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Abstract

Polycrystal orientation mapping techniques based on full-field acquisition schemes

like X-ray Diffraction Contrast Tomography and certain other variants of 3D

X-Ray Diffraction or near-field High Energy Diffraction Microscopy enable time

efficient mapping of 3D grain microstructures. The spatial resolution obtained

with this class of monochromatic beam X-ray diffraction imaging approaches

remains typically below the ultimate spatial resolution achievable with X-ray

imaging detectors. Introducing a generalised reconstruction framework enabling

the combination of acquisitions with different detector pixel size and sample tilt

settings provide a pathway towards 3D orientation mapping with a spatial res-

olution approaching the one of state of the art X-ray imaging detector systems.

1. Introduction

Experimental capabilities to map crystal orientation and elastic strain fields

in the bulk of polycrystalline materials by means of X-ray diffraction have seen

tremendous progress over the past years. A whole portfolio of different X-

ray diffraction based techniques have reached maturity and are now routinely5

applied to a broad variety of topics in materials science covering fields like

grain coarsening [1, 2], plastic deformation [3, 4], various modes of materials

failure [5, 6, 7] and phase transformations [8, 9].

Very much like modern electron microscopes offer a variety of imaging and

diffraction modes in the same instrument, state of the art synchrotron beamlines10
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offer multi-modal X-ray characterization. In the case of the materials science

beamline at the European Synchrotron Radiation Facility this portfolio includes

phase contrast tomography (PCT) [10, 11] as a Fresnel diffraction based imag-

ing mode, diffraction contrast tomography (DCT) [12] as a Bragg diffraction

based imaging mode for mapping the grain structure in polycrystalline sample15

volumes, and Topo-tomography (TT) [13] as a Bragg diffraction based imaging

mode for mapping individual grains by rotation around one of the scattering

vectors. These techniques typically employ high resolution imaging detectors

(0.5-5 µm), whereas so-called far-field techniques like three-dimensional X-ray

diffraction (3DXRD), as well as (nano) scanning X-ray diffraction computed to-20

mography (nXRD-CT) [14] employ diffraction detectors with larger pixels (50-

200 µm). These latter techniques typically yield sufficient angular resolution

to reveal the small elastic distortions of the crystal unit cell and are therefore

often used to obtain complementary information in strained materials [15, 16]

(see also contribution by J. Wright for more details on these last two techniques25

and the Materials Science endstation ID11 at ESRF).

The data generated by imaging or diffraction modalities are usually recon-

structed independently and results are combined in a post-processing step, as

illustrated in previous studies of stress corrosion cracking [5] and fatigue crack-

ing [6, 17, 18] which captured crack propagation by repeated PCT observations30

on grain microstructures which were previously characterized by 3D grain map-

ping techniques on the same instrument and during the same experimental ses-

sion. There are, however, also first examples of combined analysis schemes for

data acquired in different diffraction modalities. For instance, grain shape recon-

structions by near-field High Energy Diffraction Microscopy (NF-HEDM) [19]35

are commonly seeded by indexing information obtained from far-field (FF-

HEDM) [20] and instrument alignment for topo-tomographic observations of

individual grains is inferred from concomitant DCT observations [21, 22].

The ultimate spatial resolution of near-field polycrystal grain mapping tech-

niques is inherently limited by the need to capture diffraction signals from a40

number of different hkl reflections. For instance, for metals with highly sym-

metric crystal structures, the X-ray imaging detector is typically positioned at

a distance such that the innermost 3 to 5 hkl families are intercepted by the
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(a) DCT (b) TT

Figure 1: Schematic representation of two instances of X-Ray Diffraction experimental setups:

(a) DCT enables 3D mapping of polycrystalline sample volumes. The sample rotation axis

z is set perpendicular to the X-ray beam x ; (x,y,z) represent the laboratory reference frame.

(b) Topotomography for high resolution mapping of individual grains: the sample is tilted

such that it can be rotated around one of the scattering vectors. The rotation axis is inclined

by the Bragg angle (requires diffractometer.)

screen, giving rise to several tens up to hundred observable diffraction blobs per

grain. In order to avoid overlaps between the transmitted and the diffracted45

beams, the footprint of the illuminated sample volume has to be kept small and

it typically does not exceed one quarter of the lateral dimensions of the detec-

tor. Consequently, in the limiting case of a single crystal, the ultimate spatial

resolution of the resulting grainmap is already compromised by a factor of four

with respect to the full resolution of the detector system. For polycrystalline50

samples containing up to ten and more grains through-thickness the spatial

sampling (number of voxels per grain) degrades accordingly and the physical

voxel size in the resulting grain map is often well below the ultimate spatial

resolution achievable with state of the art X-ray imaging detectors (see Fig. 1).

55

In order to overcome the limits in resolution dictated by the detector system,

two options exist: one can either focus the beam and switch to a 3D point scan-

ning approach like nXRD-CT [14, 23] or one can ”zoom-in” on individual grains

inside the sample volume using Dark Field X-ray Microscopy (DFXM) [24, 25].

Both methods can provide access to sub-micrometer spatial resolution which,60

neglecting instrument error motion and sample drifts, is ultimately limited by
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the performance of the X-ray optical elements. However, in both cases this gain

in spatial resolution comes at the expense of reduced temporal resolution, since

these methods imply multi-dimensional scanning procedures (see contributions

by H. Simons et al. and J. Wright et al. for more detail on these techniques).65

In this article, we propose a different strategy to improve the spatial resolu-

tion of full-field grain mapping techniques. As will be shown, the combination

of limited projection data acquired at high spatial resolution (e.g. TT scans of

individual grains or partial near-field diffraction data acquired on a high res-

olution detector covering only the innermost hkl families) with data acquired70

in the conventional setting at lower spatial resolution can result in significant

improvements in the overall reconstruction quality.

In order to enable joint reconstruction of the 3D orientation field from dis-

parate projection data (i.e. different detector positions, rotation axis, pixel

resolution and sample tilt settings) we introduce a generalization of the six-75

dimensional reconstruction framework proposed by Poulsen [26] and Viganò [27,

28]. This model builds on kinematical diffraction and we further assume that the

position, average orientation and the orientation space sub-volume occupied by

the grain are known from previous polycrystal indexing and analysis steps, not

further detailed here. In a nutshell, in addition to the regular sampling of real80

space, a regular sampling of 3D orientation space is introduced (see Fig. 2 for an

illustration of this concept). Each real space volume element (voxel) is assigned

a finite set of discrete orientations which are used to model (”probe”) the local

orientation distribution of the grain. Using three position and three orientation

space coordinates we operate in a six-dimensional position-orientation space:85

each of its elements holds a scalar quantity describing the volume fraction of

material occupied by one of the sampled orientations at one of the sampled

positions. Using such a description, the diffracted intensities b observed on the

detector can be expressed by the action of a linear forward projection operator

A on the set of unknown position-orientation space elements x as: A× x = b.90

As detailed in section 2 this equation represents a large-scale, system of linear

equations. Approximate solutions can be found using iterative tomographic op-

timization schemes based on iterative forward and back-projection operations

and exploiting prior knowledge (e.g. smoothness, non-negativity) about the
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(a) Single orientation (b) Multiple orientations

(c) Orientation in Position (d) Position in Orientation

(e) Vector projector (f) Series of 3D volume projections

Figure 2: (a) Parallel beam forward projection of a scalar volume for the case of a single

(constant) orientation in 3D-DCT, (b) Distorted projection for the case of a deformed crystal,

represented as a vector field - i.e. one distinct orientation for each real-space volume element.

Different colors represent different orientations inside the grain volume. (c) Representation of

the 6D position-orientation space as a collection of orientation sub-spaces (one per real-space

element). The presence of an orientation distribution inside the voxel gives rise to azimuthal

spread of intensity on the detector as illustrated in (e). (d) Alternative representation of the

6D position-orientation space as a collection of real-space volumes with distinct orientation.

Our iterative reconstruction code uses this representation, in which case the forward projection

corresponds to a cumulative sum of 3D volume projections as illustrated in (f). In both (c) and

(d), the 6D ’voxels’ hold a scalar quantity describing the ”scattering power” of the element.
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solution. A final processing step consists in converting the scalar 6D position-95

orientation output of the optimization algorithm back into a 3D vector field

representation (e.g. 3 Euler angles) by calculating for each voxel the average of

the 3D orientation distribution associated to it.

We now outline the structure of this article. In section 2 we present the

generalized six-dimensional mathematical framework. In section 3 we present100

and compare the results obtained on a synthetic test case for which we have sim-

ulate selected combinations of low resolution and high resolution DCT and TT

acquisitions. Some practical experimental aspects and limitations are discussed

in section 4 before we conclude the article in section 5.

2. Method105

In a typical diffraction imaging experiment, the investigated polycrystalline

sample is placed on a diffractometer, while being irradiated by a monochromatic

X-ray beam. The diffractometer allows to align the sample with a preferred ori-

entation, and it incorporates a rotation stage which enables continuous rotations

around a given axis over 2π. As the sample rotates, the Bragg condition is met110

by the different grains at specific angular positions ω, giving rise to diffracted

beams. A high-resolution detector is usually positioned downstream the sam-

ple, and when it is intersected by the diffracted beams it records 3D diffraction

“blobs” (i.e. 2D projection images showing parts of the diffracting grain, spread

over a range of adjacent ω rotation angles).115

2.1. Conventions

Each grain of the polycrystalline sample has an associated “crystal” coordi-

nate system Cc, spanned by the orthogonal basis vectors: Cc = {xc,yc, zc}. The

“laboratory” coordinate system Cl has the origin in the center of the sample,

and it is defined by the right-handed orthogonal basis vectors: Cl = {xl,yl, zl},120

where xl is oriented parallel to the incoming X-ray beam, yl lies in the horizon-

tal plane, and zl is oriented vertically. The “sample” coordinate system Cs is

oriented as the Cl coordinate system when no rotations are applied to diffrac-

tometer, aside from minor adjustments of the sample tilts. The two dimensional

“detector” coordinate system is Cd = {u,v}, where u is approximately parallel125

to yl, while v is approximately anti-parallel to zl.
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2.2. Diffraction geometry

The unitary orientation matrix g defines the orientation of the crystal co-

ordinate system with respect to the sample coordinate system. A given lattice

plane normal hc in the crystal coordinates is expressed in sample coordinates

as hs = g−1hc (defined in Appendix A). The diffractometer transformation

matrix D transforms the plane normal hs in laboratory coordinates hl = Dhs.

Given an incoming monochromatic X-ray beam along the direction b̂, and a

Bragg angle θ, we observe diffraction when the following expression is satisfied:

b̂ · hl = ± sin θ . (1)

More details can be found in Appendix B. We define η as the angle between

the following two lines over the detector: the projected sample rotation axis,

and the projection of the scattering direction d̂.130

The diffractometer transformation matrix D can be decomposed into rota-

tion and translation components. As an example, for the setup on the beamline

ID11 of the ESRF (The European Synchrotron, Grenoble, France), D is:

D = ΦφΩωRyRxT yT x , (2)

where the stages from right to left are stacked in order from top to bottom.

T x and T y are translations along the axes x and y respectively. Rx and Ry

are tilts along the axes x and y respectively. Ωω is a rotation stage around the

z-axis by the angle ω, and Φφ is another tilt around the y-axis by the angle φ,

also known as “base-tilt” (Fig. 1). The positive direction of the related angles135

follows the right-hand rule with respect to the orientation of the related rotation

axis, and the zero position is so that the sample coordinate system coincides

with the laboratory coordinate system.

2.3. DCT

DCT experiments are specific instances of the geometry defined in sec-140

tion 2.2, with base-tilt φ = 0 (Fig. 1a). The tilt stages Rx and Ry in equation (2)

are used to align one of the sample’s principal directions with the z-axis, which

is commonly the rotation axis of the Ωω rotation stage. The translation stages

T x and T y are used to bring sample center on the said z-axis. The angle ω

spans the entire range from 0 to 2π. For more details we refer to [29].145
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As the sample rotates over the z-axis by the angle ω, the different grains

reach diffraction condition, and give rise to diffracted beams, described by the

tuple (ω, 2θ, η). Correspondingly, at these ω angles we observe dimming of the

direct beam in correspondence of the position of the diffracting grains. These

shadows are called extinction spots.150

Perfectly re-crystallized grains satisfy diffraction condition at precise ω and

η positions. As they experience plastic deformation, different parts of the grain

volumes undergo rotations of the underlying crystal lattice with respect to the

average grain crystal orientation. These regions diffract at similar but different

ω and η values, causing a broadening of the diffraction blobs, especially in ω.155

Diffracted beams intersecting the detector, can be alternatively parametrized by

the tuple (ω, u, v), where (u, v) are pixel coordinates in the detector coordinate

system Cd.

In usual DCT experiments, a high resolution detector, with pixel-sizes of

1−10µm, is positioned at a distance of a few millimeters downstream the sample.160

This configuration is known as near-field, and it provides the 3D grain shape

information. In the alternative configuration known as far-field, the detector

is placed several centimeters from the sample, with pixel-sizes around 10 − 50

times larger than in the near-field configuration. This configuration provides

higher sensitivity to sub-grain level orientation changes, at the expense of spatial165

resolution.

2.4. Topo-tomography

TT experiments are also specific instances of the geometry defined in sec-

tion 2.2 (Fig. 1b), and they allow to obtain significantly higher spatial resolution

reconstructions of specific grains. The translation stages T x and T y are used170

to bring the center of the investigated grain on the z-axis. The tilt stages Rx

and Ry are used to align a chosen grain plane normal with the rotation axis of

the Ωω rotation stage (z-axis).

The angle ω spans the entire range from 0 to 2π, and the base-tilt φ spans

an even range of a few degrees around the Bragg angle θ for the chosen plane175

normal. This allows to keep the same plane normal in diffraction condition at

each ω, while having the grain center on the rotation axis eliminates (or strongly

reduces) the precession of the diffracted beam. For more details we refer to [13].
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Depending on the different local crystal orientation, different regions of the grain

volume may diffract at different φ values in the scanned range. TT blobs can be180

parametrized by the tuple (ω, φ, η), where η is close to 0, or by the alternative

parametrization (ω, φ, u, v).

2.5. Projection model

A six-dimensional model for the reconstruction of sub-grain crystal orien-

tation from near-field DCT data was introduced in [27], and further developed185

in [28, 30]. It is based on [31], and it introduces a discrete sampling of the local

orientation space centered around each grain average orientation. The grain re-

construction space X6 = R3⊗O3 is the outer product of the Cartesian position

space and the three-dimensional Rodrigues orientation space O3 ⊆ R3 [32, 33].

This model neglects any elastic distortion of the crystal unit cell, which in the190

case of ductile metals is typically ≤ 1%. It also assumes kinematic diffraction

and it neglects any physical correction, like photoelectric absorption and ex-

tinction effects. The position and orientation spaces of each reconstruction are

defined along sample coordinates Cs. Thus, given the Rodriguez orientation

coordinates system Co = {xo,yo, zo}, displacements along the axes xo, yo, and195

zo identify rotations around the axis xs, ys, zs, respectively.

In our six-dimensional model, the “forward projection” operation projects

each of the 6D volume elements along its diffracted beam direction to the detec-

tor unit-areas (pixels). A graphical illustration of this projection operation and

two alternative representations of the 6D position-orientation space are provided200

inFig. 2.

The adjoint operation is the “back-projection”. They are derived in Ap-

pendix C, and they are defined respectively as:

B′(h,k,l)(u, v, φ, ω) =

∫
ΩR,O

X(r,o) I(u, v, φ, ω, r,o)C(h,k,l) drdo , (3)

X ′(r,o) =

∫
ΩD

B(h,k,l)(u, v, φ, ω) I(u, v, φ, ω, r,o)C(h,k,l) dudvdφdω , (4)

where the function X(r,o) ∈ S(R6) : X6 7→ [0, 1] ⊂ R is a scalar six-dimensional

function that gives the local mass fraction of the orientation o in the point r,

the constant C(h,k,l) is the scattering intensity per unit volume of the lattice

plane (h, k, l) and given material, B′(h,k,l)(u, v, ω) ∈ S(R3) : R3 7→ R is the205
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scalar three-dimensional function representing the produced blob, and ΩR,O is

the support of the function X(r,o) in the X6 = R3 ⊗O3 reconstruction space.

If we suppose that in each position-space point, only one orientation is active,

we can compress the six-dimensional scalar function X (r,o) ∈ S(R6) : X6 7→

R into a three-dimensional four-components vector function X (r) ∈ V4(R3) :210

R3 7→ R4. Its most straight-forward representation is given by the local mass

fraction f ∈ S(R3) : R3 7→ [0, 1] ⊂ R as zeroth component, and the active

orientation o as the remaining three components. Transformations allowing to

obtain and work with this representation are presented in Appendix D.

2.6. Reconstruction formulation215

Each sampled point in the orientation space has a fixed projection geome-

try. If we discretize the position-orientation space and the detector positions

(u, b, φ, ω), equation (3) becomes:

B′(h,k,l)(u, v, φ, ω) =

R∑
i=0

P∑
j=0

X(ri, op) I(u, v, φ, ω, ri, op)C(h,k,l) , (5)

where R and P are the total number of sampled points in position and orienta-

tion space, respectively. The matrix representation of equation (5) is:

bm =
(
Am1 Am2 · · · AmP

)


x1

x2

...

xP

 , (6)

where the index m indicates the given blob, the vector bm is its discretization,

the vectors xp, with p ∈ [1, P ] ⊂ N, are the three-dimensional volumes asso-

ciated to each sampled orientation, and the corresponding matrices Amp are

the projection matrices for the given blob m and orientation p. The collection

of projection matrices Amp for a fixed m is the discretization of the integral

forward projection operator A(h,k,l). The transpose of this collection is the dis-

cretization of the integral back-projection operator A†(h,k,l) from Appendix C.

Given M total acquired diffraction blobs for a given grain in a generic acquisition
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scheme, the resulting forward model is:

b =


b1

b2

...

bM

 =


A11 · · · A1P

...
. . .

...

AM1 · · · AMP




x1

x2

...

xP

 , (7)

where the vectors bm, with m ∈ [1,M ] ⊂ N, form the collection of all the

recorded blobs.

In [27] we proposed to solve the inverse problem in equation (7) by minimiz-

ing the l2-norm of the residual over the detector:

x∗ = argmin
x

{
||Ax− b||22 + λ|| (Ox) ||1

}
(8)

subject to: x ≥ 0 ,

where the operator O produces a representation in which we know a priori that

the expected reconstruction has a sparse representation. Popular choices for

the operator O are the Total Variation [34] and the wavelet transform [35]. For220

the solution of equation (8) many algorithms can be used, including: estab-

lished interior-point methods [36], and more recent approaches like Chambolle-

Pock [37]. Due to the generality of equation (7), the formulation in equation (8)

is trivially applicable to both DCT and TT reconstructions.

This can be generalized to:

x∗ = argmin
x

{∑
i

γi||Aix− bi||22 + λ|| (Ox) ||1

}
(9)

subject to: x ≥ 0 ,

where the values γi are weighting factors, and i is the index of the considered225

acquisition. This allows to use multiple types of acquisitions, including: near-

field and far-field DCT, and TT acquisitions.

3. Numerical examples

We now show the application of the method introduced in section 2 for a

single grain. We use synthetic data because it allows to test the reconstruction230

performance against the known ground truth. The results obtained on a single
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grain are representative for polycrystalline sample volumes provided diffraction

spot overlap on the detector remains limited.

3.1. Data description

We present a single-grain reconstruction, where the simulated material is Ti235

(hcp unit-cell), and the grain has cubic shape. The size of the simulated grain is

50µm× 50µm× 50µm, divided in 250× 250× 250 cubic unit-volumes (voxels)

with edge sizes of 0.2µm. The orientation-space bounding box of the grain

orientation distribution function (ODF) is 0.489◦×0.506◦×0.514◦ large, with a

maximum orientation spread of 0.8◦. The deformation presents itself in the form240

of mosaicity and small-scale variations, with some strong deformation gradients

close to the sub-grain boundaries. For more details on the synthetic grain we

refer to Appendix F. The ground truth is defined using the vector representation

discussed in section 2.5, and the diffraction images are simulated using a discrete

implementation of equation (D.3), which was derived in Appendix C. Each245

reconstruction is also projected onto the vector representation, for comparison

against the ground truth.

We generated three different types of acquisitions for an incoming beam of

energy equal to 36 keV: [A] a DCT acquisition, with a flat detector at 10 mm

from the sample and 2.5 µm pixel-size; [B] a TT acquisition on the [0 0 0 2]250

lattice plane, with a flat detector at 6 mm from the sample, and 0.75 µm pixel-

size; [C] a DCT acquisition on a flat detector at 6 mm from the sample and

0.75 µm pixel-size, with a lateral displacement that allowed to image only the

reflections on one side of the sample. All the DCT acquisitions use steps in

ω of 0.1 degrees, while the TT acquisition has base-tilt range [−6,−2] degrees255

in steps of 0.05 degrees, and steps in ω of 4 degrees. For acquisition [A] we

only used 60 diffraction blobs, out of its 96 falling onto the 2048 × 2048 pixels

detector, while for acquisition [C] we used all the 30 blobs falling on the detector.

For acquisition [B] we used all the 90 blobs resulting from a 360 degrees scan.

The reconstructions were performed at 0.05 degrees orientation-space resolu-260

tion, using the 6D Chambolle-Pock isotropic TV-min implementation from [38],

already used in [39], with weight λ = 1× 10−4, and 100 iterations.

To analyze and compare the performance of the different reconstructions

we use the same slice in the XY plane of the grain 3D position-space volume.
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This slice is close to the central slice of the volume, and it was chosen because265

it presents multiple sub-grains. For the said slice we present the shape of the

reconstructed intensity profile, and the local orientation space reconstruction

error against the ground truth.

3.2. TT orientation reconstruction

We first apply the method described in section 2 to the reconstruction of TT270

data from deformed grains. This allows the extension of existing 3-dimensional

reconstruction techniques, for increasing grain deformation. TT acquisitions

are not sensitive to the orientation components parallel to the lattice plane

aligned with the rotation axis (for more information refer to Appendix E).

Thus, TT reconstructions are intrinsically 5-dimensional (3D position-space plus275

2D orientation-space), because their data only allows to reconstruct orientation

variations along such plane.

Figure 3 shows that for this example, the traditional 3D reconstruction meth-

ods provide an incorrect reconstruction, while the presented method retrieves

the overall grain shape correctly. The red line in Fig. 3 indicates the expected280

grain boundary from automatic segmentation of the phantom, while the the

green line defines the actually segmented grain boundary from the reconstructed

volume. Concerning the grain shape reconstruction for the presented method,

only the grain boundaries with abrupt changes in orientation provide a decrease

in reconstruction quality and accuracy. This is confirmed by Fig. 3(d), where285

the local orientation reconstruction error (in the XY orientation components)

is plotted: The grain boundaries present the highest reconstruction error. The

effect of the TT insensitivity to orientation changes along the selected plane

normal is clearly visible in Fig. 3(e). There the local 3D orientation (XYZ

in orientation-space) reconstruction error is plotted, and it shows much larger290

deviations than in Fig. 3(e).

3.3. Combining DCT and TT

TT acquisitions allow high-resolution position and orientation-space infor-

mation to be acquired, but lack the ability to index grains or probe the orien-

tation space component parallel to the sample rotation axis. DCT acquisitions295
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(a) Phantom shape (b) 3D reconstruction (c) 5D reconstruction

(d) 2D orientation error (e) 3D orientation error

Figure 3: Reconstruction of TT data of the deformed grains using our method: (a) Phan-

tom; (b) Single orientation, 3D TT reconstruction (3D position-space); (c) 0.05 orientation

space resolution 5D TT reconstruction (3D position-space + 2D orientation-space); (d) Local

orientation reconstruction error for (c) in the orientation XY plane; (e) Local orientation re-

construction error for (c) with respect to the full orientation space. The largest component

of the error in (e) is due to the inability of TT to probe orientation changes along the chosen

lattice plane normal (in this case, parallel to the sample z-axis). (d) is the projection of (e)

on the 2D orientation-space of the reconstruction. The red line is the expected grain profile

from the segmentation of the phantom, while the green line is the actual profile from the

segmentation of the reconstruction

.
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(a) [A] at 2.5 µm (b) [A] at 0.75 µm (c) [A B] at 0.75 µm

Figure 4: Comparison of reconstruction performance at different position-space resolutions

for different setup configurations. The top row shows grain shape reconstructions, while the

bottom row shows the corresponding local orientation reconstruction error. The columns are:

(a) DCT [A] with 60 blobs acquired at 2.5 µm pixel-size, reconstructed at 2.5 µm voxel size;

(b) DCT [A] with 60 blobs acquired at 2.5 µm pixel-size, reconstructed at 0.75 µm voxel size;

(c) DCT [A] with 60 blobs acquired at 2.5 µm pixel-size and TT [B] with 90 blobs acquired

at 0.75 µm pixel-size, reconstructed at 0.75 µm voxel size.

present complementary characteristics to TT acquisitions. Moreover, DCT of-

fers higher sensitivity to deformations along the z-axis, and TT higher sensitivity

on the plane parallel to the selected plane normal, which is usually close to the

sample XY-plane (for more information we refer to Appendix E). This renders

them a perfect match for the multi-modal reconstructions made possible by the300

method presented in this article.

Figure 4 demonstrates that by combining DCT acquisitions with higher res-

olution TT acquisitions, it is possible to obtain a high resolution grain recon-

struction in both spatial and orientation components. The first column in Fig. 4

presents the low resolution DCT acquisition [A] reconstructed at its native 2.5305

µm voxel-size. The second column presents the reconstruction of the same

dataset at a markedly higher position-space resolution of 0.75 µm voxel-size.

From its shape reconstruction in the top row, we see that the reconstruction
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is blurred. This is reflected in the corresponding local orientation error map,

which shows that it fails to accurately reconstruct the local orientation, espe-310

cially at sub-grain boundary regions. In Fig. 4(c) we see that by joining the

low resolution DCT acquisition [A] with the 0.75 µm pixel-size TT acquisition

[B], we obtain a much higher resolution reconstruction both in position and

orientation space.

3.4. Combining DCT scans of different pixel-size315

While the previous example shows that TT acquisitions can be used to

greatly enhance DCT resolution and accuracy, it is not possible to perform

TT acquisitions for all the grains in a dataset during a single experiment, when

a sample contains thousands of grains. The presented method however, allows

to complement low resolution DCT acquisitions with diffraction blobs from high320

resolution DCT acquisitions. The collected high resolution blobs from a high

resolution DCT acquisition would be much fewer in a typical TT acquisition.

They would however be able to offer the same spatial resolution, and for all the

grains in a single additional acquisition.

Figure 5, similarly to Fig. 4, compares reconstructions from just the low325

resolution DCT acquisition [A], at 2.5 and 0.75 µm position-space resolutions

against the combined low resolution [A] and high resolution [C] DCT acquisi-

tions. While the improvement for the configuration [A C] over the reconstruction

only using low resolution data is less substantial than in the [A B] configuration

(low resolution DCT combined with TT), it is visible and measurable. This can330

be seen both in the shape reconstruction in the top row of Fig. 5(c), and in the

corresponding local orientation reconstruction error in the bottom row.

3.5. Performance quantification

The observations obtained from the reconstructions presented in the previ-

ous two sections are supported by the error histogram plots of the whole recon-335

structed volume. Figure 6 shows the comparison between the reconstruction

error histograms of the following three configurations: [A] DCT acquisition at

2.5 µm, [AB] DCT acquisition at 2.5 µm combined with TT acquisition at 0.75

µm, [AC] DCT acquisition at 2.5 µm combined with DCT acquisition at 0.75

µm, all reconstructed at 0.75 µm. While for the first configuration the average340
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(a) [A] at 2.5 µm (b) [A] at 0.75 µm (c) [A C] at 0.75 µm

Figure 5: Comparison of reconstruction performance at different position-space resolutions

for different setup configurations. The top row shows grain shape reconstructions, while the

bottom row shows the corresponding local orientation reconstruction error. The columns are:

(a) DCT [A] with 60 blobs acquired at 2.5 µm pixel-size, reconstructed at 2.5 µm voxel size;

(b) DCT [A] with 60 blobs acquired at 2.5 µm pixel-size, reconstructed at 0.75 µm voxel size;

(c) DCT [A] with 60 blobs acquired at 2.5 µm pixel-size and DCT [C] with 30 blobs acquired

at 0.75 µm pixel-size, reconstructed at 0.75 µm voxel size.
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(a) Orientation (b) Intensity

Figure 6: Local reconstruction error histograms for: (a) Orientation (linear scale); (b) Inten-

sity (logarithmic scale). The red line marks the distribution mean value, the orange histograms

the upper 20 percentile of the distribution, and the green histogram the mode of the distribu-

tion. In (a) the orange line marks the orientation-space reconstruction resolution. The three

configurations correspond to: [A] DCT acquisition at 2.5 µm, [AB] DCT acquisition at 2.5

µm combined with TT acquisition at 0.75 µm, [AC] DCT acquisition at 2.5 µm combined

with DCT acquisition at 0.75 µm, respectively.

local orientation reconstruction error is 0.016 degrees, for the second and the

third it decreases to 0.0075 and 0.012 degrees respectively.

The local material concentration is the material mass fraction multiplied by

its density and the single voxel volume. Its reconstruction accuracy is repre-

sented by the local reconstructed total intensity through-out all the sampled345

orientations. The first configuration is affected by an average error of 4.233 over

an expected intensity of ∼ 52.734, while the second and third are affected by

average deviations of 1.998 and 2.641 respectively.

These plots confirm that the coupling of low spatial resolution DCT with

high resolution TT or DCT can significantly increase both the orientation-350

space and position-space reconstruction accuracy. Moreover, from Fig. 6 we

can clearly notice a strong reduction on the outliers of the distributions.

The reconstruction resolution can be estimated as the size of the blur kernel

that when convolved with the phantom has the least difference from the recon-

struction. This estimation assumes perfect reconstructions (artifact free), and it355

is inherently an approximation. Here we assume sphere type of blur because the

detector images are not affected by a point spread function. For the presented
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three configurations [A], [A B], and [A C], we obtained blur radii of: 4.48, 1.71,

and 2.74 pixels respectively.

4. Discussion360

4.1. Experimental considerations

The combined acquisition schemes proposed in the current article involve

experiments with two different effective pixel sizes. Detector systems featuring

a motorized microscope objective turret offer the possibility to integrate such re-

mote control changes of the optical configuration into fully automated scanning365

sequences without need for human intervention. In the case of TT, the center-

ing of the grain of interest on the rotation axis not only leads to the stationary

position of the diffracted beam, required for the deployment of a high resolution

detector system, but also allows for a significant reduction of the scan times,

since the incoming X-ray beam can be condensed onto the projected area of the370

grain. In the case of ID11 this type of dynamic focusing can be achieved using a

modular system of compound refractive lenses, also known as X-ray transfoca-

tor [40]. Although in our simulation the combination of DCT and TT show the

biggest improvement in terms of spatial resolution and orientation error, prac-

tical limitations may arise from the limited sample goniometer tilt range and375

diffractometer error motion. With typical sample tilt ranges of order of ±20◦ it

may not be possible to align one of the low index reflections for unfavourably

oriented grains. Similarly, in order to obtain a spatial resolution comparable to

the detector pixel size the mechanical error motion of the scanned diffractometer

axis has to be of the same order as the pixel size. While this condition is usually380

fulfilled for modern airbearing rotation stages deployed in tomographic imaging

applications, it may not hold for all of the axes of conventional diffractometers.

Correction schemes based on a look-up table for the reproducible part of this

error motion and additional optimization schemes for projection re-alignment

may thus be required to reach the ultimate resolution.385

The framework introduced in this article can be applied to other combina-

tions of acquisitions, including high resolution DCT scans at different energy

and/or sample tilt settings to compensate for the limited number of diffraction

spots intercepted by the detector. Alternatively, TT acquisition from several
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scattering vectors and/or at different sample to detector distances can be com-390

bined to further increase the sensitivity and to push the spatial resolution of

this technique towards the limits set by current detector technology.

4.2. Data collection efficiency and limitations

The proposed combination(s) of low resolution and high resolution DCT

and TT scans are based on fast (extended beam, single axis) continuous scan395

acquisitions and for that reason highly time efficient. Further optimization

of time efficiency can be achieved using a 3D detector concept based on two

semi-transparent scintillator screens placed at different distance and enabling

simultaneous acquisition of projection images with a different effective pixel

size, as proposed by Poulsen and co-workers [41]. The use of such a system400

suppresses the need for a second acquisition and would be ideally suited for

(non-interrupted) in-situ observations on slowly evolving 3D microstructures.

We further emphasize that extended beam acquisition schemes intrinsically

provide isotroptic voxel-resolution in three dimensions as opposed to slice beam

acquisition schemes, which often use a coarser step size in the stacking direc-405

tion in order to reduce the overall acquisition time when scanning extended

3D sample volumes. On the other hand, the full-field approaches described in

this study are subject to the known limitations inherent to diffraction spot seg-

mentation and indexing based, inverse reconstruction schemes. Compared to

forward modeling based reconstruction [19], more stringent restrictions apply410

on the maximum number of simultaneously illuminated grains in the sample

volume, the maximum acceptable intragranular orientation spread and sample

texture (see [29]).

5. Conclusions and outlook

The work presented in this article introduces a generalization of tomographic415

reconstruction algorithms for 3D orientation mapping in polycrystalline materi-

als. The generalized reconstruction scheme can handle arbitrary combinations

of projection data, stemming from acquisitions with different detector pixel size

and sample tilt settings. With the introduction of appropriate diffractometer
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transformation matrices, the scattering geometry for acquisitions around dif-420

ferent diffractometer axis can be unified and described in a common sample

reference frame. The reconstruction of the orientation field is based on the as-

sumption of kinematic diffraction and uses an iterative optimization algorithm,

minimizing the projection distance between the current solution and the ob-

served diffraction intensities recorded on the detector [30]. As demonstrated on425

synthetic test data, the combination of a limited amount of high spatial res-

olution projections (i.e. limited data from rotation around a single scattering

vector like in TT, or a limited amount of low index reflections from a high res-

olution DCT scan) and conventional DCT data (acquired at the appropriate

detector resolution to cover the innermost 3-5 hkl families) result in a mea-430

surable improvement of the reconstruction quality compared to the individual

acquisitions. The sequential combination of two fast (full-field) acquisitions

offers a time efficient alternative to other 3DXRD techniques based on two

and three-dimensional scanning schemes. Concerning potential applications we

highlight two scientific areas where the increased spatial and angular resolu-435

tion could be particularly beneficial: (1) time-lapse studies of curvature driven

grain coarsening require access to accurate grain boundary positions and will

benefit from the combination of low resolution and high resolution DCT acquisi-

tions; (2) studies of strain localization and propagation of plasticity throughout

a polycrystalline microstructure require ultimate spatial and angular resolution440

in order to capture subtle variations of the orientation field in vicinity of slip

bands. The proposed combination of DCT and TT may enable in-situ ob-

servation of early stages of plastic deformation in the bulk of polycrystalline

sample volumes. The generalized diffraction geometry introduced in this work

can be readily extended to other diffraction imaging techniques (laboratory X-445

rays, neutrons, X-ray Dark Field Microscopy) and may also prove beneficial for

forward modeling based reconstruction schemes [19].
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Appendix A. Basis vectors

Given a three-dimensional crystal lattice described by the basis vectors a, b455

and c, defined in the crystal coordinate system Cc, the crystal unit cell is the

minimal space spanned by these vectors. The vectors a∗, b∗ and c∗, are the

reciprocal vectors of a, b and c. The space spanned by the vectors a∗, b∗ and

c∗ is called reciprocal (Fourier) space, and they define the se-called reciprocal

lattice [42].460

Diffraction is observed when the difference between an incoming X-ray beam

wave-vector kin and an observed outgoing X-ray wave-vector kout is close to a

point on the reciprocal lattice. This means that hhkl = kin − kout and that

hhkl = (ha∗, kb∗, lc∗)T , where h, k, l ∈ Z are the Miller indexes. The lattice

plane corresponding to the vector hhkl is identified by the plane normal hc =465

Bhhkl. The matrix B is an upper triangular matrix that transforms vectors

from reciprocal space into vectors of the real space. More details can be found

in [43].

Appendix B. Diffraction conditions

For a given lattice plane normal hc in the crystal coordinates, it is expressed

in sample coordinates as hs = g−1hc. The diffractometer transformation matrix

D transforms the plane normal hs in laboratory coordinates hl = Dhs. Given

an incoming monochromatic X-ray beam along the direction of the vector b̂,

and a Bragg angle θ, we observe diffraction when the following expression is

satisfied:

b̂ · hl = b̂TDg−1B


h

k

l

 = ± sin θ . (B.1)

The observed diffracted beam is defined through the parallelogram law of vector470

addition as d̂ = b̂ + 2hl(b̂
Thl).
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The vectors hl and d̂ can be re-written in terms of the angles (θ, η):

hl =


− cos θ tan θ

− cos θ sin η

cos θ cos η

 , d̂ =


cos 2θ

− sin 2θ sin η

cos 2θ cos η

 , (B.2)

where 2θ is the angle between b̂ and d̂, and b̂ = (1, 0, 0)T .

Appendix C. Derivation of projection equations

We define the center of detector coordinates in the laboratory coordinate

system by the vector sl, so that a given the position in detector coordinates

(u, v) is equal to the following in laboratory coordinates:

pl(u, v) = sl +
(
u v

)u
v

 . (C.1)

In DCT reconstructions, grain are conveniently reconstructed in sample coor-

dinates, and have origin in the grain center, The given detector pixel position

(u, v) in sample coordinates for a given ω is:

ps(u, v, ω) = D−1
DCT(ω) · pl − cs , (C.2)

where cs is the grain center in sample coordinates, and the diffractometer trans-

formation DDCT is a function of ω. The direction of the scattered beam d̂(h,k,l),l,

abbreviated to d̂l for convenience, is a function of the local crystal lattice ori-

entation o:

d̂l(ω,o) = b̂l + 2
(
b̂Tl · hl(ω,o)

)
hl(ω,o) , (C.3)

where hl(ω,o) = DDCT(ω) · hs(o). The scattered beam direction d̂s(ω,o) in

sample coordinates is:

d̂s(ω,o) = D−1
DCT(ω) · d̂l(ω,o)

= D−1
DCT(ω) ·

(
b̂l + 2

(
b̂Tl ·DDCT(ω) · hs(o)

)
DDCT(ω) · hs(o)

)
= D−1

DCT(ω) · b̂l + 2

((
D−1

DCT(ω) · b̂l

)T
· hs(o)

)
hs(o)

= b̂s(ω) + 2
(
b̂s(ω)T · hs(o)

)
hs(o) , (C.4)
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where b̂s(ω) = D−1
DCT(ω)b̂l.

If we now define the detector pixel position (u, v) with respect to a certain

position in the grain volume r, as ps(u, v, ω, r) = ps(u, v, ω)− r, we can define

the DCT intensity deposition function in the point (u, v) of the detector from a

point r in the grain volume, with orientation o, as:

I(u, v, ω, r,o) = δ
(
ps(u, v, ω, r)− d̂s(ω,o)

(
ps(u, v, ω, r)T · d̂s(ω,o)

))
, (C.5)

where the function δ (·) is Dirac delta. Using equation (C.5), the intensity

deposition in the detector pixel (u, v, ω) from the whole grain volume, with

respect to the sampled region of the orientation space, is:

B′(h,k,l)(u, v, ω) =

∫
ΩR,O

I(u, v, ω, r,o)X(r,o)C(h,k,l) drdo

=

∫
ΩR,O

δ
(
ps(u, v, ω, r)− d̂s(ω,o)

(
ps(u, v, ω, r)T · d̂s(ω,o)

))
× X(r,o)C(h,k,l) drdo , (C.6)

where the function X(r,o) ∈ S(R6) : X6 7→ [0, 1] ⊂ R is a scalar six-dimensional475

function that gives the local mass fraction of the orientation o in the point r,

the constant C(h,k,l) is the scattering intensity per unit volume of the lattice

plane (h, k, l) and given material, B′(h,k,l)(u, v, ω) ∈ S(R3) : R3 7→ R is the

scalar three-dimensional function representing the produced blob, and ΩR,O is

the support of the function X(r,o) in the X6 = R3 ⊗O3 reconstruction space.480

The corresponding back-projection operation to the forward projection in

equation (C.6), for the given point r and orientation o from the blobB(h,k,l)(u, v, ω)

can be defined as:

X ′(r,o) =

∫
ΩD

I(u, v, ω, r,o)B(h,k,l)(u, v, ω)C(h,k,l) dudvdω

=

∫
ΩD

δ
(
ps(u, v, ω, r)− d̂s(ω,o)

(
ps(u, v, ω, r)T · d̂s(ω,o)

))
× B(h,k,l)(u, v, ω)C(h,k,l) dudvdω , (C.7)

where now X ′(r,o) is the back-projected intensity, and ΩD is the support of the

blob function B(u, v, ω)(h,k,l).

Equations (C.6) and (C.7) can be further generalized, by considering them as

the application of the integral forward-projection operator ADCT,(h,k,l) [· (r,o)] (u, v, ω) :
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S(R6) 7→ S(R3) (which we call ADCT,(h,k,l) (u, v, ω; r,o) with a small abuse of

notation) to the function X (r,o), and the application of its adjoint, the integral

back-projection operator A†DCT,(h,k,l) [· (u, v, ω)] (r,o) : S(R3) 7→ S(R6) (which

we call A†DCT,(h,k,l) (r,o;u, v, ω), again with a small abuse of notation), to the

function B(u, v, ω). The equivalents of operators ADCT,(h,k,l) and A†DCT,(h,k,l)

for a generic transformation D that accepts φ values (different from 0) become

A(h,k,l) [· (r,o)] (u, v, φ, ω) : R3⊗O3 7→ R4 and A†(h,k,l) [· (u, v, φ, ω)] (r,o) : R4 7→

R3⊗O3 respectively. The point-wise intensity function from equation (C.5) be-

comes:

I(u, v, φ, ω, r,o) = δ
(
ps(u, v, φ, ω, r)− d̂s(φ, ω,o)

(
ps(u, v, φ, ω, r)T · d̂s(φ, ω,o)

))
,

(C.8)

with: d̂s(φ, ω,o) = b̂s(φ, ω)+2
(
b̂s(φ, ω)T · hs(o)

)
hs(o), and b̂s(φ, ω) = D−1(φ, ω)b̂l

where now we use the generic diffractometer transformation matrix D(φ, ω).

The resulting generic versions of equations (C.6) and (C.7) are the equations (3)485

and (4) presented in section 2.5.

Operators A(h,k,l) and A†(h,k,l) suggest that adapting equations (3) and (4)

to the TT projection geometry is trivial. The only caveat is that in one TT

acquisition, we always look at the same lattice plane (h, k, l), and that we use

the convention of grouping blobs in φ, while we separate them in ω. The TT

versions of equations (3) and (4) can then be respectively derived as:

B′(h,k,l),ω(u, v, φ) =

∫
ΩR,O

X(r,o) Iω(u, v, φ, r,o)C(h,k,l) drdo , (C.9)

X ′(r,o) =

∫
ΩD,ω

B(h,k,l),ω(u, v, φ) Iω(u, v, φ, r,o)C(h,k,l) dudv , (C.10)

where the subscript ω indicates the fixed point in ω, and ΩD,ω is the support of

the function B(h,k,l),ω(u, v, φ) for the said fixed ω.

Appendix D. More on alternative representations

This representation comes quite naturally from the joint use of Rodriguez490

space and the local mass fraction scalar function f . Another representation is

based on unit quaternions for representing orientations, where the quaternions

are multiplied by the mass fraction f . This other representation offers two
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advantages over the previous representation: the space of the unit quaternions is

isochoric (the density of the space is constant everywhere) [32], and for fractions495

f = 0 the representation is well behaved. In the first representation instead, the

three orientation components are undefined for f = 0. Here, we prefer the first

representation, because it leads to a simple definition of useful utility functions.

We split the vector function X (r) into the couple of functions O (r) ∈

V3(R3) : R3 7→ O3 ⊆ R3 and the previously defined f (r) ∈ S(R3) : R3 7→ [0, 1] ⊂

R. We obtain f using the “sum” operator S [· (r,o)] (r) : S(X6) 7→ S(R3), de-

fined as:

f(r) = S [X (r,o)] (r) =

∫
ΩO

X (r,o) do . (D.1)

We obtain O with the “mean” operator M [· (r,o)] (r) : S(X6) 7→ V3(R3), defined

as:

O(r) = M [X (r,o)] (r) =

∫
ΩO

oX (r,o) do∫
ΩO

X (r,o) do
. (D.2)

We can now rewrite the forward projection operator as the following:

B′(h,k,l)(u, v, φ, ω) =

∫
ΩR

f(r) I(u, v, φ, ω, r,O (r))C(h,k,l) dr , (D.3)

where now we only integrate over the position-space, whose support is ΩR. In

the same style of section 2.6, we can now write the matrix-vector representation500

of equation (D.3) as bm = Am (x) x, where now the forward projection matrix

depends on the solution vector x.

Appendix E. Orientation space sensitivity

Given a one-dimensional line beam, each crystal lattice plane can be seen as

a selective mirror that reflects only at certain incidence angles (Bragg angles).505

As a consequence, any rotation of the incidence beam around the plane normal

is allowed. Moreover, if we only allow for deformation as rotations of the crystal

(no elastic distortion of the unit-cell), then for a given plane normal in diffraction

condition at (θ, φ, ω, η), we can only observe changes in φ, ω and η as the result

of deformation (Bragg angles θ remain the same).510

Each experimental setup offers different reconstruction sensitivities for cer-

tain directions along the coordinates of the orientation space, with respect to
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changes in φ, ω and η on the blobs. This means that crystal rotations along

certain directions in the sample coordinates can be more precisely determined

using specific subsets of all the possible techniques. Here, we use simple argu-515

ments to give a basic understanding of this mechanism in the specific case of

DCT and TT, while a more in depth and quantitative analysis is beyond the

scope of this article.

In a DCT experiment, we can only observe changes in the data along ω

and η. Sub-blob deviations in ω mainly correspond to rotations of the lattice520

around the sample z-axis (zs), which corresponds to deviations in the z di-

rection of the Rodrigues orientation space. Sub-blob deviations in η, instead,

correspond mainly to rotations of the lattice around either the x-axis or the

y-axis, depending on the ω at which they are observed. In fact, for a detector

positioned perfectly perpendicular to the sample x-axis, as seen in section 2.2,525

the η angle is defined for rotations along such axis. This is valid for ω = zπ,

with z ∈ Z. When the sample is rotated by ω = (z + 1/2)π, with z ∈ Z, η is

defined for rotations around the y-axis.

In a TT experiment, we can only observe changes along φ and η. For what

concerns η changes, the same considerations of the DCT setup also apply to the530

TT geometry, for diffractometer sample tilts Rx and Ry equal or very close to

0. Also for what concerns φ, which is aligned with the sample y-axis, the same

considerations hold, but with an additional rotation around ω by π/2. This

means that φ changes relate to deformations along the y-axis for ω = zπ, and

along the x-axis for ω = (z + 1/2)π, with z ∈ Z. In this case, different values535

of ω correspond to rotations around the selected plane normal, which does not

provide additional information. For non negligible diffractometer sample tilts,

the XY -plane in the sample coordinates is also tilted by the same Rx and Ry

rotations. This means that η and φ changes correspond to deformations over

the orientation space plane that is perpendicular to the selected plane normal.540

Due to the limited range of motion of the Rx and Ry tilt stages (on a typical

instrument ∼ 10− 20◦), this plane is always relatively close to the XY -plane in

the sample coordinates.

In near-field experiments, however, η intermixes on the detector with the

spatial coordinates. As a result, it is harder to resolve orientation changes from545
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η. Changes along ω for DCT experiments, and along φ for TT experiments,

provide instead higher quality information, because they are not affected by

the same problem. This means that DCT is more sensitive to deformations

along the z-axis, while TT is more sensitive to deformations on a plane close to

the XY -plane. For this reason, combining the two techniques can prove very550

beneficial to obtain higher quality and accuracy determination of the sub-grain

crystal orientation.

Appendix F. Synthetic grain description

The synthetic grain used in section 3 is rendered in Fig. F.7(a), and it is

composed of nine sub-grains. The sub-grains have an average grain bounding555

box diagonal of 50 µm, made exception for the central grain, whose diagonal is

∼ 82 µm. We present the plot of the kernel average misorientation (KAM) for

the selected slice in Fig. F.7(b), and the intra-granular misorientation (IGM) in

Fig. F.7(c). From Fig. F.7(b) we see that the strongest gradients of orientation

can exceed 0.2 degrees over the length of one reconstruction voxel (0.75 µm),560

while in the selected slice the maximum misorientation from the central grain

is around 0.3 degrees.

An isosurface of the synthetic grain orientation distribution function is pre-

sented in Fig. F.8, where the central sub-grain of Fig. F.7 has been highlighted

by a red circle and a red arrow. Fig. F.8 shows the aforementioned division of565

the grain into a set of nine distinct sub-grains. Each of these sub-grains show

small scale orientation variations (a few hundredths of a degree) due to the

presence of orientation gradients
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(a) Phantom 3D shape

(b) Phantom KAM (c) Phantom IGM

Figure F.7: Synthetic grain summary representation: (a) 3D rendering of the synthetic grain,

where the black horizontal slice indicates the slice used throughout section 3 for comparing

the different methods; (b) the phantom kernel average misorientation in the said slice; (c) the

intra-granular misorientation with respect to the central sub-grain in the said slice.
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