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Introduction

Many engineering problems have input parameters that are not precisely known. They are usually modeled as random variable and the propagation of uncertainty through the system may be treated in several ways, going from rough Monte Carlo simulations [START_REF] Granger | Comparative analysis of uncertainty propagation methods for robust engineering design. Uncertainty: A guide to dealing with uncertainty in quantitative risk and policy analysis[END_REF], interval arithmetic [START_REF] Moore | Methods and Applications of Interval Analysis[END_REF] or Taylor series expansion [START_REF] Ouazine | A functional approximation for retrial queues with two way communication[END_REF], to quote a few. The interested reader may also refer to the overviews [START_REF] Helton | Survey of sampling-based methods for uncertainty and sensitivity analysis[END_REF][START_REF] Ionescu-Bujor | A comparative review of sensitivity and uncertainty analysis of large-scale system, I: Deterministic methods[END_REF][START_REF] Winkler | A Comparative Review of Sensitivity and Uncertainty Analysis of Large-Scale Systems -II: Statistical Methods[END_REF], for example.

On the other hand, sensitivity analysis aims at identifying the input parameters whose uncertainty has the largest impact on the variability of some output quantities. They are two major categories: local sensitivity analysis and global sensitivity analysis. The first one is usually based on the gradient or the partial derivatives of output quantities and studies the variability in the vicinity of some set of points. One may refer to the paper of Zhou et al. [START_REF] Zhou | Local Sensitivity Analysis[END_REF] for a detailed overview of techniques belonging to that category. In this paper, we are concerned with the global sensitivity analysis of systems involving random processes, and more specifically indices belonging to Sobol's family. Those are variance-based indices and have received much attention from the mathematical and the engineering community over the past twenty years or so [START_REF] Aletia | An efficient method for uncertainty propagation in robust software performance estimation[END_REF][START_REF] Prieur | Variance-based sensitivity analysis: theory and estimation algorithms[END_REF][START_REF] Tatang | An efficient method for parametric uncertainty analysis of numerical geophysical models[END_REF].

Polynomial Chaos as a meta-model has been popularized by Ghanem and Spanos [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF] in the 90's and later generalized by Xiu and Karniadakis [START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF][START_REF] Xiu | Modeling uncertainty in flow simulations via generalized polynomial chaos[END_REF].
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Since the seminal work of Sudret [START_REF] Sudret | Global sensitivity analysis using polynomial Chaos expansion[END_REF], it quickly became obvious that using Polynomial Chaos expansion as meta-model was one of the most straightforward and efficient way of computing Sobol' indices.

Ever since, the work of researchers has spread in many directions. One of them, consists in building meta-model more efficiently, using sparse Polynomial Chaos expansion, for example [START_REF] Deman | Using sparse polynomial Chaos expansions for the global sensitivity analysis of ground water life time expectancy in a multi-layered hydrogeological model[END_REF]. Others have tried to adapt Sobol' indices for dependent input random variables, leading to different family of global sensitivity indices [START_REF] Chastaing | Generalized Sobol sensitivity indices for dependent variables: numerical methods[END_REF][START_REF] Hart | An approximation theoretic perspective of Sobol' indices with dependent variables[END_REF][START_REF] Iooss | A review on global sensitivity analysis methods[END_REF][START_REF] Kucherenkoab | Estimation of global sensitivity indices for models with dependent variables[END_REF]. Those have been compared with other global indices (Shapely and f -sensitivity, in particular); see [START_REF] Owen | Indices and Shapley Value[END_REF][START_REF] Owen | On Shapley value for Measuring Importance of Dependent Inputs[END_REF][START_REF] Rahman | The f -sensitivity index[END_REF], for example.

In this paper, we tackle the problem of defining Sobol' indices for input stochastic processes with independent increments. Assuming a model of the form Y t = g(X 1 t , ..., X d t ), with (X 1 t , ..., X d t ) d independent input stochastic processes, we explain why the output considered should be Y t -Y s instead of just Y t . Then, our sensitivity analysis on Y t -Y s can be recasted into the standard formalism of independent random variables by considering stochastic processes with independent increments. To the best of our knowledge, this paper is a first attempt to adapt Sobol' indices with stochastic processes as input variables. The reason why such problem has long been a challenge for researchers lies in the high dimensionality of stochastic processes. All current techniques trip on the so-called curse of dimensionality. In this paper, we rely on the independence of the increments of stochastic processes to handle the curse of dimensionality.

In order to make the paper self-contained, some materials that can be considered as classical and that may be found in different other places are restated. This is why the next section is devoted to recall some important notions about orthogonal polynomial and Chaos expansion [START_REF] Szegô | Orthogonal polynomials[END_REF][START_REF] Wiener | The Homogeneous Chaos[END_REF]. Then, the computation of Sobol' indices from the coefficients of Chaos polynomials is given in the context of random variables. We then move on to adapt the same ideas for input random processes with independent increments. Section 4 applies the proposed approach to two numerical examples: one with an analytical solution and one without analytical solution. The last section provides some possible extensions and concluding remarks.

Polynomial Chaos Expansion

Polynomial Chaos expansion has long been an efficient way of building a meta model from which macroscopic quantities may be computed efficiently. The next two subsections restate some of its main features.

Orthogonal Polynomials.

The most popular way to build such polynomials relies on the three-term recurrence relation (see Gautschi [5] for more details). Let V d denotes the real vector space of all polynomials in d variables with real coefficients, together with the positive inner product on V d defined as

< u, v >= I u(x)v(x)f (x)dx ∀u, v ∈ V d , (1) 
where f :

I ⊂ R d → R + is a positive integrable function of x =(x 1, x 2, . . . , x d ).
We also assume that the weight function f can be written as the product of univariate weight functions, i.e. f (x 1, x 2, ..,

x d ) = f 1 (x 1 )f 2 (x 2 ) . . . f d (x d ),
where f i : I i ⊂ R → R + are positive integrable functions. Then, the multivariate polynomial basis of degree d with (P p d +1) elements {Ψ 0 (x), Ψ 1 (x), .., Ψ P p d (x)} is built from the tensor product of the elements of a univariate polynomial basis, of degree n i.e.

Ψ α 1 ...α d (x) = d i=1 Ψ α i (x i ), (2) 
where α i ∈ {0, 1, . . . , n}. Nevertheless, not all the elements of the form (2) are kept when constructing the multivariate polynomial basis (that would lead to an incomplete basis of degree nd with (n+1) d elements). Instead, for a given degree p, only the elements that satisfy

d i=0 α i ≤ p in (2) are retained
and a one to one correspondence between the multi-index (α 0 , . . . , α d ) and the i th element Ψ i (x) of the multivariate basis is established. Doing so, it can be shown that the number of elements of a multivariate polynomial basis of degree p is

P p d + 1 = p + d d = (p + d)! d! p! . (3) 
Then, any function u : I ⊂ R d → R sufficiently regular may be approximated by its projection Π p u on such basis, i.e.

Π p u(x) = P p d i=0 u i Ψ i (x), (4) 
where u i are the coordinates of the projection of u onto the basis {Ψ i } 0≤i≤P p d . The ideas presented above in a deterministic context may also be efficiently used in the field of probability, where orthogonal polynomials are usually referred to as Polynomial Chaos (PC).

Polynomial Chaos expansion.

We now denote by (Ω, A, P) the probability space, where Ω is the set of all possible outcomes, A is a σ-algebra over Ω, and P is a function A → [0, 1] that gives a probability measure on A. Let I = I 1 × ... × I d be a domain of R d and X = (X 1 , • • • , X d ) be an I-valued independent random vector that describes input uncertainties. The probability law of X can be defined by the probability density function

f X (x) = d i=1 f i (x i ), (5) 
where f i : I i → R + is the marginal probability density of X i defined on (Ω i , A i , P i ). Let L 2 (Ω i , A i , P i ) denotes the space of real random variables with finite second order moments, i.e. such that

E(X 2 i ) = I i x 2 i f i (x i )dx i < ∞, (6) 
where E is the mathematical expectation. The Hilbert spaces L 2 (Ω i , A i , P i ) can be provided with a set of complete orthogonal basis {Ψ i j (x)} j≥0 that are consistent with the density of X i . For example, Hermite polynomials are associated with Gaussian distributions and Legendre polynomials are associated with uniform distributions. In the same manner, L 2 (Ω, A, P) is provided with a set of complete multivariate orthogonal basis {Ψ j (x)} j≥0 which, in turn, is consistent with the density of X.

Let Y = Y (X 1 , . . . , X d ) : Ω → R represent a mathematical model belonging to L 2 (Ω, A, P). Then, it can be represented as [START_REF] Ghanem | Stochastic finite elements: a spectral approach[END_REF][START_REF] Xiu | The Wiener-Askey polynomial chaos for stochastic differential equations[END_REF] 

Y (X 1 , .., X d ) = z 0 Ψ 0 + ∞ i 1 =1 z i 1 Ψ 1 (X i 1 ) + ∞ i 1 =1 i 1 i 2 =1 z i 1 i 2 Ψ 2 (X i 1 , X i 2 ) + + ∞ i 1 =1 i 1 i 2 =1 i 2 i 3 =1 z i 1 i 2 i 3 Ψ 3 (X i 1 , X i 2 , X i 3 ) + • • • , (7) 
which, after some rearranging, can be rewritten in a more convenient way as

Y (X) = ∞ j=0 y j Ψ j (X). (8) 
Similarly to equation (4), the above series is truncated by keeping terms up to a degree p

Y (X) ≈ Π p Y (X) = P p d j=0 y j Ψ j (X). (9) 
The way to compute the PC coefficients {y j } 0≤j≤P p d of equation ( 9) can be split into two different families: projection methods and regression methods [START_REF] Pettersson | Polynomial Chaos methods for hyperbolic partial differential equations[END_REF]. Here, we use the first one which consists in premultiplying (9) by Ψ j (X) and by taking the expectation of the resulting product. The orthogonality of the PC basis cancels most of the terms, leading to

y j = E(Y (X)Ψ j (X)) = I Y (x)Ψ j (x)f X (x)dx for j = 0, 1.., P p d . (10) 

Computing PC coefficients.

The method to evaluate the integral ( 10) is mainly determined by the dimension d of the input random. For high values of d, Monte-Carlo sampling simulation is the method of choice. For moderate values of d, Gaussian quadrature rules remain most effective and between those two extreme cases, sparse quadrature rules might be a good choice. In this paper, the maximum value of d is d = 6, so we evaluate such integrals using Gaussian quadrature rules [START_REF] Golub | Calculation of Gauss quadrature rules[END_REF] of the form

I Y (x)f X (x)dx ≈ Ng 1 i 1 =1 Ng 2 i 2 =1 ... Ng d i d =1 ω i 1 ω i 2 ..ω i d Y ( x i 1 , x i 2 .., x i d ), (11) 
where {ω i k } 1≤i k ≤Ng k are the quadrature weight and { x i k } 1≤i k ≤Ng k are the quadrature points. The Gaussian quadrature rules are built such that the integral is exact if Y is a multivariate polynomial containing monomials x i k of maximum degree 2N g k -1. From equations ( 10) and [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF], we see that it necessary to evaluate the response

Y at N g 1 × N g 2 ... × N g d deterministic quadrature points ( x i 1 , x i 2 .
., x i d ) in order to compute the PC coefficients.

Since Ψ 0 = 1, it can easily be shown that the first coefficient of the PC expansion is the expectation of the random response of the system, i.e.

E(Y (X)) = y 0 . (12) 
Similarly, by considering the approximation of

Y 2 Y (X) 2 ≈ P p d i=0 P p d j=0 y i y j Ψ i (X)Ψ j (X), (13) 
and taking the expectation on each side, the orthogonality of the PC basis leads to

E(Y (X) 2 ) = P p d i=0 y 2 i , (14) 
from which the variance of the random response of the system can be evaluated. The PC decomposition not only provides a convenient way to compute first and second order moments, but also Sobol' indices, as will be explained in the next section.

Sensitivity Analysis

Sobol' indices for random variables.

As in the previous section, we consider the mathematical model Y = Y (X) and we assume that Y belong to L 2 (Ω, A, P). Sobol has shown that any square integrable function could be expressed as the sum of 2 d terms of increasing dimension such that

Y (x) = Y 0 + d i 1 =1 Y i 1 (x i 1 ) + 1≤i 1 <i 2 ≤d Y i 1 i 2 (x i 1 , x i 2 ) + • • • + Y i 1 ...i d (x i 1 , .., x i d ), (15) with 
I i k Y i 1 ...is (x i 1 , .., x is )dx i k = 0 for k ∈ {1, ..., s} and s ∈ {1, ..., d}. (16) 
The above property ensures the uniqueness of the decomposition together with the pairwise orthogonality of the functions appearing into equation [START_REF] Kucherenkoab | Estimation of global sensitivity indices for models with dependent variables[END_REF], with respect to the dot product defined by equation [START_REF] Aletia | An efficient method for uncertainty propagation in robust software performance estimation[END_REF]. Thus, the total variance of Y denoted by V (Y ) can be decomposed as follows:

V (Y ) = d i 1 =1 V (Y i 1 (X i 1 )) + 1≤i 1 <i 2 ≤d V (Y i 1 i 2 (X i 1 , X i 2 )) + • • • +V (Y i 1 ...i d (X i 1 , .., X i d )) (17) 
= d i 1 =1 V i 1 + 1≤i 1 <i 2 ≤d V i 1 i 2 + • • • + V i 1 ...i d ,
where

V i 1 = V (E(Y /X i 1 )) V i 1 i 2 = V (E(Y /X i 1 , X i 2 )) -V i 1 -V i 2 V i 1 i 2 i 3 = V (E(Y /X i 1 , X i 2 , X i 3 )) -V i 1 i 2 -V i 1 i 3 -V i 2 i 3 -V i 1 -V i 2 -V i 3 • • • (18) V i 1 ...i d = V - d i=1 V i - 1≤i 1 <i 2 ≤d V i 1 i 2 -• • • - 1≤i 1 <i 2 ...<i d-1 ≤d V i 1 ...i d-1
Then, Sobol' indices of order k introduced in 1993 in [START_REF] Sobol | Sensitivity estimates for nonlinear mathematical models[END_REF] are given by

S i 1 ...i k = V i 1 ...i k V . ( 19 
)
In particular, the first order Sobol' indices that measures the influence of the input parameter X i is defined by

S i = V (E(Y /X i )) V (Y ) = V i V . ( 20 
)
Although Sobol' indices could be computed by estimating integrals appearing into equations [START_REF] Owen | Indices and Shapley Value[END_REF], that would be both computationally expensive and hardly tractable. In the seminal work of Sudret [START_REF] Sudret | Global sensitivity analysis using polynomial Chaos expansion[END_REF], it is noticed that PC expansion has exactly the same structure and property as Sobol' decomposition [START_REF] Kucherenkoab | Estimation of global sensitivity indices for models with dependent variables[END_REF]. This is why such meta model has met such a tremendous success when it comes to computing Sobol' indices. Let denote by I i 1 ,i 2 ,...,is (s ≤ d) the set of d-dimensional vectors α = (α 1 , . . . , α d ) with α = 0 and 0 ≤ α 1 ≤ . . . ≤ α d ≤ d that selects elements of the PC basis Ψ α 1 ...α d defined by (2) containing solely the variables X i 1 , X i 2 , . . . , X is . For example, the multi-indices defined by I i will select elements of the PC basis depending only on the variable X i . Similarly, I i,j will select elements of the PC basis that depend on X i and X j , to the exclusion of any other variable. With this notation, Sobol's indices of order k are simply given as a function of the PC coefficients as follows (see [START_REF] Sudret | Global sensitivity analysis using polynomial Chaos expansion[END_REF] for details):

S i 1 ...i k = 1 V (α 1 ,...,α d )∈I i 1 ,...,i k y 2 α 1 ...α d . (21) 
For a problem with d input random parameters, (2 d -1) Sobol' indices can be computed and when d is large, it becomes difficult to draw conclusions from these too numerous indices. This is why, in 1996, Homma and Saltelli [START_REF] Homma | Importance measures in global sensitivity analysis of nonlinear models[END_REF] introduced the total sensitivity indices S T i (i = 1, . . . , d) which measures the total effect of the i th random input parameter. It is defined as the sum of all sensitivity indices S i 1 ...i k (k = 1, . . . , d) for which, one of the indices i 1 , i 2 , . . . , i k is equal to i, i.e.

S T i = d k=1 (i 1 ,...,i k )∈J k i S i 1 ...i k , (22) 
where J k i is the set of k-dimensional vectors (i 1 , . . . , i k ) with 1 ≤ i 1 < . . . < i k ≤ d, such that one of its components is equal to i. These indices can also be computed from the PC expansion as follows:

S T i = 1 - 1 V (α 1 ,...,α d )∈I i y 2 α 1 ...α d , (23) 
where I i is the complementary set of I i .

3.2. Sobol' indices for processes with independent increments.

Let (X i t )

i∈{1,...d} t∈[0;T f ] denote d independent stochastic processes with independent increments on a filtered probability space (Ω, A, (A t ) t∈[0;T f ] , P). For notation convenience we gather those processes into a vector X t = (X 1 t , ..., X d t ) and we assume that a physical model is represented by a function g : R d → R such that Y t = g(X t ). Since X 1 t , ..., X d t are independent processes, for a fixed value of t, they can be seen as independent random variables and Sobol' indices described in the previous sections could be straightforwardly used. However, doing so, a key property of stochastic processes is not taken into account. Indeed, for (s, t) ∈ [0, T f ] × [0, T f ], with s < t, X t and X s are dependent and this should be reflected in the model output. This is why instead of considering Y t for the model output, it is essential to consider Y t -Y s for all (s, t) ∈ [0, T f ] 2 and perform a sensitivity analysis on that quantity. Thus, in this section, we introduce Sobol' indices for the model

Y t -Y s = g(X t ) -g(X s ) (24) = G(X t , X s ),
where the function G : R 2d → R is such that its arguments X t and X s are now dependent. The essential point in the proposed procedure is to transform the G function into a function whose arguments will be independent. This is why we choose processes with independent increments at the entry.

Let's introduce the following notation (for (s, t) ∈ [0, T f ] 2 and i ∈ {1, ...d}):

∆ t s X i = X i t -X i s ( 25 
)
with X i 0 = 0. Then, for i ∈ {1, ...d}, ∆ t s X i is independent from ∆ t s X i for all s, t, s , t such as 0 < s < t ≤ s < t . We introduce the vector

∆ t s X = (∆ t s X 1 , ..., ∆ t s X d ) such that, we can write Y t -Y s = G(X t , X s ) (26) = G(∆ t s X + X s , X s ) = G(∆ t s X+∆ s 0 X, ∆ s 0 X) = H(∆ t
s X, ∆ s 0 X) with the function H : R 2d → R such that its arguments ∆ t s X and ∆ s 0 X are now independent. For fixed values of s and t into [0, T f ], we define the random variables N i (i ∈ {1, ...2d}) by

N i = ∆ t s X i for i = 1, ..., d ∆ s 0 X i-d for i = d + 1, ..., 2d , (27) 
and we gather those independent random variables into a 2d dimensional vector N = (N 1 , ..., N 2d ) so that our model now writes

Y t -Y s = H(N). (28) 
By proceeding that way, we have transformed our initial problem with 2d dependent random processes at the entry into a problem with 2d independent random variables (for s and t fixed into [0, T f ]). Therefore, Sobol' indices described in the previous section can be used as is on the function H(N), provided that this function is square integrable. It should be noted that Sobol' indices are now functions of two variables (s, t). For example, for i = 1, ..., d

S i (s, t) = V (E(Y t -Y s |N i )) V (Y t -Y s ) (29) = V (E(Y t -Y s |∆ t s X i )) V (Y t -Y s ) = V (E(Y t -Y s |X i t -X i s )) V (Y t -Y s )
.

Setting s = 0, in the above expression leads to the standard variance decomposition with Sobol' indices of V (Y t ). The interpretation of these indices is as follows: considering two points s and t of the trajectory of a process, S i (s, t) represents the influence of the i th entry stochastic process ∆ t s X i on the same two points of the output process ∆ t s Y = Y t -Y s . This is illustrated in Figure 1 that shows a sample path of (X i t ) t∈[0,T f ] and the corresponding sample path of (Y t ) t∈[0,T f ] together with the quantities ∆ t s X i and ∆ t s Y on those trajectories.

0 s t 1 t -0.5 X(s) X(t) 3.5 X t ( ) 0 s t 1 t 0.5 Y(s) Y(t) 3 Y t ( ) s t Y( ) s t X( ) Figure 1. Sample path of (X i t ) t∈[0,T f ] and (Y t ) t∈[0,T f ]
Note that the last d random variables of the vector N are unimportant in terms of interpretation since they have been introduced for the sole purpose of decoupling X t from X s (see equations [START_REF] Tatang | An efficient method for parametric uncertainty analysis of numerical geophysical models[END_REF]). Nevertheless, they may be useful for computing total Sobol' indices, since

S T i (s, t) = 2d k=1 (i 1 ,...,i k )∈J k i S i 1 ...i k (s, t), (30) 
where the notations are the same as in section 3.1.

Examples of application

In this section, we consider two examples from which a meta-model based on Polynomial Chaos is constructed. Sobol' indices are computed from the coefficients of the PC expansion. The first one is an academic example, so that numerical results can be compared with the exact solution.

Analytical example.

Here we consider the following mathematical model for Y t (also known as Ishigami function, [START_REF] Ishigami | An importance quantification technique in uncertainty analysis for computer models[END_REF]):

Y t = g(B t , M t , Z t ) = a sin 2 (M t ) + (1 + bZ 4 t ) sin(B t ) (31) 
where a and b are some constants and (B t ), (M t ) and (Z t ) are three independent stochastic processes defined by

M t = e t (K t -1) = t 0 e s dL s Z t = O t -1 T -t = t 0 1 T -u dW u (32) 
with (B t ), (L t ) and (W t ) three independent Brownian motions and T a positive parameter. Note that (K t ) is Ornstein-Uhlenbeck process, (O t ) a Brownian bridge and (W t ) a Wiener process. All three are Gaussian with independent increments. By adopting the same approach as in section 3.2, we have

Y t -Y s = g(B t , M t , Z t ) -g(B s , M s , Z s ) = g((B t -B s ) + B s , (M t -M s ) + M s , (Z t -Z s ) + Z s ) -g(B s , M s , Z s ) = H(B t -B s , M t -M s , Z t -Z s , B s -B 0 , M s -M 0 , Z s -Z 0 ) , ( 33 
)
where the function H : R 6 → R can be explicitly written as

H(x 1 , x 2 , x 3 , x 4 , x 5 , x 6 ) = a sin 2 (x 2 + x 5 ) + (1 + b(x 3 + x 6 ) 4 ) sin(x 1 + x 4 ) -a sin 2 (x 5 ) -(1 + b(x 6 ) 4 ) sin(x 4 ) (34) 
It is this function that will be projected onto a PC basis and that will serve to compute Sobol' indices. Hermite polynomials are used to build the multivariate basis. They are orthogonal with respect to a dot product defined with a Gaussian density with zero means, and variances given below

σ 2 1 = t -s σ 2 4 = s σ 2 2 = e 2t -e 2s 2 σ 2 5 = e 2s -1 2 σ 2 3 = t -s (T -t)(T -s) σ 2 6 = s T (T -s) (35)
For this academic example, results can be compared with the exact value of the indices that can be computed with the following formula (valid for t = s):

S 1 (s, t) = V (E(Y t -Y s |B t -B s )) V (Y t -Y s ) , (36) 
S 2 (s, t) = V (E(Y t -Y s |M t -M s )) V (Y t -Y s ) , S 3 (s, t) = V (E(Y t -Y s |Z t -Z s )) V (Y t -Y s ) ,
for the first order indices, and

S 12 (s, t) = V (E(Y t -Y s |B t -B s , M t -M s )) V (Y t -Y s ) -S 1 (s, t) -S 2 (s, t),( 37 
) S 13 (s, t) = V (E(Y t -Y s |B t -B s , Z t -Z s )) V (Y t -Y s ) -S 1 (s, t) -S 3 (s, t), S 23 (s, t) = V (E(Y t -Y s |M t -M s , Z t -Z s )) V (Y t -Y s ) -S 2 (s, t) -S 3 (s, t),
for the second order indices. The exact expression of the quantities appearing into equations ( 36)-( 37) can be found in the appendix. For the numerical simulations, the parameters are taken equal to a = 7, b = 0.1, T = 1.1 and (s, t) ∈ [0, 1] 2 . The function ( 34) is projected onto a multivariate PC basis of degree 12. Figures 23show the first order indices and Figure 4 show the second order index for both the exact solution (left) and the numerical solution (right). Only non-zeros indices are represented. We see that a degree 12 multivariate polynomial is sufficient to accurately represent our model since the exact and the approximated indices match very well. Note that it is not necessary to have a high degree of accuracy for Sobol' indices since the information to be considered is the relative importance of those indices. The L 2 norm of the error of a Sobol' indice S over the domain of computation is defined by

E(S) = [0,1] 2 (S a (s, t) -S e (s, t)) 2 dsdt,
where S a and S e stands for the approximate and the exact value of S. We compute these errors for the non-zeros indices using Fejer's quadrature rule [START_REF] Dahlquist | Numerical methods in scientific computing[END_REF]. Table 1 gives the error for increasing polynomial degrees and shows the accuracy of the proposed method. All the univariate polynomials have the same degree in each of the six dimensions, so that the total degree of the multivariate PC expansion is a multiple of six.

In terms of interpretation, we see that the relative importance of the input ∆ t s X i on the output ∆ t s Y strongly depends on the value of |s -t|. For example, S 2 and S 13 show that for s t , the input stochastic processes associated with those indices have no influence on the output. On the other hand, for s t 0, S 1 shows that B t -B s has a strong influence on the output. 4.2. Numerical example without analytical solution.

Description of the deterministic problem.

In this section, we study the deterministic trajectory of a projectile subject to air resistance modeled by a force proportional to the square of the velocity. In that case, no analytical solution exists and one has to resort to numerical techniques in order to compute the range of the projectile. 

         m dv dt = -mg sin(α) -λv 2 v 2 r = -v dα dt = g cos(α) , (39) 
Following [START_REF] Vial | Horizontal distance travelled by a mobile experiencing a quadratic drag force: normalized distance and parametrization[END_REF], we divide the two equations of (39), which leads to the following differential equation for v :

m dv dt -v dα dt = -mg sin(α) -λv 2 g cos(α) , which gives 1 v dv dα = tan(α) + λv 2 mg cos(α) . ( 40 
)
Assuming the initial condition v(α 0 ) = v 0 for the velocity (see Figure 5) the solution to the differential equation (40) writes

v 2 (α) = v 2 0 cos 2 (α 0 ) cos 2 (α) 1 - v 2 0 v 2 lim cos 2 (α 0 ) ln(tan( u 2 + π 4 )) + sin(u) cos 2 (u) α α 0 , (41) 
with the limit velocity v lim defined by

v lim = mg λ . ( 42 
)
The second equation of (39) allows us to write

         dx = v(α) cos(α)dt = - 1 g v 2 (α)dα dy = v(α) sin(α)dt = - 1 g v 2 (α) tan(α)dα , (43) 
such that, after integration, we get the positions of the projectile

       x(α) = - 1 g α α 0 v 2 (u)du + x 0 y(α) = - 1 g α α 0 v 2 (u) tan(u)du + y 0 , (44) 
where (x 0 , y 0 ) is the initial position of the object.

Here, we are interested in the range D of the mobile. It can be computed by first determining the angle α s for which y(α s ) = 0. This angle may be computed by solving the nonlinear equation y(α s ) = 0 with the algorithm of Newton, which writes

α k+1 = α k - y(α k ) y (α k ) = α k - α k α 0 v 2 (u) tan(u)du v 2 (α k ) tan(α k ) .
The value used to initiate the recurrence relation is α s = -α 0 and the integral in the above formula, is evaluated using the Fejer's quadrature rule of type I [START_REF] Dahlquist | Numerical methods in scientific computing[END_REF]. In the next section, three input parameters of this problem will be considered as stochastic and a sensitivity analysis will be performed.

Study of the stochastic problem.

We now consider the deflagration of an object and we assume that the trajectory of each fragment of the object may be described by a stochastic process. For that, three independent input parameteres are considered as Gaussian processes with independent increments. They are the initial velocity V 0 t , the starting angle α 0 t and the limit velocity V lim t . The index t ∈ [0, T f ] of the stochastic processes represent the location of the fragment onto the initial object. We assume that two fragments close to each other will be indexed by parameters (s, t) such that |s -t| is small. The quantity of interest, i.e. the range D = D t of the projectile, can also be considered as a stochastic process which is a nonlinear function of the entry parameters. This case study focuses on the influence of ∆ t s V 0 , ∆ t s α 0 , and ∆ t s V lim on the range difference ∆ t s D = D t -D s of two fragments initially located at position s and t. We assume that the input processes are Gaussian processes having independent increments with the following means and variances (for The meta-model consists of a multivariate PC expansion of degree 12. Figures 67891011show the first and second order Sobol' indices. According to the range of the values taken by S 12 , S 13 and S 23 for all (s, t) ∈ [0, 1] 2 , we can say that the combined influence of two input stochastic processes onto ∆ t s D can be neglected. For the first order indices S 2 and S 3 , (associated with ∆ t s α 0 and ∆ t s V lim , respectively), it is when s 0 (or t 0, by symmetry) that the influence associated with these indices is most important. On the other hand, S 1 (associated with ∆ t s V 0 ) shows a bigger influence of ∆ t s V 0 as (s, t) → (1, 0) (or (s, t) → (0, 1)). 

t ∈ [0, T f ] = [0, 1]): • E(V 0 t ) = 300 and V ar(V 0 t ) = 40t ; • E(α 0 t ) = π/4 and V ar(α 0 t ) = 0.03t ; • E(V lim t ) = 800 and V ar(V lim t ) = 4000t .

Conclusion

In this paper, we have developed a numerical approach based on Sobol' indices to study the influence of input processes with independent increments that propagate into a physical system. In order to take into account the specificity of stochastic processes, the study is carried out on the model output Y t -Y s instead of Y t . The fact that the input processes have independent increments allows us to reformulate the problem such that it can be treated as independent random variables. Therefore, polynomial chaos expansion may be used as meta-model and Sobol' indices can easily be computed from the PC coefficients. To illustrate the applicability of the proposed approach, one academic example based on Ishigami function is studied and a mechanical model without analytical solution is also treated. Further work should include the possibility to use other families of stochastic processes as input variables of our model.

The authors would like to thank the anonymous reviewers for their valuable remarks and constructive comments that contributed to improve the final version of the paper.

Appendix

In this appendix, we give the details of the expression appearing into the equations ( 36)-(37). Starting with the denominator of these equations, we have For the numerator of the first order indices (see equations (36)), we have And finally, for the numerator of the second order indices (see equations (37)), we have

V (Y t -Y s ) = V (Y t ) + V (Y s ) -2(E(Y t -Y s ) -E(Y t )E(Y s )), = E Y 2 t -(E(Y t )) 2 + E Y 2 s -(E(Y s )) 2 -
V (E(Y t -Y s |Z t -Z s )) = 0, V (E(Y t -Y s |B t -B s )) = e -s 1 -e -2(t-s) 2 1 + 3b t T (T -t)
V (E(Y t -Y s |B t -B s , M t -M s )) = 0, V (E(Y t -Y s |M t -M s , Z t -Z s )) = 0,
V (E(Y t -Y s |B t -B s , Z t -Z s )) = e -s 1 -e -2(t-s) 
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 2 Figure 2. The first order index S 1 for PC expansion (left) and for the exact solution (right)
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 34 Figure 3. The first order index S 2 for PC expansion (left) and for the exact solution (right)
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 5 Figure 5. Local Frenet coordinates system and trajectory of the projectile
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 6 Figure 6. The first order Sobol'index S 1
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 789 Figure 7. The first order Sobol'index S 2
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 1011 Figure 10. The second order Sobol'index S 13
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  -s) t -s (T -t)(T -s) 3 +6b s T (T -s) 2 + 6b t -s (T -t)(T -s) 2 + 12b s T (T -s) t -s (T -t)(T -s).

Table 1 .

 1 L 2 norm of the error of Sobol' indices S 1 , S 2 and S 13 for increasing multivariate PC approximation degrees.

  2(E(Y t Y s ) -E(Y t )E(Y s )),

	with E(Y t ) =	a 2	1 -e 1-e 2t , and	
	E Y 2 t	= 1 + 6b	t T (T -t)	2	+ 105b 2	t T (T -t)	4	1 -e -2t 2
					+a 2 3 -4e 1-e 2t + e 4(1-e 2t ) 8	,
	and eventually						
	E(Y t Y s ) = 1 + 3b		s T (T -s)	2	+ 3b	T (T -t) t	2
	+b 2	s T (T -s)	2	9	t -s (T -t)(T -s)	2	+ 90	t -s (T -t)(T -s)	×	s T (T -s)
	+ 105	s T (T -s)	2		2 (t-s) 1 -e -2s e -1 2
	+a 2 1 -e e 2s -e 2t 2	×	1 -e 4(1-e 2s ) 8	+	1 + e e 2s -e 2t 2	×	3 -4e (1-e 2s ) + e 4(1-e 2s ) 8	.
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