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LEARNING TO COMPARE VISIBILITY ON WEBCAM
IMAGES

Pierre Lepetit'2, Cécile Mallet!, Laurent Barthes®, Nicolas Viltard!

Abstract—Since the 2000’s, cameras are considered
as an interesting source of opportunistic meteorological
data. This short study deals with the comparison of
visibility, in a meteorological sense, between images.
A new dataset has been built from publicly available
webcam sequences. An original labeling process, based
on a mergesort algorithm, allowed us to sort more than
400 webcam sequences with respect to visibility. Standard
Convolutional Neural Networks have been trained to
predict pairwise comparisons and tested on independent
webcams that are colocalized with visibilimeters. Results
on the comparison task are promising. We observe that
taking into account the cases of incomparability improves
our predictions.

I. INTRODUCTION

Despite the proliferation of observations, the
accurate monitoring of surface parameters such as
the meteorological visibility remains a challenge. The
latter is defined as the greatest distance at which
an object can be recognized [1]. In the one hand,
forecast of visibility from large scale teledetection
measurements is hard to achieve and this parameter is
too local to be extrapolated from the weather stations
where it is instrumentally or manually measured. In
the other hand, a better mapping of visibility reduction
would allow interesting developments in intelligent
transport system [2].

To complement the available measures, automatic
processing of images from the ubiquitous road
webcams appeared to be a promising idea. [3], [4].
Over the past 20 years, this topic has been studied
in depth with an increasing proportion of data-driven
methods. [SlI, 61, [7], 81, (91, [101, [2], [11], [12],
[13], [l14]. However, there is few work ([IL5]], [L6]) on
the issue of the inter-scene generalization, e.g. when
the predictive model is tested on scenes that have not
be seen during the training phase.
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Recently, deep learning appeared well suited to

tackle the inter-scene generalization problem [16].
But a straightforward application to the inter-scene
generalization problem is still limited by the fact that
reliable data sets with numerous different scenes are
still missing.
First, if the webcam archives are abundant, images
with low-visibility are rare. Our first contribution was
to gather a large data set (AMOSvv) of 17,961 images
parted in 426 webcam sequences rich in low-visibility
events. For the most part, our sequences have been
extracted from the AMOS archives [17]. The extraction
windows span around snowfall events, when visibility
varies widely [18]. These images concentrate all
the difficulties for a Machine-Learning approach. In
particular, the variations of the optical properties of
the soil, due to the wetting and the settling of the
snow, the frequent droplets and snowflakes (see figure
1 and table 1) deposited on the protection lens. These
effects weaken the conventional approaches based on
widely used descriptors such as mean contrast or edge
detection.

Second, another problem comes from the lack of
images associated with reliable visibility measurements.
To our knowledge, the publicly-available data sets
with instrumentally-derived visibility only contain
one or few scenes. The remaining altenative relies on
handcrafted labeling, as it is done by You et al. [16].
From a set of single images labeled with pairwise
comparisons, these authors derive a visibility index.
Pairwise labeling has been chosen because, without
any knowledge on the scenes, a human annotator could
hardly do better than comparing the visibility on two
different images.

Our approach relies on the same idea. However, we
only compared intra-sequence images. Moreover, these
comparisons were made following a specific labeling
process where transitivity and incomparable image
pairs are taken into account. This labeling process,
based on Poset-Megresort algorithm of [[19], allowed us
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Fig. 1. 1.a: examples of scenes of the AMOSvv data set. 1.b: from left to right: the sequences 1-5 of the TENEBRE network.

to complete the day time part of our dataset AMOSvv
with 195.000 ordinal labels on visibility, comprising
strict-ordered pairs and incomparable pairs.

We present here results for the ordinal comparison
task. A comparison with instrumental measurements is
done on five independent sequences issued from the
TENEBRE webcam network (Météo-France). We also
discuss the use of the incomparability relations during
the training.

In the section 2, we quickly present the related
works. Section 3 is devoted to the collection of
the webcam sequences and our labeling process is
explained in section 4. The learning framework and
the first results are presented in section 5.

II. RELATED WORK
A. Estimation of meteorological visibility

Image-based estimation of meteorological visibility
appeared twenty years ago. Early works shown that
fixed camera with controlled settings were usable to
derive a visibility index [3], [4]. In the most part
of subsequent studies, the train and test images are
coming from the same device [20], [9], (7], [10I],
(110, [210, [8]. Visibility estimations have first been
obtained thanks to specific descriptors, as strength
of detected contours [22]], color distribution or
gradients, [2] ; these descriptors often being motivated
by a physical model [4], [24]. Progressively, estimation
methods have been based on generic Machine learning
algorithms as support vector machine (SVM) [9], [10],

[11] and Convolutional Neural Networks (CNN) [12],

Manual estimation of absolute visiblity has been
practiced in [9] (HDR data set). The authors use their
knowledge of the scene to manually classify meteoro-
logical visibility into bins of variable sizes. They point
out frequent discrepancies between the instrumentally-
derived visibility and the manually derived visibility. In
our test set, similar discrepancies have been observed
but the global concordance was good (see section 4).

B. Relative estimation

Parikh et al. [23] develop the idea that some
attributes are incompatible with a handcrafted
categorical classification but could give rise to ordinal
comparisons. They propose to learn these “Relative
Attributes” in a standard learning to rank framework
[26]. Zoran et al. [27] used ordinal relationships
between superpixels to predict depth and intrinsic
image decomposition. They show that a learning task
based on manually labeled comparisons conducts
to competitive results for these both middle-vision
tasks. Their framework contains two main steps. They
first train a deep classifier to predict an intra-image
set of ordinal relations. For a new image, predicted
orders between pixels are then translated into a set of
weighted quadratic and linear constraints, the solving of
which form the second step. Conversely to this previous
works, the present one is focused on a comparison task.
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Ordinal labeling as a basis for weakly-supervised
learning has also been used for visibility estimation
[L6]. In this study, ordinal labels are used in the same
learning to rank framework as Parikh et al. A modular
model is trained to yield an index value for each image
of the ordered pairs. The objective function, built on
hinge losses penalizes miss-ordered output values.
Conversely, the images of our training pairs are stacked
before the forward phase (“6-channels” inputs). A
CNN is then trained to predict a partial order, as in
[27]. In accordance to other studies [28|], we indeed
suppose that prediction from stacked images will be
easier because the model has not to build its own
absolute scale of visibility.

A last difference holds in our training pairs, which
always contain two images of the same scene.

In the works of Zoran et al. [27] and You et al. [[16],
relation of incomparability are supposed to be caused
by the proximity of the underlying targets. Hence, if
the predictions made for instances of the incomparable
pairs widely differ, the model is penalized (or bad-
scored, in [16]). But in our data set, incomparable
pairs could be associated with distant visibility values.
Indeed, incomparability is mostly due to corrupted
images or dramatic changes in the lighting. From a
more theoretical point of view, Cheng et al. observed
that dealing with “true partial order” may call for
different learning algorithms [29]]. In this preliminary
work, we simply took incompability as a third class to
predict.

III. COLLECTION OF WEBCAM SEQUENCES

To build our training and validation data sets, two

sources of webcam sequences have been used. The
AMOS [[17] archives was the main source. These
archives are divided into directories. Each directory
contains day and night time images of one webam
archive. The figure 1.a gives examples of five AMOS
scenes.
We first have selected 500 road webcam. Mountain
scenes were avoided because, on these pictures, the
the variations of the cloud ceiling hinders the manual
estimation of visibility. On that first corpus, the median
period of the sampling is 10 minutes and the complete
sequences generally span over several years. But they
contain only few events of low-visibility.

Meteorological data helped us to define extraction
windows. From the ERA-5 reanalysis [30] we

AMOS webcam n° 2015
month : :01/2017

01/01/2017 31/01/2017
¥ | | 1L
[— —
r T}

prmmmm snow height > 0 (ERAS5)
== RR >0 (ERA5)
pu{ oxtraction window

Fig. 2. Definition of the extraction windows around snowfall events.

downloaded gridded data centered on the locations
of the AMOS webcams. We used the snowfall rate
and the snow height parameters. Indeed snowfalls are
known to strongly affect the meteorological visibility
[18]. These data were reduced to scalar series and
thresholded to define periods of non-zero snow height
(red intervals of figure 2) and periods of non-zero
snowfall rates (blue intervals). Our extraction windows
has been taken around the periods of snowfall that
initiate snow covers (green intervals). Margins of 18
hours were applied to also sample images with greater
visibility.

After that, in each sequence, about 50% of the
images were rejected to avoid a strong redundancy.
The properties of our final training and validation data
sets are summarized in the table 1.

Our test sets are made with the archives of
TENEBRE network (Météo-France). This archives
span over 9 months of winter ( 2011-2012, 2012-2013
and 2017-2018) with a sampling period of 10 minutes.
The webcams of this network are hosted in weather
stations and colocalized with DF320 visibilimeters
(Degreane-Horizon). In this work, we only use five
TENEBRE webcams (see figure 1.b.). To compute the
scores of the section 5, we sampled 5000 day time
images per webcam to form the TENEBRE(q data set.
All the images with the lowest visibility (< 1000m)
were kept, as well as the images associated with
precipitation events and those with settling snow. On
the five scenes, the only one that clearly matches with
the training domain is the second one. The other are
atypical: there is no road (scenes 1 and 3), or the tilt
is anormal (scenes 4 and 5). Scene 4 is particularly
challenging because there is no background.
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Type of scene highway field road city street other
63% 18% 15% 4%
Type of weather no precipitations precipitations doubt thick fog
15% 60% 25% 1%
Corrupted images | droplets on the lens | snowflake on the lens filth other
12% 6% 2% 2%
nb of sequences | nb of images | day time images | edges of dg | edges of ug
Training set 360 15,727 9,850 165 ,400 21,700
Validation set 66 2,234 1,435 5,600 2,300
TABLE I

DESCRIPTION OF AMOSVV. PERCENTAGES OF THE FIRST TABLE ARE PROPORTIONS AMONG THE 15.727 IMAGES OF THE TRAINING
SET. THE SECOND TABLE GIVES THE RESPECTIVE SIZES OF THE TRAINING AND VALIDATION DATA SETS. dg END ug ARE DEFINED IN
SECTION 4.

IV. LABELS

Our labeling process counts two steps. During the

first step (1), the images of each sequence are shuffled
in the chronological order. The annotator is invited
to give two kinds of labels : a weather class and an
ordinal label that is relative to the current image and
the preceding one. During the second step (2), we
extend the ordinal labeling to non-consecutive images
following a merge sort algorithm. These two steps are
detailed further.
For each sequence i, these steps allow two build a pair
of graphs (dg;,ug;) that will be subsequently used
during the training. Both graphs share the same nodes.
These nodes are the images of the i-th sequence. dg;
is a directed graph and its edges represent all the
strictly ordered pairs. ug; is the undirected graph of
incomparable pairs. Ideally, at the end of the labeling
process, ug; is the complement of the transitive closure
of dg;. Examples of such graphs are given on the
figure 3.

A. First labeling step

The annotator sees the image sequences in the
chronological order. For each image, he first decides
if there are “precipitations” (fog included), “no pre-
cipitations”, or he may abstain. But in some ex-
ceptional cases, images of the “precipitations” class
present a lower visibility when compared with any non-
precipitation case. This observation allows us to fill the
dg; graph with n/? x n;"P new edges, where n;? (resp.
n;") is the number of images with precipitation (resp.
without precipitation) in the ¢ — th sequence.

He then decides if the current image shows a lower, a
higher, an “equal” or an incomparable visibility, with
respect to the preceding image. The “equal” images
are considered as a specific case of incomparability.

The equal pairs hence lead to new edges in ug;. But
each new “equality” will also expand an equivalence
relation (~;) between the images that will allow to
propagate edges of dg; and ug;. Formally, we applied
the following rule after each new annotation:
if 2% ~; ! is an “equality” between the k — th and
I —th images of the sequence ¢ then complete dg; and
ug; so that for any other image x of the same sequence,
one have:

(z%,2) € Eyy, & (2',2) € Ey,
and (z,2%) € By, & (z,2') € By
and (z%,2) € By, < (2!,7) € Eyy
where Eg,, (resp. I,4,) stands for the set of the edges
of dg; (resp. ug;).

B. Second labeling step

At the end of that first step, the following observa-
tions were made :

e new intra-sequence comparisons would improve
the graph connectivity. For each new handcrafted
label, transitivity closure and “equalities” will add
numerous automatic labels.

e On consecutive images, incomparability was rel-
atively rare, whereas they carry interesting infor-
mation on incertitude about the ground truth. More
incomparability labels were expected between non-
consecutive images.

This is why the labeling process has been completed
by the ordering of non-consecutive images. This or-
dering follows the Poset-Mergesort algorithm of [19].
This algorithm generalizes the well known mergesort
algorithm to partially ordered sets (posets). It efficiently
builds a partial order from pairwise comparisons. The
initial set of available comparisons corresponds to the
edges of ug; and those of the transitive closure of dg;
taken at the end of the first step.



LEARNING TO COMPARE VISIBILITY ON WEBCAM IMAGE DATA. ..

node
— edge of dg,
——— edge of ug,
== “equality”

Fig. 3. Examples of manually-derived ordinal relations in the sequence i = 432 (AMOS webcam 20301).

When a comparison is not available, the human anno-
tator takes over, and the graphs are updated.

To take the “equality” relation into account, the
algorithm works on the quotient set:

X;/~;, where X; represents the set of images
in sequence i. This version of the Poset-Mergesort
algorithm will be available on github ﬂ

In practice, the posets were built by labeling between
5 % and 10 % of all the n;(n; + 1)/2 pairs of each
sequence. At the time of writing, this algorithm has
been carried on a maximum of 40 day time image
per sequence and 50% of the sequences have been
fully labeled. After a restriction to subsets of daily
images, the disjoint union dg (resp. ug) of all the
dg; (resp. ug;) counts 171.000 edges and (resp. 23.000).

C. Comparison with the intrumentally-derived labels

This labeling method has been assessed on subsets
of the TENEBRE(q sequences. For each sequence, 100
day time images with various visibilities have been
sampled and manually labeled. These five subsets will
be referred to as the TENEBREp data set. We compare
the posets obtained on the TENEBREp sequences with
the total order induced by visibility measurements
(figure 4).

Uhttps://github.com/Latmos
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Fig. 4. Distribution of the visibility in the TENEBREp sequences.
Concordance ratios between manually-derived partial orders and to-
tal orders induced by instrumentally-derived visibility. Concordance
ratios and relative differences of visibility are defined in the text.

The first histogram of the figure 4 shows the
distributions of the visibility among the handcrafted
subsets of TENEBREp. The global concordance ratio
of the poset graph dg is defined by: |C|/|Eq4,y|. where
C = { (Z,j) S Edg s.t. (’l)i — ’Uj) >0 }, v; and v; are
the instrumentally-derived visibilities corresponding
to the images ¢ and j, Eg4, stands for the set of the
edges of dg and | .| for the cardinality. For the five
TENEBREp sequences, the global concordance ratios
range from 85% to 97%. But when the computation
of the concordance rate is limited to image pairs
of similar visibility, i.e. when the relative difference
defined by |x;—xj|/mean(z;, z;) is lower than 0.2, the
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concordance ratio drops (see the scatter plot of figure
4). In section 5, these pairs are not used.

V. EXPERIMENT

We trained standard deep neural networks on the
ordering task. The training parameters are given in
table 2. To know if taking incomparable pairs into
account could be beneficial, two standard CNN have
been trained from scratch. The first one, termed the
3-classes model, is trained to predict the two strict
orders (> and <) as well as incomparability relations.
The inputs are formed by stacking the vertices of the
edges of dg and ug. The 2-classes model only targets
the strict orders. It is trained over the edges of dg.

To cope with the unbalanced size of the training
sequences, the edges of the i —th sequence are selected
with a probability of 1/n;. In the 3-classes setting, the
edges of dg are selected with a frequency of 2/3 when
edges of ug with a probability of 1/3.

The results on TENEBREq are given in table 3.
Accuracies are computed on all the couples of images
with a relative difference of visibility bigger than 0.2.
Accuracy on strict ordered pairs (ASO) is computed
on the couples of image that are not predicted as
incomparable by the 3-classes model, that represent
between 65 % and 90 % of the couples. Conversely,
accuracy on incomparable pairs (Al) is computed for
the 2-classes model prediction on pairs predicted as
incomparable by the 3-classes model. Al is much
lower than ASOs. It suggests that the learning of
incomparability and equivalence as a third class is
beneficial. It allows to restrict the strict ordering of
visibility to a subset over wich the accuracy is largely
better. We also observed that predicted incomparable
pairs generally contain noisy images. For example,
among the 20 images of the sequence 2 of TENEBRE(q
that are the most involved in predicted incomparability,
one half contains images with droplets on the lens,
the other half gathers night time images which were
miss-labeled as day time images.

As most of the previous methods were set for
intra-scene prediction of a quantitative visibility,
comparison is hard to make. It is yet possible to
compute a Critical Success Index (CSI) a panel of
detection tasks. We take standard thresholds (250 m,
500 m, 1000 m, 1600 m, 5000 m) for the operational
meteorology [22], [2]], [15]. To take a decision, we

gather “pivot” images with visibility lying in the
interval [0.9 x ¢, 1.1 x t] where ¢ is a given threshold.
A new image that would mostly be predicted as
strictly inferior to these pivot images is said inferior
to t. The resulting CSI are, for example, favorably
compared with these of [22] and [15] whereas, in
these study, the training and test are made on the
same set of webcams and no “pivot” images are needed.

Finally, we also indicate the scores obtained with
the 3-classes model on the restitution of partial order
of TENEBREp. We use metrics defined in [29] : the
correctness, which generalizes the correlation rank
of Kendall (Kendalls’tau), is defined by the ratio :
(IC-IDJ)/(|C| + |D|) where C' (resp. D) counts the
amount of concordant pairs (resp. discordant). The
completeness measures the excessive prediction of
incomparable pairs by (|C| + |D|)/|G| where |G|
counts all the ground truth ordered pairs. We also
compute ASO (which correspond to |C|/|G|).

VI. CONCLUSION

In this paper we presented the AMOSvv data set. It

contains more than 400 road-webcam sequences rich
in low-visibility events. The labeling process, inspired
from a merge sort algorithm, allowed an efficient hand-
crafted sort of the images with respect to their apparent
visibility. A simple learning to order framework has
been experimented. Tests are made on indepandant
webcams that are colocalized with weather sensors.
Critical success indices for important detection tasks
are promising. Taking into account the abstention cases
gave also interesting results.
This preliminary study is to be pursued in several ways.
First, night image (one half of the images) will be
taken into account in an unified learning framework,
following [9]]. Snow cover extent and thickness will also
be labeled. The dense labeling of the three parameters
will allow a multi-task approach. We also will compare
our method with existing ones in a near future.
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