector whose length is consistent with the size
of AR, this kind of preconditioners cancels the partial
residual on the unknowns of the L-part and thus ensures
the decay of local high algebraic errors.

For a finite volume scheme, the original cellwise
constant finite volume approximation p

h
2 P0ðT hÞ is not

appropriate for energy-norm type a posteriori error estima-
tion as it is only piecewise constant. For this reason, a
postprocessed approximation that has more regularity is
introduced ~p

h
[7, 8]. This time, the a posteriori error analy-

sis allows to derive estimates for the classical associated
error norm:

jjK 1
2rðp� ~p

h
Þjj2

L2ðXÞ � gdisc þ ga lg;

where gdisc and galg are a posteriori error estimates of the
error components: the former term is supposed to approx-
imate the discretization error and the latter the algebraic
error [8]. In addition, such quantities can be obtained
locally on each mesh element, therefore, analogous to
[6], we use algebraic error estimates at a fixed iteration i
of the iterative solver to have a domain decomposition:

X1 [ X2 ¼ X;

Xo
1 \ Xo

2 ¼ ;;
where X1 is the part with the high algebraic error
estimates: X

K2T hðX1Þ
ðgðiÞa lg;KÞ2 �

X
K2T hðX2Þ

ðgðiÞa lg;KÞ2: ð8Þ

Remark 3.1. From (6), we can derive formulas for two
matrices A(1) and A(2) local to X1 and X2 respectively by
considering for all i 6¼ j in s1, nt such that Ki � X1 and
Kj � X1:

Að1Þ
ii ¼

X
ri2F i\F ext

Tri þ
X

ri;l 2 F i \ F int

l 2 V 1ðiÞ

Tri;l ;

ð9Þ

Að1Þ
ij ¼

Tri;j if j 2 V ðiÞ;
0 otherwise;

(
ð10Þ

and for all i 6¼ j in s1,nt such that Ki � X2 and Kj � X2:

Að2Þ
ii ¼

X
ri2F i\F ext

Tri þ
X

ri;l 2 F i \ F int

l 2 V 2ðiÞ

Tri;l ;

ð11Þ

Að2Þ
ij ¼

Tri;j if j 2 V ðiÞ;
0 otherwise;

(
ð12Þ

where V1(i) (resp. V2(i)) denotes the set of indices belong-
ing to V(i) but whose associated polyhedra are included in

X1 (resp. X2). Therefore, we can express the global matrix
A as a sum:

A ¼ Að1Þ þAð2Þ þ F; ð13Þ
where for all i 6¼ j in s1, nt :

Fii ¼

P
ri;l 2 F i \ F int

l 2 V 2ðiÞ

Tri;l if Ki 2 X1;

P
ri;l 2 F i \ F int

l 2 V 1ðiÞ

otherwise;

8>>>>>>>>><
>>>>>>>>>:

ð14Þ

Fij ¼
Tri;j if Ki 2 X1 and j 2 V 2ðiÞ;
Tri;j if Ki 2 X2 and j 2 V 1ðiÞ;
0 otherwise;

8>><
>>: ð15Þ

Formula (13) recalls the sum splitting of the matrix in (7)
for the finite element discretization method. The difference
is that now for the finite volume method, we have a third
term F that is not local to only one subdomain. This is
due to the fact that the finite element scheme is by defini-
tion vertex-centered whereas the finite volume scheme con-
sidered here is cell-centered. This kind of scheme provides
an approximation of the solution that is piecewise constant
on a primal mesh. That being said, there exist some vertex-
centered finite volume schemes that introduce a so-called
dual mesh, which is a conforming triangulation of the
domain X, around the vertices (see, e.g. [9]). However, for
the current context of the application, as the a posteriori
error estimates implemented in IFPEN ’s software were
derived for cell-centered schemes, we focus on this latter
type of schemes in the sequel.

In finite volume method, we cannot reproduce in the
language of matrices an inequality that is equivalent to
the main starting hypothesis in the finite element frame-
work, i.e. Formula (8) of the article [6] that we have briefly
explained earlier, but we have some estimations of the
terms involved in that hypothesis. Therefore, instead of
the initial hypothesis with the exact algebraic error, we con-
sider a starting hypothesis that involves error estimates. It
is expressed in the assumption (8).

Accordingly, since we are filtering the mesh elements
with high errors in X1, we expect an inequality that can
be written in the form:

xL � xðiÞ
L

� �T
�AL � xL � xðiÞ

L

� �
� xR � xðiÞ

R

� �T
�AR � xR � xðiÞ

R

� �
ð16Þ

is satisfied where L and R are subsets that include the
indices of mesh elements contained in X1 and X2 respec-
tively. We denote by nL and nR the sizes of AL and AR
respectively. Their sum is equal to the size of A:
nL + nR = n.

A. Anciaux-Sedrakian et al.: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 75, 54 (2020) 3



We recall that since A is SPD, AL and AR are SPD as
well and the two terms involved in assumption (16) are a
part of the global energy norm of the initial system:

jjx� x ið Þjj2A ¼ A � x� x ið Þ� 	
; x� x ið Þ
 �

¼ hb�A � xðiÞ; x� xðiÞiL|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼L�term

þhb�A � xðiÞ; x� xðiÞiR|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
:¼R�term

;

where

hb�A � xðiÞ; x� xðiÞiL ¼

jjðx� xðiÞÞLjj2AL
þ ðx� xðiÞÞTL �ALR � ðx� xðiÞÞR; ð17Þ

hb�A � xðiÞ; x� xðiÞiR ¼

jjðx� xðiÞÞRjj2AR
þ ðx� xðiÞÞTR �ARL � ðx� xðiÞÞL:

This is equivalent to the formulation obtained in the case of
finite element methods, described in Section 3.3 of [6]
(Formulas (19) and (20)). Due to the symmetry, the
coupling terms are identical:

x� xðiÞ� 	T
R �ARL � x� xðiÞ� 	

L

¼ x� xðiÞ� 	T
L �ALR � x� xðiÞ� 	

R:

Assumption (16) implies that the AL-inner product of the
error is dominant, and so will be the L-term according to
(17). Therefore, reducing them may efficiently reduce the
energy norm of the error. As the vectors (x � x(i))L and
AL�(x � x(i))L cannot be computed, we favor the alterna-
tive of reducing the partial residual (b � A�x(i))L to
decrease the L-term. A straightforward manner to bring
that partial residual down to zero is by using a Schur com-
plement reduction that we detail in the next section.

4 Adaptive linear solver

In this section, we explain an approach for reducing the
dominant part of the algebraic error. This procedure is
based on the exact decomposition of the L-block and a
Schur complement of the R-block. In the field of linear alge-
bra and the theory of matrices, the literature is rich on these
two techniques. For a detailed description of these concepts,
we refer the reader to [10, 11] and the references therein.
Another popular use for those techniques is the construc-
tion of preconditioners. Approximate or inexact factoriza-
tion is often used as a preconditioner for iterative solvers
such as PCG [1]. In domain decomposition methods as well,
many research works were made to devise preconditioners
for the global matrixA from techniques that approximately
solve the reduced Schur complement system [12, 13]. We
also specify that, when a PCG solver is used, the solve pro-
cedure described below, which is based on a reduced Schur
complement system, is equivalent to iteratively solving the
global system A�x = b with the initial guess and the

preconditioner introduced in Section 3. Furthermore, we
check if that adaptive solve procedure can be valid for other
solvers than PCG.

4.1 Schur complement procedure

Let us define the following matrices:

S ¼ AR �ARLA�1
L ALR; AL ¼ D1D2; ð18Þ

N1 ¼ ARLD�1
2 ; N2 ¼ D�1

1 ALR; ð19Þ

E1 ¼
D1 0

N1 I

� �
; E2 ¼

D2 N2

0 S

� �
; ð20Þ

where I is the identity matrix of the same size asAR and S
is referred to as the Schur complement of the R block AR.
Since AL is nonsingular (because it is a principal subma-
trix of A which is SPD), the Schur complement is well
defined. The matrices D1 and D2 are exact factors of
AL where D1 is the lower triangular factor, and D2 is
the upper triangular one.

With the definitions of (19) and (20), we have the
equality:

A ¼ E1E2; ð21Þ
and we can write

A � x ¼ b ()
E1 � z ¼ b; ðP:1Þ
E2 � x ¼ z: ðP:2Þ

(

Splitting the system A�x = b into two systems related to
L and R domains with the Schur complement is equivalent
to solving the system (P0) in the following two stages:
r Solving (P.1): The matrix E1 is lower triangular, and
therefore (P.1) represents a forward substitution:

ðP:1Þ ()
D1 � zL ¼ bL

N1 � zL þ zR ¼ bR

(
()

zL ¼ D�1
1 � bL;

zR ¼ bR �N1 � zL:

(

ð22Þ
s Solving (P.2): We first solve a reduced system with the
Schur complement S. Then, we perform a backward substi-
tution with an upper triangular matrix D2.

ðP:2Þ ()
S � xR ¼ zR

D2 � xL þN2 � xR ¼ zL

(

() S � xR ¼ zR; ð23aÞ
xL ¼ D�1

2 � zL �N2 � xRð Þ: ð23bÞ

(

The size of system (23a) is smaller than the size of system
A�x = b because its size is equal to the size of R domain,
where no significant algebraic errors were observed. In order
to avoid forming the (possibly dense) matrix S, an itera-
tive Krylov solver can be used for solving (23a) as well.
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Let xðiÞ
R be the approximate solution obtained after i itera-

tions. The associated solution xðiÞ
L may be calculated by

(23b) as:

xðiÞ
L ¼ D�1

2 � zL �N2 � xðiÞ
R

� �
: ð24Þ

The adaptive solving procedure can be summarized in two
major stages presented above. Algorithm 1a for the setting
up of the method (splitting and permuting) and Algorithm
1b for the computation phase.

Remark 4.1. In the first step of Algorithm 1a, the alge-
braic error estimation can be done in different ways, we cite
for example ([8], Sect. 4) where the authors present a simple
and practical way to estimate the algebraic error.

4.2 Error reduction properties of the adaptive procedure

We recall in the following lemma some formulas for the
residual and the energy norm of the error that hold with
the Schur complement method.

Algorithm 1a Error-based domain decomposition

Inputs: X.
1: Evaluate the local algebraic error over the mesh

elements.
,!gðalgÞl .

2: Mark the elements Kl with largest algebraic errors
g algð Þ
l .

,! X1-subdomain.
3: Extract the node indices associated to elements of X1.

,! L-subset.
4: Find the complementary of L in the set of node

indices.
5: Permute the system to obtain an L/R block splitting.

Outputs: X1, L, R.

Algorithm 1b Schur complement procedure

Inputs: L, R, A, b, MS.
1: Perform an exact factorization on the L-block.
2: Solve (P.1) by simple substitution.
3: Solve the Schur complement system (23a) via an iter-

ative solver with preconditioner MS.
,! xR solution.

4: Inject the obtained vector in (23b) and proceed by
backward and forward substitution.
,! Updated xL solution.
Outputs: xL, xR.

Lemma 4.1. By applying the Schur complement procedure
described in Section 4.1, we obtain at each iteration i of an
iterative solver for any xðiÞ

R approximating xR and associated
xðiÞ
L given by (24):

b�A � xðiÞ ¼
0

zR � S � xðiÞ
R

" #
; ð25Þ

jjx� xðiÞjj2A ¼ x� xðiÞ� 	
=R; zR � S � xðiÞ

R

D E
: ð26Þ

8>>><
>>>:

Proof.

ðb�A � xðiÞÞ=L ¼ AL � ðx� xðiÞÞ=L þALR � ðx� xðiÞÞ=R
¼ bL �AL � xðiÞ

L �ALR � xðiÞ
R ¼ð25Þ bL

�ðbL �D1N2 � xðiÞ
R Þ �ALR � xðiÞ

R ¼ð19Þ 0:
And similarly,

ðb�A � xðiÞÞ=R ¼ ARL � ðx� x:ðiÞÞ=L þAR � ðx� xðiÞÞ=R
¼ bR �ARL � xðiÞ

L �AR � xðiÞ
R ¼ð19Þ bR �N1D2 � xðiÞ

L �AR � xðiÞ
R

¼ð25Þ bR þN1 � ðN2 � xðiÞ
R � zLÞ �AR � xðiÞ

R

¼23ð Þ& ð18Þ
zR � S � xðiÞ

R :

By looking at the block expression of the residual vector in
(25), it can be stated that the L-part of that vector is elim-
inated and there remains only the R-part. Consequently, in
Formula (26) we got rid of the L-term which was dominant
and the energy norm now depends only on the scalar pro-
duct between ðx� xðiÞÞ=R the error vector projected on R,
and the residual of the solution of (23a).

We would add that in practice, the only components we
actually need to compute, for the whole solving process, are
the factorsD1 andD2. The benefit of solving (23a) by some
Krylov method is that it only requires matrix-vector prod-
ucts S times a vector w which can be performed without
computing the entries of the Schur complement matrix S.
This way, the solving process combines a direct solver in
the subdomain L with an iterative solver for the subdomain
R. Thus, it can be seen as an hybrid direct/iterative solver.
As for the choice of the preconditioning to be used during
the iterative solve, we refer to [14–16] for a range of precon-
ditioners for the Schur complement. Sometimes, a precondi-
tionerMR of the submatrixAR can be used to precondition
the Schur complement S.

So far, we have shown that decreasing the algebraic
error by reducing the residual on the L-part to zero is
achievable for other solvers than PCG. This represents an
extension of the adaptive procedure: In the finite element
framework, only PCG solver could be used as stated in
Section 3, whereas for a finite volume scheme, any iterative
solver is valid.

5 Numerical results

In this section, we present numerical results of tests where
we apply the adaptive solve procedure in a reservoir simu-
lation for heterogeneous porous media. The model problem
is a single phase flow model, for which we consider two
types of problems: steady (as introduced in Sect. 2) and
unsteady (see Sect. 5.2.1). We first validate the procedure
in the simpler steady case with an initial prototype. Once
the method is validated, we assess its performance on the
real simulator with the unsteady case. The simulations
are run on IFPEN ’s prototype for reservoir simulation.
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In the sequel, we solve the linear systems stemming from
the PDEs by the adaptive Schur procedure and compare it
to the classical solve procedure. Both procedures employ the
same Krylov solver and the same incomplete factorization.
The classical solve is performed with an incomplete factor-
ization preconditioner for the global matrix A, whereas
the adaptive Schur procedure uses an incomplete factoriza-
tion of the submatrixAR to precondition the reduced Schur
complement system. We also consider a stopping threshold
value of 10�6 for the euclidean norm of the residual.

5.1 Steady problem: heterogeneous media
and uniform mesh refinement

For the first test case, we deal with a steady problem. As it
generates one single system, we extract data (matrix, right
hand side vector and error estimates) from the simulator
and solve the linear system with a prototype of the adaptive
approach that uses the no-fill Incomplete Cholesky factor-
ization and a PCG solver.

In this test, we use the same configuration described in
([17], Sect. 6.3). We consider a heterogeneous porous media
with domain (0, 1200) � (0, 2200) partitioned by a grid of
60 � 220 rectangular cells. The permeability tensor corre-
sponds to that of the layer 85 of the tenth SPE comparative
solution project model field [18]. Figure 1 shows the perme-
ability field (on top) and the pressure field (on bottom).
The source term is f = 0. We have tested four values
(0.10, 0.15, 0.25 and 0.33) for the size percentage d :¼ nL

n
(see Sect. 3). The evolution of the energy norm is displayed
in the graph of Figure 2.

We notice from Figure 2 that by initially taking a subset
L which is ten times smaller than the size of the global
system, we get a decrease of almost 30% in the number of
iterations for the adaptive solve with respect to the stan-
dard one. The convergence is still accelerated by a wider
coverage of the high error areas. This is reflected in the
decrease of the number of iterations when we progressively
increase the parameter d, until we obtain a speedup of more
than 50% with respect to the standard solve for d = 0.33.

5.2 Unsteady problem: heterogeneous media
and uniform mesh refinement

For the second test case, we handle an unsteady problem of
a single phase flow model.

5.2.1 The model

Often used in reservoir simulation, this unsteady model
describes the flow of a single fluid through a porous medium
X � Rd , d 2 {2, 3}, over a certain time interval. On the one
hand, we consider the characteristics of the fluid that fol-
low. We denote by p the pressure of the fluid, by q its mass
density, by l its viscosity, by cf its compressibility and by v
the fluid velocity. On the other hand, the physical charac-
teristics of the porous medium are its porosity /, and its
absolute permeability tensor K. This latter measures the
ability of the porous medium to transmit fluid in each direc-
tion. We also denote by cR the rock compressibility and by
q0 the fluid density at a reference pressure p0.

Fig. 1. SPE10 permeability (top) and pressure field (bottom).
Section 5.1.
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It is assumed that the mass diffusion and mass disper-
sion fluxes are negligible and that no fluid mass can cross
the fluid–solid interface. Then, the conservation of mass is
expressed by the following equation:

oð/qÞ
ot

¼ �r � ðqvÞ þ q; ð27Þ

where q is the source or sink term that is square integrable
in time and space.

In addition, Darcy’s law gives the expression of the fluid
velocity:

v ¼ � 1
l
Kðrp� qgrzÞ; ð28Þ

where g is the magnitude of the gravitational acceleration
and z is the depth.

An equation of state gives the relationship between the
fluid compressibility and the partial derivative of the den-
sity with respect to the pressure evaluated at a fixed tem-
perature T:

cf ¼ 1
q
oq
op







T

: ð29Þ

Similarly, the rock compressibility is defined by:

cR ¼ 1
/
d/
dp

: ð30Þ

The time differentiation of /q in (27) yields:

/
oq
op

þ q
d/
dp

 !
op
ot

¼ �r � ðqvÞ þ q:

By injecting the compressibility formulae (29), (30) and the
momentum conservation’s law (28), in the mass conserva-
tion’s law (27), we obtain:

qðcf þ cRÞ/
op
ot

¼ r � q
l
Kðrp� qgrzÞ

� �
þ q: ð31Þ

We consider that the medium contains a single fluid (oil or
gas) that is slightly compressible. Thus, the fluid compress-
ibility stays constant when the pressure varies within a
certain range of values. In this case, integrating (29) yields:

q ¼ q0ecf ðp�p0Þ: ð32Þ
Hence, with (32), the governing PDE (31) is a parabolic
equation for the main unknown which is the pressure p.
For proofs of the existence, uniqueness and regularity of a
solution to this system, and for discretization and lineariza-
tion approaches, we refer to [19] and references therein.

5.2.2 Simulation results

As far as the computing framework is concerned, we have
implemented GMRES solver and the adaptive solve proce-
dure on MCGSolver [20, 21]. For exact and inexact LU
factorizations, we used the library Eigen [22]. The transfer
of error estimates between the linear solver (MCGSolver)
and the simulator is operated by the ALIEN interface which
provides amodern, uniform and generic API for a wide range
of linear solver libraries including Petsc [23], IFPSolver [24]
and MCGSolver.

Note that, as we consider a horizontal 2D case, gravita-
tional effects are not taken into account in the numerical
tests. A simulation over a 24-h period was conducted in this
study. We consider a 2D cartesian grid (60 � 220). At each
time ti, an initial time step �tð0Þi is set, a linear system is
generated and solved with GMRES solver. Note that usu-
ally the non-linear solver does not converge when the linear
system’s solution did not converge. Note also that when the
non-linear solver does not converge, the time step is halved

Fig. 3. Configuration for the numerical test case of Section 5.2.

Fig. 2. Evolution of the energy norm of the error with the
standard and adaptive solve procedures (steady case).

A. Anciaux-Sedrakian et al.: Oil & Gas Science and Technology – Rev. IFP Energies nouvelles 75, 54 (2020) 7



�tðjþ1Þ
i :¼ �tðjÞi

2 until reaching convergence with j= jc. In this

case, �tðjÞi

� �
j<jc

(resp. �tðjcÞi ) are called failed (resp.

accepted) time steps at the time ti. The next time is set from

the accepted time step tiþ1 :¼ ti þ�tðjcÞi .
The size of the system matrix A is 12 997 � 12 997,

whereas the size of the submatrix AL is 417 � 417. For
the sake of comparison, the resolutions in the simulation
are carried out according to two procedures. The first is

the standard solution process using an ILU(0) factorization
of the matrix A as a preconditioner. The second one is the
adaptive procedure described in Section 4.1.

The locations of the wells at the reservoir are indicated
on Figure 3. The wells are arranged in a five-spot pattern,
with the production well positioned at the center. The dis-
tribution of a posteriori error estimates during the begin-
ning and the end of the simulation is plotted on Figure 4.

We are interested in the number of iterations needed at
every time step of the simulation for the standard solve
procedure and the adaptive Schur procedure respectively.
Whenever that number reaches 4000, which is the maxi-
mum number of iterations allowed, this indicates a failed
time step. One can observe that the first failed time step
occurs at the sixth time t6 for the standard procedure.
Therefore, the subsequent times tj

� 	
j>6 differ between the

standard and adaptive procedure. Yet, we still can compare
the two procedures during the first time steps that are iden-
tical and common for them both. The number of iterations
for the times in question is displayed in Figure 5. The evo-
lution of the norm of the residual over iterations with both
procedures is plotted for each time step in Figure 6. With
respect to the standard solve procedure, we observe a
speedup with the adaptive Schur procedure in the first
common time steps.

Fig. 4. Distribution of a posteriori error estimates during the
single phase flow simulation.

Fig. 5. Number of iterations during the first four time steps
after initialization.
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Fig. 6. Convergence of the solve procedures during the first four time steps after initialization.

Fig. 7. The total number of time steps and iterations needed for the whole simulation with the standard and adaptive procedures.
The maximum number of iterations allowed per solve is set to 4000.
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Moreover, this trend is confirmed on a larger scale for a
whole simulation. The total numbers of time steps and
GMRES iterations are reported in Figure 7. The charts of
this latter indeed indicate that more time steps and itera-
tions are needed for the simulation when the standard solve
procedure is employed compared to the adaptive one.

The solve times are collected in Table 1. We notice that
the standard solve takes less time than the adaptive proce-
dure in the first two time steps, and more time on the third
and fourth time steps.

6 Conclusion

In this article, we have adapted the a posteriori error esti-
mates hypothesis for the finite volume discretization of
the model problem. Then we presented the adaptive Schur
procedure to exploit this hypothesis in order to effectively
reduce the algebraic error and accelerate the convergence.
Lastly, we showed the numerical results of the method
applied to the framework of reservoir simulation. The
results of the initial tests are encouraging. The comparison
with the standard solve illustrates the performance of the
adaptive procedure and in particular reveals that a signifi-
cant speedup in terms of the number of time steps and iter-
ations can be achieved. Yet, the results for the time gain of
this method are not as conclusive as for the number of iter-
ations and time steps because the implementation of the
approach was not optimized, making the computations
with the Schur complement costly in time. There is cer-
tainly room for improvement in this regard. For future per-
spectives, we could rely on hierarchical matrices [25] and
the relevant techniques that are efficient for data-sparse
representations of certain densely populated matrices such
as the Schur complement in the elliptic models to reduce
the costs in floating point operations (the complexity)
and time. In addition, further test cases are envisaged, such
as two-phase or multiphase flow models. Furthermore,
extended research is necessary to address the issue of adap-
tive solution procedures based on a posteriori error estima-
tors for complex models and in three dimensions. On the
basis of previous studies, we expect that the feasibility of
this method might depend on some essential factors:

– The matrix in the linearized system has to be
symmetric.

– The evaluation of the algebraic error estimates at each
step should not be too costly.

– The regions with high errors should not be too scattered,
as this would yield a larger subdomain X1 and a denser
Schur complement S, making the application of this
matrix to vectors more costly. And of course, in three
dimensions, the spread of the error is allowed and possi-
ble in an extra direction with respect to a two-dimension
configuration. Thus, dealing with such cases is certainly
more challenging for the proposed method.
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