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Abstract. Deep learning-based medical image registration and segmen-
tation joint models utilize the complementarity (augmentation data or
weakly supervised data from registration, region constraints from seg-
mentation) to bring mutual improvement in complex scene and few-shot
situation. However, further adoption of the joint models are hindered:
1) the diversity of augmentation data is reduced limiting the further en-
hancement of segmentation, 2) misaligned regions in weakly supervised
data disturb the training process, 3) lack of label-based region constraints
in few-shot situation limits the registration performance. We propose a
novel Deep Complementary Joint Model (DeepRS) for complex scene
registration and few-shot segmentation. We embed a perturbation factor
in the registration to increase the activity of deformation thus maintain-
ing the augmentation data diversity. We take a pixel-wise discriminator
to extract alignment confidence maps which highlight aligned regions in
weakly supervised data so the misaligned regions’ disturbance will be
suppressed via weighting. The outputs from segmentation model are uti-
lized to implement deep-based region constraints thus relieving the label
requirements and bringing fine registration. Extensive experiments on
the CT dataset of MM-WHS 2017 Challenge[42] show great advantages
of our DeepRS that outperforms the existing state-of-the-art models.

1 Introduction

Deep learning-based medical image segmentation models and registration mod-
els [23, 11, 19] are limited in complex scene and few-shot situation. In complex
scene which has complex but task-unconcerned backgrounds, the unsupervised
registration models [2, 7] pay equal attention to all regions for overall alignment
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so that the performance on regions of interest (ROIs) will be limited by back-
ground. In few-shot situation which lacks labels, the segmentation models [29,
24] will over-fit [40, 30] due to the lack of supervision information.

The registration and segmentation tasks has great complementarity which
will bring mutual improvement in complex scene and few-shot situation. As
shown in Fig. 1, the registration model provides diverse augmentation data
(warped images and labels) or weakly supervised data (fixed images and warped
labels) for segmentation model [40, 37] during the training process, thus reducing
the requirement of labels and enhancing the segmentation generalization in few-
shot situation. The segmentation model feeds back region constraints [22, 37, 6] so
that additional attention on ROIs is paid for finer registration in complex scene.

Fig. 1. The complementary topology and limita-
tions of registration and segmentation tasks. Regis-
tration provides augmentation data and weakly su-
pervised data for segmentation for higher general-
ization in few-shot situation, the segmentation feeds
back region constraints for finer registration on ROIs
in complex scene. a), b), c) illustrate the limitations
in the utilization of this complementary topology.

Unfortunately, further ex-
ploiting of this complemen-
tary topology are hindered
[40, 37, 6, 22] due to: Lim-
itation 1: Degradation of
data augmentation capability
(Fig. 1(a)). During the train-
ing of registration model, it
learns the deformation rule
that matches real situation
and generates diverse warped
images as augmentation data
to improve the segmentation
generalization ability [37, 36].
However, the similarity be-
tween warped and fixed im-
ages increases and tends to
become stable, and the diver-
sity of warped images is grad-
ually reduced as the similarity stabilizes. Therefore, in the later training stage
of registration network, the identical warped images are generated in differ-
ent epochs, resulting in the reduction of augmentation data diversity. Thus,
the data augmentation ability of registration model is degraded and the fur-
ther enhancement of segmentation will be limited. Limitation 2: Misaligned
regions in weakly supervised data (Fig. 1(b)). The weakly supervised data en-
larges the labeled dataset and provide additional supervision information for
the segmentation model. However, large misaligned regions in these data will
produce incorrect optimization targets and it will disturb the training process
leading to serious mis-segmentation if used directly [37]. Limitation 3: Lack
of label-based region constraints (Fig. 1(c)). Region constraints provide specific
alignment information for regions bringing finer registration optimization. How-
ever, in few-shot situation, the label-based region constraints [37, 6, 22, 14] are
lacked with few labels. Thus if in complex scene, the registration model [2, 36,
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7] will take rough optimization and the complex backgrounds will limit the reg-
istration performance on ROIs.

Solution 1 for the degradation of data augmentation capability: we embed
a random perturbation factor in the registration to increase the activity of defor-
mation for sustainable data augmentation capability. The registration process is
a displacement of structure information, and the adjustment of deformation de-
gree is the sampling of the structure information on this displacement path [20,
12]. Therefore, our perturbation factor adjusts the deformation degree randomly
to sample the structure information which is consistent with the real distribution
to produce diverse and real augmentation data for the segmentation model.

Solution 2 to suppress the misaligned regions’ disturbance: we extract align-
ment confidence maps from a pixel-wise discriminator to suppress the misaligned
regions in weakly supervised data and utilize the supervision information in
aligned regions. The pixel-wise discriminator, resulting in a generative adversar-
ial network (GAN) [10] based registration model [7, 38, 8, 13], learns the similarity
between warped and fixed images and outputs the alignment confidence maps
that highlight the aligned regions [15, 26]. Thus, via these maps ,the misaligned
regions will be suppressed and the supervision information in aligned regions will
be utilized for higher segmentation generalization when calculating the weakly
supervised loss function.

Solution 3 to cope with the lack of label-based region constraints: we build
deep-based region constraints that calculate the loss value via the warped and
fixed segmentations from the segmentation model so that fine registration op-
timization targets are available. Therefore, 1) label requirements of label-based
region constraints are freed in few-shot situation, 2) different regions are in-
dependently optimized to avoid the misalignment of each region and 3) region
attention on the ROIs is paid for finer registration.

In this paper, we propose a Deep Complementary Joint Model (DeepRS)
that minimizes background interference in complex scene for finer registration
on ROIs, and greatly reduces the label requirements of segmentation in few-shot
situation for higher generalization ability. In short, the contributions of our work
are summarized as follows:

– To the best of our knowledge, we build a novel complementary topology of
registration and segmentation for the first time, and propose the DeepRS
model utilizing the data generation ability of registration for few-shot seg-
mentation, and the label-free region constraint ability of segmentation for
complex scene registration.

– We propose a deep structure sampling (DSS) block adding a random pertur-
bation factor to the registration for sustainable data augmentation ability.

– We propose an alignment confidence map (ACM) method which efficiently
utilizes the supervision information in weakly supervised data thus bringing
powerful segmentation generalization.

– We propose a deep-based region constraint (DRC) strategy which frees up
the label requirements of label-based methods achieving finer registration on
ROIs.
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2 Related Works

2.1 Registration and segmentation joint models

Registration and segmentation tasks have great complementarity, thus building
a registration and segmentation joint model has the potential of mutual improve-
ment. The registration provides augmentation data and weakly supervised data
for the segmentation [40, 37, 35], and the segmentation feeds back additional re-
gion constraints [14, 22, 6]. Zhao et al. [40] took a pre-trained registration model
to generate augmentation data for more powerful segmentation ability. Li et al.
[22] made a hybrid framework that took the label-based region constraints from
labels and segmentations for finer registration. Similarity, Xu et al. [37] designed
a semi-supervised method that combined registration and segmentation models
bringing the mutual improvement in knee and brain images.

However, these existing methods only took the advantage of partial comple-
mentarity which hardly gives full play to their potential. The convergence of
the registration model limits the diversity of the augmentation data and pre-
vents further enhancement of the segmentation model [40]. Misaligned regions
in weakly supervised data disturb the training of segmentation models, and if
used directly, it will lead to serious mis-segmentation [37]. In few-shot situa-
tion, label-based region constraints are lacked due to the small labeled dataset
[22], thus with inaccurate optimization targets, complex backgrounds will limit
registration performance on ROIs in complex scene.

2.2 Data augmentation

Data augmentation [30], generating bigger dataset, has the ability to improve
learning models[31], especially in few-shot situation. Some data augmentation
strategies (random cropping, mirroring, rotation, flipping, etc.) are often used for
higher generation ability, while inappropriate strategy combinations will gener-
ate unreasonable data which will weaken the model performance [30]. Learning-
based data augmentation strategies [4, 27, 16, 21] learn the augmentation meth-
ods from dataset for real augmentation data. Registration learns transformation
rules of structure information from the images [40, 20, 12, 37] so that the aug-
mentation images with real structure information are obtained.

Disappointingly, the registration-based augmentation ability will degrade due
to the reduction of deformation diversity. As the registration model converges,
the moving image is stably aligned onto the fixed image and the identical warped
images in different epochs are generated, resulting in the reduction of augmen-
tation data diversity and limiting the further improvement of segmentation.

2.3 Weakly-supervised learning

Weakly-supervised learning [14, 33, 18, 28, 15, 26] utilizing non-precisely labeled
data is a strategy for labeled data limitation. It has three typical types ac-
cording to the weakly supervised data types [41]: 1) incomplete supervision



Deep Complementary Joint Model 5

where part of the dataset without labels[26, 15], 2) inexact supervision where
data with coarse-grained labels [14, 18] and 3) inaccurate supervision where
data with inaccurate labels [33, 32]. In registration and segmentation tasks, the
warped labels and fixed images from registration model make up weakly super-
vised data leading to inaccurate supervision which will improve the segmentation
performance with appropriate strategy. Unfortunately, if the weakly supervised
data is used directly, the misaligned regions will brings inaccurate optimiza-
tion target, thus disturbing the training process and lead to mis-segmentation.

Fig. 2. The overview of our DeepRS. The data gen-
eration ability of the registration, the deep-based
region constraint of the segmentation, the aligned
regions discovery ability and the learned similarity
metric of discriminator interact in the alternating
training process.

2.4 Generative
Adversarial Networks

Generative adversarial net-
works (GANs) [10, 39, 9], con-
sisting of a generator G and a
discriminator D, learns a sim-
ilarity metric of the generated
and real images. The discrimi-
nator learns to distinguish the
real or generated images and
the generator takes the adver-
sarial loss from the discrimi-
nator to improve the authen-
ticity of the generated im-
age to deceive the discrim-
inator. GAN-based registra-
tion models [7, 38, 8, 13] take
global discriminator to learn
image-wise similarity metric
of warped and fixed images
which can be used to evaluate
the weakly supervised data in our task.

However, the image-wise similarity has no ability to evaluate the regional sim-
ilarity and in our segmentation task (pixel-wise), it will still introduce the error
information in the weakly supervised data. Patch-GANs utilize pixel-wise dis-
criminator [26, 15] consisting of a full convolution network to learn the pixel-wise
similarity and output confidence maps which highlight task-beneficial regions.
Thus, a patch-GAN is used in our model for alignment confidence maps to sup-
press the misaligned regions and utilize the supervision information in weakly
supervised data.

3 Methodology

Our DeepRS model (Fig. 3, Fig. 2), which consists of registration, pixel-wise dis-
criminator and segmentation models, leverages their complementarity for com-



6 Y. He et al.

plex scene registration and few-shot segmentation (Sec. 3.1) bringing mutual
improvement. The registration generates diverse augmentation data via ran-
domly adjusting the deformation field in a DSS block (Sec. 3.1) and provides
weakly supervised data for the segmentation network to reduce the labeled data
requirements in few-shot situation. The pixel-wise discriminator provides ACMs
(Sec. 3.1) for the segmentation network for supervision information utilization
in weakly supervised data. The segmentation network provides DRC (Sec. 3.1)
for the registration network for finer registration on ROIs in complex scene. The
joint strategy (Sec. 3.2) maximizes the complementarity via alternating training.

3.1 DeepRS for stronger registration and segmentation

Fig. 3. In detail of our DeepRS model, we design a DSS block, a ACM method and
a DRC strategy cleverly dealing with the limitations. a) The DSS block maintains
the diversity of warped images bringing sustainable data augmentation ability. b) The
ACM method utilizes the supervision information in weakly supervised data. c) The
DRC strategy provides region attention on ROIs for finer registration.

The proposed DeepRS model leverages the complementarity of registration
and segmentation tasks via the DSS block, ACM method and DRC strategy.

Deep structure sampling (DSS) for sustainable data augmentation
DSS block generates diverse augmentation data sustainedly via embedding a
random perturbation factor in the deformation field to increase the uncertainty
of the warped images and labels. The registration process is the displacement
of image structure information, and the perturbation of deformation degree re-
alizes the sampling of information on this displacement path [20, 12]. Therefore,
the DSS block brings two advantages: 1) Sustainable data augmentation. The
perturbation factor controls the deformation degree so that the registration net-
work is guaranteed to generate diverse augmentation data sustainedly. 2) Real
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Fig. 4. The DSS block for sustainable data augmentation. a) A perturbation factor
α ∈ [0, 1] from uniform distribution adjusts the deformation field making the sampling
process. b) Illustration of the sampling that registration makes the structure informa-
tion displacement and our DSS samples the information on its displacement path.

distribution. Sampling structure information from its displacement path gener-
ates the augmentation data more matching real distribution than other manual
augmentation methods.

As shown in Fig. 4(a), a deformation field ∅ from registration network is mul-
tiplied by a random perturbation factor α from uniform distribution puniform ∈
[0, 1] to obtain an resampled deformation field ∅̂ = ∅ × α v puniform ∈ [0, 1].
Therefore, the warped images and labels deformed by it will still have great
diversity, even if the registration network has converged. Fig. 4(b) illustrates
that as α increases, the warped images gradually approximate the fixed images
since its structure information approaches the fixed image. It is evident that the
randomly sampled deformations are non-rigid, yet produce realistically-looking
images.

Alignment confidence map (ACM) for supervision information uti-
lization ACM method utilizes the supervision information of aligned regions
and suppresses the misaligned regions in weakly supervised data to improve the
segmentation generalization ability. The ACM maps from the pixel-wise discrim-
inator evaluate the pixel-wise similarity between warped and fixed images and
will highlight the aligned regions. Thus, these maps will be taken to weight the
loss of weakly supervised data to utilize its supervision information in aligned
regions, as illustrated in Equ. 1:

Lacm = −D(W (xm, ∅̂), xf )W (ym, ∅̂) logS(xf ) (1)

where xm, ym, xf and ∅̂ are the moving image, moving label, fixed image and
resampled deformation field from DSS block. As shown in Fig. 3, W (·, ·) is the
’warp’ block which deforms the moving images and labels to the fixed images
for warped images and labels following the spatial transformation layer in [2].
The pixel-wise discriminator D(·, ·) measures the similarity between warped and
fixed images for the ACMs to weight the cross-entropy loss between warped
labels and fixed segmentation (seg-) masks S(xf ). Therefore, the loss value in
misaligned region will get low weight and the disturbance will be suppressed.
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The contribution of the weakly supervised data is increasing during the train-
ing. In early training stage, the powerful discriminator outputs weak maps, so
that the loss from weakly supervised data is suppressed greatly and the opti-
mization target of the segmentation network is dominated by the loss Lce from
augmentation data. As the training progresses, the registration network defeats
the discriminator and obtains high responsive maps, thus increasing the contri-
bution of ACM loss Lacm, so that the segmentation generalization ability will
be further enhanced.

Deep-based region constraint (DRC) for finer registration on ROIs
DRC strategy guides the attention on the ROIs for finer registration via con-
straints between the fixed and warped seg-masks from the segmentation network.
This deep-based region constraint takes the alignment of the corresponding re-
gions in warped and fixed images as the optimization target, so that 1) label
requirements of label-based region constraints is freed in few-shot situation, 2)
different regions are independently optimized to avoid the misalignment between
each other and 3) additional region attention on the ROIs is paid for finer reg-
istration.

As shown in Fig. 3(c), the warped image and the fixed image are input into
the segmentation network respectively for the warped and the fixed seg-masks
firstly. Then a mean square error loss between these two seg-masks is calculated
as is illustrated in Equ. 2:

Ldrc = −(S(W (xm, ∅̂))− S(xf ))2 (2)

where xm, xf and ∅̂n are the moving image, fixed image and deformation field
from the DSS block. W (·, ·) is the deformation process in registration network
and S(·) is the segmentation network. Each ROI is calculated in different chan-
nels obtaining independent fine optimization, while the task unconcerned regions
are calculated in a background channel together. Thus, fine registration on ROIs
is available and inter-regional error registration is avoided.

3.2 Joint learning strategy exerts complementarity

The registration network, segmentation network and pixel-wise discriminator in
our DeepRS model (Fig. 3) are trained by different loss function combinations
to coordinate the training process and achieve mutual improvement.

Registration network The registration network is optimized by four different
targets. An adversarial loss Ladv [7] from the pixel-wise discriminator provides
the similarity metric between warped and fixed images. The DRC loss Ldrc

from the segmentation network brings registration attention on ROIs. A local
cross-correlation (CC) [2] Lcc maintains the stability of the training process,
and a smooth loss [2] LR penalizes local spatial variations in deformation field.
Therefore, the total loss function Lreg is:

Lreg = λadvLadv + λdrcLdrc + λccLcc + λRLR (3)
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Segmentation network The loss function of the segmentation network Lseg con-
sists of two components. One is the ACM loss Lacm that adds the weakly su-
pervised data to the training for higher segmentation generalization ability. The
other is cross-entropy loss Lce between the warped images and labels that main-
tains the right optimization target:

Lseg = λacmLacm + λceLce (4)

Pixel-wise discriminator The training strategy of pixel-wise discriminator fol-
lows [7]: well-registered image pairs consisting of reference images xr and fixed
images xf as positive cases and misaligned images consisting of warped im-
ages xw and fixed images xf as negative cases. The reference image xr is a
fusion of a moving image xm and a fixed image xf according to the formula
xr = β ∗ xm + (1− β) ∗ xf . Thus, the loss for the discriminator LD is:

LD = − log(D(xr, xf ))− log(1−D(xw, xf )) (5)

4 Experiments

Extensive experimental results show that our DeepRS model enhances the per-
formance of complex scene registration and few-shot segmentation tasks on car-
diac CT data which has complex task-unconcerned backgrounds.

4.1 Evaluation settings

Dataset We validated the superiority of our DeepRS model on the whole heart
registration and segmentation tasks on the CT dataset of MM-WHS 2017 Chal-
lenge [42] which has complex backgrounds (lung, rib cage, etc.). This dataset
consists of 20 labeled and 40 unlabeled CT images. Our experiments aim to
register and segment seven cardiac structures including the ascending aorta, left
atrial cavity (LA), left ventricular cavity(LV), myocardium of the left ventri-
cle (Myo), pulmonary artery (PA), right atrial cavity (RA) and right ventricular
cavity (RV). We first crop the rectangular regions containing the hearts for affine
transformation and resample them to 128×128×96. Then the labeled images are
randomly split into 5 parts, 1 part (4 images) is used in training set as the moving
images for few-shot situation and the remaining 4 parts (16 images) in testing set
resulting in 5-folds evaluation. We put 40 unlabeled images as the fixed images
in the training set leading to 160 data pairs together with the moving images,
and the 16 images in the testing set are paired separately leading to 240 data
pairs. Following the [2], we use Elastix5 to perform affine transformation so that
our model only needs to pay attention to the deformation registration process.

5 https://www.elastix.org/
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Implementation The segmentation network and pixel-wise discriminator fol-
low the same 3D U-Net [3] structure. The registration network follows the
VoxelMorph-2 [2] structure. We use RMSprop [34] to train the registration net-
work and the discriminator for stable process [1], and Adam [17] to train the
segmentation network for fast convergence. These models share the same learn-
ing rate of 2e−4 and training batch size of 1 due to the limitation of memory.
According to extensive experiments, we finally set λadv = 1, λdrc = 10, λcc = 1,
λR = 1, λacm = 1 and λce = 1. The models were implemented via Keras6 with
a Tensorlow7 backend and were trained on a single NVIDIA TitanX GPU with
12 GB memory.

Comparison settings The comparison demonstrates the advancement on seg-
mentation and registration of our DeepRS model. We compare our model’s seg-
mentation performance with three general segmentation networks (3D U-Net[3],
V-Net[25], 3D FCN[24]) to illustrate the enhancement brought by registration.
The 3D U-Net augmented by manual strategies (random rotate in [−10◦, 10◦],
random mirroring and random flipping) is compared with to show the advantages
of registration-based data augmentation. We also compare two unsupervised reg-
istration models (VoxelMorph-2[2], Adv-Reg[7]) to illustrate the superiority of
our deep-based region constraints in complex scene. In addition, two registration
and segmentation joint models (DeepAtlas[37], HybridCNN[22]) are compared
with to demonstrate the superiority of the DeepRS brought by our DSS block,
ACM method and DRC strategy. What’s more, our proposed DeepRS is also
evaluated on different data amount to illustrate its excellent generalization abil-
ity in few-shot segmentation. Finally, an ablation study is used to analyse the
contributions of each our innovation.

Evaluation metric We evaluate the registration and segmentation methods with
dice coefficient [5]. The dice coefficient ([%]) is a metric that measures the coin-

cidence degree between two sets according to Dice(G,P ) = 2|G
⋂

P |
|G|+|P | where the

G is the ground truth and the P is the predicted mask. It is suitable to evaluate
the agreement between the predicted segmentation/registration and the ground
truth. The Dice coefficients of the corresponding seven cardiac structures are
calculated, and presented as mean± std.

4.2 Results

Extensive experimental results on cardiac CT dataset show that with merely 4
training labels, our proposed DeepRS appears to be a strong superiority both
in the quantitative comparison and in visual. The experiments on different label
amounts illustrate that our DeepRS greatly reduces the label dependence of the
segmentation model.

6 https://github.com/keras-team/keras
7 https://github.com/tensorflow/tensorflow
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Fig. 5. Our DeepRS achieves excellent dice coefficients on each structure. The box plots
shows the proposed DeepRS (red box) model achieves the state-of-the-art performance
in complex scene registration (Left) and few-shot segmentation (Right).

Quantitative comparison As shown in Tab. 1, our DeepRS model achieves
the state-of-the-art performance in both registration and segmentation tasks
whose mean dice coefficients of all cardiac structures are 77.6% and 85.7%.
Fig. 5 illustrates that the proposed DeepRS achieves excellent dice coefficients
on each structure in complex scene registration and few-shot segmentation.

Table 1. The proposed DeepRS model achieves
the state-of-the-art performance both in registra-
tion (R) and segmentation (S) tasks on cardiac
CT data.

Method R-Dice S-Dice
Affine only 64.6±10.7 -

VoxelMorph-2[2] 71.7±10.6 -
Adv-Reg[7] 68.8±10.7 -
3D U-Net[3] - 78.8±9.2

3D U-Net-aug[3] - 80.0±12.0
3D FCN[24] - 71.4±11.3
V-Net[25] - 69.8±10.9

DeepAtlas[37] 71.3±10.5 81.8±7.5
HybridCNN[22] 69.2±10.3 78.8±7.9
DeepRS(Ours) 77.6±7.9 85.7±7.7

On the registration task, the
registration network gets the
deep-based region constraints
from the segmentation net-
work, bringing finer registra-
tion on ROIs in complex scene
than other registration mod-
els. VoxelMorph-2 lacks region
constraints, thus the dice is
5.9% lower than ours. The Adv-
Reg takes a GAN whose train-
ing process is unstable to learn
a similarity metric and gets
worse results than VoxelMorph-
2. DeepAtlas utilizes weakly su-
pervised data directly, thus the
misaligned regions disturbs the
training process of the segmen-
tation model finally in turn dis-
turbing the registration performance (71.3%). HybridCNN lacks label-based re-
gion constraints in our few-shot situation thus the influence of the misaligned
regions are more pronounced (69.2%).

On the segmentation task, the segmentation network in our DeepRS model
effectively utilizes the augmentation data and weakly supervised data from the
registration network, thus achieving much higher dice coefficient than 3D U-Net,
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3D FCN and V-Net. Although the 3D U-Net augmented by manual strategies
has get 1.2% dice improvement compared with non-augmentation, our DeepRS
model has even greater advantage by 5.7%. Due to the influence of the mis-
aligned regions in weakly supervised data, the HybridCNN only gets 78.8% dice.
Similarly, the DeepAtlas takes the augmentation data from registration, but the
misaligned regions still limits the enhancement which make it get only 81.8%
dice.

Visual superiority Visually, our DeepRS model brings higher segmentation
generalization ability with few labels, and achieves finer registration performance
on ROIs in complex scene.

Fig. 6. Our DeepRS gets finer registration on ROIs.
The example slices from 3D CT image show the
overlaid boundaries of the LV (green), RA (yellow),
RV (purple), LV (blue) and Myo (pink). Our model
makes these structures in moving image alike struc-
tures in fixed image.

As illustrated in Fig. 6,
our DeepRS brings finer reg-
istration on ROIs making 5
structures in moving image
look more similar to these
structures in fixed image. The
HybridCNN uses weakly su-
pervised data directly and
lacks label-based region con-
straints. Therefore the mis-
aligned regions interrupt the
segmentation training process
and in turn weaken the reg-
istration performance bring-
ing serious region correspon-
dence errors. The Adv-Reg
is optimized by the unstable
GAN making the warped im-
age messy and rough in detail.

As shown in Fig. 7, our
DeepRS model brings much
higher segmentation general-
ization ability trained on merely 4 labeled images. Case 1 shows the excellent
generalization ability and the yellow boxes show the performance in detail. Our
DeepRS has achieved fine segmentation, while the 3D U-Net, 3D FCN, 3D U-
Net-aug and V-Net have many mis-segmentation regions. The HybridCNN and
DeepAtlas has more mis-segmentation regions than others due to the misaligned
regions in weakly supervised data. Case 2 shows the fine segmentation capabil-
ity in another perspective and sample. The 3D U-Net ,3D FCN and V-Net are
limited by small dataset leading to various serious mis-segmentation.

DeepRS for few-shot segmentation In few-shot situation, the segmentation
(S) network in our DeepRS model achieves higher mean dice coefficients of all
structures than 3D U-Net as illustrated in Fig. 8. The effectiveness of our DeepRS
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Fig. 7. Our DeepRS brings higher segmentation generalization ability trained on 4
labeled images. Yellow boxes show the excellent generalization ability in detail. The
example slices from 3D CT image show the regions of Aorta (red), RA (yellow), RV
(purple), Myo (pink), LV (green) and LV (blue).

is evaluated on randomly-sampled labeled data whose amount is 1, 4, 7 and 10
respectively. 3D U-Net is used for comparison and the mean dice coefficients
of all structures are calculated. As the labeled data decreases, the superiority
of our DeepRS on segmentation task becomes more prominent. When only one
label is available, our segmentation performance is 18.1% higher than 3D U-Net.

Fig. 8. Especially in few-shot situation, the segmen-
tation network in our DeepRS model achieves much
higher mean dice coefficients of all structures than
3D U-Net[3].

4.3 Ablation study

As shown in Tab. 2, an ab-
lation study illustrates each
great advantage brought by
our innovations. The directly
joint model only utilizes the
registration’s data augmenta-
tion ability thus the segmen-
tation gets 80.5% dice and
the registration gets 72.9%
dice. Our DSS block embeds
a random perturbation factor
in the registration to main-
tain the diversity of augmen-
tation data (Solution 1),
thus bringing 3.4% segmenta-
tion dice growth. The ACM
method adds the supervision
information in weakly super-
vised data (Solution 2) to
segmentation network so that
it gets 3.6% segmentation dice improvement. The DRC strategy builds deep-
based region constraints instead of label-based methods (Solution 3) via the
warped and fixed segmentations increasing the direct joint model by 3% reg-
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istration dice. We find that the segmentation and registration models achieve
further promotion in our final DeepRS model owing to their complementarity,
thus finally achieving 77.6% registration dice and 85.7% segmentation dice which
are increased by 4.7% and 5.2% respectively.

5 Conclusion

Table 2. The ablation study analyses the contri-
butions of our innovations.

R S DSS ACM DRC R-Dice S-Dice
X 72.2±10.3 -

X - 78.8±9.2
X X 72.9±10.4 80.5±10.2
X X X 72.9±9.6 83.9±8.3
X X X 72.5±10.1 84.1±8.3
X X X 75.9±9.1 82.5±9.2
X X X X X 77.6±7.9 85.7±7.7

This paper presents a Deep
Complementary Joint Model(DeepRS)
for complex scene registration
and few-shot segmentation. Our
proposed DSS block adjusts de-
formation fields randomly via
a perturbation factor, thus in-
creasing the activity of the
warped images and labels and
achieving sustainable data aug-
mentation capability. Our pro-
posed ACM method efficiently
utilizes the supervision informa-
tion in weakly supervised data
via alignment confidence maps
from a pixel-wise discriminator bringing higher segmentation generalization. Our
proposed DRC strategy constructs label-free loss between the warp and fixed im-
ages from the segmentation model resulting in finer registration on ROIs. We
train our proposed DeepRS model on the cardiac CT dataset which has complex
background with few labels with merely 4 labels and shows great advantages in
registration and segmentation tasks compared to existing methods.

Our work greatly reduces the requirement of a large labeled dataset and
provides the fine optimization targets, thus the registration and segmentation
accuracy are improved and the cost is greatly saved. Especially, our DeepRS
model has great potential in some situations where the labeling is difficult, the
scene is complex or the dataset is small.
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