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Manipulation in Majoritarian Goal-based Voting

Dans le vote par buts les agents s'expriment sur des questions binaires grâce à des formules de logique propositionnelle. Les buts individuels sont agrégés par une fonction qui calcule la décision collective comme un ensemble d'évaluations. Avoir des agents motivés par des buts individuels amène naturellement à des situations de vote stratégique, où un agent peut obtenir un meilleur résultat en déclarant un but insincère. La majorité étant une des règles les plus connues utilisées pour prendre des décisions collectives, nous étudions trois de ses variantes dans le cadre du vote par buts. Nous étudions la manipulation pour ces règles en général, ainsi que pour un ensemble limité d'actions stratégiques ou des restrictions sur le langage des buts. Nous établissons aussi la complexité computationnelle pour qu'un agent puisse trouver une manipulation.

Introduction

A key aspect of agent-based architectures is endowing agents with goals [START_REF] Wooldridge | An introduction to multiagent systems[END_REF], and propositional goals in particular are common in models of strategic reasoning. When taking collective decisions in a multi-issue domain, agents share the control over the variables at stake while still holding individual goals, as in the following example :

Example 1.1. Three automated personal assistants need to arrange a business meal for their owners. They have to decide whether the restaurant should be fancy (F ), if it should be in the center (C), and if they should meet for lunch (L) instead of dinner. Each owner gives to their assistant a propositional goal with respect to these issues. The goal of the first agent is that if they go to a restaurant in the suburbs, then they should have a casual lunch : γ 1 = ¬C → (¬F ∧ L). The second agent wants that the meeting is either in the suburbs or casual, but not both : γ 2 = ¬C⊕¬F . The third agent wants a fancy dinner in the center :

γ 3 = F ∧ ¬L ∧ C.
The assistants want to ensure that the final decision satisfies their owners.

In Example 1.1 we need a procedure to make the autonomous agents reach a collective decision on every issue as precisely as possible : if the assistants returned a large set of possible options, the owners would ultimately have to make the choice they wanted to avoid. Secondly, strategic behavior needs to be taken into account, as agents are goal-oriented and nothing bounds them to be truthful. Two frameworks have been proposed in the literature on artificial intelligence to solve analogous problems : belief merging (see, e.g., Konieczny and Pino Pérez [START_REF] Konieczny | Merging Information Under Constraints : A Logical Framework[END_REF]) and goal-based voting [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF]. Given our primary concern of resoluteness of the voting outcome we choose the latter.

A variety of functions could be studied to handle individual goals : our focus is on majoritarian rules. The appeal of majority lies not only in its intuitive definition and extensive application in real-world scenarios, but also on having been widely studied in the related fields of voting theory and judgment aggregation [START_REF] May | A set of independent necessary and sufficient conditions for simple majority decision[END_REF][START_REF] Dietrich | Christian List: Judgment aggregation by quota rules : Majority voting generalized[END_REF]. However, when moving to goal-based voting many definitions of majority are possible. The three adaptations studied here strike a balance between different needs : that of providing a resolute result, and that of treating each issue independently while still considering the complex structure of propositional goals.

Each of these majoritarian goal-based voting rules will be analyzed with respect to their resistance to several manipulation strategies. Negative results, i.e., finding that a rule can be manipulated, lead us to study the computational complexity of manipulation, as well as restricting the language of individual goals in the hope of discovering niches of strategy-proofness.

Related work. Our starting point is the work on voting in multi-issue domains with compactly represented preferences by Lang [START_REF] Lang | Logical Preference Representation and Combinatorial Vote[END_REF]. Propositional goals are such an example, linked to the literature on social choice with dichotomous preferences [START_REF] Elkind | Structure in Dichotomous Preferences[END_REF][START_REF] Elkind | Structured Preferences[END_REF]. A related preference language is that of CP-nets, in which preferences that are not necessarily dichotomous can be expressed [START_REF] Boutilier | CPnets : A Tool for Representing and Reasoning with Conditional Ceteris Paribus Preference Statements[END_REF]. The literature on combinatorial voting (see, e.g., the chapter by Lang and Xia [START_REF] Lang | Voting in Combinatorial Domains[END_REF]) provides solutions to tackle the combinatorial explosion entailed by the structure of the alternatives, such as voting sequentially over issues using tractable voting rules.

Closely related work is the study of strategyproofness in judgment aggregation [START_REF] Dietrich | Franz et Christian List: Strategy-proof judgment aggregation[END_REF][START_REF] Endriss | Complexity of Judgment Aggregation[END_REF], where the input is a complete binary choice over all issues rather than a propositional goal, as well as in belief merging [START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF], which focuses on a specific set of rules defined by axioms inspired from belief revision. The latter is the closest setting from a technical point of view, and in Section 2.5 we clarify the differences between the two models. Manipulation of voting rules has been amply studied in voting theory, starting from the seminal result of Gibbard and Satterthwaite [START_REF] Gibbard | Manipulation of voting schemes : a general result[END_REF][START_REF] Satterthwaite | Strategy-proofness and Arrow's conditions : Existence and correspondence theorems for voting procedures and social welfare functions[END_REF] to more recent studies aimed at finding barriers to manipulation (see, e.g., the survey by Conitzer and Walsh [START_REF] Conitzer | Barriers to Manipulation in Voting[END_REF]).

Propositional goals in a strategic setting have been extensively studied in the literature on boolean games [START_REF] Harrenstein | Boolean games[END_REF][START_REF] Wooldridge | Incentive Engineering in Boolean Games[END_REF]. Here, however, issues are not exclusively controlled by agents, since they express their goals using a common set of variables, a closer model being that of aggregation games [START_REF] Grandi | Equilibrium Refinement through Negotiation in Binary Voting[END_REF].

Paper structure. In Section 2 we present the framework of majoritarian goal-based voting for different notions of resoluteness. Section 3 introduces manipulation, providing both theoretical and computational complexity results. Section 4 studies syntactic restrictions on the goal language and analyses strategyproofness. Section 5 concludes.

Formal Framework

We start by presenting goal-based voting, as first introduced by Novaro et al. [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF], focussing on three variants of issue-wise majority rule with varying degrees of resoluteness. We also include a detailed comparison with the related framework of belief merging [START_REF] Everaere | An Introduction to Belief Merging and its Links with Judgment Aggregation[END_REF].

Goal-Based Voting

A group of agents, represented by the finite set N = {1, . . . , n}, has to take a collective decision over a number of issues, represented by the finite set I = {1, . . . , m} of propositional variables. We call literal L any atom j ∈ I or its negation ¬j. We let L I be the propositional language over the atoms in I, with the usual boolean connectives. Each agent i expresses her individual goal by a consistent formula γ i of L I , as in Example 1.1. A goal-profile Γ = (γ 1 , . . . , γ n ) collects the n agents' goals.

In Section 4 we will study restrictions on the language of goals, i.e., languages L for ∈ {∧, ∨, ⊕}, defined by the following BNF grammars :

ϕ := p | ¬p | ϕ ϕ
An interpretation (or alternative) is a function v : I → {0, 1} associating a binary value to each variable in I, where 0 means the issue is rejected and 1 that it is accepted. We assume that there is no integrity constraint, allowing all possible interpretations over the issues. We write v |= ϕ if interpretation v makes ϕ true (i.e., v is a model of ϕ). The set Mod(ϕ) = {v | v |= ϕ} contains all the models of ϕ. We denote agent i's choices for issue j in the models of her goal as

v i (j) = (m 1 ij , m 0 ij ), with m x ij = |{v ∈ Mod(γ i ) | v(j) = x}| for x ∈ {0, 1}.
Abusing notation, we write v i (j) = x if |Mod(γ i )| = 1 and m x ij = 1. Numerous procedures can be used to turn individual goals into a group decision. For instance, in Example 1.1 a goal-based voting rule should provide a decision over type and location of the restaurant and the timing of the meal. A goal-based voting rule is formally defined as a function F : (L I ) n → P({0, 1} m ) \ ∅ for any n and m. The input is a profile of n formulas, and the output is a non-empty set of alternatives. The number of acceptances and rejections of issue j in the outcome

F (Γ) is defined as F (Γ) j = (F (Γ) 0 j , F (Γ) 1 j ), where F (Γ) x j = |{v ∈ F (Γ) | v j = x}| for x ∈ {0, 1}. If F (Γ) x j = 0, we just write F (Γ) j = 1 -x.
In this paper we study three generalizations of majority. Its definition in judgment aggregation [START_REF] Dietrich | Franz et Christian List: Strategy-proof judgment aggregation[END_REF][START_REF] Endriss | Judgment Aggregation[END_REF], where each agent i express a complete binary ballot B i over all issues, is Maj(

B) j = 1 iff i∈N b ij ≥ n+1 2
where B = (B 1 , . . . , B n ).

Resolute Rules

We begin by presenting two definitions of resolute rules, always returning a unique model as their output. The first resolute variant of majority is EMaj, a quota rule accepting an issue if and only if more than half of the total votes are in its favor :

EMaj(Γ)j = 1 iff i∈N ( v∈Mod(γi) v(j) |Mod(γi)| ) ≥ n + 1 2
As the goal formulas of the agents may have a varying number of models satisfying them, to guarantee their equal treatment EMaj gives a weight to each model of an agent's goal inversely proportional to the total number of models of her goal.

The second resolute variant of majority 2sMaj proceeds in two steps by first applying Maj to the models of the agents' goals, and then to the result of the first aggregation step. We write Maj(Mod(γ i )) for

Maj(v 1 , . . . , v k ) where Mod(γ i ) = {v 1 , . . . , v k } : 2sMaj(Γ) = Maj(Maj(Mod(γ 1 )), . . . , Maj(Mod(γ n )))
Both EMaj and 2sMaj are generalizations of Maj : they coincide with it when agents have goals in the form of complete conjunctions of literals.

While resolute rules help agents come to a unique decision, other desiderata of unbiasedness cannot be guaranteed at the same time. Consider the following two axioms, as defined by Novaro et al. [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF].

Let

ϕ[j → k] for j, k ∈ I be the replacement of each occurrence of k by j in ϕ. A goal-based voting rule is dual if for all profiles Γ, F (γ 1 , . . . , γ n ) = {(1 - v(1), . . . , 1 -v(m)) | v ∈ F (Γ)} where γ = γ[¬1 → 1, . . . , ¬m → m].
A rule F is anonymous if for any profile Γ and permutation σ : N → N , we have that

F (γ 1 , . . . , γ n ) = F (γ σ(1) , . . . , γ σ(n) ).
Unfortunately, these three desirable properties cannot be simultaneously satisfied, as shown by the following theorem : 1 Theorem 2.1. There is no resolute rule F satisfying both anonymity and duality.

Démonstration. Consider a rule F and suppose towards a contradiction that F is resolute, anonymous and dual. Take profile Γ for N = {1, 2} and I = {1, 2} where

γ 1 = 1 ∧ ¬2 and γ 2 = ¬1 ∧ 2. By anonymity of F , for profile Γ = (γ 2 , γ 1 ) we have F (Γ) = F (Γ ). Since F is resolute, F (Γ) = {(x, y)}, for x, y ∈ {0, 1},
and thus F (Γ ) = {(x, y)}. However, note that γ 1 = γ 2 and γ 2 = γ 1 . Hence, Γ = Γ and by duality we must have

F (Γ ) = {(1 -x, 1 -y)}. Contradiction.
In the next section we will thus define a weaker but more attainable notion of resoluteness, which can be satisfied by anonymous and dual majoritarian rules.

1. A related result in social choice theory states that there exists no resolute, anonymous, and neutral voting procedure for 2 alternatives and an even number of voters (see, e.g., Moulin [START_REF] Moulin | The strategy of social choice[END_REF]).

Weakly Resolute Rules

We call a rule weakly resolute if the alternatives in its outcome either accept, reject or abstain on any of the issues. Formally, a rule F is weakly resolute if on every profile Γ, F (Γ) = Mod(ϕ) for some conjunction ϕ ∈ L ∧ . We begin by showing that each goal-based voting rule that satisfies an axiom called independence by Novaro et. al. [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF] is weakly resolute. A rule F is independent if there are functions

f j : D n m → C for j ∈ I such that for all Γ we have F (Γ) = Π j∈I f (m 1 (j), . . . , m n (j)), for D m ={(a, b) | a, b ∈ N and a + b ≤ 2 m } and C={{0}, {1}, {0, 1}}.
Theorem 2.2. Each independent goal-based voting rule is weakly resolute.

Démonstration. Consider an arbitrary Γ and the outcome of an independent rule F (Γ). As F is independent, we have F (Γ) = Π j∈I f (m 1 (j), . . . , m n (j)), where each m x (j) ∈ {{0}, {1}, {0, 1}}. We want to show that F is weakly resolute. We construct a conjunction ψ as follows : for all j ∈ I, if

f (m 1 (j), . . . , m n (j)) = {0} add conjunct ¬j to ψ ; if f (m 1 (j), . . . , m n (j)) = {1} add conjunct j to ψ ; if f (m 1 (j), . . . , m n (j)) = {0, 1} skip. For all v ∈ Mod(ψ)
and for all j ∈ I appearing as conjuncts in ψ, we have v(j) = 1 for a positive literal j, and v(j) = 0 for a negative literal ¬j. Moreover, for all k ∈ I which did not appear in ψ we have any possible combination of truth values. Therefore, Mod(ψ) = F (Γ).

The other direction of Theorem 2.2 does not hold : consider a rule F that returns {(1, 1, . . . , 1)} if in at least one v ∈ Mod(γ 1 ) issue 1 is true, and else it returns {(0, 0, . . . , 0)}.

Novaro et. al. [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF] showed that the only rule satisfying independence, as well as a number of other desirable properties, is the following :

TrueMaj (Γ) = Π j∈I M(Γ) j
where for all j ∈ I :

M(Γ)j =    {x} if i∈N m x ij |Mod(γi)| > i∈N m 1-x ij |Mod(γi)| {0, 1} otherwise
TrueMaj compares issue-by-issue the total acceptances with the total rejections, setting the result to 1 (respectively, 0) if higher (respectively, lower), and to both 0 and 1 if tied.

Implementation of Majoritarian Rules

To compare the three definitions of majoritarian goal-based voting, we wrote a program to compute their outcome over all 16581375 profiles for 3 agents and 3 issues : i.e., for any combination of consistent goals and by considering γ 1 and γ 2 equivalent if Mod(γ 1 ) = Mod(γ 2 ). Results are shown in Table 1.

TrueMajR is a resolute version of TrueMaj picking a single random alternative in the outcome if multiple are present (we show an average over 10 executions). First, we evaluated the maximization of social welfare : i.e., the percentage of profiles on which the outcome satisfies all agents' goals. For TrueMaj is on almost 50% of the profiles (40% for the random tie-breaking version), going down to 30% for 2sMaj and 21% for EMaj. Then, we checked the percentage of profiles for which the rules return an outcome that does not satisfy any goal. This happens for less than 5% of profiles for all rules, and for less than 0,5% for TrueMaj. Finally, we analyzed the percentage of profiles on which agent 1 is satisfied with the result -if they are not satisfied they may have a strategy to manipulate. Agent 1 is satisfied on more than 61% of profiles for EMaj, almost 70% for 2sMaj and almost 80% for TrueMaj (75 % for its resolute version). While preliminary, these results provide an overall picture on the performance of majoritarian rules, with TrueMaj standing out even when coupled with random tie-breaking.

Goal-based Voting and Belief Merging

Belief merging was proposed and widely studied as a framework to combine the beliefs of multiple agents [START_REF] Konieczny | Merging Information Under Constraints : A Logical Framework[END_REF]. While belief merging rules and axioms differ from those proposed in goal-based voting, both settings are concerned with the problem of combining formulas into sets of interpretations. In what follows we refer to the formulation of postulates by Everaere et al. [START_REF] Everaere | An Introduction to Belief Merging and its Links with Judgment Aggregation[END_REF].

We begin by observing that the (IC2) postulate, which states that the outcome of a rule should coincide with the conjunction of the goals if they are consistent, is incompatible with both resoluteness, in case |Mod( i∈N γ i )| > 1, and weak resoluteness, e.g., when i∈N γ i = 1 ∨ 2. Our primary concern in resoluteness lead us to choose goal-based voting instead.

As for the other postulates, since in goal-based voting the integrity constraint is absent and F (Γ) = ∅ on all Γ, (IC0) and (IC1) are satisfied by default. The principle of irrelevance of syntax (IC3) is implicitly satisfied by goal-based voting rules, as propositional logic is simply used for the compact representation of goals. Postulate (IC4), defined for two agents, is not satisfied by neither EMaj, True-Maj nor 2sMaj : consider a profile Γ for two agents and three issues such that γ 1 = ¬1 ∧ ¬2 ∧ ¬3 and γ 2 = (1∧¬2∧¬3)∨(¬1∧2∧¬3)∨(¬1∧¬2∧3). We have that EMaj(Γ) = TrueMaj(Γ) = 2sMaj(Γ) = {(000)} : the outcome is thus only consistent with the goal of agent 1 and not with that of agent 2. Postulates (IC5) and (IC6) are known in the literature on social choice theory as reinforcement [START_REF] Young | An axiomatization of Borda's rule[END_REF], which is satisfied by all three majoritarian rules proposed (where Γ Γ = (γ 1 , . . . , γ n , γ 1 , . . . , γ n ) indicates the union of profiles Γ and Γ ) : 

F (Γ Γ ) = S.
Démonstration. Consider two arbitrary profiles Γ and Γ . Let EMaj(Γ) = EMaj(Γ ) = {w}. For all j ∈ I : if w(j) = 1, then there were more than n+1 2 votes for j in both Γ and Γ (and consequently in Γ Γ ) ; if w(j) = 0, then in Γ and Γ either there was a tie for j or there were less than n+1 2 votes for j. Any combination of ties or < n+1 2 votes for j in Γ and Γ still leads to EMaj(Γ Γ ) j = 0. For 2sMaj is as for EMaj, focusing on the second step only. Let TrueMaj(Γ)∩TrueMaj(Γ ) = S. For all j ∈ I : if there are w, w ∈ S such that w(j) = 1 and w (j) = 0, then Γ and Γ had a tie in the votes for j and thus a tie will be in Γ Γ (hence in the outcome). If w(j) = 1 for all w ∈ S (analogously for 0), there may have been a tie in either Γ or Γ for j, but not both, and so Γ Γ will have no tie for j.

Both (IC7) and (IC8) are not applicable to goalbased voting as there is no integrity constraint. Finally, the belief merging postulate (Maj), is not satisfied by TrueMaj. Consider goals γ 1 = 1 ∧ 2 and γ 2 = 1 ⊕ 2 : no matter how many times γ 2 is repeated in a profile, in the presence of γ 1 the result will always be {(11)}.

Manipulation : Theory and Complexity

Propositional goals lead to a dichotomous preference relation on alternatives : agents equally prefer any model of their goal to any counter-model. For resolute rules, the unique result satisfies an agent if and only if it is a model of their goal. Otherwise, different notions of satisfaction arise depending on how an agent compares two sets of interpretations.

Let sat : L I × (P({0, 1} m ) \ ∅) → [0, 1] be a function expressing the satisfaction of agent i towards the outcome of a rule F on profile Γ. We simply write sat(i, F (Γ)) instead of sat(γ i , F (Γ)). The optimistic, pessimistic and expected utility maximizer are three notions of satisfaction an agent may hold :

opt(i, F (Γ)) = 1 if F (Γ) ∩ Mod(γ i ) = ∅ 0 otherwise pess(i, F (Γ)) = 1 if F (Γ) ⊆ Mod(γ i ) 0 otherwise eum(i, F (Γ)) = |Mod(γ i ) ∩ F (Γ)| |F (Γ)|
Optimists are satisfied if in the outcome there is at least one model of their goal. Pessimists want all the interpretations in the outcome to be models of their goal (this notion was introduced by Jimeno et al. [START_REF] Jimeno | Joaquín Pérez et Estefanía García: An extension of the Moulin No Show Paradox for voting correspondences[END_REF]).

Expected utility maximizers assume that a unique interpretation will be chosen at random among those tied in the outcome, and the higher the proportion of models of their goal in F (Γ) over the total number of interpretations in F (Γ), the better. 2 Agent i's preference on outcomes is a complete and transitive relation i , whose strict part is i :

F (Γ) i F (Γ ) iff sat(i, F (Γ)) ≥ sat(i, F (Γ )).
For Γ = (γ i ) i∈N , let (Γ -i , γ i ) = (γ 1 , . . . , γ i , . . . , γ n ) be the profile where only agent i changed her goal from γ i to γ i . Agent i has an incentive to manipulate by submitting goal γ i instead of γ i if and only if F (Γ -i , γ i ) i F (Γ). A rule F is strategy-proof if and only if for all profiles Γ there is no agent i who has an incentive to manipulate.

We focus on three kind of manipulation strategies, following previous work by Everaere et al. [START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF] :

-Unrestricted : i can send any γ i instead of γ i -Erosion : i can send γ i s.t. Mod(γ i ) ⊆ Mod(γ i ) -Dilatation : i can send γ i s.t. Mod(γ i ) ⊆ Mod(γ i )

Manipulability of Majority Rules

In judgment aggregation, the issue-by-issue majority rule has been proven to be single-agent strategyproof by Dietrich and List [START_REF] Dietrich | Franz et Christian List: Strategy-proof judgment aggregation[END_REF]. Surprisingly, when moving to propositional goals strategy-proofness is not 2. Expected utility maximizers, optimists and pessimists, correspond to the probabilistic, weak drastic and strong drastic satisfaction indexes in the work of Evaraere et al. [START_REF] Everaere | The Strategy-Proofness Landscape of Merging[END_REF].

guaranteed anymore for the three adaptations of the majority rule, as shown by the following result : Let Γ be the profile where agents submit their truthful goal :

γ 1 = 1 ∧ 2 ∧ 3, γ 2 = ¬1 ∧ ¬2 ∧ 3, γ 3 = (¬1∧¬3)∨(1∧¬2∧3).
For erosion manipulation, agent 3 prefers the result of EMaj, 2sMaj and TrueMaj (which they happen to coincide) when applied to Γ rather than when applied to Γ. For dilatation manipulation, agent 3 prefers the result of TrueMaj and 2sMaj when applied to Γ rather than to Γ. For EMaj and dilatation manipulation, agent 3 can get a better result by manipulating Γ and moving to Γ .

Theorem 3.1 is thus in sharp contrast with the result of judgment aggregation. Since the profiles used in the proof give singleton outcomes, the theorem holds for expected utility maximizers, optimists and pessimists.

Computational Complexity

Majoritarian goal-based voting rules are manipulable, as shown by Theorem 3.1, but how difficult it is for an agent to find another goal allowing her to get a better outcome ? If we restrict to resolute rules, the problem definition is analogous to existing work in judgment aggregation [START_REF] Endriss | Complexity of Judgment Aggregation[END_REF] :

Manip(F ) Input : Profile Γ = (γ 1 , . . . , γ n ), agent i Question : If Mod(γ i ) ∩ F (Γ) = ∅, is there γ i such that Mod(γ i ) ∩ F (γ 1 , . . . , γ i , . . . , γ n ) = ∅ ?
Let Probabilistic Polynomial Time (PP) be the class of problems that can be solved in nondeterministic polynomial time with acceptance condition that more than half of the computations accept [START_REF] Papadimitriou | Computational Complexity[END_REF]. In what follows we refer to the PP-complete problem Maj-Satp, asking whether |Mod(ϕ ∧ p)| > |Mod(ϕ ∧ ¬p)| for propositional formula ϕ and one of its variables p [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF].

Theorem 3.2. Manip(2sMaj) is PP-hard.
Démonstration. We reduce from Maj-Sat-p. Take an instance of Maj-Sat-p with a formula ϕ[p 1 , . . . , p k ] and p 1 one of its variables. Construct an instance of Manip(2sMaj) 3 where I = {p 1 , . . . , p k , q, r}, and a profile Γ with

γ 1 = (p 2 ∧ • • • ∧ p k ) ∧ p 1 ∧ q ∧ r
, and γ 2 = ϕ∧¬q ∧¬r, and

γ 3 = (p 2 ∧• • •∧p k )∧(p 1 ⊕q)∧(r → q).
We show that |Mod(ϕ ∧ p 1 )| > |Mod(ϕ ∧ ¬p 1 )| if and only if agent 3 can manipulate 2sMaj on Γ. The following table represents some features of Γ, where question marks represent the possibly many models of ϕ over p 1 , . . . , p k :

p 2 . . . p k p 1 q r Mod(γ 1 ) 1 . . . 1 1 1 1 ? ? 0 0 Mod(γ 2 ) . . . . . . 0 0 ? ? 0 0 1 . . . 1 0 1 1 Mod(γ 3 ) 1 . . . 1 0 1 0 1 . . . 1 1 0 0
The result on p 2 , . . . , p k is decided by agents 1 and 3 : all issues will be accepted regardless of the vote of agent 2.

Let us now focus on p 1 , q and r. Applying (strict) majority to the models of γ 3 leads to the first-step result (010). Agent 3 is pivotal on issues q and r (since agents 1 and 2 will give one vote for and one vote against them after the first step). There are now two cases to consider :

3. For ease of presentation and to avoid confusion we write the issues as I = {p, q, r, . . .} instead of I = {1, 2, 3, . . .}. This completes the reduction from Maj-Sat-p, showing that Manip(2sMaj) is pp-hard.

A similar reduction allows us to show the following :

Theorem 3.3. Manip(EMaj) is PP-hard.
Démonstration. We construct an instance of Manip(EMaj) from a given instance (ϕ, p 1 ) of Maj-Sat-p. Let I = {p 1 , . . . , p k , q, r}, and profile

Γ = (γ 1 , γ 2 , γ 3 ) with γ 1 = (p 2 ∧ • • • ∧ p k ) ∧ p 1 ∧ q ∧ r, γ 2 = ϕ(p 1 ) ∧ ¬q ∧ r and γ 3 = (p 2 ∧ • • • ∧ p k ) ∧ (p 1 ⊕ q),
where ϕ(p 1 ) is a formula where each occurrence of p 1 in ϕ has been replaced by ¬p 1 and vice-versa. The final part of the proof, showing that |Mod(ϕ ∧ p 1 )| > |Mod(ϕ ∧ ¬p 1 )| if and only if agent 3 can manipulate EMaj on Γ, is analogous to that of Theorem 3.2 and thus omitted.

We leave the extension of the above results to True-Maj for each attitude of the agent (optimist, utility maximizer, or pessimist) for future work, conjecturing it to be PP-hard as well.

Language Restrictions

We study three restrictions on the goal-language : conjunctions, disjunctions and exclusive disjunctions, as defined by the corresponding languages L defined in Section 2.1. Results are presented in Table 2.

Conjunctions

The formulas of the language of conjunctions L ∧ are conjunctions of literals over issues in I. L ∧ captures the framework of judgment aggregation with abstentions [START_REF] Dietrich | Franz et Christian List: Judgment Aggregation Without Full Rationality[END_REF][START_REF] Dokow | Aggregation of Binary Evaluations with Abstentions[END_REF], as agents have definite opinions over the issues appearing as literals in their goal and they do not care about the other issues. We find positive results of strategy-proofness : Theorem 4.1. An agent i with γ i ∈ L ∧ has no incentive to manipulate unrestrictedly 2sMaj and EMaj.

Démonstration. Take Γ with γ i ∈ L ∧ . Since 2sMaj and EMaj are resolute, we have a unique outcome {w} on Γ. Suppose that w ∈ Mod(γ i ). As

γ i = L 1 ∧• • •∧L k for k ≤ m, we have for all j ∈ I : -v i (j) = ( |Mod(γ i )| 2 , |Mod(γ i )| 2 ) if γ i has no L j .
-If L j = j appears in γ i , then v i (j) = (|Mod(γ i )|, 0), and if L j = ¬j, then v i (j) = (0, |Mod(γ i )|).

Therefore, if w ∈ Mod(γ i ) there must be literals with ≤ k such that w |= ¬L 1 ∧• • •∧¬L . Take an arbitrary such L x . 2sMaj. Let Maj(γ i ) = {w i } be the result of the first step of majority applied to γ i . We have that w i (x) = 1 -w(x), and therefore agent i cannot influence the outcome towards w i (x), and more generally towards her goal.

EMaj. If w(x) = 1 (similarly for 0), then

L x = ¬x. Since v i (x) = (0, |Mod(γ i )|), we have v∈Mod(γ i ) v(x)
|Mod(γ i )| = 0 and thus

k∈N \{i} v∈Mod(γ k ) v k (x) |Mod(γ k )| ≥ n+1 2 . Agent
i is already giving no support to x and yet x is accepted in the outcome. Therefore, EMaj cannot be manipulated.

The result for TrueMaj has a similar proof, which is omitted for space constraints, also considering optimists, pessimists and expected utility maximizers. A consequence of Theorem 4.1 and 4.2 is that goals in L ∧ make the three majorities strategy-proof : Corollary 4.1. For any I and N , if γ i ∈ L ∧ for all i ∈ N then EMaj, TrueMaj and 2sMaj are strategyproof for unrestricted manipulation.

Disjunctions

In the language of clauses L ∨ , formulas are disjunctions of literals. Unfortunately, this restriction does not guarantee strategy-proofness for two of our rules : We can obtain positive results if we restrict the set of available manipulation strategies to dilatation : Theorem 4.4. For any Γ with γ i ∈ L ∨ for i ∈ N , agent i has no incentive to manipulate EMaj and TrueMaj by dilatation.

Proof sketch. Take Γ with γ i ∈ L ∨ for some i ∈ N , i.e.,

γ i = L 1 ∨ • • • ∨ L k . Consider EMaj(Γ) = {w}, such that w ∈ Mod(γ i ).
As the agent is restricted to dilatation strategies, the goals γ i such that Mod(γ i ) ⊆ Mod(γ i ) agent i can use are those whose models would lower i's support for each literal L in γ i . Thus she cannot manipulate.

Let now TrueMaj(Γ) = {w 1 , . . . , w k }. Reasoning as above, an optimist agent i does not have any dilatation strategy to include one of the models of γ i into the outcome. An expected utility maximizer i however, may want to remove some w k ∈ TrueMaj(Γ) such that w k |= ¬L j for all L j in γ i . But this is only possible when {w 1 , . . . , w }∩Mod(γ i ) = ∅, since the agent is restricted to dilatation strategies, and other reported goal would have more models increasing the votes against the literals present in her sincere goal γ i . Therefore, this would not constitute a profitable deviation. A similar reasoning applies to pessimists. Theorem 4.5. For any profile where γ i ∈ L ∨ for i ∈ N , agent i has no incentive to manipulate unrestrictedly 2sMaj.

Démonstration. Since γ i ∈ L ∨ , the result w i of Maj(Mod(γ i )) is such that w i (x) = 1 if L x = x appears in γ i , and w i (x) = 0 if L x = ¬x. Hence, it coincides with the result of Maj(Mod(γ i )) for γ i ∈ L ∧ where every occurrence of ∨ in γ i has been replaced by ∧ in γ i . The proof of Theorem 4.1 can thus be applied, since agent i is already maximizing her chances of getting γ i satisfied by submitting γ i .

By combining the results of Theorem 4.4 and Theorem 4.5 we get the following corollary : Corollary 4.2. If γ i ∈ L ∨ for all i ∈ N then EMaj and TrueMaj are strategy-proof for dilatation manipulation and 2sMaj is strategy-proof for unrestricted manipulation.

Exclusive Disjunctions

In the language of exclusive disjunctions L ⊕ , each formula is an exclusive disjunction of literals (cf. agent 2's goal in Example 1.1). We prove the following : Theorem 4.6. There exists profile Γ 0 , Γ 1 , Γ 2 , Γ 3 , and i ∈ N with γ i ∈ L ⊕ such that agent i has an incentive to manipulate rules 2sMaj, EMaj and TrueMaj, by erosion and dilatation. Démonstration. All profiles are for three agents and two issues. 2sMaj. For erosion, consider profile Γ 0 where γ 1 = 1 ∧ 2, γ 2 = ¬1 ∧ ¬2 and γ 3 = 1 ⊕ 2. We have that 2sMaj(Γ) = {(00)}. Consider now γ 3 = ¬1∧2. The result is {(01)}, and thus agent 3 has an incentive to manipulate. For dilatation, consider the profile Γ 1 where γ 1 = ¬1 ∧ 2, γ 2 = ¬1 ∧ ¬2 and γ 3 = 1 ⊕ 2. We have that 2sMaj(Γ 1 ) = {(00)}. If we consider γ 3 = 1 ∨ 2, the result is 2sMaj(Γ 1 ) = {(01)}, and thus agent 3 has again an incentive to manipulate.

EMaj. For erosion, the results of 2sMaj and EMaj coincide on Γ 0 and Γ . For dilatation, take Γ 2 with γ 1 = ¬1 ∧ 2, γ 2 = ¬1 ∨ ¬2 and γ 3 = 1 ⊕ 2. We have EMaj(Γ 2 ) = {(00)}. Agent 3 can submit γ 3 = 1 ∨ 2 to obtain {(01)}.

TrueMaj. Take Γ 3 with γ 1 = 1 ∧ 2, γ 2 = 1 ∧ ¬2 and γ 3 = 1 ⊕ 2. We have TrueMaj(Γ 3 ) = {(10), (11)}. Agent 3 can manipulate by erosion with γ 3 = 1 ∧ ¬2, and by dilatation with γ 3 = ¬1 ∨ ¬2. In both cases the result is {(10)}.

Conclusions

In this paper we studied the strategic component of the framework of goal-based voting [START_REF] Novaro | Goal-based Voting with Propositional Goals[END_REF], related (yet different) to both judgment aggregation and belief merging. Our focus was on three rules that have been proposed as adaptations of the issue-wise majority rule in this setting, with varying degrees of resoluteness. We find that all the majoritarian rules are not immune from manipulation, even when the manipulator can only apply limited strategies on their truthful goal (i.e., erosion and dilatation). We also find that, although not strategy-proof in general, EMaj and 2sMaj are pp-hard for an agent to manipulate, as hard as their winner determination problem. Moreover, restricting the language of an agent's goal to conjunctions makes manipulation impossible, as well as dilatation manipulation for the language of disjunctions, suggesting promising directions for further research on minimal restrictions to the goal language to guarantee strategy-proofness of majoritarian rules.
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 23 For any Γ and Γ , EMaj, 2sMaj and TrueMaj satisfy F (Γ) ∩ F (Γ ) = S = ∅ if and only if

Theorem 3 . 1 .

 31 EMaj, TrueMaj and 2sMaj can be manipulated by both erosion and dilatation.

a)

  If |Mod(ϕ ∧ p 1 )| > |Mod(ϕ ∧ ¬p 1 )|, the result of 2sMaj(Γ) is (1 . . . 1, 110), that is not a model of γ 3 . However, by submitting γ 3 = (p 2 ∧ p k ) ∧ p 1 ∧ ¬q ∧ ¬r, we have 2sMaj(Γ ) = (1 . . . 1, 100) which is a model of γ 3 . Hence, agent 3 has an incentive to manipulate. b) If |Mod(ϕ ∧ p 1 )| ≤ |Mod(ϕ ∧ ¬p 1 )|, we have that 2sMaj(Γ) = (1 . . . 1, 010), which is a model of γ 3 . Agent 3 has thus no incentive to manipulate.

Theorem 4 . 2 .

 42 If agent i has γ i ∈ L ∧ she has no incentive to manipulate unrestrictedly the rule TrueMaj.

Theorem 4 . 3 .

 43 There exists Γ and i ∈ N with γ i ∈ L ∨ such that agent i has an incentive to manipulate EMaj and TrueMaj by erosion. Démonstration. Profiles are for three agents and two issues. For EMaj, consider Γ with γ 1 = 1, γ 2 = ¬1 and γ 3 = 1 ∨ 2. By submitting γ 3 = 1 ∧ 2 agent 3 can change EMaj(Γ) = {(00)} into {(11)} : hence, they have an incentive to lie. For TrueMaj, consider Γ with γ 1 = ¬1 ∧ ¬2 and γ 2 = γ 3 = 1 ∨ 2. The result is TrueMaj(Γ) = {(00)}, but if agent 3 submits γ 3 = 1∧2 we get TrueMaj(Γ ) = {(11)} and thus agent 3 has an incentive to manipulate.

  SP M M TrueMaj SP SP M SP M M 2sMaj SP SP SP SP M MTable 2 : E stands for erosion, D for dilatation, SP for strategy-proof and M for manipulable.

Table 1 :

 1 For each rule we show the percentage of profiles where all agents/no agent/agent 1 are satisfied with the result. Satisfaction is optimistic.

		EMaj TrueMaj TrueMajR 2sMaj
	% all agents sat 21,47	48,32	39,77	30,38
	% no agent sat	4,91	0,47	0,76	2,18
	% agent 1 sat	61,13	79,30	75,19	69,03

Démonstration. We provide goal-profiles where an agent can get a better result by submitting an untruthful goal. For ease of presentation we display the models of the agents' goals, but the input of a rule F consists of propositional formulas. Consider the profiles Γ, Γ and Γ for three agents and three issues, together with the results of EMaj, TrueMaj and 2sMaj :