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Abstract
The outbreak of coronavirus named COVID-19, initially identified in Wuhan, China in December 2019, has spread rapidly 
at the global scale. Most countries have rapidly stopped almost all activities including industry, services and transportation 
of goods and people, thus decreasing air pollution in an unprecedented way, and providing a unique opportunity to study 
air pollutants. While satellite data have provided visual evidence for the global reduction in air pollution such as nitrogen 
dioxide  (NO2) worldwide, precise and quantitative information is missing at the local scale. Here we studied changes in 
particulate matter  (PM2.5,  PM10), carbon monoxide (CO),  NO2, sulfur dioxide  (SO2) and ozone  (O3) at 10 urban sites in 
Hangzhou, a city of 7.03 million inhabitants, and at 1 rural site, before city lockdown, January 1–23, during city lockdown, 
January 24-February 15, and during resumption, February 16–28, in 2020. Results show that city lockdown induced a 
sharp decrease in  PM2.5,  PM10, CO, and  NO2 concentrations at both urban and rural sites. The  NO2 decrease is explained by 
reduction in traffic emissions in the urban areas, and by lower regional transport in rural areas during lockdown, as expected. 
 SO2 concentrations decreased from 6.3 to 5.3 μg m−3 in the city, but increased surprisingly from 4.7 to 5.8 μg m−3 at the 
rural site: this increase is attributed both to higher coal consumption for heating and emissions from traditional fireworks of 
the Spring Eve and Lantern Festivals during lockdown. Unexpectedly,  O3 concentrations increased by 145% from 24.6 to 
60.6 μg m−3 in the urban area, and from 42.0 to 62.9 μg m−3 in the rural area during the lockdown. This finding is explained 
by the weakening of chemical titration of  O3 by NO due to reductions of  NOx fresh emissions during the non-photochemical 
reaction period from 20:00 PM to 9:00 AM (local time). During the lockdown, compared to the same period in 2019, the 
daily average concentrations in the city decreased by 42.7% for  PM2.5, 47.9% for  PM10, 28.6% for  SO2, 22.3% for CO and 
58.4% for  NO2, which is obviously explained by the absence of city activities. Overall, we observed not only the expected 
reduction in some atmospheric pollutants (PM,  SO2, CO,  NO2), but also unexpected increases in  SO2 in the rural areas and 
of ozone  (O3) in both urban and rural areas, the latter being paradoxically due to the reduction in nitrogen oxide levels. In 
other words, the city lockdown has improved air quality by reducing  PM2.5,  PM10, CO, and  NO2, but has also decreased air 
quality by augmenting  O3 and  SO2.

Keywords COVID-19 · Hangzhou · Lockdown · Air quality · Emission reductions · Coronavirus · PM2.5 · PM10 · SO2 · 
CO · NO2 · O3

Introduction

In early December 2019, the novel coronavirus pneumo-
nia named COVID-19 by the World Health Organization 
(WHO) was initially identified in Wuhan, the capital city of 
Hubei province (Huang et al. 2020; Guan et al. 2020; WHO, 
2019). As of May 28, 2020, COVID-19 had spread rapidly 
on a global scale with 5,491,678 confirmed cases, 349,190 
confirmed deaths in 217 countries, areas or territories, as 
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reported by the WHO (https ://www.who.int/emerg encie 
s/disea ses/novel -coron aviru s-2019). To curb the spread 
of COVID-19, Wuhan and other cities of Hubei province 
announced lockdowns on January 23 and 24, 2020, respec-
tively, followed by other provinces in China, by declaring the 
highest level of a public health emergency on January 26, 
2020 (Tian et al. 2020). As part of the national emergency 
response, the Chinese government established nationally 
strict curfews and isolation policies, named ‘lockdown’, for 
instance:

• extending the Spring Festival holiday,
• suspending all public transportation including city buses,

subways, ferries and long-distance coaches,
• closing outbound channels at airports and railway sta-

tions,
• closing schools and entertainment venues,
• banning public gatherings,
• enhancing social distancing, and
• issuing stay-at-home orders and closing non-essential

businesses.

Future analyses will evaluate the extent to which these 
approaches have been effective, and whether potential 
benefits have outweighed the costs, e.g., economic losses. 
Non-essential businesses in most areas resumed work after 
February 10, although non-essential businesses in Wuhan 
remained closed until March 20.

The all-out massive efforts of the Chinese government 
by sealing off all cities in a bid to curb the spread of the 
COVID-19 provide an unprecedented opportunity to study 
the possible effects of anthropogenic emission on air quality. 
NASA and European Space Agency (ESA) pollution moni-
toring satellites, i.e., the Tropospheric Monitoring Instru-
ment (TROPOMI) on ESA’s Sentinel-5 satellite, detected 
significant decreases in  NO2 over China based on the data 
from January 1–20, 2020, before the quarantine, to Febru-
ary 10–25, during the quarantine (NASA 2020). There is 
evidence that the changes were at least partly related to the 
economic slowdown following the coronavirus outbreak. By 
comparison of  NO2 values in 2020 with the average val-
ues detected at this time of year from 2005 to 2019, NASA 
determined that  NO2 concentrations in eastern and central 
China in 2020 were 10–30% lower than those normally 
observed for this time period (NASA 2020).

On the other hand, despite reduction in activities at the 
outbreak of COVID-19, the Beijing-Tianjin-Hebei cluster 
remained shrouded in smog during the Spring Festival holi-
day in 2020 despite the expectation that air pollution would 
remain low (MEE 2020; China Daily 2020). On Wednes-
day, February 5, 2020, hourly concentrations of  PM2.5—
fine particles with an aerodynamic diameter lower than 
2.5 μm—in most districts in Beijing exceeded 200 μg m−3 

with worsening haze over the Lantern Festival on Satur-
day, February 9 (MEE 2020). It was estimated that from 
January 24 to February 2, 2020, pollutant emissions, with 
77% fewer freight vehicles and 39% fewer cars on the roads, 
decreased by at least 40% in the 28 major cities in the Bei-
jing-Tianjin-Hebei (BTH) cluster (MEE 2020). However, 
emissions from industries such as steel, nonferrous metals, 
glass, cooking and heating in the BTH cluster remained 
generally unchanged, despite a suspension of activities by 
many restaurants and labor-intensive factories (MEE 2020). 
There was a decrease of only 10% in emissions by steel 
plants and coal-burning power generation sectors with no 
decrease in other smokestack industries. About 10 million 
rural households in the BTH region relied on coal for heat-
ing, with some shift to cleaner energy like natural gas. Coal 
consumption for heating increased as reflected by more than 
10% enhancement of CO concentrations, relative to last year 
in the BTH rural areas. Another major factor for poor air 
quality in the BTH region during the cold periods was the 
unfavorable meteorological conditions for pollutant disper-
sal, such as mixing layer heights of only 300 to 500 m, half 
to one-third of their normal heights in the same season in 
MEE (2020).

Elevated  PM2.5 is a major factor controlling regional 
climate and human health (van Donkelaar et al. 2010; Yu 
et al. 2014; Wang et al. 2014a; Rosenfeld et al. 2019; Pope 
2000; Seinfeld and Pandis 2016; Chen et al. 2013). The 
main driver of decreases in  PM2.5 in China between 2013 
and 2017 was strict emission control policies (Zhang et al. 
2019; Ding et al. 2019). Efforts to improve air quality during 
large international events, such as the 2008 Beijing Olym-
pics, the 2014 Beijing Asia–Pacific Economic Cooperation 
(APEC) summit, the 2015 Grand Military Parade, and the 
2016 Hangzhou G20 summit, have included short-term clo-
sure of power plants and factories, restriction of traffic, and 
reduction in construction activities (Xing et al. 2011; Liu 
et al. 2016; Li et al. 2017; Wang et al. 2017).

Hangzhou, the capital of Zhengjiang Province situated 
in the Yangtze River Delta and one of the most famous and 
prosperous cities in China (Fig. 1), has a population of 7.03 
million and covers an area over 16,000 km2 (http://xzqh.
mca.gov.cn/). Influenced by subtropical monsoon climate, 
Hangzhou has four distinctive seasons. Surrounded by 
mountains on three sides, this city belongs to basin geo-
morphology which does not favor pollution dispersal. Due 
to the implementation of pollution control strategies such 
as restructuring of industry and energy, coal consumption 
decreased from 14.6 million tons in 2005 to 13.4 million 
tons in 2013, despite doubling the numbers of vehicles from 
1.1 to 2.5 million (http://www.hangz hou.gov.cn/col/col80 
5867/).

Heavy photochemical pollution and haze episodes occur 
frequently with exceedances in 2013 of 38 days for  O3 and 

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
http://xzqh.mca.gov.cn/
http://xzqh.mca.gov.cn/
http://www.hangzhou.gov.cn/col/col805867/
http://www.hangzhou.gov.cn/col/col805867/


Fig. 1  a Distributions of 11 
air quality monitoring station 
locations in Hangzhou. b Time 
series of observed hourly 
concentrations of  PM2.5,  PM10, 
 SO2, CO,  NO2,  O3 at urban and 
rural sites in Hangzhou city 
from January 1 to February 
28, 2020. Comparing pollutant 
levels before lockdown and dur-
ing lockdown, concentrations 
of  PM2.5,  PM10, CO,  NO2 dis-
played significantly decreases, 
while overall augmenta-
tions were observed for  O3 in 
both urban and rural areas. The 
patterns began to reverse after 
February 15 due to the resump-
tion of work and production 
activities



62 days for  PM2.5 for the secondary Chinese Ambient Air 
Quality Standards (CAAQS):  PM2.5: 75 μg m−3 for 24 h 
average and  O3: 75 ppbv for daily maximum 8 h (Zhang 
et al. 2018). During a severe haze episode from Decem-
ber 3–9, 2013,  PM2.5 mean concentrations reached as high 
as 293.4 ± 103.2 μg m−3 (Yu et al. 2014). Local emissions, 
complex atmospheric conditions, and regional transport 
exert combined effects on air pollution occurrence in 
Hangzhou (Yu et al. 2014; Li et al. 2015; Wu et al. 2018; 
Chen et al. 2020). On the other hand, Zhejiang, known for 
its thriving private sector, was the first province both to 
declare a highest level response to coronavirus on January 
23, 2020 and to relax control measures and support work 
resumption (https ://www.scmp.com/econo my/china econo 
my/artic le/30498 21/coron aviru s-chine se-provi nce-order 
s-relax ation -exces sive). As the capital of Zhejiang province, 
Hangzhou city declared the first-level public health emer-
gency response on January 23, 2020 (http://www.zj.gov.cn/
art/2020/1/26/art_12289 96604 _41859 419.html).

A recent editorial underlines the importance and rele-
vance of research in environmental chemistry to understand 
pandemics (Sharma et al. 2020). Here we study the impacts 
of the city lockdowns due to the COVID-19 outbreak on air 
quality in Hangzhou from January 1 to February 28, 2020. 
Our hypothesis was that air pollutants should have decreased 
during lockdown due to the absence of activities and traf-
fic. This report reveals that, on the contrary, the concentra-
tions of some air pollutants increased in both urban and rural 
areas.

Experimental

Hourly observational data of the six pollutants,  PM2.5, 
 PM10,  SO2, CO,  NO2,  O3, at the monitoring sites from Janu-
ary 1 to February 28, 2020, were collected from the web-
site of China National Environmental Monitoring Center 
(CNEMC) (http://www.mee.gov.cn/hjzl/dqhj/). In addition 
data were acquired at 11 air quality monitoring stations 
are set up in Hangzhou, as shown in Fig. 1a, including 10 
urban sites (Binjiang, Xiasha, Wolongqiao, Zhejiangnon-
gda, Zhaohuiwuqu, Hemuxiaoxue, Linpingzhen, Xixi, 
Yunqi and Chengxiangzhen), and one rural background site 
(Qiandaohu), a lake park located about 170 km away from 
Hangzhou center. Average concentrations at the 10 urban 
sites were estimated to represent urban conditions, while 
the concentrations at the rural site were used to represent 
rural conditions. According to the China National Ambi-
ent Air Quality Standard (CNAAQS, GB3095-2012), the 
24-hour average levels of each pollutant are regarded as 
valid only under if at least 20 h of hourly data are acquired. 
The 8 h-O3 concentrations could be used only with more 
than 6 h available data for each 8 h period. In this study, 

the data in 2016, 2017, 2018 and 2019 were also used for 
comparison purpose.

Data of population (7.03 millions) and area (16,596 km2) 
of Hangzhou city were acquired from the Civil Affairs Min-
istry of the People’s Republic of China (http://xzqh.mca.
gov.cn/). The change of the Baidu Migration Scale Index 
to characterize the daily travel intensity index inside Hang-
zhou was downloaded from the public Baidu Maps website 
(http://qianx i.baidu .com/). Daily traffic density was calcu-
lated using the travel intensity index multiplied by popula-
tion, and then divided by area.

Results and discussion

Trends of air pollutants in early 2020

Overall trends

Figure 1b shows the time series of hourly concentrations 
of six pollutants at the urban and rural sites from January 
1 to February 28, 2020, with the corresponding statistical 
values summarized in Table S1. To analyze the temporal 
variations of concentration and impacts of the lockdown, 
the entire study period was divided into three periods: before 
lockdown (BL, January 1–23), during lockdown (DL, Janu-
ary 24–February 15), and resumption (February 16–28). 
Results show that when comparing pollutant levels before 
and during lockdown, concentrations of  PM2.5,  PM10, CO, 
 NO2 decreased significantly, as expected. However, results 
also show an overall increase in ozone  (O3) levels both in 
both urban and rural areas. After February 15, these trends 
began to reverse due to the resumption of work and produc-
tion activities.

Particulate matter

In the urban area, hourly average concentrations of  PM2.5 
decreased from 45.9 ± 31.3 μg m−3 before lockdown to 
29.6 ± 19.5 μg m−3 during lockdown (Table S1). Simi-
larly, at the rural site hourly  PM2.5 levels decreased from 
25.0 ± 24.0 to 20.1 ± 16.9 μg m−3. In the same way, mean 
 PM10 decreased significantly from 70.5 to 48.4 μg m−3 in 
the urban area and from 31.0 to 24.1 μg m−3 at the rural 
site. Then, both  PM2.5 and  PM10 levels rose to higher values 
after resumption. It is known that coal combustion, biomass 
burning, vehicle emissions, and industrial emissions are the 
main anthropogenic sources of  PM2.5 (Chow and Watson 
2002; Cheng et al. 2014; Wu et al. 2016; Wang et al. 2016a; 
Mehmood et al. 2018, 2020). Therefore, our observed reduc-
tion in  PM2.5 concentrations in Hangzhou city during lock-
down is mainly due to limited industrial activity and traffic 
(Wang et al. 2012; Lyu et al. 2016; Zhang et al. 2017). In the 
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rural area, reduction in  PM2.5 and  PM10 can be ascribed to 
restricted vehicle travel and lower impacts of regional trans-
ports. The consistent patterns of  PM2.5 and  PM10 in both 
urban and rural areas suggested the important contributions 
of anthropogenic emission sources and impacts of regional 
transport during the lockdown.

Carbon monoxide

CO decreased in both urban areas from 1.0 to 0.59 mg m−3, 
and in rural areas from 0.78 to 0.60 mg m−3. Since CO 
mainly originates from fossil fuel combustion and biomass 
burning (Zhang et al. 2009; Chai et al. 2014), decreasing 
anthropogenic emissions after reduction in industrial activi-
ties explain at least partly the CO patterns in both urban and 
rural areas.

Sulfur dioxide

SO2 mean concentrations in the urban area decreased 
from 6.3 to 5.3 μg m−3 after lockdown, then increased to 
5.6 μg m−3 in the resumption period. However, surpris-
ingly,  SO2 mean concentrations at the rural site increased 
from 4.7 to 6.1 μg m−3 continuously during the entire period 
(Table S1). The unexpected increase in  SO2 at the rural site 
is explained by the increase in coal consumption for heating 
coupled with inputs from the traditional fireworks during 
Spring Festival Eve and the Lantern Festival. Overall,  SO2 
concentrations remained low, which resulted from the imple-
mentation of control of  SO2 emission (Fang et al. 2009), as 
observed in the Yangtze River Delta (Huang et al. 2012).

Nitrogen dioxide

Concentrations of  NO2 at the urban sites dropped from 44.2 
to 13.0 μg m−3 after lockdown, then slightly increased to 
21.8 μg m−3 during resumption (Fig. 1, Table S1). At the 
rural site,  NO2 levels decreased sharply from 21.0 μg m−3 
to 6.8 μg m−3 during lockdown, then remained at very low 
levels of 6.4 μg m−3 during the resumption period. These 
findings are explained by lower  NOx emissions from local 
vehicle emissions, power plants and industrial activities 
(Wang et al. 2014b, 2016b) during the lockdown, whereas 
rural decreases in  NO2 concentrations might result from less 
vehicle emissions and less pollution transport from urban 
areas.

Ozone

Contrary to the dramatic decreases in  NO2 during the 
lockdown, relatively low  O3 levels in the urban area 
occurred before lockdown with almost all the values below 
100 μg m−3, then began to reach higher concentrations 

during lockdown with the maximum over 139 μg m−3 as 
shown in Fig. 1. Mean concentrations of  O3 increased from 
24.6 μg m−3 before lockdown to 60.6 μg m−3 during lock-
down in the urban area, whereas a lower increase in  O3 
levels from 42.0 to 62.9 μg m−3 occurred in the rural area 
(Table S1). Then, during the resumption, the mean  O3 con-
centrations increased slightly in both urban and rural areas. 
As a secondary pollutant formed by photochemical reactions 
of nitrogen oxides  (NOx) and volatile organic compounds 
(VOC) (Seinfeld and Pandis 2016),  O3 will decrease with 
decrease in  NOx in the  NOx sensitive regime. The unex-
pected increase in  O3 levels during lockdown with the 
decreases in  NO2 is explained by the weakening of chemi-
cal titration of  O3 by NO during the nighttime, resulting 
in increases in background  O3 concentrations, as shown in 
Fig. 2.

In 2020, from 20:00 p.m. to 9:00 a.m. local time, the 
mean  O3 concentrations for the non-photochemical reaction 
time period increased from 18.8 μg m−3 before lockdown to 
53.7 μg m−3 during lockdown in urban areas, and from 35.6 
to 58.0 μg m−3 in rural areas (Fig. 2). By comparison, in 
2019, the mean  O3 concentrations for the same time periods 
increased from 10.0 to 35.9 μg m−3 in urban areas, and from 
30.6 to 47.8 μg m−3 in rural areas. The higher levels during 
the lockdown time period are partly explained by higher 
atmosphere temperatures for late January/early February 
versus January 1–23. Apart from higher levels in 2020 for 
the whole time period, Fig. 2 shows meaningful higher  O3 
concentrations at night in 2020 relative to those in 2019. 
This confirms indirectly the fact that the O3 increase in 2020 
during lockdown is due to the weakening of chemical titra-
tion of  O3 by NO during the nighttime, resulting in increases 
in background  O3 concentrations.

Comparisons of air quality between 2019 and 2020

Daily average concentrations of ambient  PM2.5,  PM10, CO, 
 NO2,  SO2 and daily maximum 8 h-O3 concentrations in 2020 
relative to those in the same period of 2019 in the urban 
and rural areas are displayed in Fig. 3 and Table S1.  PM2.5 
and  PM10 concentrations in the urban areas decrease sharply 
on January 24, and then remained below 75% during a few 
days January 24–27 (Fig. 3a,b). Similar drops of 96% for 
 PM2.5 and 95.6% for  PM10 were observed at the rural site on 
January 26. CO and  SO2 exhibited no significant change in 
the urban areas, whereas rising trends were observed at the 
rural site. This is explained by increasing biomass burning 
for residential heating or cooking in the rural area. At both 
urban and rural sites,  NO2 decreased and the maximum drop 
appeared during January 24–30, as expected. Daily maxi-
mum 8 h-O3 concentrations were enhanced during almost 
all days in January and February in 2020 relative to 2019, 



although the larger enhancements existed before lockdown 
in both urban and rural areas (Fig. 3).

For the urban area, before the lockdown period, January 
1–23, 2020/2019 decreases amounted to 24.8% for  PM2.5, 

19.8% for  PM10, 29.2% for  SO2, 14.1% for CO and 13.7% 
for  NO2. By comparison, the decreases were much higher 
during the lockdown period, January 24–February 15: 42.7% 
for  PM2.5, 47.9% for  PM10, 22.3% CO and 58.4% for  NO2; 



except for  SO2 (28.6%) (Table S1). Higher decreases after 
January 24 reveal the reductions in industrial activities and 
traffic in Hangzhou. The similar  SO2 changes are in agree-
ment with the contribution of coal combustion for heating 
and firework emissions during lockdown.

For the rural area, only  PM2.5,  PM10, and  NO2 showed 
significantly higher decreases of − 18.5%, − 39.6%, − 48.0% 
during the lockdown period, respectively, compared with 
the corresponding 4.4%, − 27.0%, − 4.8% before lockdown 
(Table S1). Whereas  SO2 and CO exhibited weak decreases 
during lockdown,  O3 concentrations exhibited an increase 
during the whole period at all sites relative to those in 2019. 
With similar decrease percentages of  NO2 at the urban sites 
(− 58.4%) and rural site (− 48.0%) during January 24–Febru-
ary 15, larger enhancement percentages of  O3 were observed 
at the urban (22.2%) relative to rural (15.7%) sites in 2020 
in comparison to those in 2019. Moreover, the weekly mean 
concentrations of  NO2 and  PM2.5 in 2020 were consistently 
lower than those in the same periods of 2016, 2017, 2018 
and 2019, due to the emission reductions because of the city 
lockdown (see Fig. 3b) in addition to the possible effects 
from the differences in meteorological conditions for each 
year.

Correlations between  NO2 and city traffic index 
in Hangzhou

NOx, including NO and  NO2, are major precursors of  PM2.5 
and  O3, and are primarily emitted as NO from anthropo-
genic combustion sources including transportation, power 
plants, industries and residential combustion, and from 
natural sources such as soil, lightning, and wildfire.  NOx 
is an excellent tracer of human activity (Chen et al. 2013; 
Yu et al. 2014). Our results show that  NO2 concentrations 
in both urban and rural areas in Hangzhou dropped sharply 
during the lockdown (Figs. 1, 2). Higher temperatures, 
stronger sunlight and increasing precipitation in February 
can decrease  NO2 relative to those in January for fixed emis-
sions in Hangzhou.

To understand the impact of traffic flows on the  NO2 in 
Hangzhou, Fig. 4a displays changes in daily traffic density 
against the changes in daily  NO2 mean concentrations in 
2020 relative to those in 2019. We found a significant posi-
tive correlation (correlation coefficient (r) = 0.51) between 
the change in traffic density and  NO2 in the urban area. This 
finding reinforces the hypothesis by which traffic reduction 
is at least partly responsible for  NO2 decreases. By con-
trast, traffic density and  NO2 is very weakly correlated at 
the rural site (r = 0.18). This suggests that  NO2 does not 
mainly originate from local traffic in rural areas, but may 
come from long-distance transport. It has been shown that 
regional transport of  NOx and VOCs from urbanized upwind 
areas can lead to high  O3 levels (Sikder et al. 2011; Monteiro 
et al. 2012; Yu et al. 2006; Li et al., 2015). Moreover,  NO2 
exhibits a strong correlation with  PM2.5 in the urban area 
of Hangzhou (r = 0.51, P < 0.05) (Fig. 3d), indicating local 
vehicle emissions are an important source of  PM2.5.

Inter‑species correlations in the observations

Negative correlations are found between daily maximum 
8-h  O3 and mean  NO2 levels in both urban and rural areas 
(Fig. 4b). This suggests a VOC-limited regime of  O3 forma-
tion prevailing during winter time periods in Hangzhou, in 
agreement with conclusions reported in Shanghai and Nan-
jing (Ding et al. 2013; Gu et al. 2020). Notably, a signifi-
cantly weaker positive response is observed under low  NO2 
levels, below 20 μg m−3, showing the shift of  O3 production 
to the transition regime or even  NOx-limited regime, espe-
cially in the rural area. At low VOC/NOx ratios, chain ter-
mination reaction of OH and  NO2 produces a VOC-limited 
regime. Conversely, at high VOC/NOx ratios, the primary 
chain termination and propagation reactions involve OH and 
VOCs, and oxidation of NO by  HO2 and  RO2, respectively, 
producing an  NOx-limited regime (Seinfeld and Pandis 
2016).

Little correlation was observed between daily mean  PM2.5 
and maximum 8-h  O3 concentrations (Fig. 4c). Here, we 
displayed boxplots of maximum 8-h  O3 concentrations ver-
sus daily mean  PM2.5 concentrations. The initial  PM2.5 bin 
was 5 μg m−3 and rose to 10 or 15 μg m−3 under high  PM2.5 
concentrations. Overall, median maximum 8-h  O3 concen-
trations increased along with daily mean  PM2.5 at low to 
moderate  PM2.5 levels, then declined for daily  PM2.5 con-
centrations > 40 μg m−3 as shown in Fig. 4c. The positive 
correlation between  PM2.5 and  O3 is associated with the 
conversion of gaseous organics to  PM2.5 under OH and  O3 
oxidation, forming secondary organic aerosols (Seinfeld and 
Pandis, 2016). The observed decline in  O3 driven by high 
 PM2.5 concentrations could be attributed to reduced solar 
radiation due to extinction by particulate matter, depositional 

Fig. 2  a Diurnal variations of the mean  O3 concentrations for the 
periods of before (BL) and during (DL) lockdowns in the urban and 
rural areas in Hangzhou in 2020 and 2019; b Comparisons of the 
weekly mean values of  NO2 and  PM2.5 concentrations in the years 
of 2016, 2017, 2018, 2019 and 2020. Before Lockdown (BL), Dur-
ing Lockdown (DL), and Resumption denote the periods of January 
1–January 23, January 24–February 15, and February 16–February 
28, respectively. The diurnal variations of mean  O3 concentrations for 
the periods of BL and DL in (a, b) clearly indicate that the mean  O3 
concentrations for the non-photochemical reaction times from 20:00 
PM to 9:00 AM (local time) during lockdown in 2020 were 53.7 and 
58.0 μg m−3 in the urban and rural areas, respectively, much higher 
than the corresponding values (i.e., 18.8 and 35.6 μg m−3 in the urban 
and rural areas, respectively) before lockdown

◂



sink of  HO2 and  NOx radicals, and chemical titration of NO 
(Buysse et al. 2019; Li et al. 2019; Yu et al., 2014).

Conclusion

We investigated the effects of city lockdowns on air qual-
ity based on ground-based observations in both urban 
and rural areas in Hangzhou. Results indicate that dur-
ing lockdown relative to the period before lockdown, 
concentrations of  PM2.5,  PM10, CO, and  NO2 displayed 
significantly decreasing trends, as expected, while an 
overall rising trend was observed for  O3 in both urban 
and rural areas, which is explained by the ‘absence’ of 

 NOx. The sharp decreases in the  NO2 concentrations in 
the urban area during the lockdown were mainly a result 
of direct traffic emission reductions, whereas in the rural 
area decreases were mainly from less regional transport. 
 SO2 mean concentrations in the urban area decreased from 
6.3 to 5.3 μg m−3, as expected, but increased in rural areas 
from 4.7 to 5.8 μg m−3, a consequence of increases in coal 
combustion for heating and firework emissions. Mean  O3 
concentrations increased significantly from 24.6 before 
lockdown to 60.6 μg m−3 during lockdown in the urban 
area, whereas the corresponding rural  O3 levels modestly 
increased from 42.0 to 62.9 μg m−3. Here the  O3 increase 
in the urban areas is explained by the reduction in  NOx 
emissions. Overall, the city lockdown improved air quality 

Fig. 3  Change percentages of 
the daily average concentrations 
of ambient  PM2.5,  PM10, CO, 
 NO2,  SO2 and daily maximum 
8 h-O3 concentration dur-
ing January and February in 
2020 relative to those in 2019 
in Hangzhou in (a) the urban 
area and (b) the rural area. As 
indicated in Fig. 3a and Fig. 3b, 
 PM2.5 and  PM10 concentrations 
in the urban areas experienced 
a sharp decrease on January 24, 
and then remained relatively 
larger negative percentages 
(below − 75%) during a few 
days from January 24–27. The 
simultaneous quick drops after 
January 24 also occurred for 
 PM2.5 and  PM10 levels at the 
rural site with the minimum 
values as low as − 96% and 
− 95.6% on January 26, respec-
tively



by reducing  PM2.5,  PM10, CO, and  NO2, but also decreased 
air quality by augmenting  O3 in both urban and rural areas 
and  SO2 in the rural area in Hangzhou.
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Table S1. Statistical summary of mean concentrations (mean ± standard deviation) in 2020 and concentration changes (percentages) of PM2.5, PM10, CO, NO2, SO2, and O3 in 
2020 relative to those in the same periods of 2019 at urban and rural sites in Hangzhou. Before Lockdown (BL), During Lockdown (DL), and Resumption denote the periods 
of January 1–January 23, January 24–February 15, and February 16–February 28, respectively. Hourly average concentrations of PM2.5 in the urban area were 45.9±31.3 and 
29.6±19.5 µg m-3 for the BL and DL periods, respectively. The simultaneous drop of hourly PM2.5 levels from 25.0±24.0 to 20.1±16.9 µg m-3 was observed at the rural site. 
Similar patterns were detected for PM10 with mean values decreasing significantly from 70.5 to 48.4 µg m-3 in the urban area and slightly from 31.0 to 24.1 µg m-3 at the rural 
site. 

 
Pollutants O3 (µg m-3) NO2 (µg m-3) CO (mg m-3) SO2 (µg m-3) PM10 (µg m-3) PM2.5 (µg m-3) 

Urban  

Concentrations 
（2020）  

BL 24.6±21.0 44.2±15.4 1.0±0.24 6.3±1.6 70.5±45.9 45.9±31.3 
DL 60.6±24.8 13.0±4.3 0.71±0.15 5.3±0.9 38.4±23.6 29.6±19.5 
Resumption 65.0±28.8 21.8±9.5 0.59±0.12 5.6±0.9 54.8±32.0 31.7±17.8 

 Changes 
relative to 2019 

BL 8.5 (28.6%) -7.1 (-13.7%) -0.16 (-14.1%) -2.6 (-29.2%) -17.3 (-19.8%) -15.1 (-24.8%) 
DL 13.9 (22.2%) -18.3 (-58.4%) -0.20 (-22.3%) -2.1 (-28.6%) -35.3 (-47.9%) -22.1 (-42.7%) 
Resumption 38.4 (68.7%) -22.2 (-51.5%) -0.40 (-40.1%) -3.3 (-36.7%) -17.8 (-24.3%) -22.4 (-41.5%) 

Rural  

Concentrations 
（2020） 

BL 42.0±24.0 21.0±12.2 0.78±0.16 4.7±1.1 31.0±26.1 25.0±24.0 
DL 62.9±25.1 6.8±3.2 0.66±0.10 5.8±0.8 24.1±17.3 20.1±16.9 
Resumption 64.6±27.3 6.4±4.3 0.60±0.13 6.1±1.9 38.2±20.5 24.7±16.1 

Changes 
relative to 2019 

BL 8.3 (17.4%) -1.1 (-4.8%) -0.29 (-27.4%) -5.7 (-54.8%) -12.2 (-27.0%) 0.98 (4.4%) 
DL 10.3 (15.7%) -6.3 (-48.0%) -0.17 (-20.8%) -0.38 (-6.2%) -15.8 (-39.6%) -4.9 (-18.5%) 
Resumption 29.8 (47.0%) -5.3 (-48.6%) -0.23 (-29.1%) -0.78 (-10.9%) 9.7 (36.5%) 5.7 (33.6%) 
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