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Human Faces Detection and 

Localization with Simulated Prosthetic 

Vision

Abstract 

Clinical trials reveal that current visual neuroprosthesis 

are not yet usable. The main reason is the small 

number of implanted electrodes, leading to a very poor 

visual resolution. The resolution is especially not 

sufficient to detect specific objects (faces, signs, etc.) 

in the surroundings. We used simulated prosthetic 

vision (SPV) to show that pre-processing of the camera 

image could restore these functions, even with low-

resolution implants. Specifically, we showed that it is 

possible to quickly detect and localize human faces 

located nearby. We suggest that high-level processing 

of the video stream may be included in current visual 

neuroprosthesis. This would restore many visuomotor 

behaviors such as grasping, heading, steering, etc. 
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Introduction 

Visual neuroprostheses, consisting of a camera 

connected to an array of electrodes implanted in the 

eye or the brain to bypass damaged neural tissues 

have been developed for the last 30-40 years. A few 

retinal implants [7,9] are currently undergoing clinical 

trials prior to commercialization. The resolution of these 

early implants is still very limited (6*10 electrodes for 

the most recent clinical trials [7]). A rapid increase in 

the electrode number is unlikely: arrays with a hundred 

electrodes were fabricated more than 20 years ago and 

are still waiting for implantation procedures [2]. Retinal 

implants evoke visual percepts in the form of white 

dots called phosphenes. Classically, the resolution of 

the camera image is drastically reduced to match the 

number of implanted electrodes. Then, this low 

resolution version of the visual scene is rendered via 

the phosphene array (Figure 1). This method is 

sometimes called a "scoreboard" rendering. The low 

resolution of this rendering is an obstacle to usability, 

and visual neuroprosthesis are thus effective in a very 

limited set of situations only [5,10]. Indeed, many 

visual tasks are still difficult or impossible for implanted 

blind persons, such as remote objects identification, 

fluent reading, navigation in unknown environments or 

detection of surrounding objects or persons. 

Simulated prosthetic vision (SPV) has been developed 

by several research groups. This technique provides an 

easy way to forestall prosthetic vision problematic and 

assess new rendering strategies, in the absence of 

implanted patients. To date, most research work 

focused on resampling the camera image or digital 

zooming. However, useful perception always relies on a 

relatively high number of electrodes/phosphenes [3]. 

We advocate that functionality and usability of current 

and upcoming low resolution implants could be greatly 

improved if a processing was applied on the camera 

image before rendering it. Indeed, the processing of 

the image may help to identify regions of interests 

and/or highlight the location of important objects in the 

scene. This augmented information could be displayed 

at the same time as the "scoreboard" rendering to 

improve visuo-motor behaviors such as orientation, 

steering, grasping, etc. 

To test our hypothesis, we developed a SPV based on 

the design of an existing implant (Argus II with 6x10 

electrodes) and a real-time image processing 

algorithm. For the sake of experimental validation, we 

focused on human face detection in the peripersonal 

space.  

In this study, we show that real-time processing of the 

video with a face detector can be used to add additional 

information to the "scoreboard" rendering of the scene. 

This composite display, with the visual scene and 

additional information on faces could help locate other 

persons in the surroundings. Based on this "augmented 

reality"-like approach, low resolution visual prosthesis 

may help restore many visual behaviors that are not 

possible with the classical "scoreboard" rendering. 

Figure 1 Illustration of prosthetic 

vision. A blind implanted patient 

perceives the scene through a 

camera and stimulating electrodes 

in the retina or visual cortex. In the 

illustrated “scoreboard” rendering, 

the camera image is resized to 

6x10 pixels to fit the number of 

electrodes in the implant. A very 

low resolution of the visual scene is 

perceived via the implant. 



Material and methods 

Apparatus 

The SPV included a Head-Mounted Display (HMD) and a 

binocular camera (Bumblebee II - 03S2, Point Grey, 

USA) with a resolution of 320x240 pixels at a rate of 48 

frames per second. The camera viewing angle was 100 

degrees. The camera was attached on top of the HMD. 

Additionally, we used a motion capture system with 12 

cameras (OptiTrack, Natural Point, USA) in order to 

track the subject’s hands and shoulders. 

Figure 2 Simulator of Prosthetic Vision: architecture overview. 

A sighted user is deprived from normal vision. He only 

perceives white dots mimicking phosphenes in the HMD. The 

“ScoreboardLoc Agent”, handled SCB+LOC condition (image 

resampling and faces detection). The “Localization Agent” 

handled LOC condition (faces detection only). The “Display 

Agent” rendered the phosphenes for the prosthetic vision 

simulation.  

The system architecture (Figure 2) was composed of 

two (quad-core CPU) computers. The first one hosted 

the real-time image processing (minimal output 

frequency of 15Hz). The second one managed the 

implant simulation and the motion capture system. 

The simulated phosphenes were presented on an 

NVisor SX-60 HMD (NVIS Inc., USA) with a resolution 

of 1280x1024 pixels, subtending 44x34 degrees of 

visual angle. 

Face detection 

Face detection was performed with a computer vision 

bio-inspired algorithm (Spikenet Technology, France). 

We chose this algorithm because of its robustness to 

image transformations together with sheer speed [6]. 

The algorithm looks for the closest matches between 

the current frame in the video stream and pre-learnt 

models of target objects. 10 models (50x50 pixels) per 

face were needed to allow recognition at every position 

in the room. 

Simulated implant design 

The simulated implant was a 6x10 electrode array 

spanning 11° of visual angle. Phosphene appearance 

and implant design were based on observations 

acquired during multiple clinical trials of electrical 

stimulation of the retina [3]:  

§ phosphenes were roundly shaped with a Gaussian

luminance profile, 

§ phosphenes had 8 levels of luminance,

§ phosphenes size was 1°,

§ phosphenes were squarely disposed with some

noise on exact position, 

§ 10% randomly selected phosphenes were switched

off to simulate electrodes dropout. 



In addition, we implemented a specific feature in order 

to manage rapid adaptation effects observed with long-

lasting electrical stimulation (1-2s in the retina). Each 

phosphene was linked to a countdown timer. A refresh 

(switch off for 100 ms) occurred whenever the 

phosphene had kept the same luminance for a specified 

amount of time (here 2.0 ±0.2 s) [8,10]. 

Global behavior 

We designed two rendering conditions:  SCB+LOC 

(Scoreboard rendering augmented with face 

localization) and LOC (Localization information only). In 

the first one, we displayed the scene as in the classical 

"scoreboard" approach and highlighted the location of 

the detected faces by changing the appearance of the 

corresponding phosphenes (rapid blinking that made it 

distinguishable from the other phosphenes). 

Technically, we used OpenCV library to resize each 

video frame (320x240 pixels) to 6x10 pixels to fit the 

number of electrodes in the implant. The luminance of 

the 60 phosphenes was derived from the resized 

image. We also got the coordinates of the recognized 

faces if any. Then, the luminance of the phosphene(s) 

closest to the position of the detected face(s) was set 

to the maximum ("white phosphene”), with a 20 Hz 

blinking frequency. In the LOC condition, we proceeded 

as in the SCB+LOC condition, except that only the 

phosphenes corresponding to the recognized faces were 

displayed. The remaining phosphenes were switched 

off. The complete processing loop took less than 70ms, 

so the position of the phosphenes was updated at a 

minimal frequency of 15Hz. 

Experiment 

Subjects 

Four sighted volunteers (4 men; mean age 24.5, SD 

1.7; range 23-27) participated in the experiment. All 

were familiar with the SPV. 

Procedure 

Subjects had to perform a face detection task. 

SCB+LOC and LOC conditions were systematically 

assessed. We did not include a condition simulating a 

classical "scoreboard" rendering only because we 

observed that subjects were absolutely not able to 

detect any face at a distance exceeding 1m. The order 

of the two conditions was intermixed across subjects to 

counterbalance potential learning effects. Each subject 

performed 60 trials (30 trials per condition x 2 

conditions). At the beginning of each session, the 

subject was invited to stand at a specific position in the 

room. Four markers were attached to his hands and 

shoulders in order to track their positions with the 

motion capture system. In each trial, 0, 1 or 2 persons 

were randomly placed at a specific location among 7 in 

the room (Figure 3). Then the subject had to scan his 

surroundings to determine the number of faces in front 

of him (0, 1 or 2). He was told to point his arms 

towards the faces (no arm if 0 face, one arm for 1 face 

and the two arms if 2 faces) and ask to end the trial 

when he was confident upon his answer. After each 

trial, the SPV was switched off and the next trial 

configuration was set up. After a block of 30 trials for a 

condition, the second condition was experimented. The 

whole experiment had an average duration of 30 

minutes per subject. 

Figure 3 Subjects were asked to 

determine the number and the 

position of faces in front of them. 

In each trial, 0, 1 or 2 persons 

were placed at a specific location. 

The seven possible locations were 

labeled with marks on the 

ground. 

Figure 4 Response time versus 

Accuracy (SCB+LOC condition 

only) 



Data logging 

For each subject, we recorded a log file which contained 

all the data acquired during the experiment. The 

position of the markers was used to (1) determine the 

number of raised arms, and (2) calculate the angle in 

degrees between the correct and pointed directions 

("pointing precision"). 

Preliminary results 

Data analysis and statistics 

We analyzed three parameters: the response accuracy 

(percentage of correct responses), the response time 

(time in seconds to give a correct answer) and the 

pointing precision.  

We used R (R Foundation, USA) to perform the 

statistics. As the distribution was non-normal and the 

number of observations limited, we used non-

parametric statistical tests. Comparisons between two 

groups or conditions were based on Wilcoxon tests. The 

significance level for all tests was set to 0.05. 

Results 

We first analyzed the performance in the SCB+LOC 

condition. All the subjects were able to perform the 

face detection task in this condition. The accuracy was 

95.1% (SD=8.3%) and the average response time was 

19.0s (SD=4.7s). The pointing precision was 13.1° 

(SD=3.9°). Figure 4 presents the response time 

versus accuracy performance per subject.  

Figure 5 and Figure 6 show accuracy and pointing 

precision per number of faces in the SCB+LOC 

condition. The mean subjects' response time per 

number of faces was 16.2s (SD=4.6s) for 0 face, 18.7s 

(SD=2.8s) for 1 face and 22.2s (SD=5.2s) for 2 faces. 

When the "scoreboard" background was switched off –

LOC condition-, the accuracy (Figure 7, Z=-1.6, 

p=0.56) and pointing precision (Figure 8, Z=-0.56, 

p=0.6) were not statistically different from those in the 

SCB+LOC condition. The response time was lower in 

the LOC condition (Z=-3, p<0.001). 

Discussion and future work 

In this experiment, we simulated a visual implant that 

partially restores sight in blind people. We showed that, 

in spite of very low resolution, it is possible to locate 

small targets (here human faces) in the surroundings if 

the camera image is pre-processed with an object 

recognition algorithm. High-level information extracted 

from the images was used to highlight a subset of 

phosphenes, here corresponding to the approximate 

position of faces in the surroundings. 

In complex, real environments, the information about 

faces location could be masked by the background 

information. We designed a second, simplified, 

rendering where only the phosphenes corresponding to 

faces location were switched on. We observed that 

accuracy was similar in both conditions. However the 

response was faster, reflecting the fact that the 

subjects had only one or two phosphenes to process in 

the absence of the "scoreboard" background. 

This advantage in response time could prove useful in 

situations where the user wants to rapidly retrieve the 

location of specific objects (e.g. faces when entering a 

room). We suggest that a system in which the user 

could rapidly switch between these two modes 

(SCB+LOC / LOC) could increase the global efficiency of 

a visual neuroprosthesis. 

Figure 5 Accuracy per number 

of faces (SCB+LOC only) 

Figure 6 Pointing error per 

number of faces (SCB+LOC only) 



Because the system relies on the extraction of high 

level information, we should point out limitations that 

typically affect object recognition algorithms. First, 

really small objects are difficult to detect because their 

apparent size rapidly shrink under the minimal 

detectable size. This becomes a problem for faces at a 

distance of 5+ meters with our system. In addition, 

transparent or reflective objects in general could also 

be very challenging to detect as their aspect depends 

on light conditions and surrounding objects. 

Another challenge lies in the large number of models 

that should be created to cover all the objects that a 

user would like to locate. A suitable approach to 

recognize such a large number of objects could rely on 

shared databases available online [1]. Many research 

teams are focused on the design of these databases 

mainly constituted and verified though crowdsourcing 

[4]. 

To conclude, although some technical issues remain, 

we suggest that the preprocessing of the image in 

visual neuroprosthesis could subserve a great number 

of functions such as object recognition, text detection, 

navigation, etc. Interestingly, this method is suitable 

for low resolution implants such as those implanted 

nowadays. 
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