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GLOBAL SENSITIVITY ANALYSIS FOR STOCHASTIC
PROCESSES WITH INDEPENDENT INCREMENTS

EMELINE GAYRARD, CÉDRIC CHAUVIÈRE, HACÈNE DJELLOUT,
PIERRE BONNET, AND DON-PIERRE ZAPPA

Abstract. This paper is a first attempt to develop a numerical tech-
nique to analyze the sensitivity and the propagation of uncertainty
through a system with stochastic processes having independent incre-
ments as input. Similar to Sobol’ indices for random variables, a meta-
model based on Chaos expansions is used and it is shown to be well
suited to address such problems. New global sensitivity indices are also
introduced to tackle the specificity of stochastic processes. The accuracy
and the efficiency of the proposed method is demonstrated on an ana-
lytical example with three different input stochastic processes: a Wiener
process; an Ornstein-Uhlenbeck process and a Brownian bridge process.
The considered output, which is function of these three processes, is a
non-Gaussian process. Then, we apply the same ideas on an example
without known analytical solution.

Key words: Stochastic processes, Sobol’ indices, Chaos expansions,
Orthogonal polynomial.
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1. Introduction

Many engineering problems have input parameters that are not precisely
known. They are usually modeled as random variable and the propagation of
uncertainty through the system may be treated in several ways, going from
rough Monte Carlo simulations [8], interval arithmetic [16] or Taylor series
expansion [17], to quote a few. The interested reader may also refer to the
overviews [10, 12, 29], for example.

On the other hand, sensitivity analysis aims at identifying the input pa-
rameters whose uncertainty has the largest impact on the variability of some
output quantities. They are two major categories: local sensitivity analysis
and global sensitivity analysis. The first one is usually based on the gradient
or the partial derivatives of output quantities and studies the variability in
the vicinity of some set of points. One may refer to the paper of Zhou et al.
[32] for a detailed overview of techniques belonging to that category. In this
paper, we are concerned with the global sensitivity analysis of systems in-
volving random processes, and more specifically indices belonging to Sobol’s
family. Those are variance-based indices and have received much attention
from the mathematical and the engineering community over the past twenty
years or so [1, 21, 26].

Polynomial Chaos as a meta-model has been popularized by Ghanem and
Spanos [6] in the 90’s and later generalized by Xiu and Karniadakis [30, 31].
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Since the seminal work of Sudret [24], it quickly became obvious that using
Polynomial Chaos expansion as meta-model was one of the most straightfor-
ward and efficient way of computing Sobol’ indices.

Ever since, the work of researchers has spread in many directions. One
of them, consists in building meta-model more efficiently, using sparse Poly-
nomial Chaos expansion, for example [4]. Others have tried to adapt Sobol’
indices for dependent input random variables, leading to different family of
global sensitivity indices [2, 9, 13, 15]. Those have been compared with other
global indices (Shapely and f -sensitivity, in particular); see [18, 19, 22], for
example.

In this paper, we tackle the problem of defining Sobol’ indices for input
stochastic processes with independent increments. Assuming a model of the
form Yt = g(X1

t , ..., X
d
t ), with (X1

t , ..., X
d
t ) d independent input stochastic

processes, we explain why the output considered should be Yt − Ys instead
of just Yt. Then, our sensitivity analysis on Yt − Ys can be recasted into the
standard formalism of independent random variables by considering stochas-
tic processes with independent increments. To the best of our knowledge,
this paper is a first attempt to adapt Sobol’ indices with stochastic processes
as input variables. The reason why such problem has long been a challenge
for researchers lies in the high dimensionality of stochastic processes. All
current techniques trip on the so-called curse of dimensionality. In this pa-
per, we rely on the independence of the increments of stochastic processes
to handle the curse of dimensionality.

In order to make the paper self-contained, some materials that can be
considered as classical and that may be found in different other places are
restated. This is why the next section is devoted to recall some important
notions about orthogonal polynomial and Chaos expansion [25, 28]. Then,
the computation of Sobol’ indices from the coefficients of Chaos polynomials
is given in the context of random variables. We then move on to adapt
the same ideas for input random processes with independent increments.
Section 4 applies the proposed approach to two numerical examples: one
with an analytical solution and one without analytical solution. The last
section provides some possible extensions and concluding remarks.

2. Polynomial Chaos Expansion

Polynomial Chaos expansion has long been an efficient way of building a
meta model from which macroscopic quantities may be computed efficiently.
The next two subsections restate some of its main features.

2.1. Orthogonal Polynomials.

The most popular way to build such polynomials relies on the three-term
recurrence relation (see Gautschi [5] for more details). Let V d denotes the
real vector space of all polynomials in d variables with real coefficients, to-
gether with the positive inner product on V d defined as

< u, v >=

∫
I
u(x)v(x)f(x)dx ∀u, v ∈ V d, (1)



GLOBAL SENSITIVITY ANALYSIS FOR STOCHASTIC PROCESSES 3

where f : I ⊂ Rd → R+ is a positive integrable function of x =(x1,x2, . . . , xd).
We also assume that the weight function f can be written as the product
of univariate weight functions, i.e. f(x1,x2,.., xd) = f1(x1)f2(x2) . . . fd(xd),
where fi : Ii ⊂ R → R+ are positive integrable functions. Then, the multi-
variate polynomial basis of degree d with (P pd +1) elements {Ψ0(x),Ψ1(x), ..,
ΨP p

d
(x)} is built from the tensor product of the elements of a univariate poly-

nomial basis, of degree n i.e.

Ψα1...αd
(x) =

d∏
i=1

Ψαi(xi), (2)

where αi ∈ {0, 1, . . . , n}. Nevertheless, not all the elements of the form (2)
are kept when constructing the multivariate polynomial basis (that would
lead to an incomplete basis of degree nd with (n+1)d elements). Instead, for

a given degree p, only the elements that satisfy
d∑
i=0

αi ≤ p in (2) are retained

and a one to one correspondence between the multi-index (α0, . . . , αd) and
the ith element Ψi(x) of the multivariate basis is established. Doing so, it
can be shown that the number of elements of a multivariate polynomial basis
of degree p is

P pd + 1 =

(
p+ d
d

)
=

(p+ d)!

d! p!
. (3)

Then, any function u : I ⊂ Rd → R sufficiently regular may be approxi-
mated by its projection Πpu on such basis, i.e.

Πpu(x) =

P p
d∑

i=0

ûiΨi(x), (4)

where ûi are the coordinates of the projection of u onto the basis {Ψi}0≤i≤P p
d
.

The ideas presented above in a deterministic context may also be efficiently
used in the field of probability, where orthogonal polynomials are usually
referred to as Polynomial Chaos (PC).

2.2. Polynomial Chaos expansion.
We now denote by (Ω,A,P) the probability space, where Ω is the set of all

possible outcomes, A is a σ-algebra over Ω, and P is a function A → [0, 1]
that gives a probability measure on A. Let I = I1 × ...× Id be a domain of
Rd and X = (X1, · · · , Xd) be an I-valued independent random vector that
describes input uncertainties. The probability law of X can be defined by
the probability density function

fX(x) =
d∏
i=1

fi(xi), (5)

where fi : Ii → R+ is the marginal probability density of Xi defined on
(Ωi,Ai,Pi). Let L2(Ωi,Ai,Pi) denotes the space of real random variables
with finite second order moments, i.e. such that

E(X2
i ) =

∫
Ii

x2i fi(xi)dxi <∞, (6)
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where E is the mathematical expectation. The Hilbert spaces L2(Ωi,Ai,Pi)
can be provided with a set of complete orthogonal basis {Ψi

j(x)}j≥0 that
are consistent with the density of Xi. For example, Hermite polynomials
are associated with Gaussian distributions and Legendre polynomials are
associated with uniform distributions. In the same manner, L2(Ω,A,P) is
provided with a set of complete multivariate orthogonal basis {Ψj(x)}j≥0
which, in turn, is consistent with the density of X.

Let Y = Y (X1, . . . , Xd) : Ω→ R represent a mathematical model belong-
ing to L2(Ω,A,P). Then, it can be represented as [6, 30]

Y (X1, .., Xd) = z0Ψ0 +
∞∑
i1=1

zi1Ψ1(Xi1) +
∞∑
i1=1

i1∑
i2=1

zi1i2Ψ2(Xi1 , Xi2) +

+
∞∑
i1=1

i1∑
i2=1

i2∑
i3=1

zi1i2i3Ψ3(Xi1 , Xi2 , Xi3) + · · · , (7)

which, after some rearranging, can be rewritten in a more convenient way as

Y (X) =

∞∑
j=0

yjΨj(X). (8)

Similarly to equation (4), the above series is truncated by keeping terms up
to a degree p

Y (X) ≈ ΠpY (X) =

P p
d∑

j=0

yjΨj(X). (9)

The way to compute the PC coefficients {yj}0≤j≤P p
d
of equation (9) can be

split into two different families: projection methods and regression methods
[20]. Here, we use the first one which consists in premultiplying (9) by Ψj(X)
and by taking the expectation of the resulting product. The orthogonality
of the PC basis cancels most of the terms, leading to

yj = E(Y (X)Ψj(X)) =

∫
I

Y (x)Ψj(x)fX(x)dx for j = 0, 1.., P pd . (10)

2.3. Computing PC coefficients.
The method to evaluate the integral (10) is mainly determined by the

dimension d of the input random. For high values of d, Monte-Carlo sampling
simulation is the method of choice. For moderate values of d, Gaussian
quadrature rules remain most effective and between those two extreme cases,
sparse quadrature rules might be a good choice. In this paper, the maximum
value of d is d = 6, so we evaluate such integrals using Gaussian quadrature
rules [7] of the form∫

I

Y (x)fX(x)dx ≈
Ng1∑
i1=1

Ng2∑
i2=1

...

Ngd∑
id=1

ωi1ωi2 ..ωidY (x̃i1 , x̃i2 .., x̃id), (11)

where {ωik}1≤ik≤Ngk
are the quadrature weight and {x̃ik}1≤ik≤Ngk

are the
quadrature points. The Gaussian quadrature rules are built such that the
integral is exact if Y is a multivariate polynomial containing monomials xik
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of maximum degree 2Ngk − 1. From equations (10) and (11), we see that
it necessary to evaluate the response Y at Ng1 ×Ng2 ... ×Ngd deterministic
quadrature points (x̃i1 , x̃i2 .., x̃id) in order to compute the PC coefficients.
Since Ψ0 = 1, it can easily be shown that the first coefficient of the PC
expansion is the expectation of the random response of the system, i.e.

E(Y (X)) = y0. (12)

Similarly, by considering the approximation of Y 2

Y (X)2 ≈
P p
d∑

i=0

P p
d∑

j=0

yiyjΨi(X)Ψj(X), (13)

and taking the expectation on each side, the orthogonality of the PC basis
leads to

E(Y (X)2) =

P p
d∑

i=0

y2i , (14)

from which the variance of the random response of the system can be evalu-
ated. The PC decomposition not only provides a convenient way to compute
first and second order moments, but also Sobol’ indices, as will be explained
in the next section.

3. Sensitivity Analysis

3.1. Sobol’ indices for random variables.
As in the previous section, we consider the mathematical model Y = Y (X)

and we assume that Y belong to L2(Ω,A,P). Sobol has shown that any
square integrable function could be expressed as the sum of 2d terms of
increasing dimension such that

Y (x) = Y0 +

d∑
i1=1

Yi1(xi1) +
∑

1≤i1<i2≤d
Yi1i2(xi1 , xi2) + · · ·+ Yi1...id(xi1 , .., xid),

(15)
with∫

Iik

Yi1...is(xi1 , .., xis)dxik = 0 for k ∈ {1, ..., s} and s ∈ {1, ..., d}. (16)

The above property ensures the uniqueness of the decomposition together
with the pairwise orthogonality of the functions appearing into equation
(15), with respect to the dot product defined by equation (1). Thus, the
total variance of Y denoted by V (Y ) can be decomposed as follows:

V (Y ) =

d∑
i1=1

V (Yi1(Xi1)) +
∑

1≤i1<i2≤d
V (Yi1i2(Xi1 , Xi2)) + · · ·

+V (Yi1...id(Xi1 , .., Xid)) (17)

=
d∑

i1=1

Vi1 +
∑

1≤i1<i2≤d
Vi1i2 + · · ·+ Vi1...id ,
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where

Vi1 = V (E(Y/Xi1))

Vi1i2 = V (E(Y/Xi1 , Xi2))− Vi1 − Vi2
Vi1i2i3 = V (E(Y/Xi1 , Xi2 , Xi3))− Vi1i2 − Vi1i3 − Vi2i3 − Vi1 − Vi2 − Vi3

· · · (18)

Vi1...id = V −
d∑
i=1

Vi −
∑

1≤i1<i2≤d
Vi1i2 − · · · −

∑
1≤i1<i2...<id−1≤d

Vi1...id−1

Then, Sobol’ indices of order k introduced in 1993 in [23] are given by

Si1...ik =
Vi1...ik
V

. (19)

In particular, the first order Sobol’ indices that measures the influence of the
input parameter Xi is defined by

Si =
V (E(Y/Xi))

V (Y )
=
Vi
V
. (20)

Although Sobol’ indices could be computed by estimating integrals appear-
ing into equations (18), that would be both computationally expensive and
hardly tractable. In the seminal work of Sudret [24], it is noticed that PC
expansion has exactly the same structure and property as Sobol’ decom-
position (15). This is why such meta model has met such a tremendous
success when it comes to computing Sobol’ indices. Let denote by Ii1,i2,...,is
(s ≤ d) the set of d-dimensional vectors α = (α1, . . . , αd) with α 6= 0 and
0 ≤ α1 ≤ . . . ≤ αd ≤ d that selects elements of the PC basis Ψα1...αd

defined
by (2) containing solely the variables Xi1 , Xi2 , . . . , Xis . For example, the
multi-indices defined by Ii will select elements of the PC basis depending
only on the variable Xi. Similarly, Ii,j will select elements of the PC basis
that depend on Xi and Xj , to the exclusion of any other variable. With this
notation, Sobol’s indices of order k are simply given as a function of the PC
coefficients as follows (see [24] for details):

Si1...ik =
1

V

∑
(α1,...,αd)∈Ii1,...,ik

y2α1...αd
. (21)

For a problem with d input random parameters, (2d−1) Sobol’ indices can
be computed and when d is large, it becomes difficult to draw conclusions
from these too numerous indices. This is why, in 1996, Homma and Saltelli
[11] introduced the total sensitivity indices STi (i = 1, . . . , d) which measures
the total effect of the ith random input parameter. It is defined as the sum
of all sensitivity indices Si1...ik (k = 1, . . . , d) for which, one of the indices
i1, i2, . . . , ik is equal to i, i.e.

STi =

d∑
k=1

(i1,...,ik)∈Jk
i

Si1...ik , (22)

where Jki is the set of k-dimensional vectors (i1, . . . , ik) with 1 ≤ i1 < . . . <
ik ≤ d, such that one of its components is equal to i. These indices can also
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be computed from the PC expansion as follows:

STi = 1− 1

V

∑
(α1,...,αd)∈Ii

y2α1...αd
, (23)

where Ii is the complementary set of Ii.

3.2. Sobol’ indices for processes with independent increments.

Let (Xi
t)
i∈{1,...d}
t∈[0;Tf ] denote d independent stochastic processes with indepen-

dent increments on a filtered probability space (Ω,A, (At)t∈[0;Tf ],P). For no-
tation convenience we gather those processes into a vector Xt = (X1

t , ..., X
d
t )

and we assume that a physical model is represented by a function g : Rd → R
such that Yt = g(Xt). Since X1

t , ..., X
d
t are independent processes, for a fixed

value of t, they can be seen as independent random variables and Sobol’
indices described in the previous sections could be straightforwardly used.
However, doing so, a key property of stochastic processes is not taken into
account. Indeed, for (s, t) ∈ [0, Tf ] × [0, Tf ], with s < t, Xt and Xs are
dependent and this should be reflected in the model output. This is why in-
stead of considering Yt for the model output, it is essential to consider Yt−Ys
for all (s, t) ∈ [0, Tf ]2 and perform a sensitivity analysis on that quantity.
Thus, in this section, we introduce Sobol’ indices for the model

Yt − Ys = g(Xt)− g(Xs) (24)
= G(Xt,Xs),

where the function G : R2d → R is such that its arguments Xt and Xs are
now dependent. The essential point in the proposed procedure is to trans-
form the G function into a function whose arguments will be independent.
This is why we choose processes with independent increments at the entry.

Let’s introduce the following notation (for (s, t) ∈ [0, Tf ]2 and i ∈ {1, ...d}):

∆t
sX

i = Xi
t −Xi

s (25)

with Xi
0 = 0. Then, for i ∈ {1, ...d}, ∆t

sX
i is independent from ∆t′

s′X
i

for all s, t, s′, t′ such as 0 < s < t ≤ s′ < t′. We introduce the vector
∆t
sX = (∆t

sX
1, ...,∆t

sX
d) such that, we can write

Yt − Ys = G(Xt,Xs) (26)
= G(∆t

sX + Xs,Xs)

= G(∆t
sX+∆s

0X,∆
s
0X)

= H(∆t
sX,∆

s
0X)

with the function H : R2d → R such that its arguments ∆t
sX and ∆s

0X
are now independent. For fixed values of s and t into [0, Tf ], we define the
random variables Ni (i ∈ {1, ...2d}) by

Ni =

{
∆t
sX

i for i = 1, ..., d
∆s

0X
i−d for i = d+ 1, ..., 2d

, (27)

and we gather those independent random variables into a 2d dimensional
vector N = (N1, ..., N2d) so that our model now writes

Yt − Ys = H(N). (28)
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By proceeding that way, we have transformed our initial problem with 2d
dependent random processes at the entry into a problem with 2d independent
random variables (for s and t fixed into [0, Tf ]). Therefore, Sobol’ indices
described in the previous section can be used as is on the function H(N),
provided that this function is square integrable. It should be noted that
Sobol’ indices are now functions of two variables (s, t). For example, for
i = 1, ..., d

Si(s, t) =
V (E(Yt − Ys|Ni))

V (Yt − Ys)
(29)

=
V (E(Yt − Ys|∆t

sX
i))

V (Yt − Ys)

=
V (E(Yt − Ys|Xi

t −Xi
s))

V (Yt − Ys)
.

Setting s = 0, in the above expression leads to the standard variance decom-
position with Sobol’ indices of V (Yt). The interpretation of these indices
is as follows: considering two points s and t of the trajectory of a process,
Si(s, t) represents the influence of the ith entry stochastic process ∆t

sX
i on

the same two points of the output process ∆t
sY = Yt−Ys. This is illustrated

in Figure 1 that shows a sample path of (Xi
t)t∈[0,Tf ] and the corresponding

sample path of (Yt)t∈[0,Tf ] together with the quantities ∆t
sX

i and ∆t
sY on

those trajectories.

0 s t 1

t

-0.5

X(s)

X(t)

3.5

X
t(

)

0 s t 1

t

0.5

Y(s)

Y(t)

3

Y
t(

) s

t
Y( )

s

t
X( )

Figure 1. Sample path of (Xi
t)t∈[0,Tf ] and (Yt)t∈[0,Tf ]

Note that the last d random variables of the vector N are unimportant in
terms of interpretation since they have been introduced for the sole purpose
of decoupling Xt from Xs (see equations (26)). Nevertheless, they may be
useful for computing total Sobol’ indices, since

STi(s, t) =

2d∑
k=1

(i1,...,ik)∈Jk
i

Si1...ik(s, t), (30)

where the notations are the same as in section 3.1.
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4. Examples of application

In this section, we consider two examples from which a meta-model based
on Polynomial Chaos is constructed. Sobol’ indices are computed from the
coefficients of the PC expansion. The first one is an academic example, so
that numerical results can be compared with the exact solution.

4.1. Analytical example.

Here we consider the following mathematical model for Yt (also known as
Ishigami function, [14]):

Yt = g(Bt,Mt, Zt)
= a sin2(Mt) + (1 + bZ4

t ) sin(Bt)
(31)

where a and b are some constants and (Bt), (Mt) and (Zt) are three inde-
pendent stochastic processes defined by

Mt = et(Kt − 1) =

∫ t

0
esdLs Zt =

Ot − 1

T − t
=

∫ t

0

1

T − u
dWu (32)

with (Bt), (Lt) and (Wt) three independent Brownian motions and T a
positive parameter. Note that (Kt) is an Ornstein-Uhlenbeck process, (Ot)
a Brownian bridge and (Wt) a Wiener process. All three are Gaussian with
independent increments. By adopting the same approach as in section 3.2,
we have

Yt − Ys = g(Bt,Mt, Zt)− g(Bs,Ms, Zs)
= g((Bt −Bs) +Bs, (Mt −Ms) +Ms, (Zt − Zs) + Zs)

−g(Bs,Ms, Zs)
= H(Bt −Bs,Mt −Ms, Zt − Zs, Bs −B0,Ms −M0, Zs − Z0)

,

(33)
where the function H : R6 → R can be explicitly written as

H(x1, x2, x3, x4, x5, x6) = a sin2(x2 + x5) + (1 + b(x3 + x6)
4) sin(x1 + x4)

−a sin2(x5)− (1 + b(x6)
4) sin(x4) (34)

It is this function that will be projected onto a PC basis and that will
serve to compute Sobol’ indices. Hermite polynomials are used to build
the multivariate basis. They are orthogonal with respect to a dot product
defined with a Gaussian density with zero means, and variances given below

σ21 = t− s σ24 = s

σ22 =
e2t − e2s

2
σ25 =

e2s − 1

2

σ23 =
t− s

(T − t)(T − s)
σ26 =

s

T (T − s)

(35)

For this academic example, results can be compared with the exact value
of the indices that can be computed with the following formula (valid for
t 6= s):
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S1(s, t) =
V (E(Yt − Ys|Bt −Bs))

V (Yt − Ys)
, (36)

S2(s, t) =
V (E(Yt − Ys|Mt −Ms))

V (Yt − Ys)
,

S3(s, t) =
V (E(Yt − Ys|Zt − Zs))

V (Yt − Ys)
,

for the first order indices, and

S12(s, t) =
V (E(Yt − Ys|Bt −Bs,Mt −Ms))

V (Yt − Ys)
− S1(s, t)− S2(s, t),(37)

S13(s, t) =
V (E(Yt − Ys|Bt −Bs, Zt − Zs))

V (Yt − Ys)
− S1(s, t)− S3(s, t),

S23(s, t) =
V (E(Yt − Ys|Mt −Ms, Zt − Zs))

V (Yt − Ys)
− S2(s, t)− S3(s, t),

for the second order indices. The exact expression of the quantities appearing
into equations (36)-(37) can be found in the appendix. For the numerical
simulations, the parameters are taken equal to a = 7, b = 0.1, T = 1.1 and
(s, t) ∈ [0, 1]2. The function (34) is projected onto a multivariate PC basis
of degree 12.

0

1

0.05

1.5

S1
 (P

C)

0.1

t

0.5 1

s

0.15

0.5

0 0

0

1

0.05

1.5

S1
 (e

xa
ct)

0.1

t

0.5 1

s

0.15

0.5

0 0

Figure 2. The first order index S1 for PC expansion (left)
and for the exact solution (right)

Figures 2-3 show the first order indices and Figure 4 show the second order
index for both the exact solution (left) and the numerical solution (right).
Only non-zeros indices are represented. We see that a degree 12 multivariate
polynomial is sufficient to accurately represent our model since the exact and
the approximated indices match very well. Note that it is not necessary to
have a high degree of accuracy for Sobol’ indices since the information to be
considered is the relative importance of those indices.
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Figure 3. The first order index S2 for PC expansion (left)
and for the exact solution (right)
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Figure 4. The second order index S1,3 for PC expansion
(left) and for the exact solution (right)

Multivariate polynomial degree E(S1) E(S2) E(S13)
6 9.59× 10−2 4.88× 10−2 5.16× 10−2

12 1.81× 10−3 3.27× 10−3 1.35× 10−3

18 1.17× 10−3 4.51× 10−3 1.03× 10−3

24 8.19× 10−5 5.96× 10−5 2.77× 10−4

30 6.46× 10−5 1.48× 10−5 2.60× 10−4

Table 1. L2 norm of the error of Sobol’ indices S1, S2 and
S13 for increasing multivariate PC approximation degrees.

The L2 norm of the error of a Sobol’ indice S over the domain of compu-
tation is defined by

E(S) =

∫∫
[0,1]2

(Sa(s, t)− Se(s, t))2 dsdt,

where Sa and Se stands for the approximate and the exact value of S. We
compute these errors for the non-zeros indices using Fejer’s quadrature rule
[3]. Table 1 gives the error for increasing polynomial degrees and shows the
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accuracy of the proposed method. All the univariate polynomials have the
same degree in each of the six dimensions, so that the total degree of the
multivariate PC expansion is a multiple of six.

In terms of interpretation, we see that the relative importance of the
input ∆t

sX
i on the output ∆t

sY strongly depends on the value of |s− t|. For
example, S2 and S13 show that for s ' t , the input stochastic processes
associated with those indices have no influence on the output. On the other
hand, for s ' t ' 0, S1 shows that Bt − Bs has a strong influence on the
output.

4.2. Numerical example without analytical solution.

4.2.1. Description of the deterministic problem.

In this section, we study the deterministic trajectory of a projectile subject
to air resistance modeled by a force proportional to the square of the velocity.
In that case, no analytical solution exists and one has to resort to numerical
techniques in order to compute the range of the projectile.

Figure 5. Local Frenet coordinates system and trajectory
of the projectile

Assuming a drag force of the form Fd(v) = λv2, with λ a parameter and v
the velocity of the projectile, Newton’s second law of motion projected onto
the local Frenet coordinates system (N,T) (see Figure 5) writes mγT = −mg sin(α)− λv2

mγN = mg cos(α)
, (38)

with m the mass of the projectile, and g the gravitational constant. The
tangential and normal acceleration γT and γN can be related to the velocity

through the equations γT =
dv

dt
and γN =

v2

r
(the centripetal acceleration).

Furthermore, we have v =
ds

dt
=

ds

dα

dα

dt
= (−r) × dα

dt
, by definition of the
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curvature radius. Using those last equations, (38) becomes
m
dv

dt
= −mg sin(α)− λv2

v2

r
= −vdα

dt
= g cos(α)

, (39)

Following [27], we divide the two equations of (39), which leads to the
following differential equation for v :

m
dv

dt

−vdα
dt

=
−mg sin(α)− λv2

g cos(α)
,

which gives
1

v

dv

dα
= tan(α) +

λv2

mg cos(α)
. (40)

Assuming the initial condition v(α0) = v0 for the velocity (see Figure 5)
the solution to the differential equation (40) writes

v2(α) =
v20 cos2(α0)

cos2(α)

(
1− v20

v2lim
cos2(α0)

[
ln(tan(

u

2
+
π

4
)) +

sin(u)

cos2(u)

]α
α0

) , (41)

with the limit velocity vlim defined by

vlim =

√
mg

λ
. (42)

The second equation of (39) allows us to write
dx = v(α) cos(α)dt = −1

g
v2(α)dα

dy = v(α) sin(α)dt = −1

g
v2(α) tan(α)dα

, (43)

such that, after integration, we get the positions of the projectile
x(α) = −1

g

∫ α

α0

v2(u)du+ x0

y(α) = −1

g

∫ α

α0

v2(u) tan(u)du+ y0

, (44)

where (x0, y0) is the initial position of the object.
Here, we are interested in the range D of the mobile. It can be computed

by first determining the angle αs for which y(αs) = 0. This angle may be
computed by solving the nonlinear equation y(αs) = 0 with the algorithm of
Newton, which writes

αk+1 = αk − y(αk)

y′(αk)
= αk −

∫ αk

α0

v2(u) tan(u)du

v2(αk) tan(αk)
.
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The value used to initiate the recurrence relation is αs = −α0 and the
integral in the above formula, is evaluated using the Fejer’s quadrature rule
of type I [3]. In the next section, three input parameters of this problem will
be considered as stochastic and a sensitivity analysis will be performed.

4.2.2. Study of the stochastic problem.
We now consider the deflagration of an object and we assume that the

trajectory of each fragment of the object may be described by a stochas-
tic process. For that, three independent input parameteres are considered
as Gaussian processes with independent increments. They are the initial
velocity V 0

t , the starting angle α0
t and the limit velocity V lim

t . The index
t ∈ [0, Tf ] of the stochastic processes represent the location of the fragment
onto the initial object. We assume that two fragments close to each other
will be indexed by parameters (s, t) such that |s− t| is small. The quantity
of interest, i.e. the range D = Dt of the projectile, can also be considered as
a stochastic process which is a nonlinear function of the entry parameters.
This case study focuses on the influence of ∆t

sV
0, ∆t

sα
0, and ∆t

sV
lim on the

range difference ∆t
sD = Dt − Ds of two fragments initially located at po-

sition s and t. We assume that the input processes are Gaussian processes
having independent increments with the following means and variances (for
t ∈ [0, Tf ] = [0, 1]):

• E(V 0
t ) = 300 and V ar(V 0

t ) = 40t ;
• E(α0

t ) = π/4 and V ar(α0
t ) = 0.03t ;

• E(V lim
t ) = 800 and V ar(V lim

t ) = 4000t .
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Figure 6. The first order Sobol’index S1

The meta-model consists of a multivariate PC expansion of degree 12.
Figures 6-11 show the first and second order Sobol’ indices. According to
the range of the values taken by S12, S13 and S23 for all (s, t) ∈ [0, 1]2, we
can say that the combined influence of two input stochastic processes onto
∆t
sD can be neglected. For the first order indices S2 and S3, (associated with

∆t
sα

0 and ∆t
sV

lim, respectively), it is when s ' 0 (or t ' 0, by symmetry)
that the influence associated with these indices is most important. On the
other hand, S1 (associated with ∆t

sV
0) shows a bigger influence of ∆t

sV
0 as

(s, t)→ (1, 0) (or (s, t)→ (0, 1)).



GLOBAL SENSITIVITY ANALYSIS FOR STOCHASTIC PROCESSES 15

0

1

0.2

1.5

0.4

S
2

0.6

t

0.5 1

s

0.8

0.5

0 0

Figure 7. The first order Sobol’index S2
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5. Conclusion

In this paper, we have developed a numerical approach based on Sobol’ in-
dices to study the influence of input processes with independent increments
that propagate into a physical system. In order to take into account the
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specificity of stochastic processes, the study is carried out on the model out-
put Yt−Ys instead of Yt. The fact that the input processes have independent
increments allows us to reformulate the problem such that it can be treated
as independent random variables. Therefore, polynomial chaos expansion
may be used as meta-model and Sobol’ indices can easily be computed from
the PC coefficients. To illustrate the applicability of the proposed approach,
one academic example based on Ishigami function is studied and a mechan-
ical model without analytical solution is also treated. Further work should
include the possibility to use other families of stochastic processes as input
variables of our model.
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Appendix

In this appendix, we give the details of the expression appearing into the
equations (36)-(37). Starting with the denominator of these equations, we
have

V (Yt − Ys) = V (Yt) + V (Ys)− 2(E(Yt − Ys)− E(Yt)E(Ys)),

= E
(
Y 2
t

)
− (E(Yt))

2 + E
(
Y 2
s

)
− (E(Ys))

2 − 2(E(YtYs)− E(Yt)E(Ys)),

with E(Yt) =
a

2

(
1− e1−e2t

)
, and

E
(
Y 2
t

)
=

(
1 + 6b

(
t

T (T − t)

)2

+ 105b2
(

t

T (T − t)

)4
)

1− e−2t

2

+a2
3− 4e1−e

2t
+ e4(1−e

2t)

8
,

and eventually

E(YtYs) =

[
1 + 3b

(
s

T (T − s)

)2

+ 3b

(
t

T (T − t)

)2

+b2
(

s

T (T − s)

)2
(

9

(
t− s

(T − t)(T − s)

)2

+ 90
t− s

(T − t)(T − s)
× s

T (T − s)

+ 105

(
s

T (T − s)

)2
)]

e−
1
2
(t−s) 1− e−2s

2

+a2

(
1− ee2s−e2t

2
× 1− e4(1−e2s)

8
+

1 + ee
2s−e2t

2
× 3− 4e(1−e

2s) + e4(1−e
2s)

8

)
.

For the numerator of the first order indices (see equations (36)), we have

V (E(Yt − Ys|Zt − Zs)) = 0,

V (E(Yt − Ys|Bt −Bs)) = e−s
1− e−2(t−s)

2

(
1 + 3b

(
t

T (T − t)

)2
)2

,

V (E(Yt − Ys|Mt −Ms)) =
a2

8
e2(1−e

2s)
(

3− 4ee
2s−e2t + e4(e

2s−e2t)
)
− (E(Yt − Ys))2 .

And finally, for the numerator of the second order indices (see equations
(37)), we have

V (E(Yt − Ys|Bt −Bs,Mt −Ms)) = 0,

V (E(Yt − Ys|Mt −Ms, Zt − Zs)) = 0,
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V (E(Yt − Ys|Bt −Bs, Zt − Zs)) = e−s

(
1− e−2(t−s)

2

)[
1 + 105b2

(
t− s

(T − t)(T − s)

)4

+9b2
(

s

T (T − s)

)4

+36b2
(

s

T (T − s)

)3( t− s
(T − t)(T − s)

)
+126b2

(
s

T (T − s)

)2( t− s
(T − t)(T − s)

)2

+180b2
(

s

T (T − s)

)(
t− s

(T − t)(T − s)

)3

+6b

(
s

T (T − s)

)2

+ 6b

(
t− s

(T − t)(T − s)

)2

+ 12b

(
s

T (T − s)

)(
t− s

(T − t)(T − s)

)]
.
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