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ABSTRACT

Variational autoencoders (VAEs) are powerful deep gen-
erative models widely used to represent high-dimensional
complex data through a low-dimensional latent space learned
in an unsupervised manner. In the original VAE model, the
input data vectors are processed independently. Recently, a
series of papers have presented different extensions of the
VAE to process sequential data, which model not only the
latent space but also the temporal dependencies within a
sequence of data vectors and corresponding latent vectors,
relying on recurrent neural networks or state-space mod-
els. In this paper, we perform a literature review of these
models. We introduce and discuss a general class of models,
called dynamical variational autoencoders (DVAEs), which
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encompasses a large subset of these temporal VAE exten-
sions. Then, we present in detail seven recently proposed
DVAE models, with an aim to homogenize the notations
and presentation lines, as well as to relate these models
with existing classical temporal models. We have reimple-
mented those seven DVAE models and present the results
of an experimental benchmark conducted on the speech
analysis-resynthesis task (the PyTorch code is made pub-
licly available). The paper concludes with a discussion on
important issues concerning the DVAE class of models and
future research guidelines.



Contents

1 Introduction 7
1.1 Deep Dynamical Bayesian Networks . . . . . . . . . . . . 8
1.2 Variational inference and VAEs . . . . . . . . . . . . . . . 10
1.3 Dynamical VAEs . . . . . . . . . . . . . . . . . . . . . . . 12
1.4 Aim, contributions, and outline of the paper . . . . . . . . 14

2 Variational Autoencoders 19
2.1 Principle . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.2 VAE generative model . . . . . . . . . . . . . . . . . . . . 20
2.3 Learning with variational inference . . . . . . . . . . . . . 23
2.4 VAE inference model . . . . . . . . . . . . . . . . . . . . 28
2.5 VAE training . . . . . . . . . . . . . . . . . . . . . . . . . 28

3 Recurrent Neural Networks and State Space Models 31
3.1 Recurrent Neural Networks . . . . . . . . . . . . . . . . . 31
3.2 State Space Models . . . . . . . . . . . . . . . . . . . . . 34

4 Definition of Dynamical VAEs 39
4.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 39
4.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 VLB and training of DVAEs . . . . . . . . . . . . . . . . . 50
4.4 Additional dichotomy for autoregressive DVAE models . . . 52



4

4.5 DVAE summary . . . . . . . . . . . . . . . . . . . . . . . 54

5 Deep Kalman Filters 57
5.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 58
5.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 59
5.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6 Kalman Variational Autoencoders 65
6.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 66
6.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 68
6.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7 STOchastic Recurrent Networks 71
7.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 71
7.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 74
7.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

8 Variational Recurrent Neural Networks 79
8.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 79
8.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 81
8.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
8.4 Improved VRNN and VRNN applications . . . . . . . . . . 83

9 Stochastic Recurrent Neural Networks 85
9.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 85
9.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 87
9.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

10 Recurrent Variational Autoencoders 91
10.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 91
10.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 95
10.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

11 Disentangled Sequential Autoencoders 99
11.1 Generative model . . . . . . . . . . . . . . . . . . . . . . 99
11.2 Inference model . . . . . . . . . . . . . . . . . . . . . . . 100
11.3 Training . . . . . . . . . . . . . . . . . . . . . . . . . . . 102



5

12 Brief tour of other models 105
12.1 Models related to DKF . . . . . . . . . . . . . . . . . . . 105
12.2 Models related to STORN, VRNN, and SRNN . . . . . . . 107
12.3 Other models . . . . . . . . . . . . . . . . . . . . . . . . 112

13 Experiments 115
13.1 DVAE architectures . . . . . . . . . . . . . . . . . . . . . 115
13.2 Experimental protocol . . . . . . . . . . . . . . . . . . . . 118
13.3 Results on speech data . . . . . . . . . . . . . . . . . . . 121
13.4 Results on 3D human motion data . . . . . . . . . . . . . 133
13.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 136

14 Discussion 139
14.1 Fundamental motivation for DVAEs . . . . . . . . . . . . 139
14.2 DVAE outcome: A story of flexibility . . . . . . . . . . . . 140
14.3 VAE improvements and extensions applicable to DVAEs . . 144
14.4 Perspectives on source coding . . . . . . . . . . . . . . . . 155

Acknowledgements 159

Appendices 161

A Marginalization of h1:T in STORN 163

B DVAE implementation with speech data 165
B.1 DKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.2 STORN . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
B.3 VRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.4 SRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
B.5 RVAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
B.6 DSAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

C DVAE implementation with 3D human motion data 171
C.1 DKF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
C.2 STORN . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.3 VRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172



6

C.4 SRNN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
C.5 RVAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173
C.6 DSAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

References 175



1
Introduction

Deep Generative Models (DGMs) constitute a large family of probabilis-
tic models that are currently of high interest in the machine learning and
signal processing. They result from the combination of conventional (i.e.,
non-deep) generative probabilistic models and Deep Neural Networks
(DNNs). For both conventional models and DGMs, different noncon-
flicting taxonomies can be established due to the domain richness and
percolation across the different approaches. Nevertheless, these models
can be grossly classified into the following two categories. Using the
terminology of Diggle and Gratton (1984), the first category corresponds
to prescribed models for which the probability density function (pdf)
of the generative model is defined explicitly, generally through a para-
metric form. The second category corresponds to implicit models that
can generate data “directly,” without using an explicit formulation and
manipulation of a pdf model. Generative adversarial networks (GANs)
are a popular example of this second category (Goodfellow et al., 2014;
Goodfellow et al., 2016; Goodfellow, 2016).

In the present review, we focus on the first category, in which a
parametric pdf model is used. A suitable feature of generative models
based on an explicit formulation of the pdf is that they can be easily
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8 Introduction

plugged into a more general Bayesian framework, not only for gener-
ating data but also for modeling the data structure (without actually
generating them) in various applications (e.g., data denoising or data
transformation). In any case, the pdf model must be as close as possible
to the true pdf of the data, which is generally unknown. To achieve this
aim, the model must be trained from data, and model parameters are
generally estimated by following the maximum likelihood methodology
(Goodfellow et al., 2016; Bishop, 2006; Koller and Friedman, 2009).
These principles are valid for both conventional generative models and
DGMs; however, in the case of DGMs, the pdf parameters are generally
the output of DNNs, which makes model training potentially difficult.

1.1 Deep Dynamical Bayesian Networks

In the present review, we focus on an important subfamily of DGMs,
namely the deep dynamical Bayesian networks (DDBNs), which are
built on the following models:

• Bayesian networks (BNs) are a popular class of probabilistic mod-
els for which i) the dependencies among all involved random
variables are explicitly represented by conditional pdfs (i.e. BNs
are prescribed models), and ii) these dependencies can be schemat-
ically represented using a directed acyclic graph (Bishop, 2006;
Koller and Friedman, 2009). The structure of these dependen-
cies often reflects (or originates from) an underlying hierarchical
generative process.

• Dynamical Bayesian networks are BNs that include temporal
dependencies and are widely used to model dynamical systems
and/or data sequences. Dynamical BNs are BNs “repeated over
time”; that is, they exhibit a repeating dependency structure (a
time-slice at discrete time t) and some dependencies across these
time-slices (the dynamical models). Recurrent neural networks
(RNNs) and state-space models (SSMs) can be considered special
cases of dynamical BNs. In fact, a temporal dependency in a
dynamical BN is often implemented either as a deterministic re-
cursive process, as in RNNs, or as a first-order Markovian process,
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Figure 1.1: A graphical taxonomy of generative probabilistic models. Only the
branch corresponding to the models covered in this review is detailed. Nodes represent
classes of models, and arrow labels specify some of the relationships between the
classes of models. Please refer to the text for details and acronym definitions. The
numbered gray circles indicate the section number in which the corresponding class
of models is detailed.
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as in usual SSMs.

• Deep Bayesian networks combine BNs with DNNs. DNNs are used
to generate the parameters of the modeled distributions. This
enables them to be high-dimensional and highly multi-modal while
having a reasonable number of parameters. In short, deep BNs
have can appropriately combine the “explainability” of Bayesian
models with the modeling power of DNNs.

DDBNs are thus a combination of all these aspects, as illustrated in
Figure 1.1. They can be equally seen as dynamical versions of deep
BNs (i.e., deep BNs including temporal dependencies) or deep versions
of dynamical BNs (i.e., dynamical BNs mixed with DNNs). As an
extension of dynamical BNs, DDBNs are expected to be powerful tools
for modeling dynamical systems and/or data sequences. However, as
mentioned above, the combination of probabilistic modeling with DNNs
in deep BNs can result in a complex and costly model training. This is
an even more serious issue for DDBNs, in which the repeating structure
due to temporal modeling adds a level of complexity.

1.2 Variational inference and VAEs

Recently, the application of the variational inference methodology (Jor-
dan et al., 1999; Bishop, 2006, Chapter 10; Šmídl and Quinn, 2006;
Murphy, 2012, Chapter 21) to a fundamental deep BN architecture –a
low-dimensional to a high-dimensional generative feed-forward DNN–
has led to efficient inference and training of the resulting model, called a
variational autoencoder (VAE) (Kingma and Welling, 2014). A similar
approach was proposed the same year (Rezende et al., 2014).1 The
VAE is directly connected to the concepts of a latent variable and
unsupervised representation learning: the observed random variable
representing the data of interest is assumed to be generated from an
unobserved latent variable through a probabilistic process. Often, this
latent variable is of lower dimension than the observed data (which can
be high-dimensional) and is assumed to “encode” the observed data in

1Kingma and Welling (2014) and Rezende et al. (2014) were both pre-published
in 2013 as ArXiv papers. Connections also exist with Mnih and Gregor (2014).
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a compact manner so that new data can be generated from new values
of the latent variable. Moreover, one wishes to extract a latent repre-
sentation that is disentangled (i.e., different latent coefficients encode
different properties or different factors of variation in the data). When
successful, this provides good interpretability and control of the data
generation/transformation process.

The automatic discovery of a latent space structure is part of the
model training process. The inference process, which is defined in the
present context as the estimation of latent variables from the observed
data, also plays a major role. As presented in detail later, in a deep
BN, the exact posterior distribution (i.e., the posterior distribution of
the latent variable given the observed variable corresponding to the
generative model) is generally not tractable. It is thus replaced with a
parametric approximate posterior distribution (i.e., an inference model)
that is implemented with a DNN. As the observed data likelihood
function is also not tractable, the model parameters are estimated by
chaining the inference model (also known as the encoder in the VAE
framework) and the generative model (the decoder) and maximizing a
lower bound of the log-likelihood function, called the variational lower
bound (VLB), over a training dataset.2 Hereinafter, we refer to this
general variational inference and training methodology as the VAE
methodology.

In summary, the VAE methodology enables deep unsupervised rep-
resentation learning while providing efficient inference and parameter
estimation in a Bayesian framework. As a result, the seminal papers by
Kingma and Welling (2014) and Rezende et al. (2014) have had and
continue to have a strong impact on the machine learning community.
VAEs have been applied to many signal processing problems, such as
the generation and transformation of images and speech signals (we
provide a few references in Chapter 2).

2The idea of using an artificial neural network to approximate an inference model
and chaining the encoder and decoder dates back to the early studies of Hinton et al.
(1995) and Dayan et al. (1995). However, the algorithms presented in these papers
for model training are different from the one used to optimize the VAE.
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1.3 Dynamical VAEs

As a deep BN, the original VAE proposed by Kingma and Welling
(2014) did not include temporal modeling. This means that each data
vector was processed independently of the other data vectors (and the
corresponding latent vector was also processed independently of the
other latent vectors). This is clearly suboptimal for the modeling of
correlated (temporal) vector sequences.

In the years following the publication of Kingma and Welling (2014)
and Rezende et al. (2014), the VAE methodology was extended and
successfully applied to several more complex deep BNs. In particular, it
was applied to deep BNs with a temporal model (i.e., DDBNs) dedicated
to the modeling of sequential data exhibiting temporal correlation. In the
present review, we are particularly interested in the models presented in
the following papers: (Bayer and Osendorfer, 2014; Krishnan et al., 2015;
Chung et al., 2015; Gu et al., 2015; Fraccaro et al., 2016; Krishnan et al.,
2017; Fraccaro et al., 2017; Goyal et al., 2017; Hsu et al., 2017b; Li and
Mandt, 2018; Leglaive et al., 2020). In addition to including temporal
dependencies, the unsupervised representation learning essence of the
VAE is preserved and cherished in these studies. These DDBNs combine
the observed and latent variables and aim at modeling not only data
dynamics but also discovering the latent factors governing them.

To achieve this aim, these models are trained using the VAE method-
ology (i.e., design of an inference model and maximization of the cor-
responding VLB). We can thus encompass these models under the
common class and terminology of variational DDBNs (i.e., DDBNs
immersed in the VAE framework). In the following of the paper, as well
as the title, we prefer to refer to them as dynamical VAEs (DVAEs)
(i.e., VAEs including a temporal model for modeling sequential data).
This is simply because we assume that the term “VAE” is currently
more popular than the term “DBN,” and “dynamical VAEs” gives
a more speaking-first evocation of these models, compared to “varia-
tional DDBNs.” This convergence of DDBNs and VAEs into DVAEs is
illustrated in Figure 1.1.

In practice, these different DVAE models vary in how they define
the dependencies between the observed and latent variables, how they
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define and parameterize the corresponding generative pdfs, and how they
define and parameterize the inference model. They also differ in how
they combine the variables with RNNs to model temporal dependencies,
at both generation and inference. In contrast, they are all characterized
by the following common set of features.

First, as stated above, they are all trained using the VAE methodol-
ogy, possibly with a few adaptations and refinements. In this paper, we
do not review models based on GANs and, more generally, on adversarial
training. Examples of extensions of “static” GANs to sequence modeling
and generation can be found in the literature (Mathieu et al., 2016;
Villegas et al., 2017; Denton and Birodkar, 2017; Tulyakov et al., 2018;
Lee et al., 2018). This approach is particularly popular for separating
content and motion in videos.

Second, even if the observed random vectors can be continuous or
discrete, as in the original VAE formulation, they all feature continuous
latent random variables. In the present review, we do not consider the
case of discrete latent random variables. The latter can be incorporated
in DVAE models, in the line with the case of, for example, conditional
VAEs (Sohn et al., 2015; Zhao et al., 2017). Temporal models with binary
observed and latent random variables have been proposed (Boulanger-
Lewandowski et al., 2012; Gan et al., 2015). These models are based
on restricted Boltzman machines (RBMs) or sigmoid belief networks
(SBNs) combined with RNNs. A detailed analysis of such models is
beyond the scope of the present review.

Third, all DVAE models we consider feature a discrete-time sequence
of (continuous or discrete) observed random vectors associated with a
corresponding discrete-time sequence of (continuous) latent random
vectors. In other words, these models function in a sequence-to-sequence
mode for both encoding and decoding. Thus, we do not focus on VAE-
based models specifically designed for text and dialogue generation
(Bowman et al., 2016; Miao et al., 2016; Serban et al., 2016; Serban
et al., 2017; Yang et al., 2017; Semeniuta et al., 2017; Hu et al., 2017;
Zhao et al., 2018; Jang et al., 2019) or (2D) image modeling (Gulrajani
et al., 2016; Chen et al., 2017; Lucas and Verbeek, 2018; Shang et al.,
2018). These models generally have a many-to-one encoder and a one-to-
many decoder; that is, a long sequence of data (e.g., words or pixels) is
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encoded into a single latent vector, which is in turn decoded into a whole
data sequence (see also Roberts et al. (2018) and Pereira and Silveira
(2018) for examples on music score modeling and anomaly detection
in energy time series, respectively). Even if those models can include
a hierarchical structure at encoding and/or at decoding, they do not
consider a temporal sequence of latent vectors.

All these latent-variable deep temporal models, the ones we detail
and unify in the DVAE class, and the ones we do not detail, remain
strongly connected, with a similar overall encoding-decoding architec-
ture and possibly a similar inference and training VAE methodology.
Therefore, we must keep in mind that some of the propositions made in
the literature for one type of model can be adapted and be beneficial
to the other.

1.4 Aim, contributions, and outline of the paper

This paper aims to provide a comprehensive overview of DVAE models.
The contributions of this paper are detailed as follows.

We provide a formal definition of the general class of DVAEs.
We describe its main properties and characteristics and how this class is
related to previous classical models, such as VAEs, RNNs, and SSMs. We
discuss the structure of dependencies between the observed and latent
random variables in DVAE pdfs, as well as how these dependencies are
implemented with neural networks. We discuss the design of inference
models considering the general methodology used to identify the actual
dependencies of the latent variables at inference time. We also discuss
the VLB computation for training DVAEs. All these points are presented
in Chapter 4. To the best of our knowledge, this is the first time this
class of models has been presented in such a general and unified manner.

We provide a detailed and complete technical description of
seven DVAE models selected from the literature. In Chapter 5,
we start with the deep Kalman filter (DKF) (Krishnan et al., 2015;
Krishnan et al., 2017), which is a basic combination of an SSM with
DNNs. Then, we examine the Kalman variational autoencoder (KVAE)
(Fraccaro et al., 2017) in Chapter 6, the stochastic recurrent neural
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network (STORN) (Bayer and Osendorfer, 2014) in Chapter 7, the
variational recurrent neural network (VRNN) (Chung et al., 2015; Goyal
et al., 2017) in Chapter 8, another type of stochastic recurrent neural
network (SRNN) (Fraccaro et al., 2016) in Chapter 9, the recurrent
variational autoencoder (RVAE) (Leglaive et al., 2020) in Chapter 10,
and finally the disentangled sequential autoencoder (DSAE) (Li and
Mandt, 2018) in Chapter 11.

We have spent effort on consistency of presentation. For all seven
models that we detail, we first present the generative equations in
time-step form and then for an entire data sequence. Then, we present
the structure of the exact posterior distribution of the latent variables
given the observed data and present the inference model as proposed
in the original papers. Finally, we present the corresponding VLB.
In the original papers, some parts of this complete picture are often
overviewed or even missing (not always the same parts), independently
of the authors’ goodwill, because of lack of space.

We discuss the links, similarities, and differences of the selected
DVAE models. We comment on the choices of the authors of the reviewed
papers regarding the inference model, its relation to the exact posterior
distribution, and implementation issues. In the present review, we
discuss only high-level implementation issues related to the general
structure of the neural network that implements a given DVAE at
generation or inference (e.g., the type of RNN). We do not discuss
practical implementation issues (e.g., the number of layers), which are
too low-level in the present technical review context.

We have also spent some effort making the notations homogeneous
across all models. This is valid for both the review of the seven detailed
models and the other sections of the paper, including the general pre-
sentation of the DVAE class of models in Chapter 4. For some models,
we have changed the time indexation notation, and in some instances,
the names of some variables compared to the original papers. We have
taken great care to do that consistently in the generative model, the
inference part, and the VLB so that these notation changes do not affect
the essence and functioning of the model. Together with consistency of
presentation, this enables us to better put in evidence the commonal-
ities and differences across models and make their comparison easier.
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Notation remarks are specified in independent dedicated paragraphs
throughout the paper to facilitate connections with the original papers.

In complement to the detailed review of the seven selected models,
we provide a more rapid overview of other DVAE models pre-
sented in the recent literature in Chapter 12.

We relate the recent developments in DVAEs to the history
and technical background of the classical models DVAEs are
built on, namely VAEs, RNNs, and SSMs. Although there are
already many papers on VAEs, including tutorials, we present them
in Chapter 2 because all subsequent DVAE models rely on the VAE
methodology. Then, as the introduction of temporal models in the VAE
framework is closely linked to RNNs and SSMs, we briefly present these
two classes of models in Chapter 3. The unified notation that we use
will help readers from different communities (e.g., machine learning,
signal processing, and control theory) who are not familiar with the
relations among VAEs, RNNs, and SSMs to discover them comfortably.

We provide a quantitative benchmark of the selected DVAE
models in an analysis-resynthesis task, as well as qualitative
examples of data generation. We have reimplemented the seven
DVAE models detailed in this review and evaluated them on two different
datasets (speech signals and 3D human motion data). This benchmark
is presented in Chapter 13.

The performance comparison of the different models from the lit-
erature review is a difficult task for many reasons. First, all models
are not evaluated on the same data. Then, a newly proposed model
generally performs better than some previously proposed model(s), at
least on some aspect(s), but this can depend on model tuning, task,
data, and experimental setup. Moreover, the comparison performed
with a subset of previous models is incomplete in essence. In short,
an extended benchmark of DVAE models is not yet available in the
literature. Conducting an extended benchmark is a huge endeavor, as
there are many possible configurations for the models and many tasks
for evaluating them. In particular, it is not yet clear how to evaluate the
degree of “disentanglement” of the extracted latent space. The presented
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experiments are a first step in that direction. We plan to exploit and
compare the models more extensively and on more complex tasks in
future studies. For example, we compared three models in the recently
proposed DVAE-based unsupervised speech enhancement method (Bie
et al., 2021).

The code reimplementing the seven DVAE models and
used on the benchmark task is made available to the com-
munity. A link to the open-source code and the best-trained models
can be found at https://team.inria.fr/robotlearn/dvae/. We have also
taken care, in the code, to follow the unified presentation and nota-
tion used in the paper, making it, hopefully, a useful and pedagogical
resource.

We provide a discussion to put the DVAE class of models into
perspective. We summarize the outcome of this review and discuss
the future challenges and possible improvements of VAEs and DVAEs.
This is presented in Chapter 14.

In summary, we believe that comparison of models across papers is a
difficult task in essence, regardless of the efforts spent by the authors of
the original papers, because of the use of different notations, presentation
lines, missing information, etc. We hope that the present review paper
and accompanying code will enable the readers to access the technical
substance of the different DVAE models, their connections with classical
models, their cross-connections, and their unification in the DVAE class
more rapidly and “comfortably” than by analyzing and comparing the
original papers by themselves.

We wish the reader to enjoy this DVAE tour.

https://team.inria.fr/robotlearn/dvae/




2
Variational Autoencoders

In this section, we present the VAE and the associated methodology
for model training and approximate posterior distribution estimation
(i.e., inference) with variational methods (Kingma and Welling, 2014;
Rezende et al., 2014). An extended tutorial on VAEs can be found in
Kingma and Welling’s (2019) paper.

2.1 Principle

For clarity of presentation, let us start with an autoencoder (AE). As
illustrated in Figure 2.1, an AE is a DNN that is trained to replicate an
input vector x ∈ RF at the output (Hinton and Salakhutdinov, 2006;
Vincent et al., 2010). At training time, the target output is thus set
equal to x, and at test time, the output x̂ is an estimated value of x
(i.e., we have x̂ ≈ x). An AE usually has a diabolo shape. The left part
of the AE, the encoder, provides a low-dimensional latent representation
z ∈ RL of the data vector x, with L� F , at the so-called bottleneck
layer. The right part of the AE, the decoder, tries to reconstruct x
from z. So far, everything is deterministic: At test time, each time
the AE is fed with a specific input vector x0, it will provide the same
corresponding output x̂0.
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︸ ︷︷ ︸
Encoder

︸ ︷︷ ︸
Decoder

x ez z dx x̂

Figure 2.1: Schematic representation of an AE. The left trapezoid represents a high-
to-low-dimensional encoder DNN (denoted ez), and the right trapezoid represents
a low-to-high-dimensional decoder DNN (denoted dx). Calculation of the latent
variable z and output x̂ from input x is deterministic. In line with probabilistic
graphical models, deterministic variables are represented within diamonds.

The VAE was initially proposed by Kingma and Welling (2014) and
Rezende et al. (2014). It can be seen as a probabilistic version of an AE,
where the output of the decoder is not directly a value of x but the
parameters of a probability distribution of x. As shown below, the same
probabilistic formulation applies to the encoding of z. The resulting
probabilistic model can be used to generate new data from new values
of z. It can also be used to transform existing data within an encoding-
modification-decoding scheme. For instance, the seminal papers on
VAEs and many subsequent ones have considered image generation and
transformation. Examples of speech/music signals transformation based
on a VAE can be found in the literature (Blaauw and Bonada, 2016;
Hsu et al., 2017a; Esling et al., 2018; Roche et al., 2019; Bitton et al.,
2020). Finally, it can be employed as a prior distribution of x in more
complex Bayesian models for, for example, speech enhancement (Bando
et al., 2018; Leglaive et al., 2018; Pariente et al., 2019; Leglaive et al.,
2019) or source separation (Kameoka et al., 2018).

For clarity of presentation, at this point, it is convenient to separate
the presentation of the VAE decoder (i.e., the generative model) and
that of the VAE encoder (i.e., the inference model).

2.2 VAE generative model

In the following, N
(
·;µ,Σ

)
denotes a multivariate Gaussian distribution

with mean vector µ and covariance matrix Σ, diag{·} is the operator
that forms a diagonal matrix from a vector by putting the vector entries
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︸ ︷︷ ︸
Encoder

︸ ︷︷ ︸
Decoder

x ez
µφ(x)
σφ(x)

z dx
µθ(z)
σθ(z)

x

Figure 2.2: Schematic representation of the VAE: Encoder (left) and decoder
(right). Dashed lines represent a sampling process. In line with probabilistic graphical
models, latent variables are represented within empty circles and observed variables
are represented within shaded circles. When the encoder and decoder are cascaded,
using the same variable name x at both the input and output is an abuse of notation,
but this is done to be more consistent with the separate encoder and decoder
equations.

on the diagonal, 0L is the zero-vector of size L, and IL is the identity
matrix of size L. pθx (x) is a generic notation for a parametric pdf of the
random variable x, where θx is the set of parameters. It is equivalent
to p(x; θx).

Formally, the VAE decoder is defined by

pθ(x, z) = pθx (x|z)pθz (z), (2.1)

with

pθz (z) = N (z; 0L, IL), (2.2)

and pθx (x|z) is a parametric conditional distribution, the parame-
ters of which are a nonlinear function of z modeled by a DNN. This
DNN is called the decoder network, or the generation network, and is
parametrized by a set of weights and biases denoted θx . In the standard
VAE, the set of parameters θz is empty, but we write it explicitly to be
coherent with the rest of the paper, and we have here θ = θx ∪ θz = θx .
The decoder network is illustrated in Figure 2.2 (right).

The VAE model and associated variational methodology was in-
troduced by Kingma and Welling (2014) in the general framework of
parametric distributions, independently of the practical choice of the
pdf pθx (x|z) (and to a lesser extend of pθz (z)). The observed variable x
can be a continuous or discrete random variable with any arbitrary con-
ditional distribution. The Gaussian case was then presented by Kingma
and Welling (2014) as a major example. Of course, other pdfs (rather



22 Variational Autoencoders

than Gaussian) can be used depending on the nature of the data vector
x. For example, Gamma distributions better fit the natural statistics of
speech/audio power spectra (Girin et al., 2019). For simplicity of presen-
tation and consistency across models, in the present review, pθx (x|z) is
assumed to be a Gaussian distribution with diagonal covariance matrix
for all models; that is,

pθx (x|z) = N
(
x;µθx (z),diag{σ2

θx (z)}
)

(2.3)

=
F∏
f=1

pθx (xf |z) =
F∏
f=1
N
(
xf ;µθx ,f (z), σ2

θx ,f (z)
)
, (2.4)

where the subscript f denotes the f -th entry of a vector, and µθx :
RL 7→ RF and σθx : RL 7→ RF+ are nonlinear functions of z modeled
by the decoder DNN. Although from a mathematical perspective, we
could choose to work with full covariance matrices, assuming diagonal
covariance matrices is preferable for computational reasons, since the
number of free parameters of a covariance matrix grows quadratically
with the variable dimension. This is problematic not only because we
need to learn the neural network that computes all these parameters
but also because covariance matrices often need to be inverted. The
use of full covariance matrices also requires choosing an appropriate
representation, for instance, based on the Cholesky decomposition.
Please refer to Section 2.5.1 of Kingma and Welling (2019) for an
extended discussion on this topic.

For maintaining consistency with the presentation of the other
models in the next sections, we gather into dx the functions implemented
by the decoder DNN; that is,

[µθx (z),σθx (z)] = dx(z). (2.5)

A VAE decoder can be considered a generalization of the probabilistic
principal component analysis (PPCA) (Tipping and Bishop, 1999) with
a nonlinear (instead of linear) relationship between z and the parameters
θx . It can also be considered the generalization of a generative mixture
models, with a continuous conditional latent variable instead of a discrete
one (Kingma and Welling, 2019). Indeed, the marginal distribution of
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x, pθ(x), is given by

pθ(x) =
∫
pθx (x|z)pθz (z)dz. (2.6)

As any conditional distribution pθx (x|z) can provide a mode, pθ(x) can
be highly multimodal (in addition to being potentially high-dimensional).
Unlike PPCA, in VAEs, the posterior distribution cannot be written
analytically and has to be approximated, as discussed in the next section.

2.3 Learning with variational inference

Training the generative model defined in (2.1)–(2.3) amounts to esti-
mating the parameters θ so as to minimize the Kullback-Leibler (KL)
divergence between the true data distribution p?(x) and the model
distribution (i.e., the marginal likelihood) pθ(x):

min
θ

{
DKL

(
p?(x) ‖ pθ(x)

)
= Ep?(x)

[
log p?(x)− log pθ(x)

]}
⇔ max

θ
Ep?(x)

[
log pθ(x)

]
. (2.7)

This equivalence relation shows that this definition of model training
actually corresponds to the maximum (marginal) likelihood parameter
estimation. In practice, the true data distribution p?(x) is unknown,
but we assume the availability of a training dataset X = {xn ∈ RF }Nn=1,
where the training examples xn are independent and identically dis-
tributed (i.i.d.) according to p?(x). Following the principle of empirical
risk minimization, where the risk is here defined as the negative log-
marginal likelihood, the intractable expectation in (2.7) is replaced by
a Monte Carlo estimate:

max
θ

1
N

N∑
n=1

log pθ(xn), xn
i.i.d.∼ p?(x). (2.8)

The estimated model parameters can then be used, for example, to
generate new data from (2.1).

For many generative models with latent variables, directly solv-
ing this optimization problem is difficult, if not impossible when the
marginal likelihood is analytically intractable, because of the integral
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in (2.6), which cannot be computed in closed form. For the VAE, this
intractability arises from the nonlinear relationship between the latent
and observed variables, the latter being generated from the former
through a DNN, which makes pθx (x|z) in (2.6) a nonlinear function of
z. One standard approach then involves leveraging the latent variable
nature of the model in to maximize a lower bound of the intractable log-
marginal likelihood (Neal and Hinton, 1998), which precisely depends
on the posterior distribution of the latent variables or its approximation.
This strategy leads to the expectation-maximization (EM) algorithm
(Dempster et al., 1977) and its variants when the posterior distribution
is intractable, such as Monte Carlo EM (Wei and Tanner, 1990) and
variational EM (Jordan et al., 1999) algorithms.

As the name suggests, a VAE builds upon variational inference
techniques, the general principles of which will now be briefly reviewed.
Let F denote a variational family defined as a set of pdfs over the
latent variables z. For any variational distribution of pdf q(z) ∈ F , the
following decomposition of the log-marginal likelihood holds (Neal and
Hinton, 1998):

log pθ(x) = L(θ, q(z); x) +DKL
(
q(z) ‖ pθ(z|x)

)
, (2.9)

where L(θ, q(z); x) is referred to in the literature as the evidence lower
bound (ELBO), the negative variational free energy, or the VLB, and
is defined as

L(θ, q(z); x) = Eq(z)
[
log pθ(x, z)− log q(z)

]
≤ log pθ(x). (2.10)

The inequality in (2.10) is obtained from (2.9) based on the fact that
DKL(· ‖ ·) ≥ 0. Equality holds (i.e., the VLB is tight to the log-marginal
likelihood) if and only if the variational distribution q(z) is equal to the
exact posterior distribution pθ(z|x).

The EM algorithm (Dempster et al., 1977) is an iterative algorithm
that consists in alternatively maximizing the VLB with respect to
q(z) ∈ F in the E-step and with respect to θ in the M-step (Neal
and Hinton, 1998). From (2.9), we see that the E-step involves finding
the variational distribution q(z) in the variational family F that best
approximates the true posterior pθ(z|x) according to the KL divergence
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measure of fit:

q?(z) = arg max
q∈F

L(θ, q(z); x) = arg min
q∈F

DKL
(
q(z) ‖ pθ(z|x)

)
. (2.11)

In the exact EM algorithm, the variational family F is unconstrained,
so the solution to the E-step is given by the exact posterior distribution:
q?(z) = pθ(z|x). As this optimal variational distribution over z is
actually conditioned on x, we will now use the notation q(z|x) instead
of q(z). The difficulty arises when the posterior distribution pθ(z|x)
is intractable, which prevents us from solving the E-step analytically.
Variational inference then consists in constraining the variational family
F and resorting to optimization methods for solving the E-step (Jordan
et al., 1999).

Seminal works on variational inference relied on the so-called mean-
field approximation, which constrains the variational family F to be a
set of completely factorized distributions (i.e., multivariate distributions
over z that are written as a product of univariate marginal distributions
over the entries of z). All marginal posterior dependencies between
different entries of z are ignored here, while the “structured” mean-field
approximation (Saul and Jordan, 1996) partially restores some of them.
Solving the E-step under the mean-field approximation leads to a set
of closed-form coupled solutions for each univariate distribution in the
factorization. This approach is also referred to as coordinate-ascent
variational inference in the literature (Bishop, 2006; Blei et al., 2017).
However, closed-form updates are usually only available for conjugate-
exponential models (Winn and Bishop, 2005) when the distribution of
each scalar latent variable, conditionally on its parents, belongs to the
exponential family and is conjugate with respect to the distribution of
these parent variables. Moreover, this coordinate-ascent approach does
not scale well for high-dimensional and large-scale inference problems
(Hoffman et al., 2013).

An alternative to the mean-field approximation is then to define the
variational family as a set of distributions with a certain parametric form
qλ(z|x), where the parameters λ govern the shape of the distribution.
For example, we can define the Gaussian variational family where the
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parameters λ correspond to the mean vector and covariance matrix:

F =
{
qλ(z|x) = N (z;µ,Σ), λ = {µ,Σ}

}
. (2.12)

As shown below, the optimal parameters λ that maximize the VLB
depend on x and θ. This approach is called fixed-form or structured
variational inference (Honkela et al., 2010; Salimans and Knowles, 2013).
The VLB in (2.10) then becomes a function of both the generative model
parameters θ and variational parameters λ:

L(θ, λ; x) = Eqλ(z|x)
[
log pθ(x, z)− log qλ(z|x)

]
. (2.13)

The E-step in (2.11) consequently reduces to a parametric optimization
problem:

λ? = arg max
λ

L(θ, λ; x) = arg min
λ

DKL
(
qλ(z|x) ‖ pθ(z|x)

)
. (2.14)

As the objective function depends on the observed data vector x and
the generative model parameters θ, so does the solution λ?. In fact, the
optimal variational distribution depends on x through the parameters
λ?. The M-step remains unchanged in fixed-form variational inference;
that is, it consists in updating the generative model parameters by max-
imizing L(θ, λ; x) w.r.t. θ, using the current estimate of the variational
parameters. If the expectation in (2.13) and its gradient w.r.t. λ can be
computed analytically, the optimization problem of the E-step can be
solved using gradient-based optimization methods.

In general, given a dataset of i.i.d. data vectors X = {x1, ...,xN},
one needs to find the parameters Λ = {λ1, ..., λN} of the variational
distributions qλn(zn|xn), n = 1, ..., N . Taking the same example as
before, with qλn(zn|xn) = N (zn;µn,Σn), we have here λn = {µn,Σn}.
This problem is solved by maximizing the following total VLB, which is
the sum (or equivalently, the mean) of the local VLB defined in (2.13)
over each vector in the training dataset:

L(θ,Λ; X) =
N∑
n=1
L(θ, λn; xn). (2.15)

To scale to large amounts of data, stochastic variational inference
(Hoffman et al., 2013) relies on gradient-based stochastic optimization
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(Robbins and Monro, 1951; Bottou, 2004) for maximizing the total
VLB in (2.15) w.r.t. the generative model parameters θ. The gradient
of the total VLB, L(θ,Λ; X), is the sum of the gradients of the local
VLBs, L(θ, λn; xn), defined for each sample xn in the dataset. For large
datasets, computing this sum to perform a single update of θ with a step
of gradient ascent can be inefficient. Therefore, stochastic variational
inference exploits a noisy stochastic estimate of the gradient, computed
from a single example xn or from a mini-batch of examples in the
dataset. This is the same principle as that used in stochastic and mini-
batch gradient descent (Bottou, 2004), such that stochastic variational
inference inherits from the same convergence properties (Robbins and
Monro, 1951).

However, the estimation of the complete set of variational parameters
can remain expensive for large datasets. Thus, amortized variational
inference makes a stronger assumption for defining the variational family,
by introducing an inference model fφ such that

λn = fφ(xn), (2.16)

where φ is a set of parameters that is shared among all variational
distributions qλn(zn|xn). This inference model is used to map the obser-
vation xn to the local variational parameter λn. The variational family
F then corresponds to the set of variational distributions parametrized
by φ, which are denoted by qφ(zn|xn). For instance, for qφ(zn|xn) =
N (zn;µn,Σn), we have λn = [µn,Σn] = fφ(xn). This amortization
principle corresponds to a stronger assumption for the variational fam-
ily compared to nonamortized fixed-form and mean-field approximations.
Therefore, the KL divergence between the exact posterior and its ap-
proximation is likely to be larger in the amortized case than in the
previous cases. The total VLB for the complete training dataset then
becomes a function of φ:

L(θ, φ; X) =
N∑
n=1

Eqφ(zn|xn)
[
log pθ(xn, zn)− log qφ(zn|xn)

]
. (2.17)

This means that the optimization of the set of local variational param-
eters Λ = {λ1, ..., λN} is replaced by the optimization of the shared
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set of inference model parameters φ. Hereinafter, we will use the term
inference model to directly denote the variational distribution qφ(zn|xn).

2.4 VAE inference model

VAEs belong to the family of amortized variational inference techniques,
where the VLB in (2.17) is optimized using stochastic gradient-based
optimization techniques. The VAE generative model pθ(x, z) has al-
ready been defined in (2.1)–(2.3). It involves a decoder neural network
through pθ(x|z). To fully specify the VLB, which is required to learn the
generative model parameters θ, it is also necessary to define the infer-
ence model qφ(z|x), which approximates the intractable exact posterior
pθ(z|x).

Similar to the generative model, the inference model for qφ(z|x) is
defined by an encoder neural network. A common choice for the approx-
imate posterior distribution qφ(z|x) is to use a Gaussian distribution:

qφ(z|x) = N
(
z;µφ(x),diag{σ2

φ(x)}
)

(2.18)

=
L∏
l=1

qφ(zl|x) =
L∏
l=1
N
(
zl;µφ,l(x), σ2

φ,l(x)
)
, (2.19)

where index l ∈ {1, ..., L} is used to denote the l-th entry of the corre-
sponding vectors, and µφ : RF 7→ RL and σφ : RF 7→ RL+ are nonlinear
functions of x, modeled by a DNN called the encoder or recognition
network, which is parametrized by a set of weights and biases denoted
by φ. The encoder network is illustrated in Figure 2.2 (left). As for the
VAE generative model, for the sake of consistency with the presentation
of the other models, we denote

[µφ(x),σφ(x)] = ez(x), (2.20)

where ez is the nonlinear function implemented by the encoder DNN.

2.5 VAE training

In the VAE methodology (Kingma and Welling, 2014; Rezende et al.,
2014), the VLB in (2.17) is optimized using stochastic gradient-based
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optimization techniques to learn the generative and inference model
parameters. For training the VAE, the encoder and decoder networks
are cascaded, as illustrated in Figure 2.2, and the sets of parameter θ
and φ are jointly estimated from the training data X. This is different
from an EM algorithm strategy, which would alternatively optimize
the VLB w.r.t. φ and θ in the E- and M-steps, respectively. He et al.
(2018) showed that this joint encoder-decoder training of the VAE can,
however, be suboptimal.

The VLB in (2.17) can be reshaped as (Kingma and Welling, 2014)

L(θ, φ; X) =
N∑
n=1

Eqφ(zn|xn)
[
log pθx (xn|zn)

]
︸ ︷︷ ︸

Reconstruction accuracy

−
N∑
n=1

DKL
(
qφ(zn|xn) ‖ pθz (zn)

)
︸ ︷︷ ︸

Regularization

. (2.21)

The first term on the right-hand side of (2.21) is a reconstruction term
that represents the average accuracy of the chained encoding-decoding
process. For instance, if the generative model pθx (x|z) is chosen to be
Gaussian with an identity covariance matrix, the reconstruction term
is equal to the opposite of the mean-squared error (MSE) between
the original data and decoder output, up to additive constants. The
second term is a regularization one, which enforces the approximate
posterior distribution qφ(z|x) to be close to the prior distribution pθz (z).
Provided that an independent Gaussian prior is used, this term forces
z to be a disentangled data representation; that is, the z entries tend
to be independent and encode a different characteristic (or factor of
variation) of the data.

For usual distributions, the regularization term has an analytical
expression as a function of θ and φ. However, the expectation taken with
respect to qφ(zn|xn) in the reconstruction accuracy term is analytically
intractable. Therefore, in practice, it is approximated using a Monte
Carlo estimate with R samples z(r)

n independently and identically drawn
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from qφ(zn|xn) (for each index n):

Eqφ(zn|xn)[log pθ(xn|zn)] ≈ 1
R

R∑
r=1

log pθ(xn|z(r)
n ). (2.22)

The resulting Monte Carlo estimate of the VLB is given by

L̂(θ, φ; X) =
N∑
n=1

1
R

R∑
r=1

log pθ(xn|z(r)
n ) −

N∑
n=1

DKL
(
qφ(zn|xn) ‖ p(zn)

)
.

(2.23)

To optimize this objective function, we can typically resort to the
(variants of) stochastic or mini-batch gradient descent (on the negative
VLB) (Bottou, 2004). While the gradient of L̂(θ, φ; X) w.r.t. θ can be
easily computed using the standard backpropagation algorithm, that
w.r.t. φ is problematic because the sampling operation from qφ(zn|xn)
is not differentiable w.r.t. φ. The solution to this problem, proposed by
Kingma and Welling (2014) and referred to as the reparameterization
trick, consists in reparametrizing the sample z(r)

n using a differentiable
transformation of a sample ε(r) drawn from a standard Gaussian distri-
bution, which does not depend on φ:

z(r)
n = µφ(xn) + diag{σ2

φ(xn)}
1
2 ε(r), ε(r) ∼ N (0L, IL). (2.24)

Using this reparameterization trick, L̂(θ, φ; X) is now differentiable
w.r.t. φ. This differentiable Monte Carlo approximation of the VLB is
referred to as the stochastic gradient variational Bayes (SGVB) estima-
tor (Kingma and Welling, 2014). The gradient of L̂(θ, φ; X) w.r.t. φ is an
unbiased estimate of the gradient of the exact VLB L(θ, φ; X) (Kingma
and Welling, 2019). This property allows using very few samples to
compute the SGVB estimator, which however impacts the variance of
the estimator. Kingma and Welling (2014) suggested setting R = 1
provided that sufficiently large mini-batches are used for the gradient
descent. This training procedure of a VAE model is now considered
routine within deep learning toolkits, such as TensorFlow (Abadi et al.,
2016) and PyTorch (Paszke et al., 2019).



3
Recurrent Neural Networks and State Space

Models

As mentioned earlier, DVAEs are formed of combinations of a VAE and
temporal models. Most of these temporal models rely on RNNs and/or
SSMs. We thus briefly present the basics of RNNs and SSMs in this
chapter before moving on to DVAEs in the next chapters. An extended
technical overview of RNNs and SSMs, as well as their applications, is
beyond of the scope of the present paper.

3.1 Recurrent Neural Networks

3.1.1 Principle and definition

RNNs have been and are still widely used for data sequence modeling
and generation and sequence-to-sequence mapping. An RNN is a neural
network that processes ordered vector sequences and uses a memory
of past input/output data to condition the current output (Sutskever,
2013; Graves et al., 2013). This is achieved using an additional vector
that recursively encodes the internal state of the network.

We denote by xt1:t2 = {xt}t2t=t1 a sequence of vectors xt indexed
from t1 to t2, where t1 ≤ t2. When t1 > t2, we assume xt1:t2 = ∅. We
present RNNs in the general framework of nonlinear systems, which

31
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transform an input vector sequence u1:T into an output vector sequence
x1:T , possibly through an internal state vector sequence h1:T . The
input, output, and internal state vectors can have arbitrary (different)
dimensions. If u1:T is an “external” input sequence, the network can
be considered as a “system,” as is usual in control theory (u1:T being
considered as a command to the system). If ut = ∅, the RNN is in the
undriven mode. In contrast, if ut = xt−1, the RNN is in the predictive
mode, or sequence generation mode, which is a usual mode when we
are interested in modeling the evolution of a data sequence x1:T “alone”
(i.e., independently of any external input; in this case, x1:T can be seen
both as an input and an output sequence).

A basic single-layer RNN model is defined by

ht = dhid(Winut + Wrecht−1 + bhid), (3.1)
xt = dout(Woutht + bout), (3.2)

where Win, Wrec and Wout are weight matrices of appropriate dimen-
sions; bhid and bout are bias vectors; and dhid and dout are nonlinear
activation functions. We also define the initial internal state vector h0.
This model is extendable to more complex recurrent architectures:

ht = dh(ut,ht−1), (3.3)
xt = dx(ht), (3.4)

where dh and dx denote any arbitrary complex nonlinear functions
implemented with a DNN. We assume that this representation includes
long short-term memory (LSTM) networks (Hochreiter and Schmidhu-
ber, 1997) and gated recurrent unit (GRU) networks (Cho et al., 2014),
which comprise additional internal variables called gates. For simplicity
of presentation, these additional internal gates are not formalized in
(3.3) and (3.4). The same is true for multi-layer RNNs, where several
recursive layers are stacked on top of each other (Graves et al., 2013)
(in this case, for the same reason, we do not report layer indexes in
(3.3) and (3.4)). This is also true for combinations of multi-layer RNNs
and LSTMs (i.e., multi-layer LSTM networks). In summary, we assume
that (3.3) and (3.4) are a “generic” or “high-level” representation of an
RNN of arbitrary complexity.
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Notation remark: To clarify the presentation and links between the
different models, we use the same generic notation dx for the generating
function in (2.5) and (3.4), and will do that throughout the paper (and
the same for dh and for dz later in the paper).

So far, the above RNNs are deterministic: given u1:T and h0, x1:T
is completely determined. Such networks are trained by optimizing
a deterministic criterion, e.g. the MSE between the target output se-
quences from a training dataset and the corresponding actual output
sequences obtained by the network. The training set of i.i.d. vectors
used for VAE training is replaced with that of vector sequences, and
consecutive vectors within a training sequence are generally correlated,
which is the point of using a dynamical model.

3.1.2 Generative recurrent neural networks

Deterministic RNNs can easily be transformed into generative RNNs
(GRNNs) by adding stochasticity at the output level. We just have to
define a probabilistic observation model and replace the output data
sequence with an output sequence of distribution parameters, similar
to the VAE decoder:

ht = dh(ut,ht−1), (3.5)
[µθx (ht),σθx (ht)] = dx(ht), (3.6)

pθx (xt|ht) = N
(
xt;µθx (ht),diag{σ2

θx (ht)}
)
. (3.7)

Eq. (3.5) is the same recursive internal state model as (3.3). Eqs. (3.6)
and (3.7) constitute the observation model. In (3.7), we use the Gaussian
distribution for its generality and for the convenience of illustration,
although any distribution can be used, just as for the VAE decoder.
Again, one may choose a distribution that is more appropriate for the
nature of the data. For example, Graves (2013) proposed using mixture
distributions. The complete set of model parameters θ here includes
θh and θx , the parameters of the networks implementing dh and dx ,
respectively. Because the output of dx in (3.6) is now two vectors of
pdf parameters instead of a data vector in (3.4), its size is twice that of
the deterministic RNN. When the internal state vector ht is of (much)
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lower dimension than the output vector xt, the GRNN observation
model becomes similar to the VAE decoder, except that, again, ht has
a deterministic evolution through time, whereas the latent state z of
the VAE is stochastic and i.i.d., which is a fundamental difference.

Even if the generation of xt is now stochastic, the evolution of the
internal state is still deterministic. Let us denote ht as a function ht =
ht(u1:t) to make the deterministic relation between u1:t and ht explicit
(for each time index t).1 We thus have pθx (xt|ht) = pθx (xt|ht(u1:t)).
In the predictive mode, we have pθx (xt|ht) = pθx (xt|ht(x0:t−1)).2 Such
stochastic version of the RNN can be trained with a statistical criterion
(e.g., maximum likelihood). As for the VAE training, we search for the
maximization of the observed data log-likelihood w.r.t. θ over a set of
training sequences. For one sequence, with the conditional independence
of successive data vectors, the data log-likelihood is given by

log pθx (x1:T |u1:T ) =
T∑
t=1

log pθx

(
xt|ht(u1:t)

)
. (3.8)

3.2 State Space Models

3.2.1 Principle and definition

SSMs are a rich family of models that are widely used to model dynam-
ical systems (e.g., in statistical signal processing, time-series analysis,
and control theory) (Durbin and Koopman, 2012). Here, we focus on
discrete-time, continuous-valued SSMs of the form

[µθz (zt−1,ut),σθz (zt−1,ut)] = dz(zt−1,ut), (3.9)
pθz (zt|zt−1,ut) = N

(
zt;µθz (zt−1,ut),diag{σ2

θz (zt−1,ut)}
)
,

(3.10)
[µθx (zt),σθx (zt)] = dx(zt), (3.11)

pθx (xt|zt) = N
(
xt;µθx (zt),diag{σ2

θx (zt)}
)
, (3.12)

1ht(u1:t) also depends on the initial internal state vector h0, but we omit this
term as an argument of the function for conciseness.

2Here, the first “input” x0 has to be set arbitrarily, just like h0. Alternately, one
can directly start the generation process from an arbitrary internal state vector h1.
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where dz and dx are functions of arbitrary complexity, each being
parameterized by a set of parameters denoted θz and θx , respectively.
As for the complete generative model, we have θ = θx ∪ θz , and we
retain this notation hereinafter. At this point, dz and dx can be linear
or nonlinear functions, and we will differentiate the two cases later. The
observation model (3.11)–(3.12) is very similar to the GRNN observation
model (3.6)–(3.7). However, zt is here a stochastic internal state vector
in contrast to the deterministic internal state ht of the (G)RNN. The
distribution of zt, known as the state model or the dynamical model, is
given by (3.9)–(3.10). It follows a first-order Markov model; that is, a
temporal dependency is introduced where zt depends on the previous
state zt−1 and the corresponding input ut through the function dz .
In short, the above SSM can be considered a GRNN in which the
deterministic internal state ht is replaced with a stochastic internal
state zt, as illustrated in Figure 3.1.

Notation remark: In the control theory literature, the input corre-
sponding to the generation of zt is often denoted as ut−1, or equivalently,
ut is used to generate the next state zt+1. This notation is arbitrary.
In the present paper, we prefer to realign the temporal indices, so that
the input ut is used to generate zt, which in turn is used to generate
xt, to maintain better consistency through all presented models.

As for the complete sequence, given the dependencies represented
in Figure 3.1, the joint distribution of all variables can be expressed as

pθ(x1:T , z1:T ,u1:T ) =
T∏
t=1

pθx (xt|zt)pθz (zt|zt−1,ut)p(ut), (3.13)

from which we can deduce

pθx (x1:T |z1:T ) =
T∏
t=1

pθx (xt|zt), (3.14)

and

pθz (z1:T |u1:T ) =
T∏
t=1

pθz (zt|zt−1,ut). (3.15)
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ut−1 ut ut+1

ht−1 ht ht+1

xt−1 xt xt+1

ut−1 ut ut+1

zt−1 zt zt+1

xt−1 xt xt+1

Figure 3.1: GRNN (left) against SSM (right): The two models have an identical
structure, though the internal state of the GRNN is deterministic (represented with
a diamond), whereas that of the SSM is stochastic (represented with a circle).

Given the state sequence z1:T , the observation vectors at different time
frames are mutually independent. The prior distribution of ut also
factorizes across time frames, but this is of limited interest here. To be
complete, we should specify the model “initialization”: At t = 1, we
need to define z0, which can be set to an arbitrary deterministic value,
or defined through a prior distribution pθz (z0) (which then must be
added to the right-hand side of (3.13) and (3.15)), or we can set z0 = ∅,
in which case the first term of the state model in these equations is
pθz (z1|u1).

Solving the above SSM means that we run the inference process; that
is, we estimate the state vector sequence z1:T from an observed data
vector sequence x1:T . The use of Gaussian distribution in (3.10) and
(3.12) is a convenient choice that generally facilitates inference. More
generally, these distributions are within the exponential family, so either
exact or approximate inference algorithms can be applied, depending on
the nature of dz and dx . In the next subsection, we provide an example
of a closed-form inference solution when dz and dx are linear functions.

3.2.2 Kalman filters

Some classical SSMs have been successfully used for decades for a wide
set of applications. For example, when dx and dz are linear functions
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of the form

µθz (zt−1,ut) = Atzt−1 + Btut + mt, σ2
θz (zt−1,ut) = Λt, (3.16)

µθx (zt) = Ctzt + nt, σ2
θx (zt) = Σt, (3.17)

where At, Bt, mt, Λt, Ct, nt, and Σt are matrices and vectors of
appropriate size, the SMM transforms into a linear-Gaussian linear
dynamical system (LG-LDS). In this case, the inference has a very
popular closed-form solution, known as a Kalman filter (Moreno and
Pigazo, 2009). More precisely, a Kalman filter is the solution obtained
when the past and present observations (outputs and inputs) are used
at each time t (i.e., causal inference). When a complete sequence of
observations is used at each time t (i.e., noncausal inference), the solution
is referred to as a Kalman smoother, also obtainable in closed form. In
practical problems, x1:T is generally noisy, and the terms “filter” and
“smoother” refer to the estimation of a “clean” state vector trajectory
z1:T from noisy observed data.

The Kalman filter is an iterative solution that alternates between
a prediction step and an update step. The prediction step involves
computing the predictive distribution, which is the posterior distribution
of zt given the observations up to time t − 1. Starting from the joint
distribution of all variables and exploiting the dependencies in the
generative model, the predictive distribution can be expressed as (we
omit the input u for simplicity of presentation)

p(zt|x1:t−1) =
∫
p(zt|zt−1)p(zt−1|x1:t−1)dzt−1. (3.18)

The update step involves integrating the new (current) observation xt
using Bayes’ rule to obtain the so-called filtering distribution (up to
some normalizing factor that does not depend on zt):

p(zt|x1:t) ∝ p(xt|zt)
∫
p(zt|zt−1)p(zt−1|x1:t−1)dzt−1. (3.19)

The filtering distribution at time t can be computed recursively from
the filtering distribution at time t− 1 (inside the integral). In the case
of linear-Gaussian generative distributions, the filtering distribution is
Gaussian, with parameters that can be computed recursively from the
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parameters at time t−1 and the generative model parameters with basic
matrix/vector operations. In practice, these parameters are computed
in the following two steps: prediction step and update step. Finally, the
mean vector of the filtering distribution, which is often used as the state
estimate, is a linear form of the observation vector.

In the noncausal case, a similar two-step predictive/update recursive
process can be computed, except that the recursion is processed in both
forward (causal) and backward (anticausal) directions, leading to the
smoothing distribution. A more detailed presentation of the Kalman
filter and Kalman smoother is beyond the scope of the present paper.

3.2.3 Nonlinear Kalman filters

Nonlinear dynamical systems (NDS), sometimes abusively referred to as
nonlinear Kalman filters, have also been extensively studied, well before
the deep learning era. Principled extensions to the Kalman Filter have
been proposed to deal with the nonlinearities (e.g., the extended Kalman
filter and the unscented Kalman filter) (Wan and Van Der Merwe, 2000;
Daum, 2005). The review of nonlinear Kalman filters is beyond the
scope of the present paper, to retain the focus on DVAEs.



4
Definition of Dynamical VAEs

In this section, we describe a general methodology for defining and
training dynamical VAEs. Our goal is to encompass different models
proposed in the literature, which we will describe in detail later. These
models can be considered particular instances of this general definition,
given simplifying assumptions. This section will prepare the readers to
understand well the commonalities and differences among all models
that we will review and may motivate future developments. We first
define a DVAE in terms of a generative model and then present the
general lines of inference and training in the DVAE framework.

4.1 Generative model

As already mentioned, DVAEs consider a sequence of observed random
vectors x1:T = {xt ∈ RF }Tt=1 and that of latent random vectors z1:T =
{zt ∈ RL}Tt=1. As opposed to the a “static” VAE and similarly to SSMs,
these two data sequences are assumed to be temporally correlated and
can have somewhat complex (cross-)dependencies across time. Defining
a DVAE generative model involves specifying the joint distribution of
the observed and latent sequential data, pθ(x1:T , z1:T ), the parameters
of which are provided by DNNs, which themselves depend on a set of

39
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parameters θ.
When the model works in the so-called driven mode, one additionally

considers an input sequence of observed random vectors u1:T = {ut ∈
RU}Tt=1, and in that case, x1:T is considered the output sequence. In this
case, to define the full generative model, we need to specify the joint
distribution pθ(x1:T , z1:T ,u1:T ). However, in practice, we are usually
only interested in modeling the generative process of x1:T and z1:T
given the input sequence u1:T . Loosely speaking, the input sequence is
assumed deterministic, while x1:T and z1:T are stochastic. Therefore,
as is commonly observed in the DVAE literature (Krishnan et al., 2015;
Fraccaro et al., 2016; Fraccaro et al., 2017), we will only focus on
modeling the distribution pθ(x1:T , z1:T |u1:T ).

In the following section, we will first omit θ when defining the general
structure of dependencies in the generative model. We will specify the
parameter notation later when introducing how RNNs are used to
parametrize the model. In addition, we will consider the model in the
driven mode (i.e., with u1:T as input) as it is more general than that in
the undriven mode (i.e., with no “external” input). The undriven mode
equations can be obtained from the driven mode equations by simply
removing u1:T .

4.1.1 Structure of dependencies in the generative model

As we will discuss in detail in Section 14.3, a DVAE can be considered
a structured or hierarchical VAE in which both observed and latent
variables are a set of ordered vectors, and the ordering is imposed by
time. However, the natural order present in the data does not imply a
unique possible structure of variable dependencies for a DVAE generative
(or inference) model. In fact, in DVAEs, the joint distribution of the
observed and latent vector sequences is usually defined using the chain
rule; that is, it is written as a product of conditional distributions
over the vectors at different time indices. When writing the chain rule,
different orderings of the random vectors can be arbitrarily chosen. This
is an important point because the choice of ordering when applying the
chain rule yields different practical implementations, which result in
different sampling processes.
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A natural choice for ordering dependencies at generation is to use a
causal model. In the present context, a generation (or inference) model
is said to be causal if the distribution of the generated (or inferred)
variable at time t depends only on its values at previous time indices
and/or on the values of the other variables at time t and at previous
time indices. If the dependency is only over future time indices, the
model is said to be anticausal, and if the dependency combines the past,
present, and future of the conditioning variables, the model is said to
be noncausal.

Let us consider the following simple example:

p(x1,x2, z1, z2) = p(x2|x1, z1, z2)p(z2|x1, z1)p(x1|z1)p(z1) (4.1)
= p(x2|x1, z1, z2)p(x1|z1, z2)p(z2|z1)p(z1). (4.2)

In (4.1), the sampling is causal because we alternate between sampling
zt and xt from their past value or their past and present values, from
t = 1 to 2. In contrast, in (4.2), the sampling is not causal because we
first have to sample the complete sequence of latent vectors z1:2 before
sampling x1, and then x2. This principle generalizes to much longer
sequences.

In the DVAE literature, causal modeling is the most popular ap-
proach. In what follows, we will therefore focus on causal modeling, but
the general methodology is similar for noncausal modeling. To the best
of our knowledge, only one noncausal model has been proposed in the
literature: the RVAE model (Leglaive et al., 2020). In fact, both causal
and noncausal versions of RVAE were proposed in this paper, and both
versions will be presented in Section 10.

In (causal) DVAEs, the joint distribution of the latent and observed
sequences is first factorized according to the time indices using the chain
rule:

p(x1:T , z1:T |u1:T ) =
T∏
t=1

p(xt, zt|x1:t−1, z1:t−1,u1:t). (4.3)

The only assumption made in (4.3) is the causal dependence of xt and zt
on the input sequence u1:T . Then, at each time index p(xt, zt|x1:t−1, z1:t−1,u1:t)
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is again factorized using the chain rule, so that

p(x1:T , z1:T |u1:T ) =
T∏
t=1

p(xt|x1:t−1, z1:t,u1:t)p(zt|x1:t−1, z1:t−1,u1:t).

(4.4)

This equation is a generalization of (4.1), and again, it exhibits the alter-
nate sampling of zt and xt. Similarly to our remark in Section 3.2.1, for
t = 1, the first terms of the products in (4.3) and (4.4) are p(x1, z1|u1)
and p(x1|z1,u1)p(z1|u1), respectively. This is consistent with our no-
tation choice of x1:0 = z1:0 = ∅. Alternatively, we can define z0 as the
initial state vector and consider p(z0), p(z1|z0,u1), and so on, in these
equations. Hereinafter, for each detailed model, we will present the joint
distribution in the general form of a product over frames from t = 1 to
T , and for conciseness, will not detail the model “initialization.”

As will be detailed later, the different models proposed in the litera-
ture make different conditional independence assumptions to simplify
the dependencies in the conditional distributions of (4.4). For instance,
the SSM family presented in Section 3.2 is based on the following
conditional independence assumptions:

p(xt|x1:t−1, z1:t,u1:t) = p(xt|zt), (4.5)
p(zt|x1:t−1, z1:t−1,u1:t) = p(zt|zt−1,ut). (4.6)

We have already introduced the concept of the driven mode. In the
causal context, we say that a DVAE is in the driven mode if u1:t is used to
generate either x1:t, z1:t, or both. A DVAE is in predictive mode if x1:t−1,
or part of this sequence, typically xt−1, is used to generate either xt or zt,
or both. This corresponds to feedback or closed-loop control in control
theory. This is also strongly related to the concept of autoregressive
process, jointly found in the control theory, machine learning, signal
processing, or time-series analysis literature (Papoulis, 1977; Frey, 1998;
Durbin and Koopman, 2012; Hamilton, 2020). Therefore, in what follows,
we indifferently use the terms predictive DVAE or autoregressive DVAE
to qualify a DVAE in the predictive mode.

In its most general form (4.4), a DVAE is both in the driven and
predictive modes; however, it can also be in only one of the two modes
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(e.g., the above SSM is in the driven mode but not in the predictive
mode), or even in none of them. In the literature, we did not encounter
any DVAE in both modes at the same time. Moreover, there are mod-
els in the driven and nonpredictive modes that are converted to the
undriven and predictive modes by replacing the control input ut with
the previously generated output xt−1, see (Fraccaro et al., 2016). Note
that a model’s behavior can be quite different under the various modes.
This is consistent with the concept of using a model in an open loop or
in a closed loop in control theory. The principle of these different modes
has been poorly discussed in the DVAE literature, and it is interesting
to clarify it at an early stage of the DVAE presentation.

4.1.2 Parameterization with (R)NNs

The factorization in (4.4) is a general umbrella for all (causal) DVAEs.
As discussed above, each DVAE model will make different conditional
independence assumptions, which will simplify the general factorization
in various ways. Once the conditional assumptions are made, one can
easily determine if there is a need to accumulate the past information
(e.g., zt or xt depends on past observations x1:t) or if a first-order
Markovian relationship holds (e.g., zt and xt depend at most on zt−1
and xt−1). Usually, the former is implemented using RNNs, whereas
feed-forward DNNs can be used to implement first-order Markovian
dependency. Moreover, once the conditional assumptions are made, the
remaining dependencies can be implemented in different ways. Therefore,
the final family of distributions depends not only on the conditional
independence assumptions but also on the networks that are used to
implement the remaining dependencies.

Let us showcase this with a concrete example in which we have the
following conditional independence assumptions:

p(zt|x1:t−1, z1:t−1,u1:t) = p(zt|x1:t−1,ut), (4.7)
p(xt|x1:t−1, z1:t,u1:t) = p(xt|x1:t−1, zt). (4.8)

Here, we assume that the generation of both xt and zt depends on
x1:t−1. In addition, the generation of xt also depends on zt and that of
zt also depends on ut. To accumulate the information of all past outputs
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ut−1 ut ut+1

zt−1 zt zt+1

xt−1 xt xt+1

ut−1 ut ut+1

zt−1 zt zt+1

ht−1 ht ht+1

xt−1 xt xt+1

ut−1 ut ut+1

zt−1 zt zt+1

ht−1 ht ht+1

kt−1 kt kt+1

xt−1 xt xt+1

Figure 4.1: Two different implementations of a given factorization. The probabilis-
tic graphical model (left) shows the dependencies between random variables and
corresponds to the factorization in (4.7) and (4.8). Two possible implementations
based on RNNs are shown: sharing the internal state variables (middle) or with two
different internal state variables (right). We refer to the compact representation (left)
and to the developed representations (middle and right). This terminology holds true
for both the graphical representations and model formulations.

x1:t−1, one can use an RNN. In practice, the past information is accu-
mulated in the internal state variable of the RNN, namely ht, computed
recurrently at each frame t. Among the many possible implementations,
we consider two in this example: in the first implementation, illustrated
in Figure 4.1 (middle), a single RNN internal state variable ht is used to
generate both xt and zt, while in the second implementation, illustrated
in Figure 4.1 (right), two different internal state variables, ht and kt,
are used to generate xt and zt separately.

Assuming that all probability distributions are Gaussian, the first
implementation can be expressed as

ht = dh(xt−1,ht−1; θh), (4.9)
[µθz (x1:t−1,ut),σθz (x1:t−1,ut)] = dz(ht,ut; θhz), (4.10)
pθz (zt|x1:t−1,ut) = N

(
zt;µθz (x1:t−1,ut), diag{σ2

θz (x1:t−1,ut)}
)
, (4.11)

[µθx (x1:t−1, zt),σθx (x1:t−1, zt)] = dx(ht, zt; θhx), (4.12)
pθx (xt|x1:t−1, zt) = N

(
xt;µθx (x1:t−1, zt), diag{σ2

θx (x1:t−1, zt)}
)
, (4.13)

where dh , dz , and dx are nonlinear functions implemented with DNNs.
It is now clear that the parameters of the conditional distribution of
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zt are θz = θh ∪ θhz , whereas those of the conditional distribution of
xt are θx = θh ∪ θhx . Thus, the two conditional distributions share the
recurrent parameters θh . Regarding the second implementation, the
generative process can be expressed as

ht = dh(xt−1,ht−1; θh), (4.14)
[µθz (x1:t−1,ut),σθz (x1:t−1,ut)] = dz(ht,ut; θhz), (4.15)
pθz (zt|x1:t−1,ut) = N

(
zt;µθz (x1:t−1,ut), diag{σ2

θz (x1:t−1,ut)}
)
, (4.16)

kt = dk(xt−1,kt−1; θk), (4.17)
[µθx (x1:t−1, zt),σθx (x1:t−1, zt)] = dx(kt, zt; θkx), (4.18)
pθx (xt|x1:t−1, zt) = N

(
xt;µθx (x1:t−1, zt), diag{σ2

θx (x1:t−1, zt)}
)
. (4.19)

We have an additional DNN-based nonlinear function dk , and analo-
gously, it is clear that the parameters of the conditional distribution of
zt are θz = θh ∪ θhz , whereas those of the conditional distribution of xt
are θx = θk ∪ θkx . In this case, the two conditional distributions do not
share any parameter. To ease the notation, hereinafter, we will denote
the parameters of p(zt|x1:t−1, z1:t−1,u1:t) and p(xt|x1:t−1, z1:t,u1:t) as
θz and θx , respectively, in (4.4), irrespective of whether or not they
share some parameters. We will also use θ to denote θz ∪ θx .

In the equations above, the operators dh , dk , dx and dz are nonlinear
mappings parametrized by DNNs of arbitrary architecture. How to
choose and design these architectures is beyond the scope of this paper,
as it largely depends on the target application. To fix ideas, in the present
example, dh and dk are RNNs, and dx and dz are feed-forward DNNs.
In this paper, we will not discuss how to select the hyper-parameters of
these networks, such as the number of layers, or the number of units
per layer.

Note that (4.11) and (4.16) are exactly the same, meaning that the
conditional distributions of zt are the same for both models. The same
remark holds for (4.13) and (4.19), defining the conditional distribution
of xt. However, the computations performed to obtain the parameters
θz and θx differ depending on the model. Clearly, we need to make a
distinction between the two forms. We propose to call the form of a
DVAE model or its graphical representation compact when only ran-
dom variables appear (e.g., (4.11) and (4.13), and Figure 4.1 (left)).
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In addition, we propose to call the form of a DVAE or its graphical
representation developed when both random and deterministic vari-
ables appear (e.g., (4.9)–(4.13), (4.14)–(4.19) and Figure 4.1 (middle)
and (right)). Each compact form can have different developed forms
corresponding to different implementations. The distinction between the
compact and developed forms is important as the optimization occurs
on the parameters of the developed form, which is only a subgroup
of all possible models satisfying the compact form. It is thus impor-
tant to present the developed form of a model. However, the temporal
dependencies of order higher than one are not directly visible in the
developed graphical form, as they might be implicitly encoded in the
internal state variables. Therefore, when reviewing DVAE models in
the following chapters, we will always present both the compact and
developed graphical representations.

4.2 Inference model

In the present DVAE context, the posterior distribution of the state
sequence z1:T is pθ(z1:T |x1:T ,u1:T ) in the driven mode or pθ(z1:T |x1:T )
in the undriven mode. As for the standard VAE, this posterior dis-
tribution is intractable because of the nonlinearities in the generative
model. In fact, having temporal dependencies only makes things even
more complicated. Therefore, we also need to define an inference model
qφ(z1:T |x1:T ,u1:T ), which is an approximation of the intractable pos-
terior distribution pθ(z1:T |x1:T ,u1:T ). As for the standard VAE, this
model is required not only for performing inference of the latent se-
quence z1:T from the observed sequences x1:T and u1:T but also for
estimating the parameters of the generative model, as will be seen below.
As for the standard VAE again, the inference model also uses DNNs to
generate its parameters.

4.2.1 Exploiting D-separation

In a Bayesian network, and in a DVAE in particular, even though the
computation of the posterior distribution is often intractable, there exists
a general methodology to express its general form (i.e., to specify the
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dependencies between the variables of a generative model at inference
time). This methodology is based on the so-called D-separation property
of Bayesian networks (Geiger et al., 1990; Bishop, 2006, Chapter 8).
The general principle is that some of the conditioning variables in
the expression of the posterior distribution of a given variable can
vanish depending on whether the nodes between these conditioning
variables and the given variable represent variables that are observed
or unobserved and depending on the direction of the dependencies (i.e.,
the direction of the arrows of the graphical representation).

In detail, D-separation is based on the three principles derived for a
Bayesian network with three random variables a, b, and c:

• A tail-to-tail (or common parent) node c corresponding to the
structure a ← c → b makes the two other nodes a and b con-
ditionally independent when it is observed. In short, we have
p(a, b|c) = p(a|c)p(b|c).

• A head-to-tail (or cascade) node c corresponding to the structure
a → c → b or a ← c ← b makes the two other nodes a and b

conditionally independent when it is observed. In short, we have
p(a, b|c) = p(a|c)p(b|c).

• A head-to-head (or V-structure) node c corresponding to the
structure a→ c← b makes a and b conditionally dependent when
it is observed, hence p(a, b|c) 6= p(a|c)p(b|c).

D-separation consists in applying these three principles recursively to
analyze larger Bayesian networks with any arbitrary structure. Let
us consider a Bayesian network in which A, B, and C are arbitrary
nonintersecting node sets. A and B are D-separated given C if all
possible paths that connect any node in A to any node in B are blocked
given C. A path is said to be blocked given a set of observed nodes O if
it includes a node c such that either

• c is a tail-to-tail node and c ∈ O (i.e., it is observed) or

• c is a head-to-tail node and c ∈ O (i.e., it is observed) or

• c is a head-to-head node and c /∈ O (i.e., it is not observed).
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Equivalently, A and B are D-separated given C if they are not connected
by any active path (i.e., a path that is not blocked). Finally, if A and
B are D-separated given C, we have p(A,B|C) = p(A|C)p(B|C).

D-separation is helpful even for more conventional (i.e., nondeep)
models because the algebraic derivation of a posterior distribution
from a joint distribution is not always easy. In the present variational
framework, we can exploit the above methodology to design the approx-
imate posterior distribution qφ. It is reasonable to assume that a good
candidate for qφ will have the same structure as the exact posterior
distribution in terms of variable dependency. In other words, if we
cannot derive the exact posterior distribution, let us at least use an
approximation that exhibits the same dependencies between variables
so that it is fed with the same information. Yet, it is quite surprising
to see that a significant proportion of the DVAE papers we have re-
viewed, especially the early papers, neither refer to this methodology
nor consider looking at the form of the exact posterior distribution
when designing an approximate distribution. In the early studies in
particular, the formulation of qφ is chosen quite arbitrarily and with no
reference to the structure of the exact posterior distribution. In more
recent papers however, the structure of qφ generally follows that of
the exact posterior distribution. We will come back on this point on a
case-by-case basis when presenting the DVAE models of the literature
in the next chapters.

4.2.2 Noncausal and causal inference

Being aware of this problem, we can now go back to the general form
of the exact posterior distribution and factorize it as follows, applying
again the chain rule the same way as we did for the generative model:

pθ(z1:T |x1:T ,u1:T ) =
T∏
t=1

pθz (zt|z1:t−1,x1:T ,u1:T ). (4.20)

For the most general generative model defined in (4.4), the dependen-
cies in each conditional distribution pθz (zt|z1:t−1,x1:T ,u1:T ) cannot be
simplified. In other words, zt depends on the past latent vectors z1:t−1
and on the complete sequences of observed vectors x1:T and u1:T (past,
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current, and future time steps). The exact inference is thus a noncausal
process, even if the generation is causal. This is reminiscent of the
Kalman smoother (i.e., the noncausal solution to inference in LG-LDS,
see Section 3.2.2). As discussed in the previous subsection, the inference
model qφ should here have the same most general structure as the exact
posterior distribution of (4.20):

qφ(z1:T |x1:T ,u1:T ) =
T∏
t=1

qφ(zt|z1:t−1,x1:T ,u1:T ). (4.21)

Similar to the generative model, each conditional posterior distribu-
tion qφ(zt|z1:t−1,x1:T ,u1:T ) should accumulate information from past
latent variables and past observations, but in contrast to the generative
model, it should also accumulate information from present and future
observations. Typically, this process is implemented with a bidirectional
recurrent network.

Depending on the conditional independence assumptions made
when defining the generative model, the posterior dependencies in
pθ(zt|z1:t−1,x1:T ,u1:T ) can be simplified using the D-separation prop-
erty of Bayesian networks described in the previous subsection. Thus,
the posterior dependencies in qφ(zt|z1:t−1,x1:T ,u1:T ) can be simplified
similarly. Of course, it is always possible to use an approximate posterior
qφ that does not follow the structure of the exact posterior distribution.
In fact, it makes sense to use a simplified version if one wants to decrease
the computational cost or satisfy other constraints. In particular, for
online or incremental data processing, the inference can be forced to
be a causal process by removing the dependencies of qφ on the future
observations (and future inputs). This is similar to the Kalman filter
for an LG-LDS, see again Section 3.2.2. This will generally be at risk
of degrading the inference performance. Again, we will return to these
points when reviewing the DVAE models proposed in the literature.

4.2.3 Sharing variables and parameters at generation and inference

We can note a similarity between the (most general causal) generative
distribution pθz (zt|x1:t−1, z1:t−1,u1:t) and the corresponding inference
model qφ(zt|z1:t−1,x1:T ,u1:T ) in terms of random variable dependencies.
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For instance, the general form of the dependency of zt on past latent
vectors is the same at inference and generation: in both cases, zt depends
on the complete past sequence z1:t−1. Implementing this recurrence at
inference and at generation can be made either with a single unique
RNN or with two different RNNs, in line with what we discussed in
Section 4.1.2. The same principle applies to u1:t and x1:t, which are
both used at generation and inference. Depending on which variables
we consider, it can make sense to use the same RNN at generation and
inference, meaning that the deterministic link between the realizations
of random variables is the same at generation and at inference. If this
is the case, the decoder and encoder share some network modules and
thus θ and φ share some parameters. Note that this is not the case in
standard VAEs.

Hereinafter, we will use ht to denote the internal state of the decoder
and gt to denote that of the encoder if it is different from the internal
state of the decoder. Otherwise, we will use ht for the encoder as well.

4.3 VLB and training of DVAEs

As for the standard VAE, training a DVAE is based on the maximization
of the VLB. In the case of DVAEs, the VLB initially defined in (2.13)
is extended to data sequences as follows:

L(θ, φ; x1:T ,u1:T ) = Eqφ(z1:T |x1:T ,u1:T )
[
log pθ(x1:T , z1:T |u1:T )

]
− Eqφ(z1:T |x1:T ,u1:T )

[
log qφ(z1:T |x1:T ,u1:T )

]
. (4.22)

With the factorization in (4.21), the expectation in (4.22) can be ex-
pressed as a cascade of expectations taken with respect to conditional
distributions over individual latent vectors at different time indices:

Eqφ(z1:T |x1:T ,u1:T )[ψ(z1:T )] = Eqφ(z1|x1:T ,u1:T )

[
Eqφ(z2|z1,x1:T ,u1:T )

[
. . .

Eqφ(zT |z1:T−1,x1:T ,u1:T )
[
ψ(z1:T )

]
. . .
]]
, (4.23)

where ψ(z1:T ) denotes any function of z1:T . Then, by injecting (4.4)
and (4.21) into (4.22), and using the above cascade, we can develop the
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VLB as follows:

L(θ, φ; x1:T ,u1:T ) = Eqφ(z1:T |x1:T ,u1:T )
[
log pθ(x1:T , z1:T |u1:T )

− log qφ(z1:T |x1:T ,u1:T )
]

=
T∑
t=1

Eqφ(z1:t|x1:T ,u1:T )
[
log pθx (xt|x1:t−1, z1:t,u1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T ,u1:T ) [DKL (qφ(zt|z1:t−1,x1:T ,u1:T ) ‖

pθz (zt|x1:t−1, z1:t−1,u1:t)
)]
. (4.24)

To the best of our knowledge, this is the first time that the VLB is
presented in this most general form, which is valid for the entire class
of (causal) DVAE models.

As for the standard VAE, the VLB contains a reconstruction ac-
curacy term and a regularization term. However, in contrast to the
standard VAE, where the regularization term has an analytical form
for usual distributions, here, both the reconstruction accuracy and
regularization term require the computation of Monte Carlo estimates
(i.e., empirical averages) using samples drawn from qφ(z1:τ |x1:T ,u1:T ),
where τ ∈ {1, ..., T} is an arbitrary index. Using the chain rule in (4.21),
we sample from the joint distribution qφ(z1:τ |x1:T ,u1:T ) by sampling
recursively from qφ(zt|z1:t−1,x1:T ,u1:T ), going from t = 1 to t = τ .
Sampling each random vector zt at a given time instant is straightfor-
ward, as qφ(zt|z1:t−1,x1:T ,u1:T ) is analytically specified by the chosen
inference model (e.g., Gaussian with mean and variance provided by an
RNN). We have to use a similar reparameterization trick as for standard
VAEs, so the sampling-based VLB estimator remains differentiable with
respect to φ. The VLB can then be maximized with respect to both φ
and θ = θz ∪ θx using gradient-ascent-based algorithms. We recall that
for DVAEs, φ and θ can share parameters, which is different from the
“static” VAE, but perfectly alright for the optimization. Finally, the VLB
is here defined here for a single data sequence, but a common practice is
to average the VLB over a mini-batch of training data sequences before
updating the model parameters with gradient ascent.
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4.4 Additional dichotomy for autoregressive DVAE models

A DVAE can be used to generate new data, for analysis-synthesis (by
chaining the encoder and decoder), or for data transformation, by mod-
ifying the latent vector sequence in between analysis and synthesis.
In the case of DVAE models functioning in the predictive mode (i.e.,
autoregressive DVAEs, see Section 4.1.1), these tasks can be processed
in different manners, leading to an additional dichotomy of functioning
modes. We describe these functioning modes in the next subsection
before we see the implications for model training in the following sub-
section. Because these additional different modes concern the recursive
part of the models, nonpredictive DVAEs are not concerned here.

4.4.1 Teacher forcing against generation mode

In practice, for autoregressive DVAE models, we have two generation
modes, for the generation of both xt and zt. A mode in which we
assume that the ground-truth past observed vectors x1:t−1 are used
for generating the current vector (xt or zt), and a mode in which the
generated past observed vectors are used for generating the current
vector. At this point, it is important to distinguish between the notation
for the ground-truth value of the observed data vector xt and that for
its modeled version produced by a DVAE, which we denote by x̂t. In
practice, x1:T is a given data sequence that we want to model with a
DVAE (or that we use for model training, as shown below), and x̂1:T is
the actual output of the DVAE.

This issue of either using the ground-truth past observed data vectors
x1:t−1 or reinjecting the previously generated vectors x̂1:t−1 at the input
of a generative model is a classical problem of recursive models and, in
particular, of RNNs. Yet it is poorly discussed in the DVAE literature.
In the RNN literature, the first configuration is sometimes referred to
as teacher-forcing (Williams and Zipser, 1989), as it is assumed that
a teacher (or oracle) can provide the model with ground-truth values.
Hereinafter, we will use this terminology. This is a classical configuration
at training time, when the whole sequence x1:T is available and the model
is tuned so that x̂1:T fits x1:T . However, this is unrealistic at generation
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time, when the model produces a new sequence x̂1:T . Here, the second
configuration must be used. We refer to this second configuration as the
generation mode. Regarding the generation of z1:T , the teacher-forcing
concept is irrelevant as the concept of ground-truth values for latent
vectors is questionable in essence. In practice, z1:T is either the output
of the inference model (this is the case during DVAE training or in
analysis-synthesis) or any arbitrary latent vector sequence (generated
with pθz or predefined). Note also that because of the recursivity of the
generative process, data generation with a DVAE (strongly) depends
on the initialization of the generative process. We do not detail this
aspect in the present review.

If we now focus on the analysis-synthesis task, we have to chain
the encoder and decoder. The encoder takes x1:T as the input and
produces a sequence of latent vectors z1:T . Then, the decoder uses z1:T
to generate x̂1:T . Decoding can be performed with either teacher-forcing
or generation mode. The former case is expected to produce a sequence
x̂1:T that is closer to x1:T than in the latter case, as it uses ground-truth
values, whereas the generation mode uses approximate values. However,
it suffers from the same “unrealistic” aspect as that used for data gener-
ation. This configuration can be used to evaluate the prediction power of
DVAE models in an ideal (oracle) setting. In contrast, analysis-synthesis
with the generation mode is expected to yield lower performance but
is the natural configuration from an information-theoretic viewpoint.
Here, we test the capability of the model to encode the information
of a (generally high-dimensional) data sequence x1:T into a (generally
low-dimensional) latent sequence z1:T . From an application point of
view, this corresponds to telecommunication or storage applications,
where x1:T would be encoded into z1:T , z1:T would be transmitted or
stored, and then x̂1:T would be decoded from z1:T . In short, we apply
DVAEs to source coding, and the DVAE turns into a codec, apart
from quantization issues. Such coding/decoding scheme can be applied
offline by using a noncausal inference model (with an optimal structure
following that of the exact posterior distribution) or online with a (sub-
optimal) causal inference model. If some amount of latency is tolerated,
one can also use a noncausal inference model with a suitable lookahead.
The interest of DVAE models for source coding is further discussed in
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Section 14.4.

4.4.2 Train/test matching

As mentioned in the previous subsection, teacher-forcing is a conven-
tional strategy used for training recursive models. However, in practice,
when using autoregressive DVAEs for data generation or compression,
the generation mode must be used. This leads to a mismatch between
the training and testing conditions, a general problem in machine learn-
ing that leads to performance degradation compared to the case in
which the same configuration is used for training and testing. There-
fore, if the generation mode is used in a practical DVAE use-case, it
can be beneficial to use the generation mode during model training
as well, so that the training configuration matches the practical use-
case configuration. In practice, this implies replacing x1:t−1 with x̂1:t−1
in the conditioning variables in the VLB equations of Section 4.3. In
Chapter 13, we illustrate this strategy in our experimental benchmark.
We observe in our experiments that using the generation mode at both
model training and testing leads to a significant gain in performance
compared to the mismatched configuration, though the performance
remains slightly lower than that in the case where teacher-forcing is used
at both training and testing. More details are given in Section 13.3.3.

4.5 DVAE summary

Dynamical VAEs are constructed with various stochastic relationships
amonng the control variables u1:T , latent variables z1:T , and observed
variables x1:T . We recall that a random variable a is called a parent
of another random variable b when the realization of a is used to
compute the parameters of the distribution of b. These parameters can
be obtained with a linear or a nonlinear mapping of the realization of a
(and possibly of other random variables). A DVAE model must contain
two types of relationships:

• Decoding link: zt is always a parent of xt. Graphically, there
is always an arrow from zt to xt in the compact graphical repre-
sentation. This is a fundamental characteristic inherited from the
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standard VAE.

• Temporal link: At least one element in z1:t−1 or in x1:t−1 is
parent to either zt or xt. One of the simplest forms of a temporal
link, namely zt−1 is a parent of zt, is a fundamental characteristic
of first-order SSMs.

In a way, the “minimal DVAE” is the straightforward combination
of a first-order SSM and a VAE, which is the DKF model that we
will detail in Section 5. Other DVAEs include additional temporal
links. Moreover, temporal links such as “zt−1 is a parent of xt” can
be considered additional decoding links, in that xt is generated from
zt and zt−1. As for temporal links, in the papers that we detail in
this overview, zt and/or xt depend either on zt−1 and/or xt−1, or on
z1:t−1 and/or x1:t−1. In other words, the order of temporal dependencies
is either 1 (implemented with a basic feed-forward neural network,
such as a Multi-Layer Perceptron (MLP)) or infinity (implemented
with an RNN). However, one can, in principle, use N -order temporal
dependencies with 1 < N <∞, relying, for instance, on convolutional
neural networks (CNNs) with finite-length receptive fields. In particular,
temporal convolutional networks (TCNs) (Lea et al., 2016), which are
based on dilated convolutions, are competitive with RNNs on several
sequence modeling tasks, including generative modeling (Aksan and
Hilliges, 2019).

Finally, as discussed before, a DVAE can be in the driven mode, in
the predictive mode, in both, or in none of these modes. This is also
modeled by parenthood relationships that may or may not exist.

• Driving link: A DVAE is said to be in the driven mode if ut is
a parent of either zt or xt, or both.

• Predictive link: A DVAE is said to be in the predictive mode
if x1:t−1, or part of this sequence, is a parent of either zt or xt, or
both. In practice, a predictive link is implemented either in the
teacher-forcing mode (using the ground-truth past vector sequence)
or in the generation mode (using the previously generated vector
sequence). Generally, better performance is achieved if the same
mode is used at training time and test time.





5
Deep Kalman Filters

Continuing from the previous section, we start our DVAE tour by
combining SSMs with neural networks. Such a combination is not
recent, see, e.g., (Haykin, 2004; Raiko and Tornio, 2009), but has
been recently investigated under the VAE angle in two papers by
the same authors (Krishnan et al., 2015; Krishnan et al., 2017). The
resulting deep SSM is referred to as a DKF (Krishnan et al., 2015)
or a deep Markov model (DMM) (Krishnan et al., 2017).1 Therefore,
these papers do not provide a new concept in terms of models, but
they provide a solution to the joint problem of inference and model
parameter estimation in the VAE methodological framework applied to
the SSM model architecture. In other words, this is, to the best of our
knowledge, the first example of unsupervised training of a deep SSM by
chaining an approximate inference model with a generative model and
using the VLB maximization methodology. This training leads to an
unsupervised discovery of the latent space that encodes the temporal

1The same generative model is considered in both papers, but as we will detail
later, the second paper proposes notable improvements regarding the inference
model. The authors change the model name from DKF to DMM, maybe because
the second denomination appears more general. In the present review, we retain the
denomination DKF.

57
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dynamics of the data. The VAE methodology circumvents the difficulties
encountered in previous approaches (Haykin, 2004; Raiko and Tornio,
2009) concerning the computational complexity and practicability of
model parameter estimation, particularly allowing to move directly from
single-layer neural networks to DNNs.

Hereinafter, for all detailed DVAE models, we first present the
generative equations, then the inference model (and we discuss its
choice by referring to the exact posterior distribution structure as
deduced from the generative model), and finally the detailed form of the
VLB used for model training together with clues about the optimization
algorithm.

5.1 Generative model

We have already seen the generative equations of the DKF, as they are
the same as (3.9)–(3.12), with the specificity that dz and dx are DNNs
here.2 Krishnan et al. (2015) did not specify these DNNs; we can assume
that basic feed-forward neural networks (i.e., MLPs) were used. In their
second paper, Krishnan et al. (2017) implemented dx with a two-layer
MLP and used a slightly more refined model for dz : a gated linear
combination of a linear model and an MLP for the mean parameter,
where the gate is itself provided by an MLP, and the chaining of MLP,
rectified linear unit (ReLU) activation, and Softmax activation layers
for the variance parameter (see Section B.1). According to the authors,
this allows “the model have the flexibility to choose a linear transition
for some dimensions while having a nonlinear transition for the others.”

Even if we are still at an early point in our presentation of the
different DVAE models, we can make a first series of remarks to clarify
the links between the models we have discussed so far.

• The stochastic state zt of an SSM is similar in essence to the latent
state of the VAE. In the present DKF case, where dx is implemented

2In fact, a Bernouilli distribution was considered for xt by Krishnan et al. (2015)
and Krishnan et al. (2017), but we have already mentioned that different pdfs can be
considered for pθx (xt|zt) depending on the data, without affecting the fundamental
issues of this review. Hence, we consider here a Gaussian distribution for a better
comparison with the other models.
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with a DNN, if zt is of reduced dimension compared to xt, the DKF
observation model is identical to the VAE decoder.

• Consequently, a DKF can be viewed as a VAE decoder with a temporal
(Markovian) model of the latent variable z.

• A (deep) SSM can also be viewed as a “fully stochastic” version of a
(deep) RNN, where stochasticity is introduced at both the observation
model level (like a GRNN) and internal state level. As mentioned
before, in an SSM, the deterministic internal state ht of the (G)RNN
is simply replaced with a stochastic state zt.

• In summary, DKF = deep SSM = “Markovian” VAE decoder = “fully
stochastic” RNN. The graphical model of the DKF is given by the
right-hand schema in Figure 3.1 (which does not make the DNNs
apparent).

5.2 Inference model

Following the general line of Section 4.2, we first identify the structure
of the SSM/DKF posterior distribution pθ(z1:T |x1:T ,u1:T ). Let us first
recall that applying the chain rule enables us to rewrite this distribution
as follows:

pθ(z1:T |x1:T ,u1:T ) =
T∏
t=1

pθ(zt|z1:t−1,x1:T ,u1:T ). (5.1)

Then, D-separation can be used to simplify each term of the product.
The structure presented in Figure 3.1 (right) shows that the zt−1 node
“blocks” all information coming from the past and flowing to zt (i.e.,
z1:t−2, x1:t−1, and u1:t−1). In other words, zt−1 has accumulated this
past information or is a summary of this information. We thus have
pθ(zt|z1:t−1,x1:T ,u1:T ) = pθ(zt|zt−1,xt:T ,ut:T ), and therefore (with z0
being arbitrarily set)

pθ(z1:T |x1:T ,u1:T ) =
T∏
t=1

pθ(zt|zt−1,xt:T ,ut:T ). (5.2)
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At each time t, the posterior distribution of zt depends on the previous
latent state zt−1 and on the present and future observations xt:T and
inputs ut:T (it is thus a first-order Markovian causal process on zt
combined with an anticausal process on xt and ut).

Krishnan et al. (2015) indicated this structure and the fact that we
should inspire from it to design the approximate posterior qφ. However,
somewhat surprisingly, they proposed the following four different models:

• an instantaneous model: qφ(zt|xt,ut) parameterized by an MLP;

• a model with local past and future context: qφ(zt|xt−1:t+1,ut−1:t+1)
parameterized by an MLP;

• a model with the complete past context: qφ(zt|x1:t,u1:t) parameterized
by an RNN;

• a model with the whole sequence: qφ(zt|x1:T ,u1:T ) parameterized by
a bidirectional RNN.

We do not detail these implementations of qφ here, as we will provide
other detailed examples in the next chapters. One might wonder why
zt−1 is not present in the conditional variables of the approximate
posterior, but this might just be an oversight from the authors. This
is difficult to be determined from the paper, as the implementation is
not detailed. The authors mention an RNN to model the dependencies
on x and u, but the implementation of the dependency on zt−1 is
not specified. The point is that, although the authors pointed out the
dependency of the exact posterior on the present and future observations
and inputs, they did not propose a corresponding approximate model.

Notation remark: Krishnan et al. (2015) denoted by ut−1 the input
at time t in the generative model, as in many control theory papers
published on SSMs, and not ut, as we do (as pointed out in a previous
footnote). However, when defining the four approximate posterior mod-
els, they did it exactly as we report here (i.e., with ut being synchronous
to zt and xt). We conjecture that this problem is just a notation mistake
made by Krishnan et al. (2015), which we have implicitly corrected by
using ut instead of ut−1 as the input at time t in the generative model.
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Krishnan et al. (2017) proposed the same generative model, renamed
it DMM and presented it in the undriven mode, in which u1:T was
simply removed. However, they largely clarified and improved on their
previous paper regarding the inference model. They proposed a new
series of inference models that clearly do or do not depend on zt−1 and
varied the dependency on the observed data. They again considered
the case of dependency on the past and present data sequence x1:t and
on the complete data sequence x1:T . More importantly, they now also
consider the case of an inference model with a functional form that
corresponds exactly to the form of the exact posterior distribution,
namely qφ(zt|zt−1,xt:T ). In this case, for a complete data sequence, we
have

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|zt−1,xt:T ). (5.3)

This model is referred to as the deep Kalman smoother (DKS), as it
combines information from the past, through zt−1, and information
from the present and future observations.

For conciseness, we report the detailed inference equations only for
the DKS and will comment on their extension to the other proposed
inference models. The DKS is implemented with a backward RNN on
xt, followed by an additional layer for combining the RNN output with
zt−1:

←−g t = e←−g (←−g t+1,xt), (5.4)

gt = 1
2
(

tanh(Wzt−1 + b) +←−g t
)
, (5.5)

[µφ(gt),σφ(gt)] = ez(gt), (5.6)
qφ(zt|gt) = N

(
zt;µφ(gt),diag{σ2

φ(gt)}
)
. (5.7)

In the above equations, ez is a basic combining network, parameterized
by φz , µφ(gt) is an affine function of gt, and σ2

φ(gt) is a Softplus of an
affine function of gt. We thus have φ = φ←−g ∪φz , assuming {W,b} ∈ φz
for simplicity.

Because of the recursivity in (5.4), we can see gt as an unfolded
deterministic function of zt−1 and xt:T , which we can rewrite as gt =
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gt(zt−1,xt:T ),3 and we have qφ(zt|gt) = qφ(zt|gt(zt−1,xt:T )). For a
complete data sequence, we have

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|gt) =
T∏
t=1

qφ
(
zt|gt(zt−1,xt:T )

)
, (5.8)

which is just a rewriting of (5.3). In short, the inference of zt with a
DKS requires a first backward pass from xT up to xt to compute ←−g t,
which is then combined with zt−1.

As mentioned above, this inference model is extended to a noncausal
(bidirectional) model regarding the observations, qφ(zt|zt−1,x1:T ). This
is done by adding a forward RNN on xt and sending its output −→g t to
the combining network, in addition to zt−1 and ←−g t. For conciseness,
we do not report the corresponding detailed equations, but this more
general model is represented in Figure 5.1. The other models proposed
by Krishnan et al. (2017) can be deduced from this general model by
removing some elements. In particular, DKS is obtained by simply
removing the forward RNN. Moreover, models that do not depend on
zt−1 are obtained by removing the arrows between zt−1 and gt for all t.

5.3 Training

A comparison of the compact form of the DKF model in (3.13) with the
general compact form of a DVAE in (4.4) shows that the DKF model
makes the following conditional independence assumptions:

pθx (xt|x1:t−1, z1:t,u1:t) = pθx (xt|zt);
pθz (zt|x1:t−1, z1:t−1,u1:t) = pθz (zt|zt−1,ut). (5.9)

Using these two simplifications along with the inference model (5.3)
(extended to be in the driven mode for the sake of generality), the VLB

3This function is also a function of the initial state ←−g T of the backward RNN.
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zt−1 zt zt+1

gt−1 gt gt+1

−→g t−1
−→g t

−→g t+1

←−g t−1
←−g t

←−g t+1

xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

Figure 5.1: Graphical model of DKF at inference time corresponding to the inference
model qφ(zt|zt−1, x1:T ), in developed form (left) and compact form (right). The
specific DKS model, which functional form qφ(zt|zt−1, xt:T ) perfectly corresponds to
the form of the exact posterior distribution, is obtained by removing the forward
RNN (and removing the blue arrows on the right-hand schema).
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in its most general form (4.24) can be simplified as follows:

L(θ, φ; x1:T ,u1:T ) =
T∑
t=1

Eqφ(zt|x1:T ,u1:T )
[
log pθx (xt|zt)

]
−

T∑
t=1

Eqφ(zt−1|x1:T ,u1:T )
[
DKL

(
qφ(zt|zt−1,xt:T ,ut:T ) ‖ pθz (zt|zt−1,ut)

)]
.

(5.10)

The KL divergence in (5.10) can be computed analytically, while the
two expectations are intractable. (Krishnan et al., 2015; Krishnan et al.,
2017) provided no detailed information regarding how to approximate
these expectations; they only mentioned that “stochastic backpropaga-
tion” is used, referring the reader to the papers of Kingma and Welling
(2014) and Rezende et al. (2014), who introduced the reparameteriza-
tion trick for standard “static” VAEs. However, due to the dynamical
nature of the model, the sampling procedure required for stochastic
backpropagation in DKF is more complicated than in standard VAEs. In
particular, we do not have an analytical form for qφ(zt|x1:T ,u1:T ), and
only have one for qφ(zτ |zτ−1,xτ :T ,uτ :T ). Therefore, we need to exploit
the chain rule and the “cascade trick” to develop and then approximate
the intractable expectations in (5.10). The first expectation in this VLB
expression can be developed as follows:

Eqφ(zt|x1:T ,u1:T )[f(zt)] = Eqφ(z1:t|x1:T ,u1:T )[f(zt)]
= Eqφ(z1|x1:T ,u1:T )[

Eqφ(z2|z1,x2:T ,u2:T )[ ...

Eqφ(zt|zt−1,xt:T ,ut:T )[f(zt)] ... ]], (5.11)

where f(zt) denotes an arbitrary function of zt. A similar procedure can
be used to develop the second expectation in (5.10). Each intractable ex-
pectation in this cascade of expectations can then be approximated with
a Monte Carlo estimate. It requires to sample qφ(zτ |zτ−1,xτ :T ,uτ :T ) iter-
atively from τ = 1 to t, using the same reparametrization trick as in stan-
dard VAEs. Doing so, the VLB becomes differentiable w.r.t. θ = θx ∪ θz
and φ = φ←−g ∪ φz , and it can be optimized with gradient-ascent-based
techniques.



6
Kalman Variational Autoencoders

The KVAE model was presented by Fraccaro et al. (2017). This model
can be considered a variant of the DKF model, and hence as another
deep SSM, where an additional random variable, denoted at, is inserted
between the latent vector zt and the observed vector xt, as illustrated
in Figure 6.1. This enables us to separate the model into two parts: A
deep feature extractor linking at and xt and the dynamical model on
zt with “new observations” at. As we will see below, this provides the
model with interesting properties for inference and training.
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ut−1 ut ut+1

zt−1 zt zt+1

at−1 at at+1

xt−1 xt xt+1

Figure 6.1: KVAE’s graphical model.

6.1 Generative model

The general formulation of the KVAE model is given by

[µθz (zt−1,ut),σθz (zt−1,ut)] = dz(zt−1,ut), (6.1)
pθz (zt|zt−1,ut) = N

(
zt;µθz (zt−1,ut),diag{σ2

θz (zt−1,ut)}
)
,

(6.2)
[µθa (zt),σθa (zt)] = da(zt), (6.3)

pθa (at|zt) = N
(
at;µθa (zt),diag{σ2

θa (zt)}
)
, (6.4)

[µθx (at),σθx (at)] = dx(at), (6.5)
pθx (xt|at) = N

(
xt;µθx (at),diag{σ2

θx (at)}
)
. (6.6)

In Fraccaro et al.’s (2017) paper, (6.1) and (6.3) are linear equations;
that is, they are given as (3.16) and (3.17), respectively (with a in
place of x, null bias vectors nt and mt, and time-invariant covariance
matrices Λ and Σ). Therefore, we have θz = {At,Bt}Tt=1 ∪ {Λ} and
θa = {Ct}Tt=1∪{Σ}, and the submodel on {ut, zt,at} is a classical (non-
deep) LG-LDS. In contrast, dx in (6.5) is implemented with a DNN,
with parameter set θx (e.g., a basic MLP or a CNN for video sequence
modeling). This network plays the role of a deep feature extractor, with
the dimension of at being possibly much smaller than that of xt. The
feature vector at is expected to encode the properties of the “object(s)”
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present in the observation xt, whereas zt is expected to encode the
dynamics of these objects, which is an important application of the
previously described disentanglement concept. As we will see, in the
KVAE case, this can be a great advantage for solving the dynamical
part of the model.

The joint distribution of all random variables can be factorized as
follows:

pθ(x1:T ,a1:T , z1:T ,u1:T ) =
T∏
t=1

pθx (xt|at)pθa (at|zt)pθz (zt|zt−1,ut)p(ut),

(6.7)

and we also have

pθx (x1:T |a1:T ) =
T∏
t=1

pθx (xt|at), (6.8)

pθa (a1:T |z1:T ) =
T∏
t=1

pθa (at|zt), (6.9)

pθz (z1:T |u1:T ) =
T∏
t=1

pθz (zt|zt−1,ut). (6.10)

Given the state sequence z1:T , the features a1:T are independent, and
given the sequence of features, the observations x1:T are independent.

Fraccaro et al. (2017) mentioned the classical limitation of LDS for
modeling abrupt changes in trajectories. A classical solution to this
problem is to include in the model a “switching strategy” between
different models or different parameterizations of the model, see, e.g.,
the switching Kalman filter (Murphy, 1998; Fox et al., 2011). Fraccaro
et al. (2017) proposed to define each LDS parameter at each time t (e.g.,
matrix At) as a linear combination of predefined matrices/vectors from
a parameter bank, and the coefficients of the linear combination were
estimated at each time t from the past features a1:t−1 using an LSTM
network. Although it is an interesting contribution on its own, we do
not further consider this part of the KVAE model here, as it is loosely
relevant to our model review. A similar transition model was proposed
independently by Karl et al. (2017) as an instance of a deep variational
Bayesian filter (DVBF), an extended class of SSM-based DVAE models
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enriched with stochastic transition parameters (see also Watter et al.
(2015)).

6.2 Inference model

For the KVAE model, the posterior distribution of all latent variables
given the observed variables, pθ(a1:T , z1:T |x1:T ,u1:T ), can be factorized
as follows:

pθ(a1:T , z1:T |x1:T ,u1:T ) = pθ(z1:T |a1:T ,x1:T ,u1:T )pθ(a1:T |x1:T ,u1:T ),
= pθ(z1:T |a1:T ,u1:T )pθ(a1:T |x1:T ,u1:T ),

(6.11)

where the simplification of the first term on the right-hand side results
from D-separation. A keypoint that appears here is that, if the sequence
of features a1:T is known, then pθ(z1:T |a1:T ,u1:T ) has a closed-form solu-
tion, which is a Kalman filter or a Kalman smoother (see Section 3.2.2).
This Kalman solution is classic, and it is not detailed here for concise-
ness. We can simply mention that it depends only on θa ∪ θz but not
on θx . The other factor, pθ(a1:T |x1:T ,u1:T ), is more problematic.

Fraccaro et al. (2017) did not discuss the form of the exact posterior
distribution, yet they proposed the following factorized inference model,
which exploits the Kalman solution:

qφ(a1:T , z1:T |x1:T ,u1:T ) = pθ(z1:T |a1:T ,u1:T )qφ(a1:T |x1:T ) (6.12)

= pθ(z1:T |a1:T ,u1:T )
T∏
t=1

qφ(at|xt), (6.13)

where

qφ(at|xt) = N
(
at;µφ(xt),diag{σ2

φ(xt)}
)

(6.14)

is implemented with a fully-connected DNN:

[µφ(xt),σφ(x)] = ea(xt). (6.15)

Eqs. (6.5), (6.6), (6.14), and (6.15) are identical to (2.5), (2.3), (2.18),
and (2.20), respectively, with at substituting x and zt substituting
z. This means that, with the proposed inference model, a KVAE is
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ut−1 ut ut+1

zt−1 zt zt+1

at−1 at at+1

xt−1 xt xt+1

Figure 6.2: KVAE’s graphical model at inference time. The black arrows represent
the Kalman filter solution (causal solution) of LG-LDS on {u1:T , z1:T , a1:T }. The
blue arrows represent the VAE encoder from xt to at. The inference solution for the
complete KVAE model is a combination of these two.

composed of a VAE modeling the relationship between at and xt, placed
on top of an LG-LDS on ut, zt and at. Therefore, the inference solution
of the VAE and that of LG-LDS can be combined for the solution of
this combined model. This is illustrated in Figure 6.2.

This inference model is thus designed to benefit from both the VAE
methodology and the well-known efficiency of the “simple” LG-LDS
model for tracking data dynamics. The Kalman solution, which requires
inverse matrix calculation, greatly benefits from the notable xt-to-at
dimension reduction. In addition, although this was not exactly discussed
in these terms by Fraccaro et al. (2017), one possible motivation for
designing the KVAE model is that the joint learning of all parameters
(see the next subsection) can encourage the feature extractor to provide
at features that are well-suited to a linear dynamical model; that is, the
nonlinear relations between observations xt and dynamics zt are (at
least largely) captured by the VAE.
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6.3 Training

The VLB for the KVAE model writes as follows:

L(φ, θ; x1:T ,u1:T ) = Eq(z1:T ,a1:T |x1:T ,u1:T )
[

log pθ(x1:T |z1:T ,a1:T ,u1:T )
]

−DKL
(
qφ(z1:T ,a1:T |x1:T ,u1:T ) ‖ pθ(z1:T ,a1:T |u1:T )

)
(6.16)

= Eqφ(a1:T |x1:T )pθ(z1:T |a1:T ,u1:T )
[

log pθ(x1:T |a1:T )
]

−DKL
(
qφ(a1:T |x1:T )pθ(z1:T |a1:T ,u1:T ) ‖ pθ(z1:T ,a1:T |u1:T )

)
(6.17)

= Eqφ(a1:T |x1:T )
[

log pθ(x1:T |a1:T )/qφ(a1:T |x1:T )

−DKL
(
pθ(z1:T |a1:T ,u1:T ) ‖ pθ(a1:T |z1:T )pθ(z1:T |u1:T )

)]
, (6.18)

where we use the proposed decomposition of both the generative and
inference models.

In practice, one first samples from qφ(at|xt) for each t. These samples
are fed to a standard Kalman smoother that computes pθ(z1:T |a1:T ,u1:T ).
We can then easily sample from this distribution. This allows for jointly
learning the parameters of the VAE (both the encoder and decoder)
and those of the LG-LDS.



7
STOchastic Recurrent Networks

To the best of our knowledge, STORN (Bayer and Osendorfer, 2014) is
the first DVAE model to combine an internal deterministic state ht and
an internal stochastic state zt. Bayer and Osendorfer (2014) presented
STORN in the undriven and predictive modes (i.e., with ut = xt−1).
Hereinafter, we retain this mode for STORN, VRNN, and SRNN, for
an easier comparison, but these models can also be easily set up in the
driven mode with an external input ut.

7.1 Generative model

The STORN observation model is given by

ht = dhid(Winxt−1 + Wlatzt + Wrecht−1 + bhid),
(7.1)

[µθx (ht),σθx (ht)] = dout(Woutht + bout), (7.2)
pθx (xt|ht) = N

(
xt;µθx (ht),diag{σ2

θx (ht)}
)
. (7.3)

Therefore, (7.2) and (7.3) are the same as those for a basic single-layer
GRNN, but in STORN, zt forms an input additional to the internal state
ht. Moreover, STORN was originally presented in the above framework
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of a single-layer RNN, but it can be easily generalized to a deep RNN,
defined by (3.5)–(3.7), by inserting zt as an additional input to the
network (and setting ut = xt−1):

ht = dh(xt−1, zt,ht−1), (7.4)
[µθx (ht),σθx (ht)] = dx(ht), (7.5)

pθx (xt|ht) = N
(
xt;µθx (ht),diag{σ2

θx (ht})
)
. (7.6)

In the following, we retain this latter more general formulation for easier
comparison with the other models. We denote by θh and θhx the set of
parameters of the networks implementing dh and dx , respectively, and
have θx = θh ∪ θhx .

In STORN, zt is assumed i.i.d. with a standard Gaussian distribu-
tion:

pθz (z1:T ) =
T∏
t=1

pθz (zt) with pθz (zt) = N (zt; 0, IL). (7.7)

In short, there is no temporal model on the prior distribution of zt and
θz = ∅ (and therefore θ = θx). Here, it is the temporal recursion on ht
and the use of ht to generate xt that makes STORN a member of the
DVAE family. The graphical model of STORN is shown in Figure 7.1
(left).

Notation remark: To ensure homogeneous notations across models,
we slightly change the notation used by Bayer and Osendorfer (2014)
by “synchronizing” xt and ht; that is, in our presentation of STORN,
xt is generated from ht (which is generated from xt−1, ht−1, and zt).
In contrast, in Eq. (4) in Bayer and Osendorfer’s (2014) paper, xt+1
is generated from ht (which is generated from xt, ht−1, and zt). In
other words, we replace xt with xt−1. This change of notation does
not change the model in essence but makes the comparison with other
models easier.

Eq. (7.4) shows that the two states, ht and zt, are intricate, and the
interpretation of ht as a deterministic state is now an issue. In fact, ht is
now a random variable, but it is not a “free” one, as it is a deterministic
function of the latent random variables zt and xt−1 and of its previous
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zt−1 zt zt+1

ht−1 ht ht+1

xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

Figure 7.1: STORN’s graphical model in developed form (left) and compact form
(right).

value ht−1. We present a proper treatment of this issue in Appendix A.
The recurrence on ht is unfolded to consider ht as a deterministic
function of z1:t and x1:t−1, which we denote ht = ht(x1:t−1, z1:t),1 and
we consider a Dirac probability distribution over ht, positioned at that
function’s output value. These points were briefly discussed by Bayer
and Osendorfer (2014). In Appendix A, it is shown that marginalizing
the joint density pθ(x1:T , z1:T ,h1:T ) w.r.t. h1:T leads to

pθ(x1:T , z1:T ) =
T∏
t=1

pθx

(
xt|ht(x1:t−1, z1:t)

)
p(zt). (7.8)

From the above equation and (7.7), we deduce the conditional distribu-
tion

pθx (x1:T |z1:T ) =
T∏
t=1

pθx

(
xt|ht(x1:t−1, z1:t)

)
. (7.9)

Note that these data sequence densities factorize across time frames,
but the whole history of the present and past latent variables and past
outputs is necessary to generate the present output. This history is
summarized in ht(x1:t−1, z1:t).

In line with the discussion in Section 4.1.2, an alternate description
of STORN can be written, where we remove the internal deterministic

1This function also depends on the initial vectors x0 and h0 (and we can set
x0 = ∅), but we omit them for clarity of presentation.
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state h and express the model only in terms of the free random variables
x1:T and z1:T :

pθ(x1:T , z1:T ) =
T∏
t=1

pθx (xt|x1:t−1, z1:t)p(zt), (7.10)

and

pθx (x1:T |z1:T ) =
T∏
t=1

pθx (xt|x1:t−1, z1:t). (7.11)

The above two equations are more general than (7.8) and (7.9), but they
lose some information on the deterministic link between x1:t−1 and z1:t
in the process of generating xt. The compact graphical representation
corresponding to this alternate formulation is given in Figure 7.1 (right).

7.2 Inference model

Following Section 4.2, it is easy to show that the exact posterior distri-
bution of STORN takes the following form:

pθ(z1:T |x1:T ) =
T∏
t=1

pθ(zt|z1:t−1,x1:T ). (7.12)

In fact, this expression is obtained by the chain rule, and it cannot be
simplified by applying D-separation. This is because any vector in z1:t−1
and x1:T is either a child, a parent, or a co-parent of zt in the graphical
representation of STORN. In other words, each product term at time
t in (7.12) depends on the past observed and latent state vectors that
propagate through the internal state, and it depends on the present and
future observed vectors, as zt propagates to them through the internal
hidden states.

To complement the discussion on the form of the exact posterior
distribution, we note the following:

pθ(z1:T |x1:T ) ∝ pθ(x1:T , z1:T ) = pθx (x1:T |z1:T )p(z1:T ). (7.13)

Thus, combining the above equation with (7.8), we get

pθ(z1:T |x1:T ) ∝
T∏
t=1

pθx

(
xt|ht(x1:t−1, z1:t)

)
p(zt). (7.14)
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As zt is present in all terms of ht(x1:t−1, z1:t) from t to T , it is confirmed
that (7.14), considered as a function of zt, depends not only on x1:t−1
but also on xt:T .

As for the practical inference in STORN, the approximate posterior
distribution qφ was chosen by Bayer and Osendorfer (2014) as generated
by an additional forward RNN. Little information is available on the
implementation. The parameters of qφ are said to be generated from
x1:t, which is slightly odd as xt+1 was generated from zt (with their
notations; see our remark in the previous subsection). There is thus
a one-step lag between generation and inference, which is difficult to
justify (in practice, we have found that this leads to significantly inferior
inference performance). With our change in notation at generation, we
somehow automatically compensate for this gap and assume that the
“correct” detailed inference equations are given as

gt = eg(Wenc
in xt + Wenc

rec gt−1 + benc
hid), (7.15)

[µφ(gt),σφ(gt)] = ez(Wenc
outgt + benc

out), (7.16)
qφ(zt|gt) = N

(
zt;µφ(gt), diag{σ2

φ(gt)}
)
, (7.17)

where gt denotes the inference RNN internal state,2 and eg and ez
are nonlinear activation functions. Similarly to the generative model,
because of the recursivity in (7.15), gt can be considered as an unfolded
deterministic function of x1:t, which we note gt = gt(x1:t).3 For a
complete data sequence, we have

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|gt) =
T∏
t=1

qφ
(
zt|gt(x1:t)

)
. (7.18)

This inference model can be rewritten in compact form as

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|x1:t). (7.19)

The corresponding graphical model is shown in Figure 7.2. Note that
this inference model is inconsistent with the exact posterior distribution
pθ(z1:T |x1:T ) at several points: At each time t, it neither considers

2In Bayer and Osendorfer’s (2014) paper, it is denoted as hrt .
3This function is also a function of g0.
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zt−1 zt zt+1

gt−1 gt gt+1

xt−1 xt xt+1

zt−1 zt zt+1

xt−1 xt xt+1

Figure 7.2: STORN’s graphical model at inference time in developed form (left)
and compact form (right). Golden arrows correspond to missing links on the proposed
probabilistic dependencies (compared to the exact inference dependencies).

future observations xt+1:T nor past latent states z1:t−1. As discussed in
Section 4.2.3, the internal states of the encoder and of decoder can be
identical, or they can be different. In STORN, given the choice of the
inference model, these internal states depend on different variables and,
therefore, are different.

7.3 Training

A comparison of the compact form of STORN in (7.10) with the general
compact form of a DVAE in (4.4) (simplified without u1:T ) shows that
STORN makes the following conditional independence assumption:

pθz (zt|x1:t−1, z1:t−1) = p(zt). (7.20)

Using this single simplification, the VLB given in its most general form
in (4.24) becomes

L(θ, φ; x1:T ) =
T∑
t=1

Eqφ(z1:t|x1:T )
[
log pθx (xt|x1:t−1, z1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T ) [DKL (qφ(zt|z1:t−1,x1:T ) ‖ p(zt))] .

(7.21)

This expression of the VLB relies on an inference model that is consistent
with the exact posterior distribution (7.12). However, as discussed above,
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STORN assumes an inference model of the form: qφ(zt|z1:t−1,x1:T ) =
qφ(zt|x1:t). Consequently, the VLB in (7.21) can be simplified as follows:

L(θ, φ; x1:T ) =
T∑
t=1

Eqφ(z1:t|x1:T )
[
log pθx (xt|x1:t−1, z1:t)

]
−

T∑
t=1

DKL (qφ(zt|x1:t) ‖ p(zt)) . (7.22)

The KL divergence in this expression can be computed analytically, while
the expectation is intractable and should be approximated by a Monte
Carlo estimate, using samples drawn recursively from qφ(z1:t|x1:T ) based
on the inference model (7.18). As for DKF, using the reparameterization
trick for this recursive sampling leads to an objective function, which is
differentiable w.r.t. θ and φ.
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Variational Recurrent Neural Networks

The VRNN model was proposed by Chung et al. (2015) as a combination
of a VAE and an RNN.

8.1 Generative model

The VRNN observation model is given by

ht = dh(ϕx(xt−1), ϕz(zt−1),ht−1), (8.1)
[µθx (zt,ht),σθx (zt,ht)] = dx(ϕz(zt),ht), (8.2)

pθx (xt|zt,ht) = N
(
xt;µθx (zt,ht), diag{σ2

θx (zt,ht)}
)
,

(8.3)

where ϕz and ϕx are feature extractors, which were mentioned by Chung
et al. (2015) to be important in practice. These feature extractors are
DNNs parameterized by a set of weights and biases, denoted as τ .

The generative distribution of zt is given by

[µθz (ht),σθz (ht)] = dz(ht), (8.4)
pθz (zt|ht) = N

(
zt;µθz (ht),diag{σ2

θz (ht)}
)
. (8.5)
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Figure 8.1: VRNN’s graphical model in developed (left) and compact (right) forms.

Notation remark: In Chung et al.’s (2015) paper, τ denotes the set of
parameters for both feature extractors, which are denoted as ϕx

τ and ϕz
τ ,

respectively, as well as for dx and dz , which are denoted ϕdec
τ and ϕprior

τ ,
respectively. Moreover, dh is denoted dθ. We find this a bit confusing
and prefer to distinguish among τ , θx = θh ∪ θhx , θz = θh ∪ θhz , and
θ = τ ∪ θx ∪ θz . Moreover, one may also want to distinguish between τx
and τz to clarify that the two feature extractors are different. We retain
τ for simplicity. Besides, we replace ht−1 in the paper by Chung et al.
(2015) with ht to synchronize ht, zt, and xt; that is, xt is generated
from ht and zt. This arbitrary reindexing of ht does not change the
model conceptually.

In VRNN, we thus have multiple intrications of ht and zt in both
the observation model and the distribution of zt. The graphical model
of VRNN is given in Figure 8.1 (left). The generative process starts
with an initial internal state h1, from which we generate z1. From
h1 and z1, we generate x1. Then, h2 is deterministically calculated
from h1, z1, and x1, and so on, except that hereinafter, zt is gen-
erated from zt−1, ht−1, and xt−1. Using the “unfolding the recur-
rence” trick mentioned in the previous sections, we can here denote
ht = ht(x1:t−1, z1:t−1)1 and have pθz (zt|ht) = pθz (zt|ht(x1:t−1, z1:t−1))
and pθx (xt|zt,ht) = pθx (xt|zt,ht(x1:t−1, z1:t−1)). This provides both zt
and xt with an implicit temporal model.

1This function also depends on h1, which is omitted for clarity of presentation.
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As for a data sequence, when marginalizing the joint distribution of
all variables w.r.t. h1:T following the line of Appendix A, we get

pθ(x1:T , z1:T ) =
T∏
t=1

pθx

(
xt|zt,ht(x1:t−1, z1:t−1)

)
pθz

(
zt|ht(x1:t−1, z1:t−1)

)
(8.6)

=
T∏
t=1

pθ
(
xt, zt|ht(x1:t−1, z1:t−1)

)
. (8.7)

Again, we have a factorization of the conditional densities over time
frames. However, we do not have conditional independence of xt and zt
conditionally to the state ht(x1:t−1, z1:t−1) due to the direct link from
zt to xt.

As for STORN, we can provide a more general alternate expression
for pθ(x1:T , z1:T ) that does not make the internal state explicit but only
represents the general dependencies among the “free” random variables:

pθ(x1:T , z1:T ) =
T∏
t=1

pθx (xt|x1:t−1, z1:t)pθz (zt|x1:t−1, z1:t−1) (8.8)

=
T∏
t=1

pθ(xt, zt|x1:t−1, z1:t−1). (8.9)

The corresponding compact graphical model is shown in Figure 8.1
(right).

8.2 Inference model

The general form of the exact posterior distribution of VRNN is identical
to the one of STORN; that is, it factorizes into

pθ(z1:T |x1:T ) =
T∏
t=1

pθ(zt|z1:t−1,x1:T ), (8.10)

and, here also, no further simplification can be obtained from D-
separation.

The approximate posterior distribution qφ was chosen by Chung
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et al. (2015) as

[µφ(xt,ht),σφ(xt,ht)] = ez
(
ϕx(xt),ht

)
, (8.11)

qφ(zt|xt,ht) = N
(
zt;µφ(xt,ht), diag{σ2

φ(xt,ht)}
)
, (8.12)

where ez is the encoder DNN, parameterized by φz . As for data sequence
inference, we have

qφ(z1:T |x1:T ) =
T∏
t=1

qφ
(
zt|xt,ht(x1:t−1, z1:t−1)

)
. (8.13)

In contrast to STORN, the same internal state ht is here shared by
the VRNN encoder and decoder, which, in our opinion, makes the
approximate model more consistent with the exact posterior distribution.
This makes the set of parameters θh common to the encoder and decoder.
Because the feature extractor ϕx(xt) is also used at the encoder, the
same remark applies to its parameter set τx . In addition, the inference at
time t depends on past outputs and past latent states, which also makes
the inference model closer to the exact posterior distribution. However,
compared to the exact posterior, the future observations (from t + 1
to T ) are missing again. In short, here also, the approximate inference
is causal, whereas the exact posterior distribution is noncausal. The
graphical model corresponding to the VRNN approximate inference
process is shown in Figure 8.2. The inference model can be rewritten in
the following general form:

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|z1:t−1,x1:t). (8.14)

8.3 Training

A comparison of the compact form of VRNN in (8.8) with the general
compact form of a DVAE in (4.4) (simplified without u1:T ) shows that
VRNN does not make any conditional independence assumption in
the generative model. In this sense, VRNN is the most general DVAE
model we have seen so far. The expression of the VLB for VRNN
should therefore be the one given in (4.24). However, as discussed above,
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Figure 8.2: VRNN’s graphical model at inference time in developed form (left) and
compact form (right). Golden arrows correspond to missing links on the proposed
probabilistic dependencies (compared to the exact inference dependencies).

the inference model in VRNN is inconsistent with the exact posterior
distribution, as the following conditional independence assumption is
made: qφ(zt|z1:t−1,x1:T ) = qφ(zt|z1:t−1,x1:t). Consequently, the VLB in
(4.24) can be simplified as follows:

L(θ, φ; x1:T ) =
T∑
t=1

Eqφ(z1:t|x1:T )
[
log pθx (xt|x1:t−1, z1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T )
[
DKL

(
qφ(zt|z1:t−1,x1:t) ‖ pθz (zt|x1:t−1, z1:t−1)

)]
.

(8.15)
As for the previously presented DVAE models, the KL divergence can be
computed analytically, and intractable expectations are approximated
by Monte Carlo estimates.

8.4 Improved VRNN and VRNN applications

To complement this VRNN section, we report that an improved version
of VRNN was presented by Goyal et al. (2017). The authors pointed out
the difficulty in learning meaningful latent variables when coupled with
a strong autoregressive decoder. We further discuss this point and we
provide a series of references in Chapter 14. Goyal et al. (2017) proposed
to improve the inference and training of VRNN with the following three
features.



84 Variational Recurrent Neural Networks

First, possibly inspired by Krishnan et al. (2017), as well as (Fraccaro
et al., 2016) (see Section 9.2), they introduced a backward RNN on
xt to feed the approximate posterior distribution qφ(z1:T |x1:T ), in line
with DKS (see Section 5.2). Therefore, they accounted for the future
observations in the inference process, as opposed to the original VRNN,
moving toward a better compliance with the structure of the exact
posterior distribution pθ(z1:T |x1:T ).

Second, they forced the latent variable zt to contain relevant in-
formation about the future of the sequence by connecting zt with the
internal state of the inference backward network (denoted bt by Goyal
et al. (2017)). This was achieved by introducing an additional condi-
tional model pξ(bt|zt) and adding it in the VLB. Similarly, they also
considered an additional conditional model pξ(xt|bt).

Finally, they slightly modified the VRNN model itself by removing
the direct link between zt and xt; that is, they replaced (8.2)–(8.3)
with (7.5)–(7.6), while all other equations remained identical to the
VRNN equations. The authors reported that “[they] observed better
performance by avoiding the latent variables from directly producing
the next output.”

An adaptation of VRNN to automatic language translation was pro-
posed by Su et al. (2018). This is doubly interesting because this paper
considers a sequence of discrete inputs and outputs, which contrasts
with the “all continuous” models we focus on. This paper also contrasts
with the previously proposed VAE-based models for text/language pro-
cessing, which, as mentioned in the Introduction, usually consider a
single latent vector to encode the whole input sequence (a full sentence).
In Su et al.’s (2018) paper, it is the sequence of latent vectors z1:T that
encodes the semantic content of the sequence to translate “over time.”

Finally, we can also mention the study by Lee et al. (2018), which
uses VRNN for speech synthesis and adopts adversarial training. Besides
VRNN, all these papers illustrate the flexibility of the DVAE class of
models.



9
Stochastic Recurrent Neural Networks

The SRNN model was proposed by Fraccaro et al. (2016), with an
objective to “glue (or stack) a deterministic recurrent neural network
and a state space model together to form a stochastic and sequential
neural generative model.”

Notation remark: In Fraccaro et al.’s (2016) paper, ht is denoted
as dt, and the model is presented in the driven mode. We replace
the external input ut with xt−1 (i.e., predictive mode) for a better
comparison with VRNN and STORN.

9.1 Generative model

The SRNN observation model is given by

ht = dh(xt−1,ht−1), (9.1)
[µθx (zt,ht),σθx (zt,ht)] = dx(zt,ht), (9.2)

pθx (xt|zt,ht) = N
(
xt;µθx (zt,ht), diag{σ2

θx (zt,ht)}
)
.

(9.3)

Eq. (9.1) is identical to (3.3) (with xt−1 instead of ut) and thus refers
to the usual deterministic RNN. Eqs. (9.2) and (9.3) are quite similar
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Figure 9.1: SRNN’s graphical model in developed (left) and compact (right) forms.

to (8.2) and (8.3), respectively. Thus, the internal state ht remains
deterministic here, and the latent state zt is integrated at the dx level.
This justifies the “clear(er) separation of deterministic and stochastic
layers” claimed by Fraccaro et al. (2016), compared to VRNN.

Fraccaro et al. (2016) also introduced an explicit temporal model
on the distribution of zt (as opposed to implicit temporal dependency
through ht in VRNN), in addition to the dependency on the internal
state ht:

[µθz (zt−1,ht),σθz (zt−1,ht)] = dz(zt−1,ht), (9.4)
pθz (zt|zt−1,ht) = N

(
zt;µθz (zt−1,ht),diag{σ2

θz (zt−1,ht)}
)
. (9.5)

Compared to VRNN, the arrow from zt−1 to ht is replaced with an arrow
from zt−1 to zt, leading to an explicit first-order Markovian dependency
for zt (which is combined with the dependency on ht). In addition,
compared to VRNN, no feature extractor is mentioned in SRNN, so we
have here θ = θx ∪ θz (and again θx = θh ∪ θhx and θz = θh ∪ θhz).
The graphical model of SRNN is shown in Figure 9.1 (left). In Fraccaro
et al.’s (2016) paper, both dx and dz are two-layer feed-forward networks.
The function dh is a GRU RNN, so that, according to the authors, “the
SSM can therefore utilize long-term information captured by the RNN.”

Using the same “unfolding the recurrence” trick as in the previous
sections, we here denote ht as ht(x1:t−1)1 and have pθz (zt|zt−1,ht) =

1Again, we omit the initial term h1 for clarity of presentation.



9.2. Inference model 87

pθz (zt|zt−1,ht(x1:t−1)) and pθx (xt|zt,ht) = pθx (xt|zt,ht(x1:t−1)). Again,
if we follow the line of Appendix A, marginalizing the joint distribution
of all variables w.r.t. h1:T leads to

pθ(x1:T , z1:T ) =
T∏
t=1

pθx

(
xt|zt,ht(x1:t−1)

)
pθz

(
zt|zt−1,ht(x1:t−1)

)
. (9.6)

As for VRNN, we have a factorization over time frames, but no in-
dependence of xt and zt conditionally to the state ht(x1:t−1). As for
STORN and VRNN, (9.6) can be reshaped into the following more
general expression:

pθ(x1:T , z1:T ) =
T∏
t=1

pθx (xt|x1:t−1, zt)pθz (zt|zt−1,x1:t−1). (9.7)

The corresponding compact graphical model is shown in Figure 9.1
(right).

9.2 Inference model

For SRNN, because of the dependencies in the generative model, the
general form of the exact posterior distribution is given by

pθ(z1:T |x1:T ) =
T∏
t=1

pθ(zt|zt−1,x1:T ). (9.8)

At each time t, the posterior distribution of zt depends on the previous
latent state and the whole observation sequence.

Fraccaro et al. (2016) indicated this structure and proposed an
approximate posterior distribution qφ with the same structure. This is
the second time this proper methodology is considered in the present
review after the DKS in Section 5.2, but in the publication chronology,
to the best of our knowledge, this was the first time. The dependency of
qφ on future observations, as well as on past observations through the
future internal states, is implemented with a gated backward RNN. This
network is denoted by e←−g in the equations below, it is parameterized
by φ←−g , and ←−g t denotes its internal state, where the right-to-left arrow
highlights the backward nature of the process. This backward RNN is



88 Stochastic Recurrent Neural Networks

followed by a basic feed-forward network ez , which is parameterized by
φz . Formally, qφ can be written as

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|zt−1,
←−g t), (9.9)

with

←−g t = e←−g ([ht,xt],←−g t+1), (9.10)
[µφ(zt−1,

←−g t),σφ(zt−1,
←−g t)] = ez(zt−1,

←−g t), (9.11)
qφ(zt|zt−1,

←−g t) = N
(
zt;µφ(zt−1,

←−g t), diag(σ2
φ(zt−1,

←−g t))
)
.

(9.12)

We thus have here φ = φ←−g ∪ φz .

Notation remark: In Fraccaro et al.’s (2016) paper, ht is denoted by
dt,←−g t is denoted by at, and qφ(z1:T |x1:T ) is denoted by qφ(z1:T |d1:T ,x1:T ).
Because we have ht = ht(x1:t−1), we can stick to qφ(z1:T |x1:T ).

The above equations show that inference requires a forward pass
on the internal state ht (which is shared by the encoder and decoder),
its combination with xt, and a backward pass on the inference RNN,
which makes ←−g t a deterministic function of the whole data sequence
x1:T . Similarly to ht, we can denote this function by ←−g t(x1:T ) to make
this latter point explicit; however, this would be poorly informative
about the way ←−g t depends on x1:T . The graphical model corresponding
to the inference process in SRNN is shown in Figure 9.2. The inference
model can be rewritten in the following general form:

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|zt−1,x1:T ). (9.13)

Fraccaro et al. (2016) stated that this smoothing process (combination
of forward and backward RNNs on xt) can be replaced with a filter-
ing process, by replacing (9.10)–(9.11) with an “instantaneous” DNN
ez(zt−1,ht,xt).
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Figure 9.2: SRNN’s graphical model at inference time in developed form (left)
and compact form (right). In this case, there are no missing links on the proposed
probabilistic dependencies (compared to the exact inference dependencies). In Frac-
caro et al.’s (2016) paper, the dependencies of ht were omitted in the inference
graphical model for clarity. We make them explicit here to recall that ht follows the
deterministic update (9.1).

9.3 Training

A comparison of the compact form of SRNN in (9.7) with the general
compact form of a DVAE in (4.4) (simplified without u1:T ) shows
that the SRNN model makes the following conditional independence
assumptions:

pθx (xt|x1:t−1, z1:t) = pθx (xt|x1:t−1, zt);
pθz (zt|x1:t−1, z1:t−1) = pθz (zt|x1:t−1, zt−1). (9.14)

Using these two simplifications, along with the inference model (9.13)
(which we recall is consistent with the exact posterior distribution), the
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VLB in its most general form (4.24) can be simplified as follows:

L(θ, φ; x1:T ) =
T∑
t=1

Eqφ(zt|x1:T )
[
log pθx (xt|x1:t−1, zt)

]
−

T∑
t=1

Eqφ(zt−1|x1:T )
[
DKL

(
qφ(zt|zt−1,x1:T ) ‖ pθz (zt|x1:t−1, zt−1)

)]
.

(9.15)

Again, the KL divergence can be computed analytically, and intractable
expectations are approximated by Monte Carlo estimates. The procedure
to sample from qφ(zt|x1:T ) and qφ(zt−1|x1:T ) relies on the “cascade trick,”
as for DKF (see Section 5.3).



10
Recurrent Variational Autoencoders

The RVAE model was introduced by Leglaive et al. (2020) to repre-
sent clean speech signals in a speech enhancement application. It was
combined with a Gaussian noise model with nonnegative Matrix fac-
torization of the variance within a Bayesian framework. The RVAE
parameters were estimated offline on a large dataset of clean speech
signals using the VAE methodology (maximization of the VLB). A
variational expectation-maximization (VEM) algorithm was used for
estimating the remaining parameters from a noisy speech signal, and
probabilistic Wiener filters were then derived for speech enhancement.
Here, we present only the RVAE model.

10.1 Generative model

The RVAE model was designed to model speech signals in the short-term
Fourier transform (STFT) domain. This implies that the model applies
to a sequence of complex-valued vectors. Therefore, the observation
model uses a multivariate zero-mean circular complex Gaussian distri-
bution (Neeser and Massey, 1993), denoted Nc, instead of the usual
multivariate real-valued Gaussian distribution. This observation model
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has the following generic form:

σθx (zT ) = dx(zT ), (10.1)
pθx (xt|zT ) = Nc

(
xt; 0,diag{σ2

θx (zT )}
)
, (10.2)

where T denotes a set of time frames, and the following three cases are
considered: i) an instantaneous model: T = {t}, which only considers
the current latent state vector to model the observation at time t; ii) a
causal model: T = {1 : t}, which considers the sequence of past and
present latent state vectors; and iii) a noncausal model: T = {1 : T},
which considers the complete sequence of latent state vectors.

This model can be adapted to real-valued observations with a usual
Gaussian distribution:1 we just have to replace Nc with N , replace 0
with a mean parameter µθ(zT ) in (10.2), and add this mean parameter
to the left-hand side of (10.1), as usual. This is what we have done
hereinafter for easier comparison with the other models.

As in STORN, zt is assumed i.i.d. with a standard Gaussian distri-
bution:

p(z1:T ) =
T∏
t=1

p(zt) with p(zt) = N (zt; 0, IL). (10.3)

Therefore, there is no explicit temporal model on zt, and xt possibly
depends on the past and future values of the latent state through (10.2).
We have here θz = ∅ and θ = θx . As case i) is strictly equivalent to the
original VAE of Section 2, with no temporal model at all, we will now
focus on cases ii) and iii).

Leglaive et al. (2020) only mentioned that cases ii) and iii) are
implemented using a forward RNN and a bidirectional RNN, respec-
tively, which take as input the sequence z1:t or z1:T , respectively. The
authors did not provide detailed implementation equations (though they
provided a link to some supplementary material, including informative
schemas). Let us write them now for easier comparison with the other
models (for the same reason, we consider real-valued observations).

1Or any other distribution for real-valued vectors, as already mentioned. In fact,
under some conditions, the complex proper Gaussian distribution applied on STFT
coefficients corresponds to a Gamma distribution on the squared magnitude of those
coefficients (Girin et al., 2019).
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Figure 10.1: Causal RVAE’s graphical model in developed form (left) and compact
form (right).

Causal case: Let us start with the causal case, for which we have

ht = dh(zt,ht−1), (10.4)
[µθ(ht),σθ(ht)] = dx(ht), (10.5)

pθ(xt|ht) = N
(
xt;µθ(ht),diag{σ2

θ(ht)}
)
. (10.6)

Eq. (10.4) is similar to the RNN internal state update (3.3) or (9.1),
with the major difference being that the latent state zt is used as an
input instead of an external input ut or previous observation vector
xt−1. Alternatively, (10.4) can be viewed as a simplified version of the
STORN or VRNN internal state updates (7.1) or (8.1), where only
zt and ht−1 (and not xt−1) are used as inputs. Considering both the
observation model and the prior latent-state model, the causal RVAE
model is quite close to STORN. The two differences with STORN are
that here xt−1 is not reinjected as input to the internal state ht and
an LSTM network is used instead of a single-layer RNN in the original
STORN formulation.

The graphical model of RVAE (causal case) is shown in Figure 10.1.
As is now usual in our developments, we rewrite ht = ht(z1:t)2 and have
pθ(xt|ht) = pθ(xt|ht(z1:t)). For a complete data sequence, we have

pθ(x1:T , z1:T ) =
T∏
t=1

pθ
(
xt|ht(z1:t)

)
p(zt), (10.7)

2This is also a function of h0, which we omit for clarity.
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Figure 10.2: Noncausal RVAE’s graphical model in developed form (left) and
compact form (right).

which, as for the other models, can be reshaped into the following more
general expression:

pθ(x1:T , z1:T ) =
T∏
t=1

pθx (xt|z1:t)p(zt). (10.8)

Noncausal case: All DVAE models we have seen so far are causal (at
generation). The noncausal case presented by Leglaive et al. (2020) is the
first noncausal DVAE model found in the literature. It is implemented
with a combination of a forward RNN and a backward RNN on zt:

−→h t = d−→h (zt,
−→h t−1), (10.9)

←−h t = d←−h (zt,
←−h t+1), (10.10)

ht = [−→h t,
←−h t], (10.11)

[µθx (ht),σθx (ht)] = dx(ht), (10.12)
pθx (xt|ht) = N

(
xt;µθx (ht), diag{σ2

θx (ht)}
)
. (10.13)

We thus have ht = ht(z1:T ).3 The graphical representation of the
3This function is also a function of the initial internal states −→h 0 and ←−h T+1,
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noncausal RVAE model is shown in Figure 10.2. For a complete data
sequence, we have

pθ(x1:T , z1:T ) =
T∏
t=1

pθ
(
xt|ht(z1:T )

)
p(zt), (10.14)

which can be reshaped into

pθ(x1:T , z1:T ) =
T∏
t=1

pθx (xt|z1:T )p(zt). (10.15)

10.2 Inference model

As for the inference model, Leglaive et al. (2020) first remarked that,
using the chain rule and D-separation, the posterior distribution of the
latent vectors can be expressed as follows:

pθ(z1:T |x1:T ) =
T∏
t=1

pθ(zt|z1:t−1,xT ′), (10.16)

where in the causal case, T ′ = {t : T}, and in the noncausal case,
T ′ = {1 : T}. For the causal generative model, the latent vector at a
given time step depends (a posteriori) on past latent vectors and on
present and future observations, whereas for the noncausal generative
model, it also depends on the past observations. Therefore, the authors
chose to define the variational distribution qφ with the same form:

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|z1:t−1,xT ′). (10.17)

As for the generative model, we now detail the implementation of the
inference model.

Causal case: The inference corresponding to the causal generative
model is implemented by combining a forward RNN on the latent

which we omit for clarity.
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zt−1 zt zt+1
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←−g t−1
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Figure 10.3: Graphical model of causal RVAE at inference time in developed form
(left) and compact form (right).

vectors and a backward RNN on the observations:

−→g t = e−→g (zt−1,
−→g t−1), (10.18)

←−g t = e←−g (xt,←−g t+1), (10.19)
gt = [−→g t,

←−g t], (10.20)
[µφ(gt),σφ(gt)] = ez(gt), (10.21)
qφ(zt|z1:t−1,xt:T ) = N

(
zt;µφ(gt), diag{σ2

φ(gt)}
)
, (10.22)

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|z1:t−1,xt:T ). (10.23)

This inference model is shown in Figure 10.3.

Noncausal case: The inference corresponding to the noncausal gener-
ative model is similar to the causal case, except that the RNN on the
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Figure 10.4: Graphical model of noncausal RVAE at inference time in developed
form (left) and compact form (right).

observations is bidirectional:

−→g z
t = e−→g z(zt−1,

−→g z
t−1), (10.24)

−→g x
t = e−→g x(xt,−→g x

t−1), (10.25)
←−g x
t = e←−g x(xt,←−g x

t+1), (10.26)

gt = [−→g z
t ,
−→g x
t ,
←−g x
t ], (10.27)

[µφ(gt),σφ(gt)] = ez(gt), (10.28)
qφ(zt|z1:t−1,x1:T ) = N

(
zt;µφ(gt), diag{σ2

φ(gt)}
)
, (10.29)

qφ(z1:T |x1:T ) =
T∏
t=1

qφ(zt|z1:t−1,x1:T ). (10.30)

This inference model is shown in Figure 10.4.
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10.3 Training

For conciseness, and because we focus on reviewing causal DVAEs, we
only describe in this section the VLB for the causal RVAE model. The
methodology to derive the VLB in the noncausal case is similar.

A comparison of the compact form of causal RVAE in (10.8) with
the general compact form of a DVAE in (4.4) (simplified without u1:T )
shows that the causal RVAE model makes the following conditional
independence assumptions:

pθx (xt|x1:t−1, z1:t) = pθx (xt|z1:t);
pθz (zt|x1:t−1, z1:t−1) = p(zt). (10.31)

Using these two simplifications, along with the inference model (10.23)
(which we recall is consistent with the exact posterior distribution), the
VLB can be simplified as follows:

L(θ, φ; x1:T ) =
T∑
t=1

Eqφ(z1:t|x1:T )
[
log pθx (xt|z1:t)

]
−

T∑
t=1

Eqφ(z1:t−1|x1:T ) [DKL (qφ(zt|z1:t−1,xt:T ) ‖ p(zt))] .

(10.32)

As for the previous models, the KL divergence can be computed an-
alytically, while the two intractable expectations are approximated
by Monte Carlo estimates using samples drawn from qφ(z1:t|x1:T ) and
qφ(z1:t−1|x1:T ) in a recursive manner.



11
Disentangled Sequential Autoencoders

Li and Mandt (2018) proposed a hierarchical model called DSAE. This
model introduces the idea of adding to the usual sequence of latent
variables z1:T a sequence-level latent vector v (denoted f by Li and
Mandt (2018)), which is assumed to encode the sequence-level charac-
teristics of the data. Therefore, zt is assumed to encode time-dependent
data features (e.g., the dynamics of an object in a video clip), and v is
assumed to encode “everything else” (e.g., object characteristics in a
video clip).

11.1 Generative model

Li and Mandt (2018) only provided the following general form of the
generative DSAE model for a complete data sequence:

pθ(x1:T , z1:T ,v) = pθv (v)
T∏
t=1

pθx (xt|zt,v)pθz (zt|z1:t−1). (11.1)

More detailed information about the pdfs and implementation issues are
found in annexes from the ArXiv version of the paper. The authors used
different variants for different datasets according to the nature of the
data (e.g., video clips or speech signals). Here, we only report the model
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implemented for speech signals. The dynamical model pθz (zt|z1:t−1) is
a Gaussian distribution whose parameters are provided by an LSTM
network. The observation model pθx (xt|zt,v) is a Gaussian distribution
whose parameters are provided by a feed-forward DNN. With the
simplified generic RNN formalism used for LSTM (see Section 3.1.1),
we can thus write

ht = dh(zt−1,ht−1), (11.2)
[µθz (ht),σθz (ht)] = dz(ht), (11.3)

pθz (zt|ht) = N
(
zt;µθz (ht), diag{σ2

θz (ht)}
)
, (11.4)

[µθx (zt,v),σθx (zt,v)] = dx(zt,v), (11.5)
pθx (xt|zt,v) = N

(
xt;µθx (zt,v), diag{σ2

θx (zt,v)}
)
. (11.6)

The graphical representation of DSAE is shown in Figure 11.1. This
model is similar to a DKF in the undriven mode conditioned on variable
v, except that, in addition to this conditioning, the first-order Markov
temporal model of DKF is replaced with a virtually infinite-order model
owing to the LSTM. Although this is poorly discussed in the DVAE
papers in general, it is an example of interesting model extensions that
are easy to implement in the deep learning and VAE frameworks. As
stated by Krishnan et al. (2015), “using deep neural networks, we can
enhance Kalman filters with arbitrarily complex transition dynamics
and emission distributions. [...] we can tractably learn such models by
optimizing a bound on the likelihood of the data.”

11.2 Inference model

For DSAE, the posterior distribution of latent variables is given by

pθ(z1:T ,v|x1:T ) = pθ(v|x1:T )pθ(z1:T |v,x1:T ) (11.7)

= pθ(v|x1:T )
T∏
t=1

pθ(zt|z1:t−1,v,x1:T ) (11.8)

= pθ(v|x1:T )
T∏
t=1

pθ(zt|z1:t−1,v,xt:T ). (11.9)
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zt−1 zt zt+1

ht−1 ht ht+1

xt−1 xt xt+1
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xt−1 xt xt+1

v

Figure 11.1: DSAE’s graphical model in developed form (left) and compact form
(right).

The simplification in the last line results from D-separation. This de-
composition can be interpreted as follows: The whole sequence of ob-
servations x1:T is used to estimate the “object” representation v, and
then v, the present and future observations xt:T , and previous latent
state vectors z1:t−1 are used to update the object dynamics.

As for the approximate posterior distribution qφ, Li and Mandt
(2018) proposed two models. The first one, referred to as “factorized,”
is expressed as

qφ(z1:T ,v|x1:T ) = qφv (v|x1:T )
T∏
t=1

qφz (zt|xt). (11.10)

This model thus relies on an instantaneous frame-wise inference model
qφ(zt|xt) for encoding the latent vector dynamics. This approach is
oversimplistic compared to the exact posterior distribution and yields
inferior performance to that of the second inference model. We thus
focus on the latter, which is referred to as “full,” and is given by

qφ(z1:T ,v|x1:T ) = qφv (v|x1:T )qφz (z1:T |v,x1:T ). (11.11)

As the authors mentioned, “The idea behind [this] structured approx-
imation is that content may affect dynamics.” So far, this model has
been compliant with the exact posterior distribution, as expressed by
(11.7). From the information given in the annexes of the ArXiv version
of the paper, we can write the detailed equations of the full inference
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model as follows:
−→g v
t = e−→g v(xt,−→g v

t−1), (11.12)
←−g v
t = e←−g v(xt,←−g v

t+1), (11.13)

gv = [−→g v
T ,
←−g v

1 ], (11.14)
[µφv (gv),σφv (gv)] = ev(gv), (11.15)

qφv (v|x1:T ) = N
(
v;µφv (gv), diag{σ2

φv (gv)}
)
, (11.16)

−→g z
t = e−→g z([xt,v],−→g z

t−1), (11.17)
←−g z
t = e←−g z([xt,v],←−g z

t+1), (11.18)

gz
t = [−→g z

t ,
←−g z
t ], (11.19)

[µφz (gz
t ),σφz (gz

t )] = ez(gz
t ), (11.20)

qφz (zt|v,x1:T ) = N
(
zt;µφz (gz

t ), diag{σ2
φz (gz

t )}
)
, (11.21)

and for the full sequence z1:T we have

qφz (z1:T |v,x1:T ) =
T∏
t=1

qφz (zt|v,x1:T ). (11.22)

Note that none of the two approximations proposed by the authors (fac-
torized and full) actually follow the dependencies of the exact posterior
distribution shown in (11.9). The graphical representation of the full
inference model is shown in Figure 11.2.1

11.3 Training

To derive the VLB for the DSAE model, we apply the same strategy as
that applied for the other models (i.e., inject the generative model and
the approximate posterior in the VLB general formulation). We do so

1In Li and Mandt’s (2018) paper, Appendix A, the schematic representation
of the inference model given in Figure 9(b) is not consistent with the following
sentence (reported with our notations): “Finally the parameters of qφ(z1:T |v, x1:T ) are
computed by a simple RNN with input [−→g z

t ,
←−g z
t ] at time t.” It is indeed inconsistent

and a bit odd that zt−1 is not mentioned as an input of the zt inference process, as
is well apparent in Figure 9(b). We base the writing of (11.19)–(11.21) on their text
and not on their figure.
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Figure 11.2: Graphical model of DSAE at inference time in developed form (top)
and compact form (bottom). In addition to the missing arrows shown in gold, we
display in silver the arrows that should not be used, as compared to the structure
of the exact posterior distribution. To the best of our knowledge, DSAE is the only
model that uses probabilistic dependencies that do not appear in the exact posterior
distribution.
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for the full inference model (11.11) and obtain

L(θ, φ,x1:T ) = Eqφ(v,z1:T |x1:T )
[

log pθx (x1:T |z1:T ,v)
]

−DKL
(
qφ(v, z1:T |x1:T ) ‖ pθ(v, z1:T )

)
(11.23)

= Eqφv (v|x1:T )

[
T∑
t=1

Eqφz (zt|v,x1:T )
[

log pθx (xt|zt,v)
]

−
T∑
t=1

Eqφz (z1:t−1|v,x1:T )
[
DKL

(
qφz (zt|v,x1:T ) ‖ pθz (zt|z1:t−1)

)]]
−DKL

(
qφv (v|x1:T ) ‖ pθv (v)

)
. (11.24)

Therefore, one must first compute qφv (v|x1:T ) to then sample from it.
Once this is achieved, the parameters of qφz (zt|v,x1:T ) for all time-steps
t can be computed without sampling from any random variable. Once
this is achieved, the samples of z1:t−1 are used to compute the t-th KL
divergence term in (11.24).



12
Brief tour of other models

In this section, we briefly present a few other models that have been
recently proposed in the literature and can be considered members of
the DVAE family. We choose not to present them in a detailed manner,
as in the previous sections, because they are either too far from the
scope of the review, which focuses on models associating a sequence
of observations with a sequence of latent variables, or too close to the
already presented models.

12.1 Models related to DKF

Latent LDS and structured VAE: Johnson et al. (2016) considered
several models. One of them is a simplified DKF in which the latent
variable model (i.e., the dynamical model) is linear-Gaussian; that is,
it follows (3.16) (with ut following a standard Gaussian distribution),
while the observation model is a DNN-based nonlinear model similar to
the DKF observation model. They called it a latent LDS and extended
it to a latent switching LDS model based on a bank of dynamical models
(actually the same latent LDS but with different parameters) and an
additional discrete latent variable that controls the switch between the
dynamical models over time to adjust to the observed data dynamics.
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This model can be considered an extension of the switching Kalman filter
(Murphy, 1998; Fox et al., 2011) to a DNN-based observation model
(see also Linderman et al. (2016) for a similar combination). Johnson
et al. (2016) did not provide detailed equations for these models. Rather,
they showed how the use of structured mean-field approximation in the
inference model, combined with the use of an observation model that
is conjugate to the latent variable model, can make the inference and
training processes particularly efficient. They called the resulting model
a structured VAE (SVAE). As they presented these developments in
the general framework of probabilistic graphical models (Koller and
Friedman, 2009), which is more general than the DVAE framework, they
did not provide “temporal equations.” This makes this paper somewhat
poorly connected to our review, although they mentioned that the DKF
model (Krishnan et al., 2015) is strongly related to their work (they also
implied that using RNN models for implementing time dependencies is
restrictive in the general framework that they present).

Black-box deep SSM: Similarly, Archer et al. (2015) also focused
on the structure of the approximate posterior distribution to improve
the computational efficiency of the inference. They proposed using a
multivariate Gaussian approximate posterior with a block tridiagonal
inverse covariance matrix. They also proposed a corresponding fast
and scalable inference algorithm. This general approach can be applied
with different (deep and nondeep) parameterizations of the inference
model and is applicable to a large family of SSMs, hence the “black
box” denomination in the paper title. The authors mainly focused
and experimented on an LG-LDS (to show that their algorithm can
efficiently recover the solution of the Kalman filter), an LDS with a
linear-Poisson observation model (which has no closed-form inference
solution), and a basic one-dimensional nonlinear LDS. This study is
well-connected with the DKF model and with deep SSMs in general.
Interestingly, in this study, which, again, focuses more on the inference
model than on the generative model, only the inference model is deep,
whereas the generative models used in the experiments are nondeep.
This study was later extended, notably addressing online learning and
real-time issues (Zhao and Park, 2017; Zhao et al., 2019).
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Deep variational Bayesian filters: We have already mentioned this
class of models in Section 6.1. DVBFs, which were proposed by (Karl et
al., 2017), are an extension of the class of SSM-based DVAE models with
dynamical models that depend on stochastic parameters. For example,
the transition model at time t (i.e., between zt and zt+1) can be a
linear-Gaussian model with matrices and vectors that are a weighted
sum of matrices/vectors randomly selected in a predefined set (possibly
learned from data) with weights that are provided by a DNN. A similar
transition model was applied within the KVAE model in Fraccaro et al.’s
(2017) paper (see also Watter et al. (2015)).

Disentangled SSM: Miladinović et al. (2019) recently proposed a
model called the disentangled state-space model (DSSM), in line with
the DSAE model and, more generally, with models that attempt to
separate the encoding of the content/object at the sequence level from
that of its dynamics at the time-frame level. However, in contrast
to DSAE, in which the sequence-level latent variable conditions the
observation model, in DSSM, this sequence-level variable conditions the
dynamical model. It is assumed to model the fact that the dynamics
of an object are dependent on the considered applicative domain (e.g.,
enzyme kinetics or bouncing ball kinematics). In other words, (11.1) for
DSAE can be reshaped in DSSM as1

pθ(x1:T , z1:T ,v) = pθv (v)pθz (z0)
T∏
t=1

pθx (xt|zt)pθz (zt|zt−1,v). (12.1)

Here, the dynamical model is a (conditioned) first-order model. Mi-
ladinović et al. (2019) also proposed a filtering inference model that is
implemented in the more general DVBF framework mentioned above.

12.2 Models related to STORN, VRNN, and SRNN

Variational recurrent autoencoder (VRAE): The VRAE model,
proposed by Fabius and Amersfoort (2014), can been considered a
simplified version of STORN, from which, according to the authors

1In Miladinović et al.’s (2019) paper, the sequence-level variable is denoted as D
for “domain.” For consistency, we retain the notation v used in DSAE.
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themselves, it took inspiration. Here, the data sequence x1:T is encoded
by a single latent random vector z, instead of the sequence z1:T . The
compact form of the generative model is given by

pθ(x1:T , z) = pθz (z)
T∏
t=1

pθx (xt|x1:t−1, z), (12.2)

Fabius and Amersfoort (2014) provided no information about pθz (z).
The generative distribution pθx (xt|x1:t−1, z) is implemented with a
forward RNN that uses z to calculate the first hidden state h1 and
then iteratively takes xt−1 as input to calculate ht, which provides the
parameters of the distribution of xt. Conversely, the inference model
qφz (z|x1:T ) is based on a forward RNN that takes x1:T as input and
delivers a final internal state gT , from which we obtain the distribution
parameters for z. In short, the VRAE generative model can be described
by Figure 7.1, where the sequence z1:T is replaced with a single input z
for h1, and the VRAE inference model can be described by Figure 7.2,
where the sequence z1:T is replaced with a single output z for gT . We thus
have a sequence-to-one encoding and a one-to-sequence decoding, which
evoke the models designed for text/language processing mentioned in the
Introduction. As Fabius and Amersfoort’s (2014) paper was published
in 2014 and was part of the early papers on DVAEs, it was probably
inspiring for the natural language processing (NLP) community.

A similar model was proposed by Babaeizadeh et al. (2018), with a
difference being that several vectors xt:T are predicted from the past
context x1:t−1 and from the unique latent vector z. The inference model
is also of the form qφz (z|x1:T ), as in Fabius and Amersfoort’s (2014)
study. Babaeizadeh et al. (2018) compared this model with a “baseline”
model in which the latent vector is defined on a frame-by-frame basis
(i.e., zt). The observation model of this baseline model is similar to
that of SRNN, and the prior over zt is an i.i.d. standard Gaussian
distribution.

Factorized hierarchical variational autoencoder (FHVAE): The
FHVAE model was proposed by Hsu et al. (2017b), to learn disentangled
and interpretable latent representations from sequential data without
supervision. To achieve this aim, FHVAE explicitly models the multi-
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scaled aspect of the temporal information contained in the data. This is
done by splitting each sequence of data vectors into a set of fixed-size
consecutive sub-sequences, called segments, and defining two latent
variables z and v at the segment level.2 The former is dedicated to
capturing data information at the segment level, whereas the latter is
dedicated to capturing data information across segments (i.e., at the
sequence level). This model is particularly appropriate for speech signals:
In this case, 200-ms segments represent the approximate duration of
a syllable, and thus, z would typically encode phonetic information,
whereas v would typically encode speaker information at the level of a
complete utterance. In essence, FHVAE is strongly related to DSAE,
which also contains a sequence-level latent variable v but preserves
a time-frame resolution for the dynamical latent variable zt (see Sec-
tion 11). In fact, DSAE was published after FHVAE, from which it was
probably inspired.

Even if we do not detail this model, we report a few equations
to help better understand how segmental modeling works. Let here
t ∈ [1, T ] denote the index of a vector within a segment (each segment
has T vectors), and let n ∈ [1, N ] denote the index of a segment within
a sequence. The FHVAE observation model for each individual segment
of data is given by

h(n)
t = dh(z(n),v(n),h(n)

t−1), (12.3)

[µθx (h(n)
t ),σθx (h(n)

t )] = dx(h(n)
t ), (12.4)

pθx (x(n)
t |h

(n)
t ) = N

(
x(n)
t ;µθx (h(n)

t ),diag{σ2
θx (h(n)

t )}
)
. (12.5)

In (12.3), z(n) and v(n) respectively denote the latent vectors z and v
for the considered n-th segment. There is a single pair of such vectors
for each segment, and hence, a many-to-one encoding and one-to-many
decoding at the segment level. In practice, these equations are imple-
mented with an LSTM network. The prior distribution of z(n), pθz (z(n)),
is a centered isotropic Gaussian that is independent of both the segment
and the sequence. In contrast, the prior distribution of v(n) depends on
a latent variable w, which is defined at the sequence level and whose

2In Hsu et al.’s (2017) paper, z and v are denoted z1 and z2, respectively. We
changed the notation to avoid confusion between the variable index and time index.
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prior distribution pθw (w) is also a centered isotropic Gaussian. The
distribution of v(n) is then given by pθv (v(n)|w) = N (v(n); w, σ2

θv
ILv).

For a given sequence, pθv (v(n)|w) depends on the value of w drawn for
that particular sequence. In practice, all generated v(n) vectors within
a sequence are close to w. This makes v(n) a sequence-dependent latent
factor, whereas z(n) behaves as a segment-dependent and sequence-
independent latent factor. The joint density of a sequence is given
by

pθ(x(1:N)
1:T , z(1:N),v(1:N),w) = pθw (w)

N∏
n=1

T∏
t=1

pθx

(
x(n)
t |ht(z(n),v(n))

)
pθz (z(n))pθv (v(n)|w), (12.6)

where, as in the previous sections, ht
(
z(n),v(n)) is a shortcut for the

function that results from unfolding the recurrence in (12.3).
The inference model is a many-to-one encoder that works at the

segment level: each segment x(n)
1:T is encoded into a pair {z(n),v(n)}

(plus an estimate of w for each whole sequence). As for the variational
approximate posterior qφ, Hsu et al. (2017b) proposed the following
model:

qφ
(
z(1:N),v(1:N),w|x(1:N)

1:T
)

= qφw (w)
N∏
n=1

qφz

(
z(n)|x(n)

1:T ,v
(n))qφv

(
v(n)|x(n)

1:T
)
,

(12.7)

where qφz and qφv are both implemented with a forward LSTM network,
whose last state vector is passed to a DNN to provide the distribution
parameters. Two encoders are chained here: The first one is used to
generate v(n) (by sampling qφv

(
v(n)|x(n)

1:T
)
), and then, v(n) is injected

in the second encoder to generate z(n). As for qφw (w), it is a Gaussian
distribution whose mean vector is obtained from a look-up table that
is jointly learned with the model parameters (see Hsu et al. (2017b)
for details). Cascading the sequence-to-one encoder with the one-to-
sequence decoder results in a sequence-to-sequence neural network
architecture that is trained by maximizing the VLB (not detailed
here). The model can be optimized at the segment level instead of the
sequence level; that is, each data segment can be used as a batch dataset.
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According to Hsu et al. (2017b), this can solve scalability issues when
the training sequences become too long.

Deep recurrent attentive writer (DRAW): A somewhat dual
model of VRAE was proposed by Gregor et al. (2015) and called DRAW.
This model considers a sequence of latent vectors z1:T to encode a single
static but highly structured data x (typically a low-resolution image).
The generative model is of the general form pθx (x|z1:T ). It involves the
iterative construction of a sequence x̂1:T that can be considered the
sequence of images resulting from the “natural” drawing of x over time.
The dependency of x on z1:T is implemented by combining the output
of a decoder RNN (which takes zt as the input) and a so-called canvas
matrix ct−1, which encodes the difference between the final target image
x and the current draw x̂t−1. Hence, the model combines deep learning
and some form of predictive coding (Gersho and Gray, 2012). The
inference model is of the form qφz (zt|z1:t−1,x) and is implemented with
an encoder RNN. This network takes as inputs a combination of x, x̂t−1,
and the decoder output at the previous time step; hence, the predictive
coding is implemented in closed-loop mode (Gersho and Gray, 2012).
As the name indicates, DRAW includes a selective attention model that
enables it to focus on the most relevant parts of the observation. The
description of such an attention model is beyond the scope of the present
review (see Gregor et al. (2015) and references therein for details).

Neural adaptive sequential Monte Carlo (NASMC): Gu et al.
(2015) proposed the NAMSC generative model, which combines an
infinite-order Markovian model on zt (as that used in DSAE) with
the most general observation model, which is that used in STORN
and VRNN. In one variant of this model, they replaced the Markovian
model on zt with an i.i.d. model, and thus, this variant is similar to
STORN. The inference model has the same general form as that of
VRNN; that is, it follows (8.14) and is parametrized by an RNN. The
originality of NASMC lies in connecting the DVAE inference framework
with sequential Monte Carlo (SMC) sampling. The inference model was
used as a proposal distribution for SMC sampling. In fact, a complete
framework to learn the parameters of the generative model, the proposal
model, and for sampling from the posterior distribution with SMC
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was proposed. In other words, Gu et al. (2015) showed that their
sampling-based approach can be used to optimize the observed data
marginal likelihood for estimating the generative model parameters in
the variational framework. For other applications of SMC methods in
the general context of variational approximations, see (Maddison et al.,
2017; Le et al., 2018; Naesseth et al., 2018).

Recurrent state-space model (RSSM): Hafner et al. (2018) used
the RSSM model, which is very similar, if not identical, to the VRNN
model used in the driven mode. In fact, RSSM corresponds to VRNN
with an external input ut (denoted as at−1 by Hafner et al. (2018)),
which is used in place of xt−1 to compute ht. This is how VRNN was
presented in the “Related Works” section of the SRNN paper (Fraccaro
et al., 2016) (see in particular Figure 4(b) of this latter paper). Hafner
et al. (2018) used this RSSM model for learning the dynamics and
planning the actions of a synthetic agent from image sequences in a
reinforcement learning framework. They also presented a way to perform
multi-step prediction (i.e., prediction several steps ahead).

Stochastic video generation (SVG): Denton and Fergus (2018)
presented a model very similar to STORN and applied it to stochas-
tic video generation and multiple-frame video prediction, similarly to
(Babaeizadeh et al., 2018). The inference model is of the form qφz (zt|x1:t).
It is thus also similar to the inference model of STORN (see (7.19)).
A variant of the generative distribution of zt, called “learned prior” in
the paper, is also proposed. It is of the form pθz (zt|x1:t−1) and can be
considered a simplification of the generative distribution of zt in VRNN
or SRNN.

12.3 Other models

Factorized variational autoencoder (FVAE): Deng et al. (2017)
proposed the FVAE model, which combines a VAE with tensor factor-
ization (Kuleshov et al., 2015; Huang et al., 2016). This latter is applied
on the latent vector z. As one of the tensor factorization dimension is
discrete time, this model implicitly involves data dynamics modeling.
However, the temporal patterns are sampled from a standard log-normal
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distribution, hence independently over time, and data decoding is also
processed independently at each time frame. It is thus unclear how
temporal dynamics are actually encoded.

Gaussian process variational autoencoder (GP-VAE): Fortuin
et al. (2020) recently combined a VAE for the observed data dimension
reduction and a multivariate Gaussian process (GP) (Williams and Ras-
mussen, 2006) for modeling the dynamics of the resulting latent vector
zt. For the GP model, they used a Cauchy kernel, which is appropriate
to model data with multiscale time dynamics. They proposed using an
approximate posterior distribution that is also a multivariate GP (here,
a first-order one). The resulting overall GP-VAE model was trained with
the VAE methodology and then used to efficiently recover missing data
in test sequences (in videos and medical data). One interesting property
of this model is that it provides interpretable uncertainty estimates.





13
Experiments

In this chapter, we present an experimental benchmark of six of the
DVAE models detailed in the previous chapters (DKF, STORN, VRNN,
SRNN, RVAE, DSAE). This benchmark is conducted on a dataset of
speech signals and a dataset of 3D human motion data. We provide a
series of quantitative results on the task of analysis-resynthesis; that
is encoding with the DVAE encoder followed by decoding with the
DVAE decoder. We also provide qualitative results, in the form of
examples of data generated by the models. We first present the models
implementation in Section 13.1. Then, we describe the experimental
protocol, datasets, model training and testing settings, and evaluation
metrics in Section 13.2. Finally, we present and discuss the results in
Sections 13.3 and 13.4. We recall that a link to the open-source code
and the best-trained models can be found at https://team.inria.fr/
robotlearn/dvae/.

13.1 DVAE architectures

The architectures of the six DVAE models that we benchmark are
summarized in Figure 13.1. For each model, we represent the high-
level computational graph corresponding to the encoding, sampling
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Figure 13.1: Model architecture for the six tested DVAE models. For DKF, CF and
GTF are a combiner function and a gated transition function, respectively. These
functions are described in Appendix B (Section B.1) and in Krishnan et al.’s (2015)
paper. For VRNN and SRNN, the gray-shaded boxes are modules shared by the
encoder and decoder.
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and decoding processes. In particular, we show the types of layers
that compose the encoder and decoder networks. Note that none of
the DVAEs is used in the driven mode; that is, none of them feature
an external input u1:T . The MLPs are generally used to extract high-
level features and/or as a combiner function, whereas the recurrent
networks (RNNs and BRNNs) are used to accumulate the information
over time. All RNNs are instantiated as LSTM networks (and BRNNs
are instantiated as bidirectional LSTM networks). DKF includes a
specific combiner function (CF) at the end of the encoder and a gated
transition function (GTF) to implement the dynamical model. These
functions are described in the original DKF paper by Krishnan et al.
(2015) and we report them in Appendix B (Sections B.1). We recall
that the internal state vector ht of VRNN and SRNN is shared between
the encoder and decoder (see Sections 8.2 and 9.2). In Figure 13.1, we
represent the corresponding shared networks with grey-shaded boxes.
We also recall that RVAE was presented in two versions: causal and
noncausal (see Section 10.1). Figure 13.1 only shows the architecture of
the noncausal RVAE. The schema of the causal RVAE architecture is
obtained by replacing the BRNN in the inference and generative models
with a backward and a forward RNN, respectively. Finally, for all output
variance parameters, we use log-parameterization (i.e., the output of the
network corresponding to a variance parameter σ2 is actually log σ2).

The general architectures shown in Figure 13.1 are common to the
two sets of experiments that we conducted on speech data and on
human motion data, although with different layer dimensions. For our
experiments with speech data, the observed, latent, and RNN internal
state vectors are of dimension 513, 16, and 128, respectively, for all
DVAE models. For our experiments with human motion data, they
are of dimension 96, 10, and 64, respectively, for all DVAE models
(see Sections 13.2.1 and 13.2.2 for the definition of the observed data
vectors). Low-level implementation details such as the number of layers
and the number of units per layer may also differ between the two sets
of experiments on speech and human motion data. These details are
provided in Appendices B and C).
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13.2 Experimental protocol

13.2.1 Speech data

For our experiments with speech data, we used the Wall Street Journal
dataset (WSJ0; Garofolo et al., 1993), which comprises speech read
from WSJ news. We used the speaker-independent, medium vocabulary
(5k words) subset of the corpus. More precisely, the si_tr_s subset
(∼25 h) was used for training, the si_dt_05 subset (∼2 h) was used
for validation, and the si_et_05 subset (∼1.5 h) was used for testing.

The raw speech waveform was sampled at 16 kHz. Analysis-resynthesis
was performed with the DVAEs in the time-frequency domain on power
spectrograms. Time-domain speech signals were thus preprocessed with
the short-time Fourier transform (STFT), using a 64-ms sine window
(1, 024 samples) with 25%-overlap to obtain sequences of 513-dimensional
discrete Fourier spectra (for positive frequencies). Then, we computed
the squared magnitude of these STFT spectrograms. For the training
dataset, we set T = 50, meaning that speech utterances of 0.8 s were
extracted from the raw dataset and pre-processed with the STFT. In
summary, each training speech sequence is a 513 × 50 STFT power
spectrogram. This data preprocessing resulted in a set of Ntr = 46, 578
training sequences (representing about 10.3 hours of speech signal) and
Nval = 7, 775 validation sequences (∼ 1.7 h). For testing, we used the
STFT spectrogram of each complete test sequence (with the beginning
and ending silence portions removed), which can be of variable length,
most often larger than 2.4 s.

As discussed by Leglaive et al. (2020) and mentioned in Section 10.1,
the complex-valued STFT coefficients are modeled with a zero-mean cir-
cular complex Gaussian distribution (see (10.2)), whereas zt is modeled
as usual with a real-valued Gaussian distribution. The data sequence
x1:T processed by the DVAE models is the squared magnitude of the
STFT spectrogram (i.e., a real-valued nonnegative power spectrogram).
The corresponding phase spectrogram is directly combined with the
DVAE output magnitude spectrogram to reconstruct the output speech
signal using inverse STFT with overlap-add. Modeling the STFT coeffi-
cients with a zero-mean circular complex Gaussian distribution with
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variance σ2
θx ,f,t

(·) amounts to modeling each entry xf,t of the power
spectrogram x1:T with a Gamma distribution with shape parameter
1 and scale parameter σ2

θx ,f,t
(·) (i.e., xf,t ∼ G(1, 1/σ2

θx ,f,t
(·))).1 This

also amounts to using the Itakura-Saito divergence between xf,t and
σ2
θx ,f,t

(·) in the reconstruction term of the VLB (Girin et al., 2019).
We recall that all presented DVAE models are versatile regarding the
conditional pdf of xt, and using a Gamma distribution (more appro-
priate for speech/audio power spectrograms) in place of the Gaussian
distribution that was used in the generic presentation of the models does
not present any problem. The linear layer estimating the parameters of
this distribution has 513 output units corresponding to the log-variance
parameters {log σ2

θx ,f,t
(·)}Ff=1.

13.2.2 3D human motion data

For our experiments with 3D human motion data, we used the H3.6M
dataset (Ionescu et al., 2014), which is one of the largest dataset of the
kind and has been widely used in video prediction (Finn et al., 2016),
human pose and shape estimation (Bogo et al., 2016), and human
motion prediction (Martinez et al., 2017). This dataset was obtained
from multi-view video recordings of 11 professional actors performing 17
various scenarios (e.g., discussing, smoking, taking a picture, or talking
on the phone), using four calibrated cameras with 50 Hz resolution.
The 3D {x, y, z} coordinates of 32 human skeleton joints were extracted
from these multi-view recordings. Each set of coordinates was centered
w.r.t. the coordinates of the pelvis joint.

For our experiments with DVAEs, each data frame is organized
as a 96-dimensional vector xt by concatenating the 3D coordinates of
the 32 joints. We used sequences of T = 50 consecutive vectors, which
represent a duration of 2 s (the data were previously downsampled
by a factor 2). These sequences were obtained by applying a 50-frame
sliding window on the original H3.6M sequences, with a shift of two
frames. In summary, each example in our dataset is thus a matrix of
3D coordinates of skeleton joints of size 96× 50, which corresponds to

1Here, we do not specify the variables generating the variance, as they depend on
the DVAE model. Instead, the subscripts indicate frequency bin f and time frame t.
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2 s of human motion.
In H3.6M, 15 scenarios from 7 actors are provided with the ground-

truth annotations. Similarly to Mao et al. (2020), we used the data of
all 15 scenarios from 5 actors (Actors 1, 6, 7, 8, and 9) for training and
from 1 actor (Actor 11) for testing. Applying the sequence extraction
procedure described above led to Ntr = 88, 952 training sequences
(∼ 50 h) and Ntest = 13, 838 test sequences (∼ 8 h). For validation, to
reduce the computation time, we selected 128 sequences for each of the
15 scenarios by Actor 5 (Nval = 1, 920 sequences, ∼ 1 h).

Following Bayer and Osendorfer (2014) and Petrovich et al. (2021),
the 3D human motion data vectors xt are modeled by a Gaussian
generative conditional distribution with a covariance matrix equal to
the identity matrix.

13.2.3 Training and testing

All tested models were implemented in PyTorch (Paszke et al., 2019).
To train the models, we used the Adam optimizer (Kingma and Ba,
2014) with mini-batches of size 128. For the speech data, we set the
learning rate to 0.002, whereas we used 0.0001 for the human motion
data. We also used early stopping on the validation set with a patience
of 50 epochs for the speech data and 30 epochs for the human motion
data. During the training of the models with the human motion data,
we applied warm-up to the KL regularization term in the VLB by
multiplying it with a factor β and linearly increasing this factor from 0
to 1 after each epoch, during the first 50 epochs (Sønderby et al., 2016b;
Vahdat and Kautz, 2020).

Once a model was trained on the training set, with early stopping
on the validation set, its weights were fixed and the model was run on
the test set. We report the average performance obtained on the test
set using the metrics presented in the next subsection.

13.2.4 Evaluation metrics

For the experiments on speech data, we used three metrics to evaluate
the resynthesized speech quality and compare the performance of the
different DVAE models: the scale-invariant signal-to-distortion ratio



13.3. Results on speech data 121

(SI-SDR) in dB (Le Roux et al., 2019), the perceptual evaluation of
speech quality (PESQ) score in [−0.5, 4.5] (Rix et al., 2001), and the
extended short-time objective intelligibility (ESTOI) score in [0, 1] (Taal
et al., 2011). For all metrics, the higher the better. Note that these
metrics are applied on the time-domain signals (i.e., speech waveforms).
We combined the reconstructed magnitude spectrogram with the phase
spectrogram of the original signal to obtain the analyzed-resynthesized
speech waveform (using the inverse STFT).

For 3D human motion data, we can directly compare each original
sequence with the corresponding analyzed-resynthesized sequence. We
used the mean per joint position error (MPJPE) proposed by Ionescu
et al. (2014), which is an averaged Euclidean distance per joint. We
report the results in millimeters (mm). Note that this error corresponds
to the log-likelihood term (or reconstruction error term) of the VLB,
up to a constant factor that is controlled through the setting of the
variance of the data conditional distribution.

13.3 Results on speech data

13.3.1 Analysis-resynthesis

We first present the results of analysis-resynthesis performed on the
speech data. The values of the three metrics described in the previous
subsection and averaged over the test dataset are reported in Table 13.1.
In this experiment, all three autoregressive models (STORN, VRNN,
and SRNN) were trained and tested in the teacher-forcing mode (i.e.,
using the ground-truth values of past observed vectors x1:t−1 when
generating xt, see Section 4.4.1). Results of analysis-resynthesis in the
generation mode will be discussed in Section 13.3.3.

From Table 13.1, we can draw the following conclusions. First, all
tested DVAE models lead to fair signal reconstruction, with an SI-SDR
ranging in 6.9–11 dB. This range is in accordance with the fact that
we compress each 513-dimensional data vector into a 16-latent vector
(using also the 128-dimensional RNN internal state that encodes the past
data vectors in the case of autoregressive models). The quality of the
reconstructed spectrograms is illustrated in Figures 13.2, 13.3 and 13.4.
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DVAE SI-SDR (dB) PESQ ESTOI

VAE 5.3 2.97 0.83
DKF 9.3 3.53 0.91
STORN 6.9 3.42 0.90
VRNN 10.0 3.61 0.92
SRNN 11.0 3.68 0.93
RVAE-causal 9.0 3.49 0.90
RVAE-noncausal 8.9 3.58 0.91
DSAE 9.2 3.55 0.91

SRNN-TF-GM −1.0 1.93 0.64
SRNN-GM 7.8 3.37 0.88

Table 13.1: Performance of the DVAE models tested in our speech analysis-
resynthesis experiment. The SI-SDR, PESQ, and ESTOI scores are averaged over the
test subset of the WSJ0 dataset. STORN, SRNN and VRNN were trained and tested
in the teacher-forcing mode. SRNN-TF-GM stands for the SRNN model trained in
the teacher-forcing mode and tested in the generation mode. SRNN-GM stands for
the SRNN model trained and tested in generation mode.

Figure 13.2(top) shows the power spectrogram of a speech signal uttered
by a female speaker. Figure 13.2(bottom), and Figures 13.3 and 13.4
show the corresponding spectrogram obtained after analysis-resynthesis
by the six tested models. Actually, the first 2 s on the left of the red line
are obtained with analysis-resynthesis; the following 2 s are obtained
by switching the models into generation mode, as presented in the next
subsection. As for the analysis-resynthesis part (the first 2 s), we can
see in these plots that the reconstructed spectrograms are all quite
close to the original spectrogram. They look like a slightly smoothed
or blurred version of the original spectrogram, which is typical of a
data compression effect, although retaining most of the speech content
characteristics. Regarding the perceptual quality of the reconstructed
speech signals, Table 13.1 shows the PESQ scores that range from
fair to good. The STOI scores, generally higher than 0.90, show good
intelligibility.

Second, all DVAE models outperform the standard VAE model by a
large margin (except maybe for STORN, which is “only” 1.6 dB SI-SDR



13.3. Results on speech data 123

Original

VAE

Figure 13.2: Example of power spectrogram for a speech signal uttered by a female
speaker. Top: spectrogram of the original signal. Bottom: spectrogram reconstructed
(0-2 s) and generated (2-4 s) with a vanilla VAE (the red line indicates the transition
between reconstruction and generation).

higher). The harmonics in the spectrogram reconstructed with the VAE
in Figure 13.2(bottom) are slightly noisy and blurrier compared to the
harmonics reconstructed with the DVAE models. This demonstrates
the merit of including temporal modeling in the VAE framework for
modeling sequential data, such as speech signals. SRNN exhibits the
best performance and VRNN comes second. By looking at the associated
probabilistic models, we can observe that SRNN and VRNN are the most
complex models in terms of dependencies between observed and latent
variables. We believe that these dependencies allow SRNN and VRNN
to better capture the temporal structure of speech signal than the other
models. SRNN performs slightly better than VRNN (e.g., it is 1 dB SI-
SDR above VRNN), although VRNN has richer variable dependencies.
This may be because the inference model of SRNN respects the structure
of the exact posterior distribution, whereas that of VRNN (as proposed
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DKF

DSAE

Noncausal RVAE

Figure 13.3: Example of speech power spectrogram reconstructed (0-2 s) and
generated (2-4 s) by a DVAE model (the original spectrogram is in Figure 13.2 (top)).
Top: DKF; middle: DSAE; bottom: noncausal RVAE. The red line indicates the
transition between reconstruction and generation.

in the original paper and implemented here) does not. In both cases,
the exact posterior of zt at each time t depends on all observations
x1:T . However, the inference model of VRNN only takes the causal
observations x1:t into account.

The performance scores of DKF and DSAE are very close to each
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STORN

SRNN

VRNN

Figure 13.4: Example of speech power spectrogram reconstructed (0-2 s) and
generated (2-4 s) by a DVAE model (the original spectrogram is in Figure 13.2
(top)). Top: STORN; middle: SRNN; bottom: VRNN. The red line indicates the
transition between reconstruction and generation. Note that this figure was obtained
with the models being trained and evaluated in a slightly different configuration
regarding STFT parameters. Here, we have a window length of 512 points and an
overlap of 50%. This is to illustrate the robustness of the results w.r.t. the “audio
parameterization.”

other, and slightly below those of VRNN. This is an interesting result,
as we recall that DKF and DSAE are SSM-like models, with no explicit
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temporal dependency between xt−1 and xt, but only between zt−1 (or
z1:t−1 for DSAE) and zt. Thus, even if they are expected to have less
“predictive” power compared to SRNN or VRNN, their SSM structure
appears quite efficient at encoding the speech dynamics. DSAE can
be considered as an improved version of DKF, with an additional
sequence-level variable v and infinite-order temporal dependency of
zt (as opposed to first-order dependency for DKF). The fact that this
more sophisticated structure does not lead to improved performance
over DKF might be explained by the structure of the inference model.
For DSAE, the inference of zt depends on x1:T , whereas the exact
posterior distribution depends on z1:t−1 and xt:T . Thus, the inference
model of DSAE is not only missing some dependencies it should have
(previous latent variables) but it is adding dependencies that it should
not have (previous observed variables), see Section 11.2. In contrast,
the DKF inference model respects the structure of the exact posterior
distribution. In the end, all these differences between DKF and DSAE
may compensate each other, leading to similar results. One way to
improve DSAE may be to design an inference model with the structure
of the exact posterior distribution.

The SI-SDR scores obtained by the RVAE model are just below
those of DKF and DSAE, whereas the PESQ score of noncausal RVAE
is slightly superior to those of DKF and DSAE. This is interesting
considering that as DKF and DSAE, RVAE has no predictive link (e.g.,
no direct dependency between xt−1 and xt), and contrary to DKF and
DSAE, RVAE does not have a dynamical model on the latent vector
zt (i.e., it is modeled as an i.i.d. variable). However, in the analysis-
resynthesis framework, the sequence z1:t−1 or z1:T efficiently encodes
x1:T owing to an efficient inference model, and then, the generative model
is able to exploit this whole sequence to regenerate xt. As expected, the
noncausal version of RVAE is slightly better than the causal version.

As for STORN, its performance revealed a bit disappointing in our
speech analysis-resynthesis experiment. Here also, this can be explained
by the fact that the inference model of STORN does not respect the
structure of the exact posterior distribution. In particular it does not use
z1:t−1 nor xt+1:T , which is doubly penalizing compared to if the structure
of the exact posterior distribution was considered. Another reason for
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the relatively low scores obtained by STORN in these experiments is
given in Section 13.3.4.

13.3.2 Generation of speech spectrograms

In this subsection, we briefly illustrate the ability of the DVAE models
to generate “speech-like” spectrograms with a qualitative example. This
example is the “continuation” of the example that we have seen in
the previous subsection, provided in Figures 13.2, 13.3 and 13.4. In
these figures, the first 2 s of each spectrogram (on the left of the red
line) was obtained with analysis-resynthesis; that is, the latent vectors
were provided by the inference model, using the ground-truth observed
vectors as input, and the output spectrogram was then provided by the
generative model using the inferred latent vectors (and the ground-truth
past observed vectors for the autoregressive models). After 2 s (on the
right of the red line), we turn the models to pure generation mode; that
is, the latent vectors and the output spectrogram are now both provided
by the generative model, without relying on the inference model and
ground-truth past observed vectors anymore. This strategy allows the
generation mode to benefit from a good initialization, induced by the
analysis-resynthesis part. Indeed, at the time instant corresponding
to 2 s, the generation starts with the past latent vectors and current
RNN internal state provided by the analysis-resynthesis part, thus
encoding the past observed speech data. Therefore, we can expect a
smooth transition from the analysized-resynthesized spectrogram to the
generated one.

As expected, we observe in Figure 13.2 that a vanilla VAE is not
able to generate a spectrogram with a realistic speech-like structure. In
particular, the successive spectrogram “chunks” are too short and with
too abrupt transitions to be speech sounds. This is due to the fact that
there is no temporal modeling.

Figure 13.3 shows the results obtained with the nonautoregressive
DVAE models. We can see that the spectrograms generated by DKF
and DSAE, although different, both exhibit a harmonic structure and a
variety of different speech-like sounds, which smoothly evolve with time.
The smoothness probably comes from the use of a Markov model for
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the latent vector, which precisely enforces smoothness. In the original
DSAE paper, Li et al. (2017) did not provide examples of generated
speech spectrograms but they presented good results in voice conver-
sion obtained by exchanging the value of the variable v across two
sentences spoken by a different speaker. Regarding RVAE, even though
the latent vectors are independently and identically sampled from a
standard Gaussian distribution, we observe a generated spectrogram
with a temporal structure. This means that the RVAE model is able to
“recreate” correlation in the generated data by combining the vectors of
an uncorrelated sequence. However, the energy is mostly concentrated
in low frequencies, and the harmonic structure, although present, is
not as clearly visible as for DKF and DSAE. Moreover, the segments
corresponding to the successive speech sounds are shorter than for DKF
and DSE and seem shorter than what is expected in natural speech.

Figure 13.4 shows the generation results with autoregressive DVAE
models. We see that, as the other models, STORN manages to ensure a
smooth transition between the analysis-resynthesis and generation parts,
but then the quality of the generated spectrogram becomes much lower
than with the other autoregressive DVAE models. SRNN generates a
spectrogram with a speech-like structure and a lot of variability. The
best result for this example sentence is obtained with VRNN, for which
we can observe segments that resemble different phonemes, with smooth
transitions between them. The harmonic structure is also clearly visible
and the generated data cover the full bandwidth.

13.3.3 Training with scheduled sampling

To complement the previous results, we performed an additional analysis-
resynthesis experiment with the autoregressive models being trained
and tested in the generation mode instead of the teacher-forcing mode;
that is, using the previously generated data vectors x̂1:t−1 in place of the
ground-truth past vectors x1:t−1 when generating xt (see Section 4.4.1).
Note that here, the sequence z1:T is still provided by the encoder. For
conciseness, we present only the results for SRNN, which was the model
performing best in the first experiment above.

Directly training a model in the generation mode was observed to
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be difficult, so we adopted a scheduled sampling approach (Bengio et al.,
2015). We started with the SRNN model trained in the teacher-forcing
mode used in the previous experiment. Then, we fine-tuned this model
by randomly replacing x1:t−1 with x̂1:t−1 at the input of the encoder-
decoder shared module, when estimating xt. We replaced 20% of the
x1:t−1 vectors for the first 50 epochs, and increased to 40% for the next
50 epochs, and so on, until we completely replaced the ground-truth
clean speech signal with generated speech signals. Then we fine-tuned
with totally generated speech signals for another 300 epochs. Overall, we
fine-tuned the model for 500 epochs. The resulting model is referred to
as SRNN-GM hereinafter. Moreover, we also evaluated the initial SRNN
model (trained with teacher-forcing) in the generation mode (i.e., we use
here x1:t−1 during training and x̂1:t−1 during testing when generating
xt). We refer to this “hybrid” configuration as SRNN-TF-GM.

We can see from Table 13.1 that SRNN trained in the teacher-forcing
mode and tested in the generation mode (SRNN-TF-GM) obtains
very poor results. This illustrates the problem of train/test mismatch
discussed in Section 4.4.2. The strategy that consists in training SRNN
in the generation mode using scheduled sampling (SRNN-GM) is shown
to be effective, as the gap between SRNN-TF-GM and SRNN is largely
reduced. Nevertheless, SRNN-GM remains a bit below DKF and RVAE
in this experiment, showing that it is more difficult to exploit the
predictive links in a practical application where the ground-truth values
of the observed vectors are not available, compared to the “oracle”
configuration of teacher-forcing.

13.3.4 Visualization of the latent vector sequence

In this subsection, we illustrate the behavior of the learned latent vector.
Figure 13.5 displays the trajectories of the mean vector of qφz , the
log-variance vector of qφz , a vector zt sampled from qφz , and the KL
divergence term of the VLB, for an example sentence of the speech test
dataset and for the SRNN model trained and applied in the teacher-
forcing mode. We observe that some of the dimensions of the latent
vector, for example the first one, show a steady profile of the mean
(Figure 13.5 (a)) and log-variance (Figure 13.5 (b)) for these dimensions,
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(a) mean (b) log-variance

(c) sampled latent vector (d) KL divergence

Figure 13.5: Example of the behavior of the latent vector of a speech spectrogram
for SRNN (trained with teacher-forcing). (a) mean value of the posterior distribution
(i.e., µφz (·)); (b) log-variance of the posterior distribution (i.e., σ2

φz (·)); (c) sampled
latent vector zt; (d) KL divergence term of the VLB.

with the mean being close to zero and the variance being much lower
than 1. As a result, the corresponding entries of the zt samples shown
in Figure 13.5 (c) look like noise with small fluctuations around zero. In
short, those dimensions are noninformative, whereas the other “active”
dimensions show much larger, and thus informative, fluctuations (note
that for these “active” dimensions, because the variance is also small,
yet not steady, the sampled latent values are close to the mean). This
inactivity of certain dimensions is the sign of the posterior collapse
problem. The latent vector zt, or at least some dimensions of it, becomes
noninformative, as its posterior distribution becomes too close to its prior
(generative) distribution, as illustrated by the small (and steady) values
of the KL divergence term of the VLB, compared to the other “active”
dimensions (Figure 13.5 (d)). This problem has been well identified and
largely discussed in the VAE literature (Bowman et al., 2016; Serban
et al., 2016; Chen et al., 2017; Lucas et al., 2019; Razavi et al., 2019;
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Dai et al., 2020). It remains a largely open topic in the framework of
DVAE, as further discussed in Chapter 14.

Overall, the input of the decoder consists of some dimensions con-
taining informative patterns and some other dimensions containing
low-variance stationary noise. In the present example of the SRNN
model, we identified 8 dimensions out of 16 that are active and 8 di-
mensions that seem to have collapsed, suggesting that we would obtain
similar analysis-resynthesis performance by setting the size of the latent
vector to 8. In these experiments with speech signals, we observed that
VRNN has only 2 collapsed dimensions out of 16, whereas STORN had
12 collapsed dimensions out of 16; that is, only 4 active dimensions for
STORN. This latter point is to be related to the fact that STORN is
the less efficient of the three autoregressive models in these experiments,
with performance significantly below that of SRNN and VRNN. In
contrast, we did not observe posterior collapse of any dimension for the
nonautoregressive models (DKF, DSAE, and RVAE) in our experiments;
that is, for the nonautoregressive models, all 16 dimensions are useful to
encode xt. This is consistent with the fact that, for these models, there
is no predictive link and all the information in x1:T must be encoded in
z1:T .

We have checked that, for a given model, the active/inactive dimen-
sions remain the same across different examples. In addition, as shown
in the example of Figure 13.5, the dimensions suffering from posterior
collapse are the same over time. In principle, a small KL divergence
at a certain time frame means that the posterior and the generative
distributions of zt are very close to each other for that time frame.
However, this does not guarantee that the generative distribution on
two consecutive frames remains the same, and the same for the pos-
terior distribution. In practice, we observe that both the generative
and posterior distributions of collapsed dimensions are time-invariant
and noninformative. We believe this is due to the way these models
are implemented in practice, since the architectures used to implement
the DVAEs are time-invariant; that is, the same architecture with the
same weights is used at every time step. Combined with the fact that
noninformative generative distributions are zero-mean and low-variance
Gaussians, this leads us to conjecture that posterior collapse in a given
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(a) mean (b) log-variance

(c) sampled latent vector (d) KL divergence

Figure 13.6: Example of the behavior of the latent vector of a speech spectrogram
for SRNN (trained in the generation mode with scheduled sampling). (a) mean
value of the posterior distribution (i.e., µφz (·)); (b) log-variance of the posterior
distribution (i.e., σ2

φz (·)); (c) sampled latent vector zt; (d) KL divergence term of
the VLB.

dimension of z is associated to very small weights to compute the mean
and log-variance of that dimension. We have verified this statement by
visualising the weights of the output linear layers (not shown here for
conciseness).

Figure 13.6 displays the same trajectories as Figure 13.5, for the same
example sentence, but for the SRNN model trained in the generation
mode (with scheduled sampling) instead of the teacher-forcing mode.
By comparing the two figures, we observe that the SRNN model trained
in the generation mode exhibits much less posterior collapse, with a
larger number of “active” dimensions. By definition, the generated data
vectors are approximate values of the ground-truth vectors, hence the
model trained in the generation mode uses less accurate and thus less
reliable past values of xt to generate the current value, compared to
the same model trained in the teacher-forcing mode. Therefore, the
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DVAE MPJPE (mm)

VAE 48.69
DKF 42.21
STORN 9.47
VRNN 9.22
SRNN 7.86
RVAE-Causal 31.09
RVAE-NonCausal 28.59
DSAE 28.61

SRNN-TF-GM 221.87
SRNN-GM 43.98

Table 13.2: Performance of the DVAE models tested on 3D human motion data
analysis-resynthesis. The MPJPE scores are averaged over the test subset of the
H3.6M dataset.

model trained in the generation mode needs more informative latent
dimensions to resynthesize xt.

13.4 Results on 3D human motion data

13.4.1 Analysis-resynthesis

Table 13.2 shows the results of the analysis-resynthesis experiment with
the 3D human motion data. The MPJPE values are approximately
within 9–49mm, which is relatively small compared to the average
amplitude of the joint coordinates in a human body, and therefore show
a fair to good reconstruction for all models. As for the speech analysis-
resynthesis experiment, all DVAE models outperform the vanilla VAE
model. This confirms the interest of using DVAE models for modeling
sequential data.

In this experiment with human motion data, the autoregressive
DVAEs largely outperform the nonautoregressive DVAEs. STORN,
VRNN, and SRNN have an MPJPE of about 9.5, 9.2 and 7.9 mm,
respectively, whereas DKF, RVAE and DSAE (noncausal) obtain about
42.2, 28.6 and 28.6 mm, respectively. Therefore, the performance gap
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between the autoregressive models (trained and tested in the teacher-
forcing mode) and the nonautoregressive models is larger than in our
experiment with speech signals. We conjecture that this is because the
3D human motion data has less variability (or, say, smoother trajectories)
compared to speech data. Therefore, for such data, knowing the ground-
truth values of the previous observation(s) (xt−1 or x1:t−1) is a very
strong information for predicting the current observation.

Again, SRNN exhibits the best performance, which is consistent
with the analysis-resynthesis results obtained with the speech data.
In this new experiment with human motion data, STORN is more
efficient than in our experiment with speech data. In contrast, DKF
underperforms compared to the other nonautoregressive models and
exhibits a quite limited improvement over the vanilla VAE.

13.4.2 Generation of 3D human motion sequences

Example videos of a human “skeleton” animated from 3D motion data
sequences generated by the different DVAE models are available at
https://team.inria.fr/robotlearn/dvae/.

13.4.3 Training with scheduled sampling

As for the experiment with speech signals, we have tested the influence of
training and testing the models in the generation mode (using scheduled
sampling for training). Here, we briefly report and comment the results
obtained on the 3D human motion data with SRNN. We can see from
Table 13.2 that, similarly to what we observed in our experiment with
speech signals, SRNN-TF-GM has very poor performance, whereas
training SRNN with scheduled sampling partially addresses this problem,
placing SRNN-GM between the vanilla VAE and the nonautoregressive
DVAEs. However, the gain in performance of SRNN-GM over the vanilla
VAE is here quite limited, and we believe there is room for improvement
when designing the model adaptation method. In other words, in these
experiments, we adopted a simple scheduled sampling strategy and did
not further investigated this issue, but other strategies to bridge the
gap between ground-truth and generated data could be investigated.

https://team.inria.fr/robotlearn/dvae/
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13.4.4 Visualization of the latent vector sequence

To conclude this set of experiments, we also provide an example of
visualization of the latent space of the 3D human data, as we did for
speech signals.

Figure 13.7 displays the trajectories of the mean vector of qφz , the
log-variance vector of qφz , a vector zt sampled from qφz , and the KL
divergence term of the VLB, for an example sequence of the 3D human
motion test dataset and for the SRNN model trained and applied
in the teacher-forcing mode. Figure 13.8 displays the corresponding
trajectories for the SRNN model trained and applied in the generation
mode (trained with scheduled sampling). We can see in Figure 13.7 that
the trajectories of the parameters (and of the sampled zt vector) are
(much) smoother than in the case of speech signals, as, again, the 3D
human motion data themselves have smoother trajectories compared to
speech data. Some dimensions seem more “active” than others, even if,
without a deeper investigation, it is quite difficult to interpret the range
of values covered by the entries of the latent vector. Such a thorough
investigation is beyond the scope of the present paper. We simply note
here that there are two dimensions, dimensions 1 and 3, that seem to
collapse. For these two dimensions, the mean is steady around zero
and the variance has a large (and steady) value, hence the sampled
trajectory of the corresponding zt entries looks like noise. In contrast,
some other dimensions seem to have an interesting informative profile.
For example, dimensions 4 and 5 have an opposite fluctuation, probably
encoding an opposite evolution of the corresponding factors of data
variation.

In Figure 13.8, the latent vector generally seems more “active” or
informative than in Figure 13.7. For most dimensions, the ratio between
the range of the mean variation and the range of variance variation is
larger. The range of the KL divergence term values is also larger than
in Figure 13.7, indicating that the approximate posterior and the “prior”
(generative distribution of zt) are less close to each other than in the
teacher-forcing case. These observations are consistent with those made
on the speech signals in Section 13.3.4. Our conjecture that the latent
variable was less important in the teacher-forcing mode than in the
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(a) mean (b) log-variance

(c) sampled latent vector (d) KL divergence

Figure 13.7: Example of the behavior of the latent vector for a test sequence from
the H3.6M dataset and for SRNN (trained with teacher-forcing). (a) mean value of
the posterior distribution (i.e., µφz (·)); (b) log-variance of the posterior distribution
(i.e., σ2

φz (·)); (c) sampled latent vector zt; (d) KL divergence term of the VLB.

generation mode is thus confirmed with the motion data.

13.5 Conclusion

In a practical application requiring the modeling of temporal data such
as speech spectrograms or 3D human motion data, using either VRNN
or SRNN seems a relevant choice, especially if autoregressive models can
be used in the teacher-forcing mode. In addition, considering the above
results and associated discussion, we suspect that having an inference
model that respects the exact variable dependencies at inference time
is important for obtaining the optimal performance. However, this is
not always possible, as some applications require a causal inference
model for online processing. Finally, in a practical application where
only z1:T needs to be transmitted, data resynthesis from z1:T with
an autoregressive model used in the generation mode was shown to
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(a) mean (b) log-variance

(c) sampled latent vector (d) KL divergence

Figure 13.8: Example of the behavior of the latent vector for a test sequence
from the H3.6M dataset and for SRNN (trained in generation mode with scheduled
sampling). (a) mean value of the posterior distribution (i.e., µφz (·)); (b) log-variance
of the posterior distribution (i.e., σ2

φz (·)); (c) sampled latent vector zt; (d) KL
divergence term of the VLB.

be reasonably robust in our experiment with SRNN and speech data,
provided that the model is fine-tuned in the generation mode (using
here scheduled sampling). For 3D motion data, SRNN-GM was shown
in our experiments to perform more poorly (with a limited gain over
the vanilla VAE).

The performance of some other models, in particular DKF, also
seem to depend on the data type. We thus insist that the above “model
ranking” is valid only for the presented experiments, which involve
pure analysis-resynthesis of speech spectrograms or 3D human motion
data. For data generation, we presented only a limited set of qualitative
examples to illustrate the behavior of the models (evaluating the quality
of generated data is still a very difficult problem and a hot topic of
machine learning with generative model). For other tasks, such as
signal/data transformation (with modification of the latent vectors
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between analysis and resynthesis), we do not know if our experimental
results would generalize. In particular, it is difficult to know how much of
the information contained in x1:T is encoded into z1:T , or what “features”
of x1:T are encoded. In particular, in the presented experiments we did
not investigate the disentanglement power of each model and how the
disentangled latent dimensions can be interpreted as relevant factors of
variation of the data (from a physical point of view for example). Also,
we illustrated the posterior collapse problem but we did not proceed
to a thorough quantitative investigation of this issue. These points will
be further discussed in the next chapter. However, the experiments
dedicated to illustrating them are beyond the scope of the present
paper.



14
Discussion

In this chapter, we conclude our review of DVAEs with a discussion.
First, we recall the fundamental motivation for designing and using
DVAEs and then comment on their remarkable flexibility at multiple
levels (design of the generation and inference models, high-level and
low-level implementation). Then, we return to the crucial point of the
disentanglement of latent factors in the present context of sequential
data processing. Finally, we present some perspectives on data source
coding.

14.1 Fundamental motivation for DVAEs

The fundamental motivation for designing and using DVAEs is to
combine various dynamical models, aimed at modeling the dynamics
of sequential data, and various VAEs, aimed at modeling the latent
factors of data variations. In doing so, we expect to separate the data
dynamics from the other factors of variations (see Section 14.3.3 below
dedicated to this specific point) and use the latter to augment the
expressivity of the models. Another way to express this idea is to point
out the superiority of DVAEs over RNNs: Adding a latent variable zt
within an RNN adds considerable flexibility and modeling power to the

139
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conditional output density. Let us here quote Chung et al. (2015):

“We show that the introduction of latent random variables
can provide significant improvements in modelling highly
structured sequences such as natural speech sequences. We
empirically show that the inclusion of randomness into high-
level latent space can enable the VRNN to model natural
speech sequences with a simple Gaussian distribution as
the output function. However, the standard RNN model
using the same output function fails to generate reasonable
samples. An RNN-based model using more powerful output
function such as a GMM can generate much better samples,
but they contain a large amount of high-frequency noise
compared to the samples generated by the VRNN-based
models.”

Similarly, we can point out the superiority of DVAE over classical
(nondeep) DBNs and SSMs, owing to the deep nonlinear layers of
information processing. Again, let us quote Chung et al. (2015):

“Drawing inspiration from simpler dynamic Bayesian net-
works (DBNs) such as HMMs and Kalman filters, the pro-
posed variational recurrent neural network (VRNN) explic-
itly models the dependencies between latent random vari-
ables across subsequent timesteps. However, unlike these
simpler DBN models, the VRNN retains the flexibility to
model highly non-linear dynamics.”

Of course, such a statement applies to the entire DVAE family of models.

14.2 DVAE outcome: A story of flexibility

14.2.1 Flexibility of the generative model(s)

As seen in this review, various generative models can be derived from
the general form (4.4) by simplifying variable dependencies. The models
we have reviewed (such as STORN, VRNN, and SRNN) are instances
of these possible generative models, but there are other possibilities.
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Moreover, each model has several variants: Driven/undriven mode, pre-
dictive/nonpredictive mode, and with one or several feature extractors.

When designing a generative model, complexity issues can be con-
sidered. For example, we can quote Bayer and Osendorfer (2014):

“[...] we can restrict ourselves to prior distributions over the
latent variables that factorize over time steps, i.e., p(z1:T ) =∏T
t=1 p(zt). This is much easier to handle in practice, as cal-

culating necessary quantities such as the KL-divergence can
be done independently over all time steps and components
of zt.”

However, at the same time, the systematic aspect of the VAE method-
ology (and the versatility of the current deep learning toolkits) enables,
in principle, to train a model of arbitrary complexity. Hence, if one
is not limited by computational cost, this offers new possibilities. For
example, we can recall our remark in Section 11.1 about the choice of
the dynamical model in deep SSMs. In the DVAE framework, not only
is it easy to move from a linear dynamical model to a nonlinear one,
but also to move from a first-order temporal model to a (much) higher
order.

14.2.2 Flexibility of the inference model(s)

In DVAEs, as in standard VAEs, the exact posterior distribution is
usually intractable due to nonlinearities, which is why we have to define
an inference model in addition to the generative model (we cannot apply
the Bayes rule analytically). However, a key feature of DVAEs with
respect to standard VAEs is that we must define an inference model over
a sequence of latent vectors. Even though the exact posterior distribution
over this latent sequence is analytically intractable, we can leverage the
chain rule and the D-separation principle to analyze the structure of
the exact posterior distribution induced by the chosen generative model.
It seems quite natural to exploit this knowledge to design the structure
of the inference model so that it is consistent with the structure of
dependencies in the exact intractable posterior. Yet, several seminal
papers on DVAEs have not followed this “consistency principle,” and,
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more importantly, not justified the chosen structure of the inference
model. Nevertheless, it is not mandatory to follow the structure of
the exact posterior distribution to design the inference model. For
instance, if the structure of the exact posterior distribution implies a
noncausal processing of the observations, the anticausal dependencies
can be dropped for the purpose of online applications. Simplifying
posterior dependencies can also be motivated by a need to reduce the
computational complexity of inference.

Another key difference between DVAEs and VAEs relates to how
the VLB (or, actually, its estimate) is computed. The VLB involves
intractable expectations, which are usually replaced with empirical
averages, using samples drawn from the inference model. The sampling
procedure in DVAEs has to be recursive due to the dynamical nature of
the model, a constraint that standard VAEs do not have. This recursive
sampling is related to the use of RNNs and can be costly. As will
be discussed below, other neural network architectures can be more
computationally efficient than RNNs.

14.2.3 Flexibility of the implementation

As already discussed in Section 4.1.2, various possibilities exist for the
high-level implementation of DVAEs. We recall that various developed
model representations can correspond to the same compact representa-
tion. In fact, the compact form describes all parent-child relationships
among random variables, regardless of how these relationships are imple-
mented in practice. Therefore, the compact representation is important
to understand the probabilistic dependencies between variables. How-
ever, one must be aware that the optimization does not search for all
possible models satisfying the relationships of the compact represen-
tation but only for a specific model corresponding to the developed
representation. This representation allows us to understand how the
dependencies are implemented in practice, and therefore, over which
parameter space the model is optimized. This representation typically
involves a recurrent architecture. While such architectures allow the
encoding of high-order temporal dependencies, their developed graphi-
cal representations generally do not exhibit dependencies higher than



14.2. DVAE outcome: A story of flexibility 143

first-order. Therefore, the developed representation can be “visually
misleading.” This duality is important in DVAEs, and we encourage to
provide both representations when presenting and discussing DVAEs,
as done in this review.

Once the high-level DVAE architecture is chosen, various possibilities
exist for the low-level implementation: network type (e.g., LSTM against
GRU) and low-level (hyper)parameterization (number of layers in a
network, number of units per layer, type of activation function, and
classical deep learning modules, such as batch normalization). We choose
not to detail these low-level implementation aspects in this review, and
instead, considered them a deep learning routine. All these choices (or
at least part of them) depend on data nature and datasets and can
significantly impact the modeling performance.

14.2.4 Other network architectures for sequential data modeling

In this review, we focus on deep generative latent-variable models of
sequential data using RNNs (or simple feed-forward fully-connected
DNNs for first-order temporal dependencies). However, other neural
network architectures can deal with sequential data of arbitrary length,
the most popular ones probably being convolutional architectures. While
RNNs are (virtually) based on infinite-order temporal modeling, CNNs
generally have a fixed-length receptive field, which implies a finite-order
temporal modeling. In particular, temporal convolutional networks
(TCNs) are becoming increasingly popular due to their competitive
performance with RNNs (e.g., in speech separation (Luo and Mesgarani,
2019)) while being more flexible and computationally efficient (Bai et al.,
2018). A TCN is based on dilated 1D convolutions, sharing similarities
with the Wavenet architecture (Oord et al., 2016a), and just as an
RNN, it outputs a sequence of the same length as that of the input
sequence. The combination of TCNs with VAEs was explored by Aksan
and Hilliges (2019).

Another popular neural network architecture that can deal with
sequential data is the transformer (Vaswani et al., 2017), which is
based solely on attention mechanisms, dispensing with recurrence and
convolutions entirely. However, only a few studies have considered
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leveraging transformers for generative modeling in the VAE framework.
We found only transformer-based VAEs recently proposed for sentence
generation (Liu and Liu, 2019), story completion (Wang and Wan, 2019),
and music representation learning (Jiang et al., 2020).

14.3 VAE improvements and extensions applicable to DVAEs

Following the seminal VAE papers by Kingma and Welling (2014)
and Rezende et al. (2014), many papers have been proposed for VAE
improvements and extensions. In this subsection, we mention some
of these improvements and extensions and discuss their relation and
possible adaptation to DVAEs. This is a nonexhaustive review; the
purpose of the present paper is not to deepen this rich part of VAE
literature but rather to show that the DVAE development is still largely
open, and one way to improve DVAEs is to get inspired from the
recent studies on VAEs. The interested readers can refer to Kingma
and Welling’s (2019) paper for a more detailed review of the “static”
VAE improvements and extensions.

14.3.1 Improved VAE decoders and the posterior collapse problem

The mathematical formulation of the VAE in the seminal paper by
Kingma and Welling (2014) considered a 1D data vector framework;
that is, x is a fixed-size F -dimensional vector. What happens if we
want to apply the VAE to 2D data, such as images, or more generally,
to N -dimensional data? What happens if one of the dimensions is
variable, like variable-length time sequences? By considering variable-
size sequences and, in particular, variable-length time sequences, we
take a step towards DVAEs. However, we consider models with many-
to-one encoding and one-to-many decoding more as VAEs than DVAEs,
following the line announced in the Introduction.

Kingma and Welling (2014) considered the application of the VAE to
2D image modeling. However, the correlation between neighboring pixels
was poorly exploited, as the conditional generative model (conditioned
on the latent variable) was pixelwise independent.1 In such a setting, z

1Technically, an image is arbitrarily reshaped into a vector x, with each pixel
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encodes both the local statistics of an image (e.g., local texture) and
the global structural information of the image (e.g., objects), whereas it
is desirable to separate this information, following the essence of latent
factors disentanglement.

Subsequent studies (Gulrajani et al., 2016; Gregor et al., 2016; Chen
et al., 2017; Lucas and Verbeek, 2018; Shang et al., 2018) considered
mixing the VAE latent representation with a more sophisticated decoder
exploiting local pixel correlations with either convolutive or autoregres-
sive decoding (Oord et al., 2016b; Oord et al., 2016c), possibly combined
with a multilevel or hierarchical latent encoding (see Section 14.3.4). For
example, Chen et al. (2017) considered an autoregressive conditional
density of the form pθx (x|z) =

∏
i pθx (xi|z,xnb[i]) with application to

2D image modeling, where xi is the i-th pixel of the image and xnb[i] are
the neighboring pixels. The autoregressive part is typically implemented
with an RNN (Oord et al., 2016c). Ideally, the local statistics of an
image should be modeled by the autoregressive part, whereas the global
structural information of the image should be encoded in z. Another
example of a structured VAE for modeling images is VAEs based on
convolutional neural networks (CNNs) (Gulrajani et al., 2016; Gregor
et al., 2016), which decompose/recompose an image into/from successive
feature maps.

Chen et al. (2017) discussed the tendency of the autoregressive part
of the model to capture all information on the data structure and let
the latent variable remain unused. This problem is referred to as latent
variable vanishing or as posterior collapse in the literature, a term that
we have already encountered in the preceding chapter. A general strategy
to counter this effect (i.e., controlling the data features encoded by the
RNN and the data features encoded in z) is proposed by Chen et al.
(2017) at an early level of the model design: The local autoregressive
window is constrained to be small, weakening the modeling power of
the decoder. This can also be done with a hierarchical structure of
the latent space (see the next subsection), possibly combined with the
different levels of image feature maps in CNNs (Gulrajani et al., 2016;

being an entry of this vector, and the conventional “vector” VAE model, as described
in Section 2, is applied. Therefore, each pixel is modeled independently conditioned
on z, even though all pixels are not assumed marginally independent.
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Gregor et al., 2016), or by introducing in the training procedure an
auxiliary loss function that controls which information is captured by
z and what is left to the autoregressive decoder (Lucas and Verbeek,
2018).

The posterior collapse problem has also been observed and discussed
in the context of natural language processing (Bowman et al., 2016;
Serban et al., 2016). Here, a sequence of words, individually pre-encoded
into word embedding vectors, is encoded into and/or decoded from a
single latent vector z. In Bowman et al.’s (2016) paper, both the encoder
and decoder are single-layer LSTM RNNs. In this case, the problem
is that it is difficult for the latent vector z to encode the content of a
long input sentence, and again, the RNN internal state vectors tend to
encode the whole information, leaving z unused. Bowman et al. (2016)
proposed two strategies to address this problem. The first one is applying
annealing to the KL term of the VAE: A weighting factor growing
from 0 to 1 is applied progressively to this term during training, first
forcing z to encode the data information and only then forcing z to get
disentangled. The second strategy is, as above, a deliberate weakening
of the decoder, here by masking a part of the word embedding sequence
during training. A more complex strategy was proposed by Yeung et al.
(2017), where an extra latent variable was added to activate/deactivate
certain subvectors of z. As only a small part of the latent representation
is used at each learning step, the VAE does not need to deactivate
some of the dimensions of the latent variable. A heuristic approach was
proposed by He et al. (2018), where the encoder is aggressively trained
(i.e., trained for many iterations) before each training iteration of the
decoder. The main intuition behind this approach is that the encoder
has difficulties catching up with the changes in the exact posterior
distribution and is lagging behind. Aggressively training the encoder
allows it to catch up with the evolution of the posterior distribution
at each encoder update. Other more recent solutions to the posterior
collapse problem in VAEs have been proposed and discussed by Lucas
et al. (2019), Razavi et al. (2019), and Dai et al. (2020).

Generally, the solutions to the posterior collapse problem proposed in
the literature have yielded a more influential, as well as a more disentan-
gled latent representation. Yet, there is still room for improvement. The



14.3. VAE improvements and extensions applicable to DVAEs 147

DVAEs focused on in this review do not consider a single latent vector z
for a data sequence; rather, they consider a latent vector sequence z1:T ,
which is generally synchronized with the data sequence x1:T and with
the sequence(s) of internal state vectors of the temporal models. This
raises new issues and challenges, compared to the studies conducted
on, for example, 2D image or language/text modeling. However, an
important remark that is worth mentioning, although quite trivial, is
that this DVAE configuration first solves the encoding capacity problem
for large data sequences. As mentioned by Li and Mandt (2018),

“[the model] keeps track of the time-varying aspects of xt
in zt for every t, making the reconstruction to be time-local
and therefore much easier. Therefore, the stochastic model
is better suited if the sequences are long and complex.”

In short, with DVAEs, it is quite unlikely that a posterior collapse
finds its origin in the limited capacity of the latent vector. In fact,
we conjecture that it may be the opposite (i.e., a too large capacity
of the latent vector sequence z1:T , depending on the size of zt) that
leads to posterior collapse. This is suggested by what we observed in
our experiments in Sections 13.3.4 and 13.4.4 with the autoregressive
models, where inactive entries of z1:T might be considered as “super-
fluous” components. Therefore, adjusting the dimension of zt so that
it can optimally fit to the content of the observed data sequence (i.e.,
adjusting the “coding cost” of the latent representation) while limiting
the computational complexity is a major issue in DVAEs. All that being
said, in autoregressive DVAE models such as SRNN or VRNN, even
if we have a “high-capacity” sequence of latent variables, there is no
guarantee that the autoregressive part of the model will not capture
most of the information, thus ignoring the sequence of latent vectors.
This remains an open problem in the DVAE literature.

14.3.2 Improved inference models and algorithms

As shown in Chapter 2, learning in the VAE framework relies on amor-
tized variational inference techniques. In fixed-form variational inference
(Honkela et al., 2010; Salimans and Knowles, 2013) and, in particular,
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stochastic variational inference (Hoffman et al., 2013), the approximate
posterior distribution is fixed to a certain parametric form, say Gaussian
for instance, and its mean and variance parameters are “freely” opti-
mized through direct maximization of the VLB. In amortized variational
inference, the approximate posterior distribution is still Gaussian, but
there is an additional constraint imposed by the fact that its parame-
ters are provided by an inference model corresponding to the encoder
network in the VAE case. This is an additional constraint in the defini-
tion of the variational family, and the resulting amortized approximate
posterior distribution is generally less expressive than its counterpart
with free parameters. Consequently, the KL divergence between the
approximate and exact posterior distributions is generally increased
in the amortized variational inference setting, which is referred to as
the amortization gap (Cremer et al., 2018; Krishnan et al., 2018). This
issue can also limit the performance of the learned generative model, as
the amortization gap is directly related to the gap between the VLB
and the intractable log-marginal likelihood of the data, which is the
criterion that we would ideally like to optimize to learn the generative
model parameters (i.e., the parameters of the VAE decoder).

To reduce this gap, several studies have proposed resorting to more
sophisticated inference models. Normalizing flow (Rezende and Mo-
hamed, 2015) builds arbitrarily complex approximate posterior dis-
tributions with tractable densities by applying a series of invertible
transformations to a simple initial distribution. Various normalizing
flows have been proposed in the literature, for instance, based on au-
toregressive models (Kingma et al., 2016; Chen et al., 2017). Because
a normalizing flow consists in chaining multiple transformations of
an initial latent variable, it can be considered a particular case of a
hierarchical model (Kingma and Welling, 2019; Kingma et al., 2016),
a type of model that we will discuss in Section 14.3.4. An expressive
approximate posterior distribution can also be defined as a mixture of
simpler distributions by introducing auxiliary latent variables in the
approximate posterior itself and then marginalizing (Maaløe et al., 2016;
Ranganath et al., 2016; Salimans et al., 2015).

An alternative to the design of more sophisticated inference models
consists in directly modifying the inference algorithm. Marino et al.
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(2018a), proposed an iterative amortized inference technique, which
consists in iteratively estimating the approximate posterior parameters
using a parametric iterative inference model that takes as input the
current estimate of the parameters, the approximate gradient of the
VLB (w.r.t. the approximate posterior parameters), and potentially
the observed data. This iterative inference model can, for instance, be
defined using a neural network. Similarly to the “learning to learn”
principle (Andrychowicz et al., 2016), iterative inference models learn to
perform optimization of the VLB for approximate posterior estimation.
Moreover, through the encoding of the VLB gradient, iterative inference
models naturally account for the top-down information obtained from
the data and bottom-up information obtained from the prior to estimate
the approximate posterior distribution. This feature complies with the
fundamental principle of the Bayes rule, in contrast to the standard
inference models, which are purely bottom-up, by simply mapping the
observed data to the approximate posterior. With the same objective of
overcoming the limitations of standard amortized variational inference,
the semi-amortized VAEs proposed by Kim et al. (2018) use a standard
inference model (i.e., an encoder network) to provide an initial esti-
mate of the approximate posterior parameters and then run stochastic
variational inference (Hoffman et al., 2013) to refine them.

Of particular relevance to DVAEs, the amortized variational filter-
ing algorithm proposed by Marino et al. (2018b) generalizes iterative
inference models (Marino et al., 2018a) to a general class of dynamical
latent variable models for sequential data processing. This algorithm
is a general method for performing causal variational inference, using
only past and present observed data. When combined with DNNs,
the considered general class of dynamical latent variable models cor-
responds to the DVAE class. The proposed inference method is thus
applicable to DVAEs, and the authors conducted experiments using
VRNN and SRNN (among other models). An interesting feature of
this method is its versatility. In the context of standard amortized
variational inference, the DVAE inference model should be designed
in accordance with the form of the DVAE generative model, following,
for instance, the structure of the exact posterior distribution which
can be identified using D-separation (see Chapter 4). In contrast, the
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amortized variational filtering algorithm is agnostic of the form of the
generative model. Another strength of this algorithm is inherited from
iterative inference models (Marino et al., 2018a), which combine infor-
mation from both the data and the prior to compute the approximate
posterior distribution parameters. This principle is also applicable in
the context of the amortized variational filtering algorithm, where the
“prior” (e.g., p(zt|x1:t−1, z1:t−1)) and the approximate posterior (e.g.,
q(zt|x1:t, z1:t−1)) vary in time. The resulting amortized variational fil-
tering algorithm thus resembles classical Bayesian inference filtering
methods, such as a Kalman filter, where at a given time instant, the
posterior distribution is computed by updating the predictive distribu-
tion (involving the prior distribution at the current time instant and the
posterior distribution at the previous time instant) using the current
observation, as discussed in Section 3.2.2.

14.3.3 Disentanglement of latent factors

A common crucial issue for VAEs and DVAEs is how to ensure the
disentanglement of latent factors. As stated by Chen et al. (2017),

“A key goal of representation learning is to identify and
disentangle the underlying causal factors of the data, so that
it becomes easier to understand the data, to classify it, or
to perform other tasks.”

Such disentanglement is not necessarily natural or efficient in the stan-
dard VAE; it somehow has to be “encouraged,” either in the model
design or in the training procedure (or both).

Semi-supervised VAEs

Siddharth et al. (2017) proposed forcing the disentanglement of z
and thus improving its interpretability by using a small amount of
supervision during training. This study does not particularly deal with
static or dynamical VAEs, and this weak supervision principle can be
applied to both.
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Modification of the loss function

A second strategy to improve the disentanglement of latent factors is to
modify the loss function (i.e., the VLB). In this line, Higgins et al. (2017)
introduced a weighting factor, denoted β, to weight the regularization
term in (2.21), so that the VLB becomes

L(θ, φ, β; X) = Eqφ(Z|X)
[
log pθx (X|Z)

]
−βDKL

(
qφ(Z|X)‖ pθz (Z)

)
.

(14.1)

A value of β larger than 1 favors the KL term; hence, it encourages
independence/disentanglement of the latent vector entries, although at
the price of lower reconstruction/generation quality. For example, the
images reconstructed with a β-VAE can be slightly blurred compared
to those reconstructed with a standard VAE. However, the control of
the properties of the objects represented in the image from the latent
vectors is improved (Higgins et al., 2017).

Chen et al. (2018) went a step ahead. Starting from the VLB (2.21),
they introduced the aggregated posterior qφ(z) = 1

Ntr

∑Ntr
n=1 qφ(z|xn)

and then decomposed the KL term of the VLB (summed over the
training data) into a sum of three terms. The first one, referred to as
the index-code mutual information, quantifies the mutual information
between data and latent variables. The second one, referred to as the
total correlation, is the KL divergence between the aggregated posterior
and the product of its marginals (i.e., DKL

(
qφ(z) ‖

∏L
l=1 qφ(zl)

)
). It

quantifies the independence of the latent vector entries independently
of data inputs (i.e., marginal independence as opposed to conditional
independence). The third term is the sum over entries of the entry-
wise KL divergence between the marginal aggregated posterior qφ(zl)
and prior p(zl). The authors noted that minimizing the KL term of
the VAE encourages the independence of the latent vector entries
through minimization of the total correlation. However, it also penalizes
the mutual information between the data and latent vectors, hence
decreasing the power of latent components to explain the data. Therefore,
they proposed applying a weighting factor (larger than 1) to the total
correlation only, leaving the mutual information term unchanged. They
experimentally demonstrated the advantage of this strategy over the



152 Discussion

β-VAE. A similar idea was proposed independently by Kim and Mnih
(2018), with a slightly different decomposition of the VLB KL term
and a different implementation (based on an adversarial training of the
model). For an extensive discussion and benchmark on disentangled
representation learning with VAEs, see Locatello et al. (2020).

Such a general principle of enforcing latent factor disentanglement
by modifying the loss function is independent of the issue of “static”
against temporal modeling. It can thus, in principle, be applied to the
DVAE framework. Finding a relevant decomposition of the loss function
in the DVAE framework is still an open topic. Due to the more complex
(temporal) intrications of the observed and latent variables, it is difficult
to say if terms equivalent to total correlation or mutual information
can be evidenced easily. Future studies should consider this aspect to
make DVAE models more controllable and interpretable.

14.3.4 Hierarchical VAEs and DVAEs

A structured VAE, or hierarchical VAE, is a general subclass of VAEs
where the latent space is structured by setting a hierarchical prior
distribution on a set of latent variables z = {z0, z1, ..., zK} (Kingma
and Welling, 2019, Chapter 4) (Salimans, 2016; Sønderby et al., 2016b;
Sønderby et al., 2016a). Here, the index denotes different latent variables,
not a sample in a training set or a time index in a sequence as before. For
example, a hierarchical “multilevel” VAE was proposed by Bouchacourt
et al. (2018), with two latent vectors defined at different data scales:
One latent vector encodes a common content for a group of data and
the other latent vector encodes the style of subgroups of data within a
group. In Bouchacourt et al.’s (2018) paper, data grouping involves a
certain amount of supervision during training.

Another notable example of a hierarchical VAE was presented by
(Salimans, 2016), who proposed to use a (deep) first-order autoregressive
prior model:

pθz (z) = pθz (z0)
K∏
k=1

pθz (zk|zk−1). (14.2)

In such an approach, the latent space is structured but not the data
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space (we still have a unique observed vector x). In this hierarchical
latent variable model, there is no notion of time, but if we think of
timely ordered variables, then we move toward Markov models (in the
above example, a first-order one). In addition, if we consider both timely
ordered latent variables and timely ordered observed variables, we step
into the world of DVAEs. In other words, a DVAE can be considered a
particular case of structured/hierarchical VAEs, with timely ordered
latent and observed variables.

At this point, we can make an interesting parallel among the DVAE
papers that we have reviewed and the hierarchical VAE papers (Sal-
imans, 2016; Sønderby et al., 2016b; Sønderby et al., 2016a; Kingma
and Welling, 2019) concerning the design of the inference model. We
have seen in Section 4.2.1 that the D-separation methodology was not
systematically used in the design of DVAE inference models. Interest-
ingly and quite surprisingly, this methodology is not mentioned either
in the above hierarchical VAE papers. Yet, we recall that D-separation
is a major principled way to guide the design of inference models, in-
cluding in this more general case. In these papers, the authors rather
chose one model among different somewhat intuitive structures (e.g.,
top-down against bottom-up inference (Kingma and Welling, 2019)).
One strategy to make the choice is to favor an inference model with
variable dependencies that “mirror” those of the generative model, so
that some “module” and parameters can be shared between them. This
is a suitable feature that we have discussed for DVAEs in Section 4.2.3
and was applied in the VRNN model for example. In the hierarchical
VAE papers, this “module sharing” strategy reportedly led to faster
training and better fitting of model and data.

That being said, module sharing is not incompatible with respecting
the exact posterior distribution structure. For example, in Salimans’s
(2016) paper, the inference model is defined by

qφ(z|x) = qφ(z0|x)
K∏
k=1

qφ(zk|zk−1,x). (14.3)

Again, it was chosen by the author because it “mirrors” the generative
model. This inference model follows the structure of the exact posterior
distribution, even though this fundamental latter point was not men-



154 Discussion

tioned by Salimans (2016). In the design of a DVAE, we can apply this
principle: We can look for an inference model that both respects the
structure of the exact posterior and shares some module(s) with the
generative model.

In DVAEs, the problem of disentangling the factors of data variation
takes a new flavor, as different factors of variation can have different
dynamics. In this context, one way to address the disentanglement
challenge is therefore to apply different levels of hierarchical modeling of
the latent factors on the time dimension; that is, we can design models
with a different time resolution for different latent variables, which
is of course not incompatible with other types of hierarchical models.
In particular, one general challenge is to separate the data dynamics
(i.e., their temporal trajectories) and other factors of variations that
are more constant over time (e.g., speaker identity for speech data, or
objects present in the scene for videos).2 For example, we have seen in
this review the DSAE model (Li and Mandt, 2018) and the FHVAE
model (Hsu et al., 2017b), which include latent variables defined at the
sequence level, segment level (subsequence of consecutive frames), or
frame level. For speech signal modeling, this appears as a promising way
to separate the modeling and control of phonetic information, which is
defined at the segment or frame level, and speaker/session information,
which is defined at the sequence level. A generalization of this approach
would be to impose a prior distribution of z1:T that fits the dynamics
of the latent factors to extract, which can be significantly different from
the data dynamics.

In general, the issue of separating data dynamics and other factors
of variation is still largely open in the literature on DVAE models with
a sequence of latent vectors. For example, we were surprised to notice
that there are very few experiments and information available on the
explainability of the extracted sequence of latent factors. Experiments
involving swapping of the extracted latent factors across two data
sequences before resynthesizing them were reported by, for example, Hsu
et al. (2017b). These experiments show that for speech signals, speaker

2Several papers dealing with disentanglement and separate control of content
and dynamics in videos have reported impressive results in an adversarial training
framework (Denton and Birodkar, 2017; Villegas et al., 2017; Tulyakov et al., 2018).
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identity can be exchanged between two sentences while preserving the
same phonetic content, which is a very nice result. Yet, the issues
of disentangling and controlling speech production factors separately
remain largely open. Moreover, basic questions such as the impact of
the size of zt and ht on modeling quality and the relevance of extracted
latent factors have been poorly considered so far. For example, for
speech processing, what happens if the size of zt is reduced to a few
entries, while the size of ht is kept comparable to that of data xt?

Hsu et al. (2017b) indicated that

“to the best of our knowledge, there has not been any
attempt to learn disentangled and interpretable representa-
tions without supervision from sequential data.”

Regarding SRNN (Fraccaro et al., 2016), VRNN (Chung et al., 2015),
and SVAE (Johnson et al., 2016), Hsu et al. (2017b) said

“[...] it remains unclear whether independent attributes
are disentangled in the latent space. Moreover, the learned
latent variables in these models are not interpretable without
manually inspecting or using labeled data.”

Hence, the models such as STORN, VRNN, and SRNN provide an
elegant and powerful mathematical and methodological framework for
sequential data representation learning; however, there is still a lot of
work to be done on the disentanglement challenge. Solutions for the
disentanglement of zt in DVAEs, inspired by or combined with existing
structured or hierarchical models such as the ones presented by Salimans
(2016) and Sønderby et al. (2016b) and Sønderby et al. (2016a), still
have to be developed.

14.4 Perspectives on source coding

Although VAE and DVAE are excellent frameworks for extracting effi-
cient and compact data representations, there are relatively few studies
on their practical application to source coding (i.e., data compression
including quantization and bitrate issues for data transmission or stor-
age). We have mentioned above the problem of z “vanishing” or “being
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ignored” when a powerful deterministic temporal encoder-decoder is
used, and a few papers have related this problem to the need to better
encode z, in the source coding sense, with an information-theoretic
interpretation of a VAE as a lossy coder (Kingma et al., 2016; Chen
et al., 2017). Among the few papers on the practical application of
(D)VAE to data coding, we can mention the ConvDRAW model pro-
posed by Gregor et al. (2016), which learns and encodes a hierarchy of
latent variables, resulting in an image lossy compression that performs
similarly to JPEG. Other examples include VQ-VAE, which is a mix of
VAE and vector quantization of z, applied to speech coding (Oord et al.,
2017; Gârbacea et al., 2019) and video compression with rate-distortion
autoencoders (Habibian et al., 2019).

As for a general approach to source coding based on DVAEs with a
sequence of latent variables, we can mention two recent papers: Lom-
bardo et al. (2019) and Yang et al. (2020). Lombardo et al. (2019)
presented a video codec based on the DSAE model (Li and Mandt,
2018), which we reviewed in Chapter 11. The sequence of latent vectors
z1:T extracted by the DSAE encoder is quantized and transformed into
a binary minimum-length sequence by an arithmetic coder, which ex-
ploits the DSAE dynamical model pθz (zt|z1:t−1) for entropy coding. The
chaining of inverse operations (i.e., arithmetic decoding, inverse quanti-
zation and DSAE decoder) enables to obtain the decoded data sequence
x̂1:T . The global variable v (see Section 11.1) is encoded separately
with a similar scheme. The resulting video codec is shown to exhibit
rate-distortion performance that is comparable to the state-of-the art
video codecs (such as VP9) on generic video sequences while drastically
improving the performance on video sequences with specialized content
(similar to the content of videos used to train the model). Lombardo
et al. (2019) provide no information on the control of the coded data
sequence quality or that of the bitrate. They only mention that the
arithmetic encoding of z1:T requires a number of iterations. Moreover,
the DSAE model is an SSM-like model; that is, xt is generated from
zt “alone,” not considering the potential of using xt−1 (or its quantized
version) for predicting xt and encoding it more efficiently.

In contrast, Yang et al. (2020) proposed different schemes for en-
coding a data sequence x1:T through the inference and quantization of
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the corresponding sequence of latent vectors z1:T , with different options
for recurrent connections. One of them, called feedback recurrent au-
toencoder (FRAE), has recurrent connections at both the encoder and
decoder, and a feedback connection from the decoder to encoder. The
recurrent connections are reminiscent of the predictive coding principle
that is classical in source coding theory (Gersho and Gray, 2012). In
fact, FRAE can be considered a nonlinear predictive coding scheme, in
which the encoder forms a latent code that encodes only the residual
information that is missing when reconstructing a data vector from
the deterministic internal state, which depends on past data vectors.
This concept of predictive coding is strongly related to that of the
predictive mode for the DVAE models that we discussed in general
terms in Section 4.1.1 and that we have seen implemented in different
(autoregressive) DVAE models. Therefore, from this viewpoint, FRAE
is strongly related to STORN, VRNN, and SRNN. The feedback con-
nection from the decoder to encoder is reminiscent of another classical
principle of source coding –closed-loop coding (Gersho and Gray, 2012)–
even though Yang et al. (2020) did not refer to it explicitly. In short,
closed-loop coding enables the decoder to use the quantized previous
data vectors in place of the unquantized ones (not available at the
decoder) for predicting the current data vector.

This line of research on nonlinear predictive coders based on DVAEs
is quite promising and is only at its infancy. As Yang et al. (2020) wrote

“There is no standard autoencoder architecture for tem-
porally correlated data that has variable-length and long
range dependencies such as video, speech, and text. The
main challenge lies in the difficulty in capturing correlation
information at different time-scales in an online/sequential
fashion.”

This agrees with the concluding remark of Chen et al. (2017):

“We believe it’s exciting to extend this principle of learning
lossy codes [of the latent variable z] to other forms of data,
in particular those that have a temporal aspect like audio
and video.”
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Appendices





A
Marginalization of h1:T in STORN

In this appendix, we present how the internal state vector sequence h1:T
can be “marginalized” in a DVAE model formulation; that is, how we
can express ht as a deterministic function of the other random variables
(and thus move from the developed form of the model to the compact
form). This is presented for the STORN model, but a similar derivation
can be obtained for the other models as well.

For conciseness, we replace here (7.1) with the generic notation
ht = fh(xt−1, zt,ht−1). From the dependencies between the different
variables, represented by the graphical model in Figure 7.1, the joint
distribution between all variables is given by

pθ(x1:T ,h1:T , z1:T ) =
T∏
t=1

pθ(xt|ht)pθ(ht|xt−1, zt,ht−1)p(zt). (A.1)

As ht is a deterministic function of xt−1, zt, and ht−1, its conditional
density is a Dirac distribution with a mode given by fh(xt−1, zt,ht−1):

pθ(ht|xt−1, zt,ht−1) = δ(ht; fh(xt−1, zt,ht−1)). (A.2)

Let us denote with d1:T the sequence h1:T considered a (deterministic)
function of x1:T and z1:T only; that is, at each time step, we have dt =
ht = ht(x1:t−1, z1:t) = fh(xt−1, zt, fh(xt−2, zt−1, ...)), with a recursive
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injection of the recurrent terms into this latter expression up to the first
term fh(x0, z1,h0). Marginalizing (A.1) with respect to h1:T leads to

pθ(x1:T , z1:T ) =
∫
RH×T

T∏
t=1

pθ(xt|ht)δ(ht; fh(xt−1, zt,ht−1))p(zt)dh1:T

(A.3)

=
T∏
t=1

pθ(xt|dt)p(zt). (A.4)

To move from (A.3) to (A.4), one can start by marginalizing over hT ,
so that hT is replaced with fh(xT−1, zT ,hT−1), and then marginalizing
over hT−1, and so on. Hereinafter, for simplification of notations, we
identify dt with ht, but we must keep in mind that when doing so, we
see ht as a deterministic function of x1:t−1 and z1:t with the recurrence
being “unfolded,” and not as a free random variable. Thus, we have

pθ(x1:T , z1:T ) =
T∏
t=1

pθ(xt|ht)p(zt) =
T∏
t=1

pθ
(
xt|ht(x1:t−1, z1:t)

)
p(zt).

(A.5)

From the above equation and (7.7), we deduce the following conditional
distribution:

pθ(x1:T |z1:T ) =
T∏
t=1

pθ(xt|ht) =
T∏
t=1

pθ
(
xt|ht(x1:t−1, z1:t)

)
. (A.6)

We insist that, in the above equations, h1:T is to be considered as the
set of vectors {ht(x1:t−1, z1:t)}Tt=1 and not as a free random variable.



B
DVAE implementation with speech data

In this section, we provide the complete specifications of the DVAE
models used in our experiments with the speech data. For each DVAE
model, we will first present the generation network (decoder) and then
the inference network (encoder). As many of the networks are MLPs, we
define a notation to refer to these architectures concisely: MLP(y, n1, f1,
. . . , nL, fL) refers to an L-layer MLP with input y, and n` and f` denote
the output dimension and the (element-wise) activation function of the
`-th layer, respectively. The possible activation functions are ReLU,
Sigmoid, hyperbolic tangent (Tanh), and linear I. This latter activation
function is always used for the last layer of the networks computing
the parameters of the random variables xt or zt, whether they are the
output of an MLP or of an RNN. Therefore, it will not be made explicit
for conciseness. For example, if we define the generative network for zt
as MLP(ht, 64, Sigmoid, 32, Sigmoid), this means that we use an MLP
with two hidden layers of dimension 64 and 32, respectively, both with
Sigmoid activation function, and an output layer of dimension 2× 16
(for mean and log-variance vectors, which are both the same size as zt)
with linear activation.
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B.1 DKF

Generation: Following Krishnan et al. (2017), we use a gated transition
function to implement dz in (3.9):

νt = MLP(zt−1, 16,ReLU, 16,Sigmoid) (B.1)
µnonlin
t = MLP(zt−1, 16,ReLU, 16, I) (B.2)
µlin
t = MLP(zt−1, 16, I) (B.3)

µθz (zt−1) = (1− νt)� µlin
t + νt � µnonlin

t (B.4)
σ2
θz (zt−1) = MLP(ReLU(µnonlin

t ), 16,Softplus), (B.5)

where � denotes element-wise multiplication. µθz (zt−1) is a gated com-
bination of a linear and a nonlinear estimate of the mean vector. The
nonlinear estimate is also used to compute the variance σ2

θz
(zt−1).

As for the generation of xt, the function dx(zt) in (3.11) is imple-
mented with an MLP(zt, 32, Tanh, 64, Tanh, 128, Tanh, 256, Tanh).

Inference: We implement the DKS inference model proposed by Kr-
ishnan et al. (2017), which follows equations (5.4)–(5.7), where (5.5)
is the combiner function shown in Figure 13.1 (a). The function e←−g
is implemented using a backward LSTM fed with an MLP(xt, 256,
Tanh). The affine function of z in (5.5) is implemented with a one-layer
MLP(zt−1, 32, Tanh), and the function ez(gt) is implemented with an
MLP(gt, 32, Tanh).

B.2 STORN

Generation: We first recall that in STORN, the prior distribution of
z1:T is an i.i.d. standard Gaussian distribution. Therefore, z1:T can be
sampled without requiring a dedicated network. As for ht, the function
dh(xt−1, zt,ht−1) in (7.4) is implemented with the concatenation of an
MLP(xt−1, 256, Tanh) and an MLP(zt, 32, Tanh, 64, Tanh) (which can
both be considered feature extractors), followed by a forward LSTM
network. As for xt, the function dx(ht) in (7.5) is implemented with an
MLP(ht, 256, Tanh).
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Inference: The function eg(xt,gt−1) in (7.15) is implemented with
an MLP(xt, 256, Tanh), followed by a forward LSTM network. The
function ez(gt) in (7.16) is implemented with an MLP(gt, 64, Tanh, 32,
Tanh).

B.3 VRNN

We recall that, unlike STORN, VRNN employs a shared RNN for
inference and generation with an internal state vector ht. Furthermore,
VRNN explicitly introduces feature extractors for xt and zt and uses the
extracted features to feed the different encoder and decoder modules.

Feature extraction: ϕx(xt) is an MLP(xt, 256, Tanh) and ϕz(zt) is
an MLP(zt, 32, Tanh, 64, Tanh).

Generation: The function dh(ϕx(xt−1), ϕz(zt−1),ht−1) in (8.1) is im-
plemented with an LSTM network with input [ϕx(xt−1), ϕz(zt−1)]. The
function dz(ht) in (8.4) is implemented by directly mapping ht to the
dimension of latent space (i.e. the output layer mentioned in the be-
ginning of this subsection). The function dx(ϕz(zt),ht) in (8.2) is also
implemented with an simple output layer.

Inference: The function ez(ϕx(xt),ht) in (8.11) is still implemented
with an output layer where the input is the concatenation of ϕx(xt)
and ht.

B.4 SRNN

We recall that, as with VRNN, SRNN shares an internal recurrent state
vector ht between the generation and inference models.

Generation: The function dh(xt−1,ht−1) in (9.1) is implemented with
an LSTM network with input MLP(xt−1, 256, Tanh). The function
dz(zt−1,ht) in (9.4) is implemented with an MLP([zt−1,ht], 64, Tanh,
32, Tanh). The function dx(zt,ht) in (9.2) is implemented with an
MLP([zt,ht], 256, Tanh).
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Inference: The function e←−g ([ht,xt],←−g t+1) in (9.10) is a backward
LSTM network with input MLP([ht,xt], 256, Tanh). The function
ez(zt−1,

←−g t) in (9.11) is an MLP([zt−1,
←−g t], 64, Tanh, 32, Tanh).

B.5 RVAE

As STORN, RVAE assumes an i.i.d. standard Gaussian prior for z1:T , so
no network is required to generate zt. We recall that RVAE has causal
and noncausal versions depending on whether the generation of xt uses
zt+1:T or not, respectively.

Generation: Regarding the causal case, the function dh(zt,ht−1) in
(10.4) is a forward LSTM network with input zt. The function dx(ht) in
(10.5) is an single output layer. For the noncausal case, the generation
of ht in (10.9)–(10.11) is implemented with a bidirectional LSTM with
the same input as in the causal case, and dx(ht) is also the same.

Inference: In the causal case, the function e−→g (zt−1,
−→g t−1) in (10.18) is

a forward LSTM network with input zt−1. The function e←−g (xt,←−g t+1) in
(10.19) is a backward LSTM network with input xt. The function ez(gt)
in (10.21) is single output layer. In the noncausal case, the function e−→g z

in (10.24) follows the same architecture as e−→g in the causal inference
model, whereas the backward LSTM e←−g x is replaced with a bidirectional
LSTM. The outputs are indicated as e−→g x and e←−g x in function (10.25)
and (10.26).

B.6 DSAE

We recall that compared to the other models, DSAE has an extra
sequence-level latent variable v. We assume that v has the same di-
mension as zt. As the total dimension of z1:T is T times that of zt,
introducing this extra latent variable v will not change the total number
of latent variables much. Therefore, we can still consider that it is fair
to compare DSAE to the other models in such a configuration. The
generation of v is not detailed in the original paper, and we assume it
follows a standard Gaussian distribution.
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Generation: The function dh(zt−1,ht−1) in (11.2) is a forward LSTM
network with a hidden layer of dimension 128. The function dz(ht) in
(11.3) is a one-layer linear network to project the dimension of ht onto
the dimension of zt. The function dx(zt,v) in (11.5) is an MLP([zt,v],
32, Tanh, 64, Tanh, 128, Tanh, 256, Tanh).

Inference: As for the inference of v, Eqs. (11.12)–(11.15) are imple-
mented with a bidirectional many-to-one LSTM network with input xt
and output gv, followed by an single output layer. As for the inference
of zt, Eqs. (11.17)–(11.19) are implemented with a bidirectional LSTM
with input [v, xt]. Finally, the function ez(gz

t ) in (11.20) is an RNN
with a hidden layer of dimension 128.1

1In Figure 13.1 (f), we plot an MLP block after xt and another one before the
BRNN to output −→g z

t and←−g z
t , whereas in the implementation we do not use them, or

they can be considered as an identity layer. We made this choice because it provides
better performance than applying several dense layers in our experiments, but we
keep the possibility to use dense layers in our open-source code.





C
DVAE implementation with 3D human motion

data

In this section, we provide the complete specifications of the DVAE
models used in our experiments with the 3D human motion data. The
notations have been defined in the previous section. We retain the
general same architectures as for the speech data, because the inputs
are still sequences of 1D vectors. Considering that the dimension of
human pose vectors is smaller than that of speech vectors (96 vs 513),
we reduce the dimension of the latent variable zt (and also v in DSAE)
to 10 and use more lightweight LSTM networks with hidden state of
dimension 64.

C.1 DKF

Generation: The gated transition function for motion data is the same
as for speech data, except that the hidden dimension for all MLP in
(B.1) - (B.5) is reduced to 10. As for the generation of xt, the function
dx(zt) in (3.11) is implemented with an MLP(zt, 32, Tanh, 64, Tanh).

Inference: Similar to the implementation for speech data, the function
e←−g is implemented using a backward LSTM fed with an MLP(xt, 64,
Tanh), the affine function of z in (5.5) is replaced with a one-layer
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MLP(zt−1, 16, Tanh) and the function ez(gt) is implemented with an
MLP(gt, 32, Tanh).

C.2 STORN

Generation: For ht, the function dh(xt−1, zt,ht−1) in (7.4) is imple-
mented with the concatenation of an MLP(xt−1, 64, Tanh) and an
MLP(zt, 32, Tanh), followed by a forward LSTM network. As for xt,
the function dx(ht) in (7.5) is the output layer.

Inference: The function eg(xt,gt−1) in (7.15) is implemented with an
MLP(xt, 64, Tanh), followed by a forward LSTM network. The function
ez(gt) in (7.16) is implemented with an MLP(gt, 32, Tanh).

C.3 VRNN

Feature extraction: ϕx(xt) is an MLP(xt, 64, Tanh) and ϕz(zt) is an
MLP(zt, 16, Tanh, 32, Tanh).

Generation: Same to speech data, the function dh(ϕx(xt−1), ϕz(zt−1),ht−1)
in (8.1) is implemented with an LSTM network with input [ϕx(xt−1), ϕz(zt−1)].
The function dz(ht) in (8.4) is implemented by directly mapping ht to
the dimension of latent space (i.e. the output layer mentioned in the
beginning of this subsection). The function dx(ϕz(zt),ht) in (8.2) is
also implemented with an simple output layer.

Inference: Same to speech data, the function ez(ϕx(xt),ht) in (8.11)
is still implemented with an output layer where the input is the con-
catenation of ϕx(xt) and ht.

C.4 SRNN

Generation: The function dh(xt−1,ht−1) in (9.1) is implemented with
an LSTM network with input MLP(xt−1, 64, Tanh). The function
dz(zt−1,ht) in (9.4) is implemented with an MLP([zt−1,ht], 32, Tanh).
The function dx(zt,ht) in (9.2) is implemented with an MLP([zt,ht],
64, Tanh).
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Inference: The function e←−g ([ht,xt],←−g t+1) in (9.10) is a backward
LSTM network with input MLP([ht,xt], 64, Tanh). The function
ez(zt−1,

←−g t) in (9.11) is an MLP([zt−1,
←−g t], 32, Tanh).

C.5 RVAE

Generation: The implementation is the same as for speech data for
both the causal case and the noncausal case, except the different dimen-
sion of the LSTM hidden state vector.

Inference: The implementation is the same as for speech data, except
the different dimension of the LSTM hidden state vector.

C.6 DSAE

Generation: The function dx(zt,v) in (11.5) is an MLP([zt,v], 32,
Tanh, 64, Tanh). The others are the same as for speech data, except
different hidden dimension of LSTM.

Inference: Same as for speech data, except different hidden dimension
of LSTM.
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