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In this work, we propose a spatio-temporal tree-grass interactions model, allowing to account for a possibly periodic spatial structuring sometimes observes in humid savanna zone. The proposed model relies on an integro-differential reaction-diffusion system, involving kernels of intra and inter-specific interactions. From a linear stability analysis performed in the vicinity of a homogeneous stationary state that denotes tree-grass coexistence, we succeed first to find a condition for the appearance of periodic solutions in space with predictable wavelength and second, to illustrate it numerically.

RÉSUMÉ. Dans ce travail, nous proposons un modèle spatio-temporel d'interactions arbres-herbes, permettant de rendre compte d'une structuration spatiale éventuellement périodique parfois observée en zone de savane humide. Le modèle proposé repose sur un système de réaction-diffusion intégrodifférentiel, impliquant des noyaux d'interactions spatiales intra et inter spécifique. A partir d'une analyse de stabilité linéaire realisée au voisinage d'un état stationnaire de coexistence, nous réussissons premièrement, à trouver une condition pour l'apparition de solutions périodiques en espace avec une longueur d'onde prévisible et deuxièmement, nous illustrons cette condition numériquement.

Introduction

Savannas are complex ecosystems where, trees and grasses coexist permanently without one species excluding the other. In Africa, savannas occupy 50% of the land area, or 15.1 million km 2 [START_REF] Scholes | Tree-Grass interaction in savannas[END_REF]. Being able to predict, the spatial structuring of vegetation mainly in humid zones, is therefore part of maintaining bio-diversity in the face of recurring climatic changes in Africa. The mechanisms that allow this tree-grass coexistence, have been the subject of several researches in ecology known as savanna problem:"how tree and grass coexists over a wide climatic, edaphic and historical condition?" [START_REF] Higgins | What Limits Trees in C4 Grasslands and Savannas?[END_REF]. The essential factors for maintaining this coexistence, encountered in the literature include: fire, herbivory, rains, nutriments, soil texture. In fact, several research groups have produced results using modeling with Ordinary Differential Equations (ODE), Impulsive Differential Equations (IDE) or Partial Differential Equations (PDE). The most of works done using PDE was carried out in arid or semi-arid environmental context, using a reactiondiffusion-advection system (emphasizing the dynamics of vegetation and water) or, using an integro-differential equation, where kernel model interactions between plants. In humid environment, mathematical models that tackle the issue of vegetation patterns in humid savannas are very scarce. However, some authors proposed: first, CA models to explain, formation of vegetation patterns in arid and semi-arid savannas and how trees can invade the grass stratum in humid savannas despite repeated fires [START_REF] Accatino | Trees, grass, and fire in humid savannas: the importance of life history traits and spatial processes[END_REF]. Second, IDE models to predict the physiognomies of the vegetation along the gradient of precipitation highlighting the effect of fires on tree-grass coexistence ( [START_REF] Tchuinte | Tree-grass interaction dynamics and pulsed fires: mathematical and numerical studies[END_REF][START_REF] Yatat | An impulsive modelling framework of fire occurrence in a size-structured model of tree-grass interactions for savanna ecosystems[END_REF]).

Our objective is therefore to build a mathematical tractable spatio-temporal model allowing, to illustrate the spatial structuration of vegetation in wet savanna zone and specifically in Cameroon. This model will highlight the fire resistance strategies of trees.

Model construction

Our model follow the IDE model of Tchuinté et al. [START_REF] Tchuinte | A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality[END_REF] and the ODE version of Yatat et al. [START_REF] Yatat | Spatially explicit modelling of tree-grass interactions in fire-prone savannas: a partial differential equations framework[END_REF]. We consider two state variables, G(t) and T (t) that stand for the the grassy biomass and the woody biomass at time t respectively. In [START_REF] Tchuinte | A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality[END_REF][START_REF] Yatat | Spatially explicit modelling of tree-grass interactions in fire-prone savannas: a partial differential equations framework[END_REF], the following hypotheses are done:

-Tree and grass biomasses have a logistic growth.

-Mortality at the level of herbs is related to external factors (grazing, termites,...), interactions with trees and fire.

-Tree mortality results from external factor (browsers,...) or is fire-induced.

-Fires occur impulsively at each moment t n . Neglecting the pulse effect of fires, we have incorporated a spatial component on the state variables. Hence, G(x, t) and T (x, t) denote the normalized densities of the respective biomass of grass and tree populations at a spatial point x and at a time t. We put the following assumptions:

• Trees and grasses populations, have a logistic growth but with an intra-specific competition which takes place in a non-local way, thanks to the respective root systems of the two species. In fact, trees (respectively grasses) located at a point x, can consume re-sources (water, nutriment) at point y where, another trees (respectively grasses) is located. Then,

T (x, t) +∞ -∞ φ M2 (x -y)T (y, t)dy and G(x, t) +∞ -∞ φ M1 (x -y)G(y, t)dy (1) 
describes this non-local intra specific competition where, for i = 1, 2, the kernel φ Mi (xy) represents, the efficiency of consumption of resources in the area [-M i ; M i ] of the space domain.

• trees exert competition on grasses in a non-local way. The consequence here is to reduce the grass continuum on the ground, which will reduce the spread of fire. Indeed a tree located at a point y can, either by its root system or by the shade created by its crown, reduces the density of grasses located at a point x by reducing the resources in x. Then,

G(x, t) +∞ -∞ φ M2 (x -y)T (y, t)dy (2) 
describes this non-local inter-specific competition.

• The function describing the intensity of fires, ω(G), is a non linear and increasing function of the grass density, that we take under the form of a Holling Type III function (see also [START_REF] Tchuinte | A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality[END_REF][START_REF] Yatat | Spatially explicit modelling of tree-grass interactions in fire-prone savannas: a partial differential equations framework[END_REF])

ω(G) = G 2 G 2 + g 2 0 , (3) 
where g 2 0 is the grass biomass at which fires reach its half maximal intensity. • We insert a probability of fire induced-tree mortality at a space point x. If trees are numerous, less the fire harm. Then, tree mortality will be reduced. This probability is therefore, a decreasing function of tree density. Referring to the work of [START_REF] Martinez-Garcia | Spatial patterns in mesic savannas: The local facilitation limit and the role of demographic stochasticity[END_REF], this probability in a point x of the space is:

V T (x) = exp -p +∞ -∞ φ M2 (x -y)T (y, t)dy . (4) 
• Moreover, according to [START_REF] Craine | Mechanisms of plant competition for nutriments,water and ligth[END_REF], trees facilitate the germination and the recruitment of new trees by improving the conditions under the canopy. Then, we assume that there is a factor of cooperation Ω ∈ [0; 1] between trees promoting regrowth and growth of young trees and allowing it to reach a threshold of non-vulnerability.

• We suggest, according to [START_REF] Yatat | Spatially explicit modelling of tree-grass interactions in fire-prone savannas: a partial differential equations framework[END_REF], that grass biomass and tree biomass, experience local isotropic biomass propagation in space with the coefficient D G and D T respectively.

All this leads to the following model:

                         ∂G ∂t = D G ∂ 2 G ∂x 2 + γ G G 1 - +∞ -∞ φ M1 (x -y)G(y, t)dy -δ G G- γ T G G +∞ -∞ φ M2 (x -y)T (y, t)dy -λ f G f G, ∂T ∂t = D T ∂ 2 T ∂x 2 + γ T T (1 + ΩT ) 1 - +∞ -∞ φ M2 (x -y)T (y, t)dy -δ T T - λ f T f ω(G) exp -p +∞ -∞ φ M2 (x -y)T (y, t)dy T, (5) 
where x ∈ [-L; L] and t > 0, with non negative and sufficiently smooth initial data. In addition, we also consider homogeneous Newman boundary condition at -L and L.

For 0 ≤ M i ≤ L, we consider the kernels:

φ Mi (x) =    1 2M i , |x| ≤ M i 0 , |x| > M i i = 1, 2;
with φ 0 a dirac function and 

Linear stability analysis

Linear stability analysis in the local case

(M 1 = M 2 = 0)
In this part, we are interested in the behavior of homogeneous stationary solutions, notably in the characterization of savanna equilibrium (i.e. an equilibrium where T > 0 and G > 0) stability properties. Homogeneous stationary solutions of (5) are solutions of system (6):

γ G G(1 -G) -δ G G -γ T G T G -λ f G f G = 0, γ T T (1 + ΩT )(1 -T ) -δ T T -λ f T f ω(G) exp(-pT )T = 0. (6) 
It is assumed that (see also [START_REF] Tchuinte | A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality[END_REF][START_REF] Yatat | Spatially explicit modelling of tree-grass interactions in fire-prone savannas: a partial differential equations framework[END_REF]):

γ T -δ T > 0 and γ G -δ G > 0. (7) 
Conditions in [START_REF] Tchuinte | A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality[END_REF] means that, desert cannot be stable (see for instance [START_REF] Tchuinte | A minimalistic model of tree-grass interactions using impulsive differential equations and non-linear feedback functions of grass biomass onto fire-induced tree mortality[END_REF][START_REF] Yatat | Spatially explicit modelling of tree-grass interactions in fire-prone savannas: a partial differential equations framework[END_REF]). Set:

R G = γ G δ G + f λ f G and R F = γ G δ G + λ f G f + γ T G T i .
The following result is valid. 1) If R G ≤ 1, then system (5) admits two homogeneous stationary solutions:

a) desert equilibrium E 0 = (0; 0). b) forest equilibrium: * if Ω = 0, then E T1 = 0; γ T -δ T γ T is the forest equilibrium in case of no tree-tree facilitation. * if Ω > 0, then E T2 =     0; (1 -Ω) 2 + 4Ω 1 -δ T γ T -(1 -Ω) 2Ω     is the
forest equilibrium with tree-tree facilitation.

2) If R G > 1 then we have the desert equilibrium E 0 , the forest equilibrium E Ti , (i = 1, 2) and a grassland equilibrium:

E Ge = (G e ; 0) = (1 - δ G + f λ f G γ G ); 0 = 1 - 1 R G ; 0 .
We are now interested in the coexistence equilibrium (savanna equilibrium). Set: 

a = - λ f G f + δ G γ T G , b = γ G γ T G , θ = 2(a + b)bΩγ T + γ T (1 -Ω)b α = Ωγ T b 2 , q = (γ T -δ T )+γ T (Ω-1)(a+b)-Ωγ T (a+b) 2 , m = λ f T f exp (-p(a + b)) θ * = 24α + mpb (pb)
• f = 0. If R F,f =0 > 1, then we have the unique savanna equilibrium E s = (G * , T * ) such that G * = 1 - 1 R F,f =0 and T * = T i , i = 1, 2. (8) 
• f > 0. If R G > 1, then a savanna equilibrium E s = (G * , T * ) musth satisfy these two relations:

-α(G * ) 4 + θ(G * ) 3 -m exp(pbG * )(G * ) 2 + (q -αg 2 0 )(G * ) 2 + θg 2 0 G * + qg 2 0 = 0, (9) and T 
* = (a + b) -bG * . ( 10 
)
Moreover G * must satisfy the inequality

max G e - γ T G γ G ; 0 < G * < G e . ( 11 
)
We can therefore summarize the maximum number of savanna equilibrium according to the following case:

• Case 1: θ < mpb Condition q < m + αg 2 0 q > m + αg 2 0
Maximal number of savanna equilibria 2 3

Table 2: Maximal number of savanna equilibria of (5) with θ < mpb

• Case 2: θ > mpb, Condition θ < θ * θ > θ * Maximal number on savanna equilibria 4 3
Table 3: Maximal number of savanna equilibria of (5) with θ > mpb

Let us look now at the conditions of stability of a savanna equilibrium when it exists. Considering the space-implicit system related to system (5), we obtain that the Jacobian matrix at savanna equilibrium has the entries (a i,j ) 1≤i,j≤2 where:

a 11 = -γ G G * , a 12 = -γ T G G * , a 21 = -λ f T f ω (G * ) exp(-pT * )T * , a 22 = -γ T (1 -Ω)T * + 2Ω(T * ) 2 + pλ f T f ω(G * ) exp(-pT * )T * .
The savanna equilibrium is locally asymptotically stable when: a 11 + a 22 < 0 and a 11 a 22 -a 21 a 12 > 0.

(12)

From (12), we define the following thresholds:

R * 1 = γ T [(1 -Ω) + 2ΩT * ] pλ f T f ω(G * ) exp(-pT * ) and R * 2 = γ T G ω (G * ) pγ G ω(G * ) , (13) 
and then, we have this proposition.

Proposition 3.3. (Stability Condition of a savanna equilibrium)

The stability condition of a coexistence equilibrium when it exists in the absence of non local interactions (M 1 = M 2 = 0) is given by: • case 1: Assume that f = 0, then E s = (G * , T * ) is locally asymptotically stable (LAS) without any condition.

• case 2:Assume that f > 0, then if:

R * 1 -R * 2 > 1 (14) then E * = (G * , T * ) is locally asymptotically stable.. Remark 1. (i) R G = γ G δ G + f λ f G
denotes the primary production of grass biomass relative to grass biomass loss due to grazing or human action and additional fire-induced biomass loss.

(ii) R F = γ G δ G + f λ f G + γ T G T i
represents the primary production of grass biomass, relative to grass biomass loss induced by fire, herbivory (grazing) or human action and additional grass suppression due to tree competition, at the closed forest equilibrium.

Linear analysis stability of savanna equilibruim in the non-local case

Our aim now is to derive a condition on spatial convolution such that the savanna equilibrium (G * ; T * ) is locally stable in the case M 1 = M 2 = 0, but unstable for some

M i > 0, i = 1, 2. Set c = γ T ΩT * (1 -T * ). For g(x, t) = G(x, t) -G * and h(x, t) = T (x, t) -T * ,
two perturbations around the savanna equilibrium. The system obtained after linearization is:

       ∂g ∂t = D G ∂ 2 g ∂x 2 + a 11 +∞ -∞ φ M1 (x -y)g(y, t)dy + a 12 +∞ -∞ φ M2 (x -y)h(y, t)dy, ∂h ∂t = D T ∂ 2 h ∂x 2 + (a 22 -c) +∞ -∞ φ M2 (x -y)h(y, t)dy + ch + a 21 g.
(15) Then, by considering the eigenvalue problem of the system (15) where λ is the eigenvalue and taking the Fourier transform of this eigenvalue problem, we obtain the following system:

λg(k) = -D G k 2 g(k) + a 11 φ M1 (k)g(k) + a 12 φ M2 (k)h(k), λh(k) = -D T k 2 h(k) + ch(k) + (a 22 -c)φ M2 (k)h(k) + a 21 g(k), ( 16 
)
where k is the wavenumber (k ∈ R) with φ Mi (k) = sin kM i kM i , i = 1, 2 where, g(k), h(k) and φ Mi (k) are the Fourier transforms of the functions g(x, t), p(x, t), φ Mi (x).

Proposition 3.4. (Characteristic equation)

The characteristic equation of system (16) is:

λ 2 -T r(k, M 1 , M 2 )λ + Det(k, M 1 , M 2 ) = 0, (17) 
where:

T r(k, M 1 , M 2 ) = -(D G + D T )k 2 + a 11 φ M1 (k) + a 22 φ M2 (k) + (1 -φ M2 (k))c
and

Det(k, M 1 , M 2 ) = D G D T k 4 -a 22 D G φ M2 (k) + a 11 D T φ M1 (k) + cD G (1 -φ M2 (k)) k 2 + a 11 (a 22 -c)φ M1 (k)φ M2 (k) + ca 11 φ M1 (k) -a 12 a 21 φ M2 (k).
From the characteristic equation (17), we can write the stability conditions of the savanna equilibrium (G * , T * ) as follows:

T r(k, M 1 , M 2 ) < 0, (18) 
and

Det(k, M 1 , M 2 ) > 0. (19) 
If (18) holds and (19) is not satisfied, then there is a real eigenvalue crossing the origin. Initially (k = M 1 = M 2 = 0), ( 18) and (19) hold. So, we find the thresholds k T , M T 1 and M T 2 , so that (19) is not satisfied (it is call Turing Bifurcation). Then, this threshold satisfies:

Det(k, M 1 , M 2 ) = 0, ∂Det(k, M 1 , M 2 ) ∂M 1 = 0, ∂Det(k, M 1 , M 2 ) ∂M 2 = 0, ∂Det(k, M 1 , M 2 ) ∂k = 0.
(20) With the given conditions in (20) we have: 

(z) = z (z 1 < z 2 ) such that: µ j = sin z j z j < 0, j = 1, 2.
Then, suppose that:

a 11 (c -a 22 )µ 1 µ 2 ca 11 µ 1 -a 12 a 21 µ 2 < 1. (21) 
If:

M j > M T j = z j D G D T (a 11 a 22 -ca 11 ) µ 1 µ 2 + ca 11 µ 1 -a 12 a 21 µ 2 1/4 , j = 1, 2 (22) and k > k T = (a 11 a 22 -ca 11 ) µ 1 µ 2 + ca 11 µ 1 -a 12 a 21 µ 2 D G D T 1/4 , (23) 
then we have the appearance of periodic solutions in space in the neighborhood of savanna equilibrium.

Because of the difficulty of interpretation of condition (21), we find a sufficient condition to the previous one. Note that if c -a 22 > 0 then (21) is verified. Then, set:

R * 3 = γ T + ΩT * ) pλ f T f ω(G * ) exp(-pT * )
.

Remark 2.

-If R * 3 > 1, then we have all results in the Proposition 3.5. -R * 3 is the primary production of tree biomass and additional production of tree biomass due to tree-tree facilitation relative to fire induced tree biomass loss.

-The period σ of the spatial structures at the stability boundary is:

σ = 2nπ k T = 2nπ D G D T (a 11 a 22 -ca 11 ) µ 1 µ 2 + ca 11 µ 1 -a 12 a 21 µ 2 1/4 , n ∈ N * .
-Condition (22) give the rank beyond which the non-local interactions are necessary for the coexistence of both tree and grass species in the same domain.

Numerical illustration

To illustrate the condition in the Proposition 3.5, we consider the value in Table 4 as parameters of our model [START_REF] Scholes | Tree-Grass interaction in savannas[END_REF]. With this choice of parameters, we find that the savanna Then, the minimal positive value solution of the equation tan(z) = z is z 1 = 4.49. We take z 2 = 10.9 also solution of tan(z) = z.

From these two values we find µ 1 = -0.22, µ 2 = -0.09 and we get the Turing bifurcation condition: M 1 > 7.12m and M 2 > 17.28m. Numerical simulations of model ( 5) are carried out in the interval [-150; 150]. We consider the initial data as a random perturbation around the savanna equilibrium (G * , T * ), then

G(x, 0) = G * + 1 , T (x, 0) = T * 2 with 0 ≤ i ≤ 1 × 10 -3 .
We observe from Figure 1 that, the solutions of system (5) converge toward a space inhomogeneous tree-grass coexistence solution thanks, to a Turing bifurcation. 

Conclusion

In this paper, we developed a spatio-temporal model able to illustrate the spatial structuring of the vegetation in wet savanna zone. We find, thanks to linear stability analysis, a necessary condition about the ranks of non-local interactions for the coexistence of trees and grasses in the same space domain.

Appendix: Proof of Proposition 3.6

Suppose that a 11 (c -a 22 )µ 1 µ 2 ca 11 µ 1 -a 12 a 21 µ 2 < 1, we have:

Det(k, M 1 , M 2 ) = D G D T k 4 -a 22 D G φ M2 (k) + a 11 D T φ M1 (k) + cD G (1 -φ M2 (k)) k 2 + a 11 (a 22 -c)φ M1 (k)φ M2 (k) + ca 11 φ M1 (k) -a 12 a 21 φ M2 (k) and φ Mi (k) = sin(kM i ) kM i , i = 1, 2.
We are interested by the determination of thresholds k T , M T 1 and M T 2 so that:

Det(k T , M T 1 , M T 2 ) = 0.
These thresholds are solution of the equations: and we obtain tan(kM 1 ) = kM 1 and tan(kM 2 ) = kM 2 .

Det(k, M 1 , M 2 ) = 0, ∂Det(k, M 1 , M 2 ) ∂M 1 = 0, ∂Det(k, M 1 , M 2 ) ∂M 2 = 0 ∂Det(k, M 1 , M 2 ) ∂k = 0 ( 
Set z 1 = kM 1 and z 2 = kM 2 , then z 1 and z 2 are solution of :

tan(z) = z. (25) 
Set: (30)

Proposition 3 . 1 .

 31 (Trivial equilibrium and semi trivial equilibrium)

Proposition 3 . 5 .

 35 (Stationary pattern condition) Consider z 1 and z 2 two positive solutions of the equation tan

  (a) Grass Dynamics in space and time with M 1 = 15m. (b) Profile of grass distribution in space at initial and final time. (c) Tree Dynamics in space and time with M 2 = 30m. (d) Profile of tree distribution in space at initial and final time.

Figure 1 :

 1 Figure 1: Illustration of Grass and Tree distribution and their profile in space at initial and final times.

z 2 1 = z 1 D 4 ,z 2 D 2 1/ 4 .

 2114224 Det(k, M 1 , M 2 ) = 0 give that:(k T ) 2 = D G a 22 µ 2 + a 11 D T µ 1 + cD G (1 -µ 2 ) + √ Σ 2D G D T (26) with Σ = (D G a 22 µ 2 + a 11 D T µ 1 + cD G (1 -µ 2 )) 2 -4D G D T ((a 11 a 22 -ca 11 )µ 1 µ 2 -a 12 a 21 µ 2 + ca 11 µ 1 )and use the fact that ∂Det(k, M 1 , M 2 ) ∂k = 0, we obtain:(D G a 22 µ 2 + a 11 D T µ 1 + cD G (1 -µ 2 )) 2 = 4D G D T ((a 11 a 22 -ca 11 )µ 1 µ 2 -a 12 a 21 µ 2 + ca 11 µ 1 )(27) (a 11 a 22 -ca 11 )µ 1 µ 2 -a 12 a 21 µ 2 + ca 11 µ 1 > 0 because of assumption in (21) then, the relation in (27) is well defined and therefore: (k T ) 2 = (a 11 a 22 -ca 11 )µ 1 µ 2 -a 12 a 21 µ 2 + ca 11 µ 1 D G D T (28) and the values of M 1 and M 2 associated are M T G D T (a 11 a 22 -ca 11 ) µ 1 µ 2 + ca 11 µ 1 -a 12 a 21 µ 2 1/G D T (a 11 a 22 -ca 11 ) µ 1 µ 2 + ca 11 µ 1 -a 12 a 21 µ

Table 1 :

 1 Definition of parameters used in model[START_REF] Scholes | Tree-Grass interaction in savannas[END_REF] 

	Symbols	Definition	Units
	γG	Intrinsic growth of grass	t.ha -1
	Ω	Cooperation factor	
	f	fire frequency	
	DG	Grass biomass diffusion rate	ha 2 .yr -1
	DT	Tree biomass diffusion rate	ha 2 .yr -1

+∞ -∞ φ Mi (y)dy = 1. δG Grass biomass loss due to human activities and herbivory t.ha -1 λ f G Grass biomass loss due to fire γT G Tree grass interaction parameters ha.t -1 .yr -1 γT Intrinsic growth of trees yr -1 δT Tree biomass loss due to human activities and herbivory yr -1 λ f T Tree biomass loss due to fire p proportionnal to the inverse of biomass suffering and intermediate level of mortality t -1 .ha

Table 4 :

 4 Parameter values for simulation equilibrium E

* = (0.03; 0.99) is locally asymptotically stable in absence of non-local interactions.

  24)Differentiating Det(k, M 1 , M 2 ) with respect to M 1 and M 2 and use the fact that:∂Det(k, M 1 , M 2 ) ∂M (a 11 a 22 -ca 11 ) φ M1 (k) -D G (a 22 -c)k 2 +a 12 a 21 a 11 a 22 -ca 11 D G (a 22 -c)k 2 + a 12 a 21 a 11 a 22 -ca 11 and φ M2 (k) = -ca 11 + a 11 D T k 2 a 11 a 22 -ca 11

	and:			
				∂φ M2 ∂M 2	= 0.
	We suppose that:			
	φ M1 (k) =			
	then:			
	∂φ M1 ∂M 1	= 0 and	∂φ M2 ∂M 2	= 0
				∂φ M1 ∂M 1	= 0,

1 = 0 and ∂Det(k, M 1 , M 2 ) ∂M 2 = 0 we obtain: (a 11 a 22 -ca 11 ) φ M2 (k) + ca 11 -a 11 D T k 2 a 11 a 22 -ca 11
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