
HAL Id: hal-02926361
https://hal.science/hal-02926361

Submitted on 31 Aug 2020

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Green polymeric nanomaterials for the photocatalytic
degradation of dyes: a review

Shrabana Sarkar, Nidia Torres Ponce, Aparna Banerjee, Rajib Bandopadhyay,
Saravanan Rajendran, Eric Lichtfouse

To cite this version:
Shrabana Sarkar, Nidia Torres Ponce, Aparna Banerjee, Rajib Bandopadhyay, Saravanan Rajendran,
et al.. Green polymeric nanomaterials for the photocatalytic degradation of dyes: a review. Environ-
mental Chemistry Letters, 2020, 18 (5), pp.1569-1580. �10.1007/s10311-020-01021-w�. �hal-02926361�

https://hal.science/hal-02926361
https://hal.archives-ouvertes.fr


Environmental Chemistry Letters (2020) 18:1569–1580 
https://doi.org/10.1007/s10311-020-01021-w

Green polymeric nanomaterials for the photocatalytic degradation 
of dyes: a review

Shrabana Sarkar1 · Nidia Torres Ponce2 · Aparna Banerjee3  · Rajib Bandopadhyay1  · Saravanan Rajendran4  · 
Eric Lichtfouse5 

Abstract
Pure and drinkable water will be rarer and more expensive as the result of pollution induced by industrialisation, urbanisa-
tion and population growth. Among the numerous sources of water pollution, the textile industry has become a major issue 
because effluents containing dyes are often released in natural water bodies. For instance, about two years are needed to 
biodegrade dye-derived, carcinogenic aromatic amines, in sediments. Classical remediation methods based upon physico-
chemical reactions are costly and still generate sludges that contain amine residues. Nonetheless, recent research shows that 
nanomaterials containing biopolymers are promising to degrade organic pollutants by photocatalysis. Here, we review the 
synthesis and applications of biopolymeric nanomaterials for photocatalytic degradation of azo dyes. We focus on conducting 
biopolymers incorporating metal, metal oxide, metal/metal oxide and metal sulphide for improved biodegradation. Biopoly-
mers can be obtained from microorganisms, plants and animals. Unlike fossil-fuel-derived polymers, biopolymers are carbon 
neutral and thus sustainable in the context of global warming. Biopolymers are often biodegradable and biocompatible.
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Introduction

According to the latest report of World Health Organization 
(WHO), approximately 844 million people worldwide lack 
the access to basic drinkable water (Wutich et al. 2019). 
Waterborne pathogens in the form of disease-causing bac-
teria, virus or protozoa spread many diseases including 
cholera, typhoid, hepatitis, giardia and COVID-19 (Sharma 
et al. 2020). Unsafe water causes epidemics in developing 
countries due to improper management of water pollution 
(Alhamlan et al. 2015). Organic pollutants in wastewater 
are potentially harmful for all living organisms. Regular 
consumption of untreated or poorly treated waters induces 
carcinogenesis or prolonged illness in humans and other 
animals (Sarkar et al. 2017). As a consequence, wastewa-
ter remediation and water recirculation are now the major 
research focus (Wen et al. 2019; Karimi-Maleh et al. 2020a). 
Particularly, the regulation of water contamination and recy-
cling the wastewater should be improved in drought-affected 
countries (Gholami et al. 2019).

The negative health effects of water pollution are a major 
source of mortality worldwide (Wang and Yang 2016; Sarkar 
et al. 2017). In particular, water pollution has historically 
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impacted food safety (Lu et al. 2015). The textile industry 
represents a threat when dye effluents are released into water 
bodies. Textile wastewater contains various contaminants 
such as synthetic azo dyes. Therefore, environmental legis-
lation commonly obligates textile factories to treat effluents 
before discharge (Yaseen and Scholz 2019). Dye effluents 
are high in colour, pH, suspended solids (SS), chemical oxy-
gen demand (COD), biochemical oxygen demand (BOD) 
(Yaseen and Scholz 2016), metals (Sharma et al. 2007; 
Sekomo et al. 2012), temperature (Dos Santos et al. 2007; 
Shah et al. 2013) and salts (Yaseen and Scholz 2019). Syn-
thetic textile dyes are often recalcitrant and carcinogenic 
by nature due to the presence of –N=N– bond (Singh et al. 
2015). Those dyes mainly consist of complex aromatic struc-
tures that are hardly biodegradable.

Wastewater treatment involves a step of physicochemical 
fractionation, which separates hydrophilic and hydropho-
bic matter (Kim and Yu 2005). Techniques and adsorbents 
used for wastewater treatments have been recently compared 
(Crini and Lichtfouse 2019; Crini et al. 2019a). Methods for 
the treatment of dye-contaminated waters include reverse 
osmosis, coagulation, flocculation, ion exchange, activated 
carbon adsorption, advanced oxidation, ozonation, pho-
tocatalysis, Fenton process, photo-Fenton, electrochemi-
cal oxidation (Lade et al. 2015) and filtration (Singh et al. 
2015). These processes are often expensive and generate 
amine residues found in sludges after treatment. Alterna-
tively, semiconductors such as titanium dioxide and zinc 
oxide have shown excellent photocatalytic activity due to 
a positive band position that develops more electrons and 
holes under UV light (Fujishima and Honda 1972; Mclaren 
et al. 2009; Xu et al. 2019). Recently, the photocatalytic 
capacity has been improved by modifying material surfaces 
using metal doped , non-metal doped  and coupled systems 
(Gnanasekaran et al. 2017, 2018; Sulaiman et al. 2018; Kuo 
et al. 2019). Composite or coupled systems are now used 
for solar cells, opto-electronics, bio-electrochemical sen-
sors, electro-oxidation and disinfection (Li et al. 2011; Devi 
and Kavitha 2013; Rokhmat et al. 2017; Karimi-Maleh et al. 
2019; Karimi-Maleh and Arotiba 2020; Karimi-Maleh et al. 
2020b, c). Here, we review green polymeric nanomaterials 
for photocatalytic dye degradation with special emphasis 
on recent developments, biopolymers and applications in 
wastewater remediation.

Synthesis of biopolymeric nanomaterials

Conventional methods to synthesise polymeric nanomaterial 
employ chemical compounds that may cause environmental 
toxicity later due to their long-term stability. By contrast, 
biopolymers are usually composed of safe monomers and 
are carbon neutral for the climate. Biopolymers facilitate the 

synthesis of nanomaterials because biomass morphology is 
often structured at the nanolevel. Biopolymers are found in 
various organisms such as plants, algae, fungi, bacteria and 
animals. Macromolecules include starch, alginate, chitosan, 
dextran and chitin (Fig. 1). Chitosan, starch, dextran and cel-
lulose are polysaccharides derived from plants and microbial 
biofilms, and these biopolymers are common for nanomate-
rial synthesis (Banerjee and Bandopadhyay 2016; Farshchi 
et al. 2019; Kolangare et al. 2019). In particular, chitosan has 
been used for dye removal and wastewater treatment (Crini 
et al. 2019b; Lichtfouse et al. 2019).

Biopolymers are unique in composition and have vari-
ous physiological properties. Biopolymeric nanomaterials 
can be formed by attachment of metals to biopolymers. In 
particular, biopolymers form molecular capsules by intra-
molecular hydrogen bonding. For example, starch may 
incorporate metals or metal oxide, thus forming polymeric 
nanocomposites. Chitosan is also used for nanotechnology-
related applications due to its wide compatibility (Vanaamu-
dan et al. 2018; Morin-Crini et al. 2019). Silver (Ag) can 
be incorporated within starch in a supramolecular way to 
form nanomaterials (Raveendran et al. 2003). Nanomateri-
als can be incorporated in biopolymers by both sorption and 
impregnation (Shankar and Rhim 2018). Polymeric nano-
materials are solid colloidal particles within the size range 
of 10 nm–1 µm.

Physical properties of nanomaterials can be drastically 
different from the corresponding macro-sized, bulk material 
because nanomaterials have much higher surface area and 
reactivity (Sreedharan and Rao 2019). Either nanospheres 
or nanocapsules can be prepared, depending on the prepara-
tion method (Sharma 2019). Biopolymeric nanomaterials are 
characterised by microscopy, spectroscopy and other tech-
niques (Fig. 2). A list of green polymeric nanomaterials used 
for textile dye degradation is presented in Table 1.

Photocatalytic degradation of dyes 
by biopolymeric nanomaterials

Biopolymers such chitosan act as support material of metal-
lic photocatalysts. Owing to strong adsorption and high 
surface area, chitosan reduces the amount of intermediates 
during photocatalytic reactions. In addition, chitosan allows 
quick and trouble-free recovery of the photocatalyst, which 
can be recycled with or without any regeneration (Adnan 
et al. 2020). Photocatalysis is different versus general cataly-
sis in a way that during photocatalysis photons induce catal-
ysis at the time of reaction (Bahal et al. 2019). In the pres-
ence of photon (λ), oxygen acts as an electron acceptor and 
electrons are generated photocatalytically by the breakage 
of complex dyes (Yang et al. 2005). In response to visible 
light, polymeric nanomaterials have been shown to degrade 



dye-containing wastewater photocatalytically within very 
short period (Bahal et al. 2019), which is both eco-friendly 
and inexpensive.

The concept of using  TiO2 nanoparticles for photocata-
lytic dye degradation was developed several decades ago 
(Fujishima and Honda 1972). Green-synthesised silver nano-
materials have also been used as photocatalysts to treat dyes 

and other organic chemicals (Sharma et al. 2009). At that 
time, nanotechnology was not popular for wastewater reme-
diation, but now it is due to evidence of high performances 
(Durgalakshmi et al. 2019).

Electron affinity is a major parameter for photocatalytic 
degradation of reactive textile dyes (Saravanan et al. 2013) 
as the ionic nature or the presence of lone pair electrons in 

Fig. 1  Different sources of biopolymers and their usage in the synthesis of green polymeric nanomaterials.  M+: metal ions



the polymeric chain backbone acts as chelating agent to sta-
bilise the synthesised nanoparticles (Ng et al. 2013). Addi-
tionally, polymeric membrane-incorporated metal nanoma-
terials have increased hydrophilicity, selectivity, strength 
and stability at high temperature, up to 200 °C (Ng et al. 
2013). Metal oxide nanomaterials incorporating gallic acid 
are also used in photocatalytic degradation of reactive azo 
dyes (Sreedharan and Rao 2019).

Metal‑incorporated biopolymeric nanomaterials

The synthesis of metal-incorporated biopolymeric nanoma-
terials is outlined in Fig. 3. Metal-incorporated nanomateri-
als display high efficacy for the photocatalytic degradation of 
azo dyes. This can be attributed to their pore size, chemistry 
of surface plane and ideal mechanical rigidity (Opoku et al. 
2017). The basics of photocatalytic degradation involve an 
electron transfer process coupled with a redox reaction. If 
the semi-conductivity is modified with metal-incorporated 
nanoparticles, then the system endorses the charge transport 
at interface and, in turn, decreases the oxidation of the metal 
(Subramanian et al. 2001). This process increases the life-
time of electron followed by the augmentation of the reactiv-
ity. Surface plasmon resonance (SPR) increases the co-exist-
ence of electrons due to the small particle size (Sankar et al. 

2015). Polymeric nanomaterials with metal incorporation 
act as a stabilizer for itself. Metal nanoparticles incorporated 
with polymeric materials such as resin have found industrial 
applications as reaction catalysts (Kralik and Biffis 2001).

Metal nanoparticles can also be grafted on different poly-
meric materials, which increases compactness and stability 
(Tamayo et al. 2019) and provides a different functionality 
than that of the metal monomeric nanomaterials (Van Berkel 
and Hawker 2010). Usually, metal nanoparticles vary in size, 
whereas incorporation of polymer makes nanoparticle sizes 
more homogeneous and renders the material more stable. 
This has been shown during the integration of bacterial cel-
lulose fibres with gold nanoparticles (AuNP).

Gold nanoparticles, of 74.32 nm, incorporated in bio-
materials from fresh fruiting bodies of the Enoki mush-
room degrade nearly 75% of the methylene blue dye in 4 h 
(Rabeea et al. 2020). Due to their wide substrate specificity, 
Au nanoparticles are able to treat diverse types of organic 
dyes (Tamayo et al. 2019). For lanthanum (La), the f-orbital 
electron of metal ions interacts with different functional 
groups of different biopolymers and forms complexes with 
greater surface areas. Lanthanum incorporation in biopoly-
mers results in photocatalytic activity with better adsorp-
tion capacity, specifically for organic compounds such as 
azo dyes (Sirajudheen and Meenakshi 2019). A composite 

Fig. 2  Properties and analysis of biopolymeric nanomaterials



Table 1  Biopolymeric nanomaterials used for the degradation of textile dyes degradation

Type of nanomaterial Catalyst Biopolymer Degradation of dyes References

Metal Silver (Ag) κ-Carrageenan gum Mineralisation and catalytic 
degradation of industrially 
significant organic dyes such 
as methylene blue and rhoda-
mine B

Pandey et al. (2020)

Palladium (Pd) Chitosan c-Nanotube supported Congo red, methylene blue, 
methyl orange, methyl red

Sargin et al. (2020)

Chitosan/Fe Chitosan Basic dye Kasiri (2019)
Au Alginate beads Discoloration of azo dye acidic 

orange 7 and reactive orange 5
Ahmed (2019)

Lanthanum (La) Chitosan Photocatalytic degradation of 
azo dye (methylene blue)

Sirajudheen and Meenakshi 
(2019)

Gold (Au) Bacterial cellulosic fibre Azo dye degradation Tamayo et al. (2019), Vilela et al. 
(2018)

Cupper (Cu) Chitosan Congo red Ali et al. (2018)
Silver (Ag) Chitosan Ponceau BS dye Sultana et al. (2017)
Palladium (Pd) Carboxymethyl cellulose Degradation of azo dye Li et al. (2017a)
Zirconium (Zr) Gelatine Methylene blue and fast green Thakur et al. (2017)
Palladium (Pd) Glucuronoarabinogalactan 

polymer and gum olibanum 
(Boswellia serrata)

Coomassie brilliant blue G-250, 
rhodamine B, methylene blue 
and 4-nitrophenol

Kora and Rastogi (2016)

Cupper (Cu) Chitosan-coated cellulosic 
microfibres

Methyl orange and congo red Kamal et al. (2016)

Metal oxide ZnO Chitosan in the form of hydro-
gel beads

Methylene blue Taghizadeh et al. (2020)

ZnO Quince seed mucilage Photocatalytic degradation of 
methylene blue

Moghaddas et al. (2020)

Fe3O4 Chitosan Hazardous dye X-3B Adnan et al. (2020)
MnO2 Cellulose Indigo carmine dye solution Oliveira et al. (2020)
Alumina  (Al2O3) Chitosan sulfonated azo dye methyl 

orange
Kasiri (2019)

ZnO Chitosan Chromium complex dye, Direct 
Blue 78, Acid Black 26

Kasiri (2019)

ZnO Cellulose Dye-containing wastewater 
remediation

Bahal et al. (2019)

TiO2 Chitosan–acrylic acid biopoly-
mer

Malachite green Bahal et al. (2019)

ZnO Cellulose acetate polymeric 
sheet

Congo red, methyl orange, 
methylene blue

Khan et al. (2019)

TiO2 Bacterial cellulose Photocatalytic dye degradation Vilela et al. (2018)
TiO2 Cellulose by the fermentation 

of Komagataei bacterxylinus-
immobilized laccase

Reactive red X-3B Li et al. (2017b)

TiO2 Oak gall tannin Direct yellow 86 Binaeian et al. (2016)
TiO2 Chitosan Acid orange 7, acid red 18, C.I. 

acid blue 113, reactive yellow 
17, reactive black 5, direct 
blue 78

Škorić et al. (2016)

ZnO Conducting polyalanine poly-
mer

Methylene blue and malachite 
green

Riaz et al. (2015)

Metal sulphide ZnS Chitosan Photodegradation of organic 
dyes (methyl orange)

Das et al. (2017)

ZnS Chitosan Around 90% photodegradation 
of methylene blue under UV 
irradiation

Mansur and Mansur (2015)



of lanthanum (La) metal and chitosan has degraded 90% 
of methylene blue in 40 min (Sirajudheen and Meenakshi 
2019). Here, the chemical oxygen demand (COD) decreased 
nearly 8 times, indicating mineralisation of methylene blue.

Metal oxide‑incorporated biopolymeric 
nanomaterials

Synthesis of metal oxide-incorporated biopolymeric nano-
materials for photodegradation of dye is illustrated in Fig. 4. 

Nanomaterials made up of metal oxide and biopolymers 
have also extensive photocatalytic activity that can degrade 
complex chemical structure of azo dyes. Incorporation of 
biopolymer and metal oxide nanomaterials improves the 
physicochemical properties of the nanomaterials. Con-
versely, the presence of metal oxide within the biopolymeric 
structure enhances the properties of polymer too (Prasanna 
et al. 2019).

ZnO is one of the most efficient nanomaterials for photo-
catalytic dye degradation because of ZnO semi-conductivity, 

Table 1  (continued)

Type of nanomaterial Catalyst Biopolymer Degradation of dyes References

Others AgCl Chitosan in the form of hydro-
gel beads

Methylene blue Taghizadeh et al. (2020)

Fe3O4 Immobilised laccase from Bacil-
lus sp. MSK-01 conjugated 
with thiolated chitosan

Biocatalytic degradation of 
organic dyes (Reactive Blue 
171 and Acid Blue 74)

Ulu et al. (2020)

TiO2 Chitosan–epichlorohydrin Reactive Red 120 Jawad et al. (2020)
CuSO4 Chitosan-coated nanocomposite 

from Psidium guajava aque-
ous leaf extract

Congo red and methylene blue Sathiyavimal et al. (2020)

ZnO Arabic gum-grafted polyacryla-
mide hydrogel

Complete degradation of mala-
chite green

Mittal et al. (2020)

ZnO/CuO Cellulose nanocrystal from 
bleached bagasse pulp

Rose Bengal (RB) Elfeky et al. (2020)

Ag/TiO2 Carboxymethyl cellulase and 
gelatine

Organic dye pollutant Farshchi et al. (2019)

SiO2 Chitosan/carbon nanotubes Direct Blue 71, Reactive 
Blue 19

Kasiri (2019)

AgNO3 Chitosan and guar gum Binary dye Vanaamudan et al. (2018)
ZnS Chitosan Photocatalytic degradation of 

organic dye
Das et al. (2017)

AgNO3 Tangerine peel containing 
carbohydrate polymers

Catalytic reduction of methyl 
orange

Alzahrani (2015)

Pt-TiO2 Conjugated polymer Photocatalytic degradation of 
azo dye

Dong et al. (2015)

Fig. 3  Synthesis of metal-incorporated biopolymeric nanoparticles for photocatalytic dye degradation



stability and activity (Ravishankar et al. 2014). Starch-based 
ZnO nanomaterial has been reported for its improved con-
ductive and dielectric properties, compared to pure metal 
oxide nanoparticles (Ravishankar et al. 2014). Cellulose-
based ZnO nanomaterials display higher thermal stability 
than that of the pure metal oxide, and can be used for reme-
diation of dye-containing wastewater at large scale (Ravis-
hankar et al.2014; Azizi et al. 2013). A chitosan–acrylic acid 
biopolymer grafted with nano-TiO2 was reported to degrade 
more than 90% of malachite green present in wastewater 
under neutral pH, through a visible light-mediated photo-
catalytic way (Bahal et al. 2019).

Chitosan incorporating nano-iron oxide  (Fe3O4) has 
been used for purification of dye-containing wastewater 
(Prasanna et al. 2019; Ngah et al. 2011). Chitosan/nano-
Fe3O4 nanomaterial is also increasing frictions due to mag-
netic dipole–dipole interactions during the degradation of 
the hazardous X-3B dye (Adnan et al. 2020).  TiO2 is widely 
used for preparing biopolymeric nanomaterials due to  TiO2 
advantageous surface properties and photocatalysis under 
visible light (Bahal et al. 2019). Cyclodextrin, an oligo-
saccharide produced from enzymatic conversion of starch, 
has been used for wastewater treatment after modification 
with nano-TiO2 (Khaoulani et al. 2015). ZnO/carbon black 
grafted in cellulose acetate has been used to treat azo dyes 
such as congo red, methyl orange and methylene blue (Khan 
et al. 2019).

MnO2/cellulose nanoparticles of size lower than 100 nm 
degrade 90% indigo carmine within 25 min under ambi-
ent light and acidic pH (Oliveira et al. 2020). Here, the 
biopolymeric nanomaterials can be recovered from solu-
tion and recycled for at least 10 times without compromis-
ing the decolourisation efficiency. This provides evidence 
that in the presence of photons, metal oxide-incorporated 
biopolymeric nanomaterials degrade complex azo dyes 
within a very short time through an eco-friendly, recycla-
ble process. Few bio-sourced enzymes degrade reactive azo 
dyes. Laccase shows good potential for bioremediation of 

dye-containing wastewater (Wang et al. 2013; Sarkar et al. 
2020). Nano-Fe3O4/SiO2 supported with immobilized lac-
case has achieved nearly complete degradation of the azo 
dye procion Red MX-5B within 20 min (Wang et al. 2013).

Metal sulphide‑incorporated biopolymeric 
nanomaterials

Synthesis of metal sulphide-incorporated biopolymeric 
nanoparticles is depicted in Fig. 5. The biopolymer helps 
to crystallize ZnS nanoparticles (Tiwari and Dhoble 2016). 
ZnS-incorporated chitosan nanomaterials of 4 nm size dis-
play a photocatalytic activity and are used in photodegrada-
tion of organic dyes in wastewater (Das et al. 2017). Cad-
mium (Cd) and lead (Pb) are also used for the formation 
of metal sulphide nanomaterials. For instance, Klebsiella 
pneumonia has the ability to synthesise electron-dense nano-
CdS materials on its cell membrane, which can induce pho-
toreduction of methyl orange by subsequent electron transfer 
(Das et al. 2017).

Nano-chitosan has been used to remove hazardous dyes 
(Mansur and Mansur 2015). Chitosan-based quantum dots, 
a nano-photocatalyst and ZnS are able to remove methyl-
ene blue (Mansur and Mansur 2015). Here, ZnS acts as a 
semiconductor and thus enhances the removal. This ZnS/
chitosan-based nanomaterial of nearly 3.5 nm size induces 
90% photodegradation of methylene blue by oxidation under 
UV irradiation within 90 min.

Other biopolymeric nanomaterials

Metal/metal oxide nanoparticles are of special interest 
because the metal centre of the metal–metal oxide nanoma-
terial increases the semi-conductivity and rate of separation 
of electron holes, which in turn increases the photon irradia-
tion, followed by escalation of the photocatalytic activity 
(Malagutti et al. 2009). For example, 0.25% Ag–TiO2 thin 
film incorporation in a resin biopolymer drastically increases 

Fig. 4  Synthesis of metal oxide-
incorporated biopolymeric 
nanoparticles for the photodeg-
radation of dyes



the photocatalytic activity of rhodamine B, compared to 
sole  TiO2, as a result of reduced electron hole recombina-
tion (Malagutti et al. 2009).  TiO2/Ag hybrid, modified by 
the incorporation of carboxymethyl cellulase and gelatine of 
50–100 nm size, has shown improved photocatalytic activity 
towards benzene and  NH3 present in the chemical structure 
of organic pollutants (Farshchi et al. 2019).

Various other chemicals are integrated with diverse 
polymers for the synthesis of photocatalytic nanomateri-
als. Several coupled systems expand the photocatalytic 
performances, such as metal-incorporated metal oxide and 
dual metal oxide systems (Gnanasekaran et al. 2017, 2018; 
Sulaiman et al. 2018; Kuo et al. 2019). These systems have 
two different band positions under sunlight or UV light 
exposure, which avoids electrons–holes recombination, and 
thus improves the photocatalytic activity (Gnanasekaran 
et al. 2017, 2018; Sulaiman et al. 2018; Kuo et al. 2019).

Unique properties of nanocomposites have created 
a revolution in the field of bioremediation (Mohanraj 
et al. 2020). Recently, several research groups have tried 
diverse biopolymeric nanocomposites such as metal/metal 
oxide/biopolymer or metal oxide/conducting polymer for 
improved degradation of synthetic azo dyes. One example 

of biopolymer/metal oxide nanocomposite is chitosan/
ZnO/AgCl nanocomposite based on hydrogel beads, which 
permits complete photocatalytic degradation of methylene 
blue (Taghizadeh et al. 2020). The presence of chitosan 
in nanocomposites or other biopolymeric nanomateri-
als significantly increases the degradation activity, as a 
consequence of hydrophilic adsorption of organic pollut-
ants (Adnan et al. 2020). Furthermore, chitosan-coated 
 CuSO4 nanocomposite, synthesised from Psidium guajava 
aqueous leaf extract, induced more than 90% oxidative 
photodegradation of congo red and methylene blue within 
150 min (Sathiyavimal et al. 2020). Here, electrons are 
generated from the valance bond due to the presence of 
sunlight.

Cellulose nanocrystals have been prepared from bleached 
bagasse pulp and reacted with ZnO/CuO to synthesise 
biopolymeric dual metal oxide nanocomposites, which 
can degrade rose bengal more than 99% in 40 min (Elfeky 
et al. 2020). Immobilised dye-degrading enzyme laccase 
conjugated with thiolated chitosan–Fe3O4 hybrid has been 
reported to have magnetic properties, and it can remove 
more than 80% of reactive blue 171 and acid blue 74 within 
short periods of time (Ulu et al. 2020).

Fig. 5  Rationale behind the synthesis of metal sulphide-incorporated biopolymeric nanoparticles as photocatalysts for dye degradation. BP: 
biopolymer, MS: metal sulphide



Conclusion

The long-term fate of textile dyes in river and sea sediments 
is not clear. A recent report suggests that aromatic amines 
could be naturally degraded in more than 2 years by the sedi-
ment bacterial community (Ito et al. 2016). Yet this process 
is slow and most probably never complete in natural anaero-
bic environments. Therefore, wastewater should be treated to 
remove all pollutants before discharge of residual waters in 
rivers. Here, promising techniques should be based on bio-
sourced tools such as microorganisms and dye-degrading 
enzymes, e.g. laccase, azoreductase or peroxidase (Sarkar 
et al. 2020). The current success of photocatalytic dye deg-
radation using biopolymers is attributed to the green process, 
uniform deposition of the nanoparticles, less cytotoxicity 
and recyclable nature.
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