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SUMMARY

The problem of 3-D inverse modelling in Direct Current (DC) surveys is addressed
in this paper. First, forward modelling of the response of 3-D bodies in DC surveys
is carried out by the moment method. It consists of dividing a volume into N small
cells, equivalent to 3N dipoles. The numerical code is checked against published
results obtained through algorithms that use either equivalent surface charge
densities or a finite-difference approach. Good agreement is found between these
methods and a maximum discrepancy of 3 per cent is computed on a widely
published test model.

Secondly, inverse modelling is carried out by a classical least-squares (LS) scheme
that includes the Levenberg—Marquardt constraints formalism. We have tested two
approximations: Born, and localized non-linear (LN). The difference between
resistivities calculated with and without these approximations is found to be too
large for inverse modelling, especially in the case of conductive bodies. We use
this inversion scheme for different theoretical 3-D models that consist of two layers
(34 cells) under an overburden. It is found, in the case of a vertical contrast, that,
when a resistive feature overlays a conductive one, resistivities are resolved very
accurately, with a low number of iterations and with a better accuracy than in the
case where the conductive feature overlays the resistive one. Despite a slower
convergence rate, in the case of both vertical and lateral constrasts, the shape of the
body is well resolved, even if a slight discrepancy in the absolute values is noticed,
especially for conductive cells. Finally, the stability of the inversion is tested with
noisy data.

Key words: 3-D electrical methods, 3-D inversion, least squares, moment method,
surface integrals.

INTRODUCTION

The importance of subsurface surveying, which tries to
image the first 10 m below the ground surface, is growing as
a result of an increasing demand both in well-known fields
such as civil engineering, pedology and archaeological
surveying (Hesse, Jolivet & Tabbagh 1986) and in
environmental geophysics. In these areas, electrical methods
play an important part, since electrical resistivity in the
ground (p) is a parameter that is easily measureable and
mostly dependent upon parameters such as moisture content
or texture. The variety of electrical and electromagnetic
techniques that can be used for the measurement of p is
broad: most of them can yield measurements while the
instrument is moving, and at a low cost. Among these, DC
electrical surveying, where a current is injected by means of

electrodes in the ground and a voltage is measured with the
other two electrodes, plays an important role, despite the
problem of driving current into the soil when high contact
resistances are encountered. This method is insensitive to
the most significant problems such as natural currents or the
presence of metallic objects in the vicinity of the
measurement device.

The development of new technologies for rapid sampling
of several channels (scanning) or multiplexing (Noel & Xu
1991; Griffiths & Turnbull 1985; Griffiths & Barker 1993; Li
& Oldenburg 1992) enables quasi-simultaneous sounding
(vertical variation of p) and profiling (lateral variations of p)
over a short period of time. This results in a ‘3-D
measurement’ which can be used as such without loosing
any part of the monitored information (Alfano 1993).

The aim of this paper is to present a 3-D inversion process
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for electrical data coming from a network of electrodes. The
data are resistivities acquired with different shapes and sizes
of quadripoles derived from the network. Subsurface
problems are generally 3-D, since the current sources are
points and it is not, unfortunately, possible to lower the
number of dimensions of this problem. The theoretical basis
of the 3-D inverse problem is well known, but very few
examples using 3-D inversion can be found in the literature.
Most of them rely on approximate methods (Park & Van
1991; Shima 1992; Petrick, Sill & Ward 1981; Li &
Oldenburg 1992).

Only 2-D inversion procedures have been published
(Weidelt 1975; Tripp, Mohmann & Swift 1984; Smith &
Vozoff 1984; Pelton, Rijo & Swift 1978; Sasaki 1989; Shima
1990; Barker 1992).

We show, in order, the forward problem, the approxima-
tions that can be used, the general 3-D inversion scheme
that we have developed, and an example of synthetic data
inversion with and without noise. Part II of this paper will
deal with the problem of choosing the best electrode
configurations and the inversion of field-derived data.

3-D FORWARD MODELLING

The most widely used method in 3-D modelling was
developed by Alfano (1959): the electrical field, originating
from a volume that is delimited by a closed boundary
surface S and whose electrical resistivity is different from its
surroundings, is approximated by a distribution of fictitious
electrical charges at its boundary S. Application of the two
boundary conditions, the continuity of normal components
of the current density (j) and the discontinuity of the normal
component of electrical fields, yields an integral equation
whose solution is the distribution of the charges. This
equation is solved by delimiting the surface in N small plane
surface elements, where the charge density is constant. The
integral equation is then discretized in a linear system of n
equations with N unknowns (if continuous functions are
used, the solution becomes a Fredholm integral equation;
see Okabe 1981). It is interesting to note that the 3-D
problem reduces to the computation of a 2-D function. A
full parametrization has been developed by Dieter, Paterson
& Grant (1969) and has since been widely used for electrical
or IP modelling (Barnett 1972; Spahos 1979).

This method, which belongs to the general class of
boundary-value problems, can be specifically used for
problems where a small number of isolated bodies are
encountered in a uniform or tabular medium. For more
complex bodies, where, for example, resistivity could change
continuously, some theoretical problems have to be faced
(Keller & Frischknecht 1966; Lee 1975), and more
unknowns have to be solved for.

We have discarded this method for a general inversion
scheme, both because this method cannot deal with bodies
in which resistivities are not piecewise constant, and because
surface charges are used instead of direct resistivities (even
if the discontinuity of normal electric fields yields a direct
relationship between surface charge and the contrast of
resistivity). :

We have not used either the finite-difference (Mufti 1978;
Dey & Morrison 1979; Scriba 1981) or finite-elements
methods (Pridmore et al. 1981) because in three dimensions

they lead to systems that are much too time-consuming,
even if complicated arbitrary distributions of restistivity
could be modelled by these methods.

We prefer to use another approach, in which the
anomalous bodies are replaced by an equivalent distribution
of current sources (Das & Parasnis 1987). The theoretical
basis is the same as in the case of the moment method used
in electromagnetism (Raiche 1974; Hohmann 1975; Tabbagh
1985). Consequently, it can be used for simultaneous
inversion of DC electric and electromagnetic data.

The total field is split into two parts; the first part is
independent of the anomalous body, E,, and the second
part results from the presence of the body, E,.

E=E,+E,, and H=H, + H, for the magnetic field.

Let o, be the electrical conductivity of the body
(p,=1/0,) and o the conductivity of the surrounding
medium (resistivity p). We have

VxH=0FE (1) and VX H,=0E, 2)
VXE=0 (3) and VXE =0 4)
SO

VxH,=0E_ +(0,—0)E (5)
and

VXE,=0. (6)
Consequently, the anomalous fleld (E,,H,) can be

considered as originating from a fictitious source j;=
(0, — o)E. This field can be computed by the use of a
potential A such as

H,=VxA/p.

Using (5), one obtains

1
E,=— VxXVxA-%
Ol o
From eq. (6), E, derives from a potential V:E,=—-VV. It
becomes
—1 Is
VW=—VxVXA+=.
O g

Using the Lorentz gauge, V = —V - A/ou, we find

VA = —pj.. )
If we call &(r,1') the dyadic Green vector potential

created in a layered earth at r by a current source of strength

unity at r’, we obtain, for the field inside a body of volume
v,

E(r) - E,(r) = f B g v x sty ar - 2" TE),
oy o o
(8
and outside the body we obtain
E(r) — E,(r) = f B oo v x ste, ) dr. 9)
¥ TR

Integration of eq (8) by dividing the volume %" into small
cells enables us to compute the total field E inside each cell
by solving a linear system of equations TE = E,, where each
element of the matrix T represents the effect of each cell on



each other cell. The computation of the effect of one cell
upon itself is performed by analytical integration, which
bypasses the problem of the singularity when r =1r'.

For N cells we obtain 3N unknowns. If all the cells have
the same size and o is uniform inside the body, the matrix T
is symmetrical.

NUMERICAL CHECKS

To validate this approach, we have checked the above-
mentioned method, hereafter called the moment method,
both with some rare 3-D numerical results already published
using different approaches (surface integrals, volume
integrals, finite differences) and with results produced by an
older program (QUAIT) written in our laboratory using a
surface-integral approach (Spahos 1979). Even if the main
scope of this paper is the inversion stage, we feel that it is
necessary to publish all the numerical computations of the
direct problem of an already well-documented case in order
to show the small discrepancies between the models.

Surface-integral approach

As mentioned above, the principle of this method is to
replace the anomalous region by a distribution of electrical
charges on its surface. This distribution must satisfy the two
boundary conditions. By knowing the value of the normal
electrical field at the injection electrode and taking the
normal component to be equal to zero on the ground
surface and at infinity, it can be demonstrated that the field
solution of the derived equation is the unique solution of the
Dirichlet problem in the case of static fields (property of
harmonic fields). This method is very rapid because we have
only N unknowns instead of the 3N unknowns of the
moment method. The solution depends on the number of
facets used, because the distribution of charges must be
sampled on a mesh with variable size, as a consequence of
the discretization process. Exact results are obtained with a
dense mesh, and a compromise has to be found between the
size of the mesh and the time and memory size needed for
the computation.

We first made a comparison using a model that has
already been used as a reference and which permits a good
test of the coherence of the different approaches through:
(1) a physical modelling using tank simulation performed by
Endo, Takeuchi & Matsuzaka (1973). (2) Numerical
resolutions computed with the same model by Okabe (1982)
and Poimeur & Vasseur (1988), both of them using a
surface-integral approach [a program called MODELIS,
now ISTREL(BRGM)]. These results were checked against
those produced by our own program QUAILT, based on the
same method, and EL3DQUB, the program developed for
the inversion and which uses the moment method.

The structure is a cube of resistivity 20 Qm and length 2L
embedded in a uniform medium of resistivity 125 Qm. The
centre of the cube is at a depth of 2L (see Fig. 1). A
pseudo-section using dipole—dipole arrays is performed
(Edwards 1977). A distance of L is kept fixed between the
poles A and B, and between the poles M and N. The
distance nlL between B and M is increased from L
(equivalent to a Wenner S configuration) to 6L. The
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Figure 1. Model used for the numerical checks presented in Figs 2,
3 and 4. (A and B are current electrodes, M and N are potential
electrodes.)

resulting apparent resistivity is plotted arbitrarily on the
horizontal axis at the centre of B-M and on the vertical axis
at a depth corresponding to nL.

In the upper part of Fig. 2 we plot the measurements from
Endo er al. (1973), who uses a block of ore embedded in a
sponge in a water tank. The accuracy of the resistivity
measurements are thought to be near to 10 per cent.

In the middle part of Fig. 2 we plot the results of the best
model from Okabe (1982, p. 669) using 216 boundary
elements (each face is divided into squares of L/3 X L/3)
and his ‘modified reciprocal averaging technique’, which
permits on the one hand a reciprocity that is otherwise not
guaranteed in the integral equation approximations and, on
the other hand, takes into account a correction term when
the injection of the current is above the boundary interface.
The definition of an error is not possible since he does not
know if this method converges towards the exact solution
(Okabe 1982, p. 669) but convergence is observed when
increasing the number of boundary elements from 24 to 216:
for example, he has found a maximum discrepancy of 2 per
cent (2 Qm) between the models taking into account 96 and
216 elements and a 1.2 per cent maximum reciprocal error is
quoted by Okabe in the 216 elements model.

In the lower part of Fig. 2, the solution calculated by the
MODELIS program, which makes no assumption about
reciprocity is shown. Except for a single point, the
agreement with Okabe’s result is very good and the
maximum discrepancy is 3Qm for the points above the
structure.

Figure 3 shows the result of our surface-integral program
QUATI with 216 elements (Fig. 3a) and 1000 elements (Fig.
3b). The maximum error occurs systematically when the
position of the injection electrodes coincides with the
projection onto the ground surface of one of the vertical
interfaces of the body (highlighted as four oblique lines on
the pseudo-section representation). As noticed by some
authors (Okabe 1981; Das & Parasnis 1987), this is the result
of the discretization of the surface and happens when the
assumption of a uniform charge distribution on the small
surfaces is violated. This error should be lessened by taking
an equivalent configuration of the clectrodes (principle of
reciprocity) in which the injection electrodes do not lie
above vertical interfaces: permuting ABMN to MNAB (see
Fig. 1), for example, is equivalent, the structure being
symmetric, to substituting the two lines a, b by ¢, d.
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Figure 2. Electrical pseudo-sections resuiting from (a) a tank simulation (Endo ez al. 1973), (b) numerical simulation by Okabe (1982) using
216 boundary elements (6 X 6 X 6 facets) and (c) numerical simulation with the MODELIS program (Okabe 1982). To be compared with Fig.
3.

However, for reasons that are not very clear, this does not
totally correct for that artefact. Increasing the number of
cells provides a better solution: in the middle part of Fig. 3,
the use of 600 cells leads to a better symmetry of the
response. The maximum difference between these two
models is low (1.0 Qm). However, if we omit these points,
the maximum discrepancy with the model of Okabe if 3 Qm.

Volume-integral and finite-difference approaches

A comparison of the results of our program EL3DQUB
(volume-integral method, Fig. 4) with those of Okabe shows
that the maximum discrepancy is small: 1.5Qm (again,
points above the vertical interfaces are excluded). The
convergence of the solution can be illustrated by comparing

the results using cubic cells of dimensions 0.5L (Fig. 4a left)
and 0.33L (Fig. 4b right).

Finally, we have checked the results of our program
EL3DQUB against numerical results coming from a similar
program by Das & Parasnis (1987) using the moment
method, and against a program using finite-differences (Dey
& Morisson, 1979). The geometry of the model is given at
the top of Fig. 5.

The definition of the size of the cells is a compromise
between stability and time or storage computing require-
ments. The different apparent resistivities computed with
the number of cells increasing from 4 to 500, and for a
quadripole corresponding to 6L, are presented in the middle
part of Fig. 5.

The stability of EL3DQUB is illustrated through the very
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Figure 3. Electrical pseudo-sections resulting from our numerical simulations using a surface-integral approach (QUAIT) with (a) 216
boundary elements, and (b) 1000 boundary elements. Diagonal lines represent positions where the position of the electrodes coincide with the

projection of the vertical faces of the body on the surface.

| l | } | t

¥ 1 1 1 [ I

125.0 125.1 125.3 125.9 127.1 121.3 113.2
+ + + + + + +
125.3 125.7 127.0 128.4 116.2 96.7 9
+ + + + + +
126.1 128.0 129.1 114.7 91.0 94.6
+ + + + + +
128.7 129.3 108.9 89.8 101.0 11
+ + + + +
129.3 107.0 89.8 106.2 120.1
EL3 DQUB + + + + +
4x4x4
6X6X6 + +

+ +

6x6x6

@

P

I I I I 1 1 1

113.7 121.6 127.1 125.9 125.3 125.1 125.0
+ + + + + + +
.3 96.7 116.2 128.4 127.0 125.7 125.3
+ + + + + +
95 93 113 129 122 126
+ + + + + +

.5 100.7 89.9 109.5 129.3 128.7
+ + + + +

120.4 105.8 89.9 107.5 129.3
+ + + + +

105.5 90.0 109.8 125.4 129.0 125.5 109.4 90.3 106.1

+ + + +

4x4x4

(b)

Figure 4. Comparison of electrical pseudo-sections resulting from our numerical simulations using a volume-integral approach (EL3DQUB)

with (a) 216 cells (left of figure) and (b) 64 cells (right of figure).

small changes in resistivity. In the lower part of Fig. 5 we
present the numerical results obtained by Dey & Morrison
(finite-difference algorithm), Das & Parasnis (moment
method, 64 cells) and EL3DQUB (256 cells). A very good
agreement can be seen, especially with the results of Dey &
Morrison (the maximum difference is less than 1.2 Qm) and
thus validates our program code.

In Fig. 6 we have displayed a grey-scale representation of
the pseudo-section computed with EL3DQUB (256 cells) in

Fig. 5. Only anomalous resistivities are presented (i.e.
computed resistivities minus apparent resistivities in a
homogeneous two-layer case).

3-D INVERSE PROBLEM: WHICH
APPROXIMATIONS?

The 3-D inversion process is heavy in computing time and
power. It necessitates starting from a first estimation of the
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EL3 32.90 33.25 32.73 30.38 29.51
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Figure 5. Model used for the computations in (b) and (c). (b) Convergence of the solution given by EL3DQUB when increasing the numbers
of cells from 4 to 500. (c) Comparison between the results obtained by the moment method through (EL3) our program (EL3DQUB) with 256
cells, (DAS) a similar program by Das & Parasnis (1987) with 64 cells, and (DEY), a finite-difference algorithm (Dey & Morisson 1979).
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Dot density representation of pseudosection computed with EL3DQUB

(layered earth response - apparent resistivity)

R
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-.5 m

Figure 6. Grey-scale representation of the pseudo-section computed with EL3DQUB (numerical results and model in Fig. 5).

parameter values to calculate by direct modelling the
theoretical results and also the sensitivity matrix (Jacobian).
Then, by applying an inversion procedure, one calculates the
variations of these parameters that minimize a distance
between the observations and the model results. This series
of operations is then repeated until a criterion for
convergence is fulfilled.

To simplify the calculation, it is possible to reduce the
number of parameters or to redefine the convergence
criterion, and this possibility will be considered later. We
also have to consider approximations based upon physical
processes that may simplify the direct modelling and/or the
calculation of the jacobian.

The first approximation to be considered is usually called
the ‘Born approximation’ it assumes that E=E_ in each
cell. There is no matrix inversion in the direct problem,
which then reduces to a simple 3-D integration. Because the
results become linearly dependent upon the conductivity of
each cell, there is no need of iteration or jacobian
determination when the geometry of the cells remains fixed.
This approximation corresponds to the omission of the
demagnetizing field in magnetism. Some authors have made
this assumption (Noel & Xu 1991). It seems reasonable to
use it only when small contrasts of resistivity are
encountered however. Unfortunately, the resistivity contrast
is often high, even in shallow-depth prospecting. To test the
impact of this Born approximation, we have considered a
simple model (Fig. 7), where a conductive body made of an
upper part of resistivity 30 Qm and a lower part of resistivity
15 Qm is imbedded in a homogeneous medium of resistivity
100 Qm. Each part is 0.5 length-units thick and the top of
the body is 0.5 from the ground surface. The horizontal
section of the heterogeneity is 3 X3 and is divided into 72
cells. The variations of the apparent resistivity for a classical
Wenner array with a 2-interprobe spacing is depicted in Fig.
7. A huge difference can be observed between the
calculation without approximation (triangles) and the Born
approximation (stars). The maximum of the anomaly differs

from 61 to 22 Qm. The difference is confirmed by the values
of the electric field inside the body (Table 1): the total field
is about one-half of the primary one.

Another approximation was proposed recently (Habaschy
& Spies 1993) for electromagnetic scattering. It is based
upon the observation that, in the matrix expression, the
diagonal terms are greater than the others. Non-diagonal
terms are zeroed in this approximation: physically, the
influence of a cell upon itself is greater than cross-coupling
between cells. This approximation is is called the ‘localized
non-linear approximation’ (IN); localized because the
cross-coupling is neglected, and non-linear because the
dependence of the anomaly on the conductivity contrast is
non-linear. The response of the model under this
approximation is presented in Fig. 7; the variation from the
exact shape of the anomaly remains within a 10 per cent
limit in amplitude, but the lateral variations are smoothed.
In Table 1, we have also shown the value of the electric field
within the central cells of the body. The change from total
field is very small for the upper 30 Qm layer, but it is about
50 per cent in the centre of the more conductive, lower
layer.

In the case of two resistive bodies (300 Qm for the upper
bodies and 600 Qm for the lower bodies), the response
computed with the Born approximation is much more
similar to the response calculated with the LN approxima-
tion (Fig. 8) than the response of a conductive body.
Nevertheless, their amplitudes are quite different from the
real case (see Table 2), and we conclude that these
approximations cannot be used in our case.

INVERSION SCHEME

The general discrete inverse problem consists of inferring
the model parameters from the apparent resistivities
measured with different quadripoles. We have chosen a
model with a limited number of parameters, namely N
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Figure 7. Comparison of the electrical response of a conductive body on a profile: with the Born approximation, with the LN approximation

and without an approximation.

Table 1. Comparison between the primary electrical field (E,) and
secondary electrical field using the Born approximation (E,) and LN
approximation (Ey). Case of a conductive body.

Case of a conductive body
Electric field (V/m) in the cells of the upper part (30 Qm)

X -6 ~4 -2 +2 +4 +6
Et ~-2.43 ~2.00 -1.79 -1.79 ~-2.00 -2.43
Ep -4.77 -3.70 -3.25 -3.25 -3.70 -4.77
ELN ~2.67 -2.07 ~1.82 -1.82 -2.07 -2.67
Electric field (V/m) in the cells of the lower part (15 Qm)
X -6 -4 -2 +2 +4 +6
Et -1.33 -1.59 -1.66 -1.66 -1.59 ~1.33
Ep -3.52 ~3.03 -2.79 -2.79 ~3.03 -3.52
ELN -1.21 -1.05 0.96 0.96 -1.05 -1.21

resistivities: the half-space is discretized as in the forward
problem into N small cubic cells with a fixed geometry
(constant size). Taking a size as small as we wish, there is no
lack of generality and the model space can be represented
by a finite set of N (true) resistivities. Taking the same
discretization of space between the direct and inverse
problem is a simplification of our code. We should in the
future increase, for example, the numbers of layers beyond
the heterogeneous region and in the homogeneous
background. Moreover, this should remove the implicit
assumption made in our inverse modelling whereby the real
changes of resistivities (direct problem) coincide with the
space discretization of the inverse problem.

Several mathematical methods and algorithms used to
solve this problem are reviewed hereafter, but only a few of
them are applicable to the electrical inverse problem.

(1) Back-projection: this technique is often used in the
exploration of the human body by X- and gamma-ray
analysis, or in the seismology. It consists of distributing
equally the perturbation (equal to the difference between
the observed data and a modelled set of data) along ray
paths which can be linear or curved. This procedure is
repeated for all ray paths. It has the advantage of being very
fast but it is based on assumptions that we cannot support in
our case: (i) theoretical parametrization by rays in electrical
methods makes no sense when diffusion equations apply; (ii)
the geometry of the rays is often fixed and does not change
when the resistivities of the cells are changed; (iii) this
method works properly when at least three or four free
surfaces around the anomalous region can be used for
making measurements; (iv) back-projecting the perturbation
equally along the ray path results in a well known ‘blurring
effect’ when significant resistivity contrasts are encountered,
which is almost always the case in subsurface surveying: no
sharp resistivity reconstruction can be obtained as pictured,
for example, in the article by Noel & Xu (1991). We think
that this method should be used only as an a priori resistivity
model for other inversion methods (Shima 1992).

(2) Filtered back-projection (or convolution method): this
is similar to back-projection, except that each ray is filtered
before being back-projected. This technique should
counterbalance the blurring effect, but this does not remove
the assumptions (i) to (iii) previously mentioned.




3-D Inversion in subsurface surveying—I 983

200 7
ST
/S o 1 2,7 |
4 a4
/// ‘ ////8/
S / // /, . - .
£ S A ansss Without approximation
e ikt Born approximation
(o) ¢ oo LN approximation
L 300.1m ¢
P ' 600Nm ®
E’ 31 —»  100am
2
4
)
)
(-
)
-
O
-
O 100 -
[N
Q
<
80 ||!llll|||l|||]l]ll]llllIllll]lIIIII|I|||I]||IIII|I||II)III‘XI!]I|)II|II1IIII!I‘1"X

-8 -6 -4 -2

2 4 6 8

Figure 8. Comparison of the electrical response of a resistive body on a profile: with the Born approximation, with the LN approximation and

without an approximation.

Table 2. Comparison between the primary electrical field (E;) and
secondary electrical field using the born approximation (E,) and LN
approximation (E; ). Case of a resistive body.

Case of a resistive body

Electric field (V/m) In the cells of the upper part (300 Qm)

X -6 -4 -2 +2 +4 +6

Et -6.65 ~4.52 -4.06 -4.06 -4.52 ~6.65
Ep ~4.77 -3.70 ~3.25 -3.25 -3.70 -4.77
ELN -6.15 ~-4.77 -4.19 -4.19 -4.77 -6.15

Electric field (V/m) in the cells of the lower part (600 Qm)

X -6 -4 -2 +2 +4 +6

Et -5,72 -3.37 -3.10 -3.10 -3.37 -5.72
EP -3.52 -3.03 -2.79 -2.79 -3.03 ~-3.52
ELN -4.88 -4.21 -3.87 -3.87 -4.21 -4.88

(3) Algebraic reconstruction techniques (ART): in these
methods, the corrections are applied to each cell along a ray
and repeated, the same correction being made to the
remaining rays. In SIRT (simultaneous reconstruction
technique), the correction for one cell is the summation of
elementary corrections corresponding to all the rays that
pass through that cell. These methods can give reliable
results in a short period of computer time but suffer from
the low number of rays available in subsurface electrical
imaging (only ground/air interface is used in general).

(4) The most widely used method is some kind of
iterative least-squares technique, which is strictly valid only

for Gaussian errors (errors in the observed resistivities, in
the modelling of the direct problem, and in the given a
priori model); see Al-Chalabi (1992).

Let m be the model parameters (set of true resistivities), d
the data (observable apparent resistivities) and G an
operator from M into D (lowercase letters for a set of values
(chart) and uppercase letters for the corresponding space),
then

d=Gm

(Tarantola 1987). As the problem is not linear, we have to
linearize it by a Taylor series approximation around an
estimated set of the model parameters m,;

u , oG
Gm=Gm, + >, o,(m—m,) with ﬂl:[a } . 10)
i=1 m Jm,

i

When considering only the first partial derivative term, we
have

Gm=Gm, + [j—G] (m—m,), (11)

me

Gm-—-Gm,=d - Gm, =% m—m,). (12)

9, made of the first-order partial derivatives, is called the
sensitivity matrix (or the Jacobian of the operator G): it
relates the change between the model parameters (m —~ m,)
and the change between the observed data (d) and
calculated data Gm,. Let Ap be (Gm — Gm,) and Am the
change in the model parameters we are looking for:
Ap = §Am.
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This system of equations can be over- or underdetermined
depending on the ratio between the number of measure-
ments and the number of unknowns. We shall consider only
overdetermined problems, since we manage in the fields to
obtain more measured, apparent resistivities than unknown,
true resistivities of cells. Moreover, in our case we cannot
evaluate at present both modelling and measurements
errors, and consequently the general inverse solution as
defined by Tarantola (1987) cannot be applied as such.

No direct inversion of matrix ¥ can be performed because
the inversion of % is usually unstable (nearly null
eigenvalues). These eigenvalues arise from an ill-posed
problem, due to insufficient data for some cells and/or
problems of electrical equivalence. Some regularization
technique must be used (Tikhonov & Arsenin 1977) either
by truncation (zeroing elements of the matrix) or by
reducing (‘damping’) the effect of undetermined parameters
(basis of methods like ridge regression or damped
least-squares) prior to the inversion. Some a priori
information about the solution can also be added through
the formalism of Lagrange multipliers, for example.

The method we have applied has been developed by
Levenberg (1944) and Marquardt (1963). The main idea is
to limit the changes in the model parameters by using a cost
function:

S =Ap Ap + AAm*Am.

Differentiation with respect to the model parameter Am and
equating to zero gives

(@T@ + ADAm = 4" Ap,
and thus
Am= (947G + ,\I)_l?éTAp. (15)

The multiplier A was termed a ‘damping’ factor by
Levenberg in (1944) and consequently this method belongs
to the class of the diagonal damped least-squares problems.

When A is large, the matrix (4% + Al) becomes diagonally
dominant and this method is similar to the steepest descent
method, while A small implies the ordinary least-squares
(LS) method.

Generally, A is set to an arbitrary high value for the first
iteration and then reduced by multiplication by a constant
factor (<1), and the new cost function is computed. If the
new cost function has been lowered, then parameters are
updated and A is lowered; otherwise, there is no change in
the model parameters and A is multiplied by the inverse of
the constant.

In order to stabilize and accelerate the convergence of the
inversion process, two regularizations have been used: (i)
calculated resistivities must always be positive and (ii) the
calculated spatial distribution of resistivities must be
‘smooth’. We will explain later the implementation of these
two constraints.

APPLICATION TO THEORETICAL CASES

As already mentioned, the ground is represented by two
layers of cells imbedded in a homogeneous medium. The
cells are of cubic shape and their resistivities constitute the
parameters of the model. The lateral extent of the
heterogeneities is defined by 3L, which constitutes the width
and the length of the meshed volume.

To limit the computing time, we choose 25 cells (0.6L in
length) in the first layer and 9 cells (L in length) in the
second (Fig. 9). The resistivity of the surrounding medium is
100 Qm and the thickness of the overburden is 0.3L. For the
data, we have calculated the apparent values of the
resistivities on a regular grid (7 X7) for a quadripole in
Wenner configuration for interelectrode distances, a, of L,
2L and 3L. We then obtain 147 data for determining the
resistivities of 34 cells. The aim of this paper is not to answer
the question of how many data are sufficient for making the
inversion process stable, this will be discussed in a
forthcoming article.

We have treated, in order, the case of a vertical contrast
between the two layers of cells, the case of a horizontal
contrast and the more complex case with both vertical and
horizontal variations. Finally, the event of noisy data has
been treated.

Numerically, we followed the scheme of the Levenberg-
Marquardt algorithm (Press et al. 1992) with a Lagrangian
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Figure 9. Model used for the inversion scheme.



multiplier A starting at an arbitrary value of 0.001. At each
step of the iterative process, we calculate § (sum of the
squared differences between observed and calculated
apparent resistivities). If the value of S increases, A is
increased by a factor of 10. If, on the other hand, S
decreases, A is divided by the same factor. The iterations are
stopped when S/N is lower than 2 (arbitrarily). The number
of successive changes of A is limited to seven and the
maximum number of iterations is normally limited to 32.
When A has a low value, it plays a negligible part and the
scheme is a least-squares one (LS). When A is high, the
scheme is of steepest descent type.

We also limit the resistivity to positive values by forcing
the resistivity to an arbitrary value of 1Qm when the
calculated resistivity is negative. To reduce lateral
oscillations of the resistivity from one cell to another, we
apply at each iteration a spatial 2-D median filtering on a
(3x3) mesh by substituting each cell’s resistivity by the
median value computed with its eight nearest neighbours.
This last process is not necessary for convergence but
accelerates the convergence towards the solution.

We first tested the LN approximation for the first five
iterations. In no case has it accelerated the convergence, and
it even leads to divergence when the cells are more resistive

f
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than the medium. This can be explained by the significant
differences that exist between LN and complete calculations
for the lateral variations of the anomalies (see Figs 7 and 8).

Conductive vertical contrast

We first tested the case where the first layer has a 100 Qm
resistivity equal to that of the surrounding medium. For the
second layer, the resistivity is 40 Qm. In Fig. 10 we represent
the variations of § and those of the resistivities of the two
layers (pg,, and p;,,) versus the number of iterations. ‘Error
bars’ represent, in fact, the span between the maximum and
minimum values of the calculated resistivities. The a priori
resistivities are 90 and 80Qm. We observe that the
convergence necessitates 11 iterations, but, as the resistivity
of the first layer oscillates, that of the lower layer reaches an
accuracy of 10 per cent in seven iterations. At the seventh
iteration, § =29 (Qm)?, corresponding to an RMS error of
only 0.44 Qm on the apparent resistivities.

Resistive vertical contrast

As in the preceding case, p,,,, equals 100 Qm, but the second
layer is more resistive, at 400 Qm. Starting with a priori
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Figure 10. Inversion in the case of a single conductive body embedded in a uniform medium: variations of S and the resistivities of the two

layers versus the number of iterations.
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resistivities of 110 and 150 Qm, we obtain (Fig. 11) a 10 per
cent difference for p;,, (360 Qm) at the fifth iteration, where
S =40 (Qm)?, which corresponds to an RMS error of
0.52 Qm.

When comparing this with the results Fig. 10, it can be
seen that convergence is more rapid for the resistive contrast
than for the conducting one.

Two different conductive vertical contrasts

In this case, the first layer has a 10 Qm resistivity and the
second layer a 40 Qm resistivity. We start with a uniform
distribution of 30Qm for all the cells. This value
corresponds to the minimum value of the apparent

resistivities. At the first iteration, the value of S is high:
13976 (Qm)>. It diminishes slowly to reach 1000 at the 14th
iteration and 100 at the 42nd iteration (Table 3). We have
stopped at the 50th iteration, where the RMS error is
0.57 Qm for the apparent resistivities. Computed values for
Psup Tange between 9.4 and 9.6 Qm and between 39.8 and
39.9Qm for p;,.. The 10 per cent limit was reached at the
18th iteration for p,,, and at the 43rd for p;;.

Two different mixed vertical constrasts

In this model, p,,, equals 200 Qm and p;,; equals 50 Qm.
Starting values are 120 and 95 Qm (extrema of the apparent
resistivities for a =L and a =3L). We observe a quicker

Table 3. Variations of § when considering a resistive body (40 Qm) under a conductive

body (10 Qm).

Iter 1 2 3 4 5

6

7 8 9 10 11 12 13

S 8166 7015 5190 4549 3762 3280 2709 2288 2017 1792 1574 1358 1140

Iter| 14 15 16 17 18 19 20

25 30 35 40 45 50

S 960 824 709 618 544 483 434

290 218 163 103 60 48
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Table 4. Variations of S when considering a conductive body (50 Qm) under a resistive

body (200 Qm).

Iter 1 2 3 4 5 6 7 8

9

10 11 12 13 14 15 16 17

S 660 162 51 27 22 9.9 8.3 6.5 4.4 1.5 .60 .55 .50 .35 .23 .26 .11
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Figure 12. Inversion in the case of a complex model with both vertical and horizontal contrasts: resistive case (left); inverted resistivities for the

two layers (right).

convergence (Table 4). At the 17th iteration, S is quasi-nil
[0.11 (@m)?] and Psup Tanges between 198 and 204 Qm, while
Ping 18 uniform and is equal to 49.9 Qm.

From these first four cases, one can conclude that, in the
situation where a resistive feature overlays a conductive one,
resistivities are resolved very accurately and with a better
precision than in the case where the conductive feature lays
over the resistive one. In the latter case, the convergence is
also slower, but the determination of the resistivity of the
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conductive feature is more rapid than that of the underlying
resistive one. It exists a screening effect due to conductive
features that tend to gather the current lines and mask
deeper features.

Both vertical and lateral contrasts: feature more resistive than
its surroundings

The geometry of the model is presented in Fig. 12. In layer
I, an L-shaped area has a resistivity of 1000 Qm and the

Lo To 7757
4

Layer I

MODEL AFTER ITERATION N° 16

Figure 13. Inversion in the case of a complex model with both vertical and horizontal contrasts: conductive case (left); inverted resistivities for

the two layers (right).
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remaining wedge area is at 200 Qm. Layer IT has a uniform
resistivity of 250 Qm. Starting with a uniform value of
800 Qm for both layers, the value of S decreases to 86 (Qm)?
at the 15th iteration. In layer 1 (Fig. 12), one observes a
good agreement with the data values within a 20 per cent
limit, except at the corner of the L-shaped area. The
agreement is perfect for the second layer: minimum value
243, maximum value 251 Qm.,

Both vertical and lateral contrasts: feature more conductive
than its surroundings

In layer I (Fig. 13), we consider an L-shaped area of 50 Qm
and a wedge area of 10 Qm. In layer II, resistivity is uniform
(15 Qm). Starting from 50 Qm for all the cells, a minimum
value §=260(Qm)* is reached at iteration 16, which
corresponds to an RMS error of 1.3Qm on the apparent
resistivities. As shown in Fig. 13, the wedge resistivity is not
well resolved: between 14 and 22 Qm instead of 10 Qm.
Layer II is found to be more conductive than the correct
value (12 to 14 Qm instead of 15 Qm).

Again, the conductive case is not resolved as well as the
resistive case.

Case with noisy data

We add to the apparent resistivities a random noise of +5
per cent for the model in which layer I is at 200 Qm and
layer II at S0 Qm. As can be seen in Fig. 14, showing the
variation of S versus number of iterations, the error value
tends to stay around S = 1175 (Qm)?, reached at the 11th
iteration, and corresponds to an RMS of 2.83Qm. This
value corresponds exactly to the standard deviation
computed from the statistics of the noise introduced in the
apparent resistivities.

It is, then, logical to stop the iteration process here. This
could lead to a definition of a criterion for stopping the
inversion process when real apparent resistivities are used.

The computed resistivities of the cells in level I lie in a 10
per cent interval, most of them being higher than 200 Qm,
while resistivities of the cells in layer II are lower (46 to
48 Qm) than 50 Qm. We are therefore in a situation of
electrical equivalence.

CONCLUSIONS

The moment method constitutes a good solution to the 3-D
direct problem for modelling the resistivities obtained in
shallow-depth electrical surveying. We have demonstrated
that it is in good agreement with other calculation
techniques and physical model studies. It has also a direct
physical meaning through the fact that a resistivity can be
assigned to a volume which can be discretized in a number
of cells with uniform electrical properties. We have already
applied this technique to electromagnetic modelling and it is
possible to conceive of a joint 3-D inversion of
electromagnetic and electrical data in the near future.

The least-squares inversion scheme we have used is a
classical concept but is still convenient for 3-D resistivity
inversion. Still, some constraints must be added to the
inversion process to make it more stable and less time
consuming. We have shown that, with a fairly small amount
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of data, reconstruction of the true resistivities is feasible. A
great deal of work has still to be done on thinking about the
best quadripole spacing and geometry to be used for solving
specific problems.

We have shown that approximations such as Born or LN,
even if they can drastically lower the amount of time for the
computations, cannot be used in the inversion process.

The studies of theoretial cases show that the determina-
tion of resistivity for resistive features is more precise than
for conductive ones. This confirms the specific interest of the
DC electrical method for resistive target characterization.

The application to field data coming from acquisition
devices with an automatic scanner for electrodes is now
under test and will be presented in a forthcoming paper.
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