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Abstract—Since the 2000’s, webcams are considered
as an interesting source of opportunistic meteorological
data. This short study deals with the comparison of
visibility, in a meteorological sense, between images.
A new dataset has been built from publicly available
webcam sequences. An original labeling process, based
on a mergesort algorithm, allowed us to sort more than
400 webcam sequences with respect to visibility. Standard
Convolutional Neural Networks have been trained to
predict pairwise comparisons and tested on independent
webcams that are colocalized with visibilimeters. Results
on the comparison task are promising.

I. INTRODUCTION

Despite the proliferation of observations, the
accurate monitoring of surface parameters such as
the meteorological visibility remains a challenge. The
latter is defined as the greatest distance at which an
object can be recognized [1].
On the one hand, forecast of visibility from large
scale teledetection measurements is hard to achieve
and this parameter is too local to be extrapolated
from the weather stations, where it is instrumentally
or manually measured. On the other hand, a better
mapping of visibility reduction would enable interesting
developments in intelligent transport system [2].

To complement the available measures, automatic
processing of images from the ubiquitous road
webcams appeared to be a promising idea [3], [4].
Over the past 20 years, this topic has been studied
in depth with an increasing proportion of data-driven
methods [2], [5], [6], [7], [8], [9], [10], [11], [12],
[13], [14]. However, there is few work (e.g. [15]) on
the issue of the inter-scene generalization, e.g. when
the predictive model is tested on scenes that have not
been seen during the training phase.
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Recently, deep learning appeared well suited to
tackle the inter-scene generalization problem [15]. But
a supervised approach of that problem is limited by
the fact that reliable data sets with numerous different
scenes are still missing.

First, if the webcam archives are abundant, images
with low-visibility are rare. Our first contribution
was to gather a large data set (AMOSvv) of 17,961
images parted in 426 webcam sequences rich in
low-visibility events. For the most part, our sequences
have been extracted from the AMOS archives [16].
The extraction windows span around snowfall events,
when visibility varies widely [17]. These images
present several difficulties for an automatic processing.
For example, the lighting variations, the changing look
of roads, grounds, trees and roofs due to the wetting
and the settling of the snow, the frequent droplets and
snowflakes deposited on the protection lens (see Fig.1
and Table 2). These effects weaken the conventional
approaches based on mean contrast or edge detection.

Second, another problem comes from the lack of
images associated with reliable visibility measurements.
To our knowledge, the publicly-available data sets
with instrumentally-derived visibility only contain
one or few scenes. The remaining alternative relies
on handcrafted labeling, as it is done by You et al.
[15]. These authors developed a ranking model that
ranks single images with respect to their apparent
visibility. This model is trained on a set of manually
ordered pairs of images. Pairwise labeling has been
chosen because, without any knowledge on the
scenes, a human annotator could hardly do better than
comparing the visibility on two different images.
Our approach relies on the same idea. However,
comparisons were made on pairs of images of a
same sequence. Moreover, this work was done by a
graduate in meteorology. This ensured fine-grained,
homogeneous and rigourous comparisons, whereas
naive inter-scene comparisons are necessarily rougher
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Fig. 1. 1.a: examples of scenes of the AMOSvv data set. 1.b: from left to right: the sequences 1-5 of the TENEBRE network.

and may suffer from misleading impressions.
In practice, these comparisons were made following a
quick labeling process where transitivity and pairs of
incomparable images (termed “incomparable pairs”)
are taken into account. This labeling process is based
on the poset-mergesort algorithm of Daskalakis et
al. [18]. It has been used to complete the day time
part of our dataset AMOSvv with 195.000 ordinal
labels on visibility, comprising strict-ordered pairs and
incomparable pairs.
In this paper, we also present baseline performances
for the comparison task on independent webcams of
the TENEBRE network (Météo-France). Instrumental
labels are used to test standard deep learning
architectures. The use of incomparable pairs during
the training has been addressed.

In the section 2, we quickly present the related
works. Section 3 is devoted to the collection of the
webcam sequences. Our labeling process is explained
in section 4. The learning framework and the first
results are presented in section 5.

II. RELATED WORK

A. Estimation of meteorological visibility

Image-based estimation of meteorological visibility
appeared twenty years ago. Early works showed that
fixed camera with controlled settings were usable to
compute a proxy for visibility estimation [3], [4]. In
the most part of subsequent studies, the train and test
images are coming from the same device [19], [9], [7],

[10], [11], [20], [8]. Visibility estimations have first
been obtained thanks to specific descriptors, as strength
of detected contours [21], color distribution [22] or
contrasts [2]; these descriptors often being motivated
by a physical model [4], [23]. Progressively, estimation
methods have been based on generic machine learning
algorithms as support vector machine (SVM) [9],
[10], [11] and Convolutional Neural Networks (CNN)
[12], [13], [14].

Manual estimation of absolute visiblity has been
practiced in [9]. The authors use their knowledge of
the scene to manually classify meteorological visibility
into bins of variable sizes. They point out frequent
discrepancies between the instrumentally-derived vis-
ibility and the manually derived visibility. In our test
set, similar discrepancies have been observed but the
global concordance was good (see section 4).

B. Relative estimation

Parikh et al. [24] develop the idea that some
attributes are incompatible with a handcrafted
categorical classification but could give rise to ordinal
comparisons. They propose to learn these “relative”
attributes in a standard learning to rank framework
[25]. Zoran et al. [26] used ordinal relationships
between superpixels to predict depth and intrinsic
image decomposition. They show that a learning
based on manually labeled comparisons conducts
to competitive results for these both middle-vision
tasks. Their framework contains two main steps. They
first train a deep classifier to predict an intra-image
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set of ordinal relations. For a new image, predicted
orders between pixels are then translated into a set of
weighted quadratic and linear constraints, the solving of
which form the second step. Conversely to this previous
works, the present one is focused on a comparison task.

Ordinal labeling as a basis for weakly-supervised
learning has also been used for visibility estimation
[15]. In this study, ordinal labels are used in the same
learning to rank framework as Parikh et al. Their
modular model takes one image as input. Its output is
a real value. It is trained on manually ordered pairs
such that miss-ordered outputs are penalized.
Conversely, the images of our training pairs are stacked
before the forward phase (“6-channels” inputs). A
CNN is then trained to predict a partial order, as in
[26]. In accordance to other studies [27], we indeed
suppose that prediction from stacked images will be
easier because the model has not to build its own
absolute scale of visibility.
A last difference holds in our training pairs, which
always contain two images of the same scene.

In the works of Zoran et al. [26] and You et al.
[15], incomparability is implicitely thought as relation
of proximity between the targeted values. For example,
if the predictions made on incomparable inputs widely
differ, the model is penalized (or bad-scored, in [15]).
But in our data set, incomparable images could also
be associated with very different values of visibility.
Indeed, incomparability is mostly due to corrupted
images or dramatic changes in the lighting.
From a more theoretical point of view, Cheng et al.
observed that dealing with “true partial order” may
call for different learning algorithms [28]. In this
preliminary work, we simply took incomparability as
a third class to predict.

III. COLLECTION OF WEBCAM SEQUENCES

To build our training and validation data sets,
two sources of webcam sequences have been
used: the webcams of the french DIR (Direction
Interdépartementale des Routes) and the AMOS [16]
archives. The AMOS archives were the main source.
The way our images have been extracted is described
in the following paragraph. The AMOS webcam
archives are divided into directories. Each directory
contains day and night time images of one or several
webcams. Examples of five AMOS scenes are given in
Fig.1.a.

Fig. 2. Definition of the extraction windows around snowfall events.

We first have selected 500 AMOS webcams. These
webcams are variously parameterized: the height
with respect to the ground, the tilt angle, the color
depth, the image size, differ widely. But the selected
scenes always contain a road. This restriction has two
interesting advantages: it reduces the input diversity
while keeping all its interest for the main practical
application (e.g. in road meteorology). Second, the
presence of a road allows a better three-dimensional
comprehension of the image, especially from the
vanishing lines of the road edges.
All kind of road (see Fig.1.a and Table 1) have been
selected but mountain roads. Actually, on mountain
images, the variations of the cloud ceiling complicates
the manual estimation of visibility.
On that first corpus, the median period of the sampling
is 10 minutes and the complete sequences generally
span over several years. But they contain only few
events of low-visibility.

Meteorological data helped us to define extraction
windows. From the ERA-5 reanalysis [29] we
downloaded gridded data centered on the locations
of the AMOS webcams. We used the snowfall rate
and the snow height parameters. Indeed snowfalls are
known to strongly affect the meteorological visibility
[17]. These data were reduced to scalar series and
thresholded to define periods of non-zero snow height
(red intervals of Fig.2) and periods of non-zero
snowfall rates (blue intervals). Our extraction windows
has been taken around the periods of snowfall that
initiate snow covers (green intervals). Margins of 18
hours were applied to also sample images with greater
visibility.
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After that, in each sequence, about 50% of the
images were rejected to avoid a strong redundancy.
The properties of our final training and validation data
sets are summarized in Table 2. The 66 sequences of
the validation set contain roughly the same proportion
of type of scenes as the training set.

Our test sets are made with the archives of
TENEBRE network (Météo-France). These archives
span over 9 months of winter ( 2011–2012, 2012–2013
and 2017–2018) with a sampling period of 10 minutes.
The webcams of this network are hosted in weather
stations and colocalized with DF320 visibilimeters
(Degreane-Horizon). In this work, we only use five
TENEBRE webcams (see Fig. 1.b). Note that, on
the five scenes, the only one that clearly matches
with the training domain is the second one. The
others are atypical: there is no road (scenes 1 and
3), or the tilt angle is anormal (scenes 4 and 5).
Scene 4 is particularly challenging because there is no
background.
From the archives of these five webcams, images
of all kind of weather were selected to form the
TENEBREq data set. All the images with low
visibilities (< 1000 m) were kept, as well as the
images taken during precipitation events and those
with settling snow. Sequences of TENEBREq were
completed by around 1,000 images of good weather
chosen at random.
The sizes of these five sequences after selection are
precised in Table 3. The scores of the section 5 were
computed on day time images of TENEBREq.

IV. LABELS

Our labeling process counts two steps. During
the first step (A.), the images of each sequence are
browsed in the chronological order. The annotator is
invited to give two kinds of labels : a weather class
and an ordinal label that is relative to the current
image and the preceding one. During the second step
(B.), we extend the ordinal labeling to non-consecutive
images following a merge sort algorithm. These two
steps are detailed further.
For each sequence i, these steps allow to build a pair
of graphs (dgi, ugi) that will be subsequently used
during the training. Both graphs share the same nodes.
These nodes are the images of the ith sequence. dgi
is a directed graph and its edges represent all the
strictly ordered pairs. ugi is the undirected graph of

incomparable pairs. Ideally, at the end of the labeling
process, ugi is the complement of the transitive closure
of dgi. Examples of such graphs are given in Fig.3.

A. First labeling step

The annotator sees the image sequences in the
chronological order. For each image, he first decides
if there are “precipitations” (fog included), “no precipi-
tations”, or he may abstain. But in some exceptional
cases, images of the “precipitations” class present a
lower visibility when compared with any image of the
“no precipitations” class. This observation allows us to
fill the dgi graph with ni

p×ni
np new edges, where ni

p

(resp. nnp
i ) is the number of images with precipitations

(resp. without precipitations) in the i− th sequence.
Then, the annotator decides if the current image shows
a lower, a higher, an “equal” or an incomparable
visibility, with respect to the preceding image. The
“equal” images are considered as a specific case of
incomparability. The equal pairs hence lead to new
edges in ugi. But each new “equality” will also expand
an equivalence relation (∼i) between the images that
will allow to propagate edges of dgi and ugi. Formally,
we applied the following rule after each new annotation:
if xk ∼i x

l is an “equality” between the k−th and l−th
images of the sequence i then complete dgi and ugi so
that for any other image x of the same sequence, one
have:

(xk, x) ∈ Edgi ⇔ (xl, x) ∈ Edgi

(x, xk) ∈ Edgi ⇔ (x, xl) ∈ Edgi

(xk, x) ∈ Eugi ⇔ (xl, x) ∈ Eugi

where Edgi (resp. Eugi) stands for the set of the edges
of dgi (resp. ugi).

B. Second labeling step

At the end of that first step, the following observa-
tions were made :

• new intra-sequence comparisons would improve
the graph connectivity. For each new handcrafted
label, transitivity closure and “equalities” will add
numerous automatic labels.

• On consecutive images, incomparability was rel-
atively rare, whereas they carry interesting infor-
mation on incertitude about the ground truth. More
incomparability labels were expected between non-
consecutive images.

This is why the labeling process has been completed
by the ordering of non-consecutive images. This or-
dering follows the Poset-Mergesort algorithm of [18].
This algorithm generalizes the well known mergesort



LEARNING TO COMPARE VISIBILITY ON WEBCAM IMAGES

Type of scene highway field road city street other
63% 18% 15% 4%

Type of weather no precipitations precipitations doubt thick fog
15% 60% 25% 1%

Corrupted images droplets on the lens snowflake on the lens filth other
12% 6% 2% 2%

TABLE I
DESCRIPTION OF AMOSVV. PERCENTAGES IN TABLE 1 ARE PROPORTIONS AMONG THE 15,727 IMAGES OF THE TRAINING SET.

nb of sequences nb of images day time images edges of dg edges of ug
Training set 360 15,727 9,850 142,311 34,428

Validation set 66 2,234 1,435 10,997 8,141

TABLE II
RESPECTIVE SIZES OF THE TRAINING AND VALIDATION DATA SETS. dg END ug ARE DEFINED IN SECTION 4.

seq. 1 seq.2 seq.3 seq.4 seq.5
7,309 7,912 6,911 2,903 2,836

TABLE III
SIZES OF THE TEST SEQUENCES

Fig. 3. Examples of manually-derived ordinal relations in the sequence i = 432 (AMOS webcam 20301).

algorithm to partially ordered sets (posets). It efficiently
builds a partial order from pairwise comparisons. The
initial set of available comparisons corresponds to the
edges of ugi and those of the transitive closure of dgi
taken at the end of the first step.
When a comparison is not available, the human anno-
tator takes over, and the graphs are updated.

To take the “equality” relation into account, the
algorithm works on the quotient set: Xi/∼i, where Xi

represents the set of images in sequence i. This version
of the Poset-Mergesort algorithm will be available on
github 1.

1https://github.com/space-latmos/poset labeling

https://github.com/Latmos 
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Fig. 4. Top: distribution of the visibility in the TENEBREp
sequences. Bottom:Concordance ratios between manually-derived
partial orders and total orders induced by instrumentally-derived
visibility. Concordance ratios and relative differences of visibility
are defined in the text.

In practice, the posets were built by labeling
between 5 % and 10 % of all the ni(ni + 1)/2 pairs
of each sequence. This algorithm has been carried on
a maximum of 40 day time image per sequence. After
a restriction to subsets of daily images, the disjoint
union dg (resp. ug) of all the dgi (resp. ugi) counts
153,308 edges (resp. 42,569).

C. Comparison with the intrumentally-derived labels

This labeling method has been assessed on subsets
of the TENEBREq sequences. For each sequence, 100
day time images with various visibility have been
sampled and manually labeled. These five subsets will
be referred to as the TENEBREp data set. We compare
the posets obtained on the TENEBREp sequences with
the total order induced by visibility measurements
(Fig.4).

The first histogram of the Fig.4 shows the
distributions of the visibility among the handcrafted
subsets of TENEBREp. The global concordance ratio
of the poset graph dg is the proportion of edges that are
oriented in the same order as instrumentally-derived
visibilities. Formally, it is defined by: |C|/|Edg| where
C = { (i, j) ∈ Edg s.t. (vi − vj) > 0 }, vi and vj are
the instrumentally-derived visibilities corresponding to
the images i and j, Edg stands for the set of the edges
of dg and | . | for the cardinality.
For the five TENEBREp sequences, the global
concordance ratios range from 85% to 97%. But when
the computation of the concordance rate is limited to
image pairs of similar visibility, i.e. when the relative

difference defined by |xi − xj |/mean(xi, xj) is lower
than 0.2, the concordance ratio drops (see the scatter
plot of Fig.4). In section 5, these pairs are not taken
into account.

V. EXPERIMENT

Off-the-shelf classifiers were trained to predict
comparisons. Inputs are formed by stacking the paired
images corresponding to the dgi and ugi edges. The
targets are defined by one of the three classes: >, <
and incomparability (only the first two classes in the
so-called 2-classes setting).
To cope with the unbalanced size of the training
sequences, the edges of the i-th sequence are selected
with a frequency in proportion to 1/ni. Once a
sequence is selected, the edges of dgi are selected
with a frequency of 2/3 and the edges of ugi with a
frequency of 1/3.

Residual networks (pytorch versions of Resnet50,
Resnet152, Resnext50) gave systematically lower val-
idation scores when compared with vgg architectures.
The scores presented in this section were obtained with
the vgg16 architecture. The training parameters are
given in Table 4. Two questions have been addressed
by looking at validation scores:

• Do labeling of non-consecutive pairs improve per-
formances? To address this question, we compared
the curves of validation accuracy in two settings.
In the first setting, the model is trained on the
incomplete dgi, given at the end of the first label-
ing step. In the second one, the model is trained
on the complete dgi. It is a 2-classes setting in
both cases. The added value of the non-consecutive
labels is significant, around 2-3 percentage points
of accuracy.

• Could it be beneficial to take into account
incomparable pairs? Again, two experimental
settings were designed. In the first case, the model
is trained on the complete dgi (2-classes model).
In the second case, the model is trained on the
complete dgi and ugi (3-classes model). The
validation accuracy is computed by comparison
with handcrafted strict orders (the incomparability
is not taken into account). When the 3-class
model predicts an incomparability, we looked at
the two first components of the softmax layer
output to get a strict order.
The second model performs slightly better
(90.5% vs. 89.9%). It means that a training on
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three classes does not worsen the scores on the
strict order prediction task, that is the minimum
requirement to select the 3-classes training.

Hereafter, we present the concordance between
instrumental measurements and predictions of a
3-classes vgg16 trained on the complete graphs.
Concordance ratios are computed for each sequence of
the TENEBREq data set (Table 5, line 1.). CRso stands
for the Concordance Ratio computed on all the pairs
of images that are strictly ordered by the instrument
and by the model: pairs with a relative difference of
less than 0.2 and pairs predicted incomparable are not
taken into account.
For a point of comparison, we also give CRso with the
handcrafted pairs of the TENEBREp (line 2.). In that
case, pairs with predicted or labeled incomparability
are not taken into account. We observe a good
agreement with all the webcams but the fourth one,
with an unusual tilt angle. The concordance ratio tends
to be higher with handcrafted labels.
We also want to indicate if our model excessively
predicts incomparability. For that, the completeness
can be used [28]. The completeness gives the
excessive prediction of incomparable pairs by
|SOPpred|/|SOPgt| where |SOPpred| (resp. |SOPgt|)
stands for the amount of pairs that have been strictly
ordered by the model (resp. by the annotator). For
the five webcams, this ratio stands in the [0.84,0.94]
interval: incomparability is not excessively predicted.

As most of the previous methods were set for intra-
scene prediction of a quantitative visibility, comparison
is hard to make. It is yet possible to compute a Critical
Success Index (CSI) for a panel of detection tasks. We
take standard thresholds (250 m, 500 m, 1000 m, 1600
m, 5000 m) for the operational meteorology [21],
[2]. To take a decision, we gather “pivot” images with
visibility lying in the interval [0.9 × t, 1.1 × t] where
t is a given threshold. An image of TENEBREq that
is mostly predicted as strictly inferior to these pivot
images is said inferior to t. The resulting CSI are, for
example, favorably compared with these of Hallowell
et al. [21] whereas, in this study, the training and test
are made on the same set of webcams.

VI. CONCLUSION

In this paper we presented the AMOSvv data set. It
contains more than 400 road webcam sequences rich
in low-visibility events. The labeling process, inspired
from a mergesort algorithm, allowed an efficient man-
ual sort of the images with respect to their apparent
visibility. A simple learning to order framework has
been experimented. Tests are made on independent
webcams that are colocalized with weather sensors.
Critical Success Indices for important detection tasks
are promising. Taking into account the abstention cases
gave also interesting results.
This preliminary study is to be pursued in several ways.
First, night image (one half of the images) will be taken
into account in an unified learning framework, follow-
ing [9]. Snow cover extent and thickness will also be
labeled. The dense labeling of the three parameters will
allow a multi-task approach. We also will compare our
method with existing ones in a near future.
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P. Laloyaux, P. Lopez, C. Lupu, G. Radnoti, P. de Rosnay,
I. Rozum, F. Vamborg, S. Villaume, and J.-N. Thépaut, “The
era5 global reanalysis,” Quarterly Journal of the Royal Mete-
orological Society, vol. n/a, no. n/a.

[30] K. Simonyan and A. Zisserman, “Very deep convolutional
networks for large-scale image recognition,” arXiv preprint
arXiv:1409.1556, 2014.

[31] D. P. Kingma, S. Mohamed, D. J. Rezende, and M. Welling,
“Semi-supervised learning with deep generative models,” in
Advances in neural information processing systems, pp. 3581–
3589, 2014.


	Introduction
	Related work
	Estimation of meteorological visibility
	Relative estimation

	Collection of webcam sequences
	Labels
	First labeling step
	Second labeling step
	Comparison with the intrumentally-derived labels

	Experiment
	Conclusion
	References

