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ABSTRACT. Encryption method is an effective way to guarantee the confidentiality and in other ways
(digital signature) the authenticity of data. The use of the digital signature derives from the methods
of asymmetric cryptography. It appears as credible alternatives to guarantee the authenticity, non
forgery, non reuse, inalterability and irrevocability of data. Data encryption and electronic signature
by elliptic curve cryptography are now widespread and it is important to highlight the comparative
advantages. In this paper, we evaluated the performance of asymmetric cryptography through elliptic
curve cryptography versus that with the RSA algorithm. Then, we achieved some cryptosystems by
using elliptic curve cryptography protocols : ECNR, ECDSA, ECIES, and RSA. Therefore, we perform
tests that showed most of the elliptic curve cryptography algorithms are more advantageous in terms
of memory consumption and computing speed over the RSA cryptosystem.

RESUME. Si le chiffrement est un moyen efficace de garantir la confidentialité, la signature numérique
assure quant a elle 'authenticité des données. Son utilisation découle des procédés de la cryptogra-
phie asymétrique. Elle est une alternative crédible pour garantir I'authenticité, la non falsification, la
non réutilisation, I'inaltérabilité et I'irrévocabilité des données. Le chiffrement des données et la sig-
nature électronique par la cryptographie sur les courbes elliptiques sont maintenant trés répandus et
il est important d’en saisir les différents avantages. Dans cet article, nous avons évalué les perfor-
mances de la cryptographie asymétrique sur les courbes elliptiques par rapport a celle de I'algorithme
RSA. Les cryptosystemes élaborés a cet effet (en utilisant les protocoles ci-aprés : ECNR, ECDSA,
ECIES et RSA) nous ont permis d’effectuer des tests qui ont montré que la plupart des algorithmes
de cryptographie a courbe elliptique sont plus avantageux en termes de consommation de mémoire
et de vitesse de calcul que le cryptosysteme RSA.

KEYWORDS : Asymmetric cryptography, Elliptic curve cryptography, RSA algorithm, Encryption sheme,
Digital signature
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1. Introduction

It’s no longer a secret in our current ecosystem: data is an essential part of the busi-
ness. Integrated into the heart of the strategic process of any enterprise, they are the object
of paramount importance in any decidability. The acceleration of the digital transforma-
tion and, at the same time, the development of the Big Data, are pushing companies to
find the best management system for managing these volumes of data. In this digital en-
vironment, securing data is becoming a major issue. For any business owner or individual
(depending on the nature of data), it’s a good idea to find the best way to keep their data
safe. To guarantee this safety i.e data integrity, authenticity and confidentiality, one way
is to encrypt and/or sign them before their delivering process. Digital signature is based
upon asymmetric encryption algorithm methods [1].

Since the 1978’s, the RSA algorithm, proposed by Rivest, Shamir, and Adleman [2],
has been the most widely used algorithm for both encrypting data and digitally signing
them. But it presents nowadays some drawbacks, such as large key lengths are required to
increase such a cryptosystem security. Accordingly the computational time is high. Ellip-
tic curve cryptography (ECC) corrects this disadvantage by using short key size to ensure
similar security. Elliptic curve cryptography algorithms seem to fit well with public key
cryptography by replacing the calculation on numbers (in the case of RSA) by the calcu-
lation on groups associated with the elliptic curve. So it most difficult to break the digital
signature through elliptic curves because solving the problem of the discrete logarithm on
the elliptic curve group appears to be more difficult than factoring big number into prime
numbers.

According to the advantages of elliptic curve cryptography, we propose to compare
the performance of elliptic curve cryptography algorithms with the RSA algorithm to
know the best way for everyone to secure more their data. The paper is organized as fol-
lows. In section 2 we will present the fundamental concepts including encryption scheme,
digital signature, cryptography based on elliptic curves, the materials and methods used.
In Section 3 we will describe the different results we have achieved. A discussion and
an analysis of these findings will be presented in Section 4. We ended this paper with
concluding remarks presented in Section 5.

2. Fundamental concepts

In this section we will present the concepts of encryption scheme and digital signatures
and those of cryptography based on elliptic curves so-called elliptic curve cryptography
(ECC).

2.1. Overview of asymmetric cryptography

Asymmetric cryptography, also known as public key cryptography, uses public and
private keys to encrypt and decrypt data. The keys are simply large numbers that have
been paired together but are not identical (asymmetric). One key in the pair can be shared
with everyone; it is called the public key. The other key in the pair is kept secret; it is called
the private key. Either of the keys can be used to encrypt a message; the opposite key
from the one used to encrypt the message is used for decryption. Some of the examples
for asymmetric key cryptosystem are RSA, ELGAMAL, and ECC etc [3].
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A digital signature is based on asymmetric cryptography and guarantees the authen-
ticity of an electronic document or message in digital communication and uses encryption
techniques to provide proof of original and unmodified documentation. It is therefore, a
reliable engagement mechanism [4]. A digital signature has the following characteristics:
authenticity, non forgery, non reusable, inalterability, irrevocability.

Assume Alice wants to send a message to Bob. The latter must be able to verify the
authenticity of such a message. The message m is assumed to be the binary file with
contents such as text, image, executable file, etc. We propose to describe the classical
method of digital signature into four steps: setting up signature architecture, preparing
the signed message, receiving the signed message and the use of hash function.

2.1.1. Setting architecture of digital signature establishment

Alice and Bob have agreed on the following choices:

— an asymmetric encryption consisting of an encryption function C' and a decryption
function D;

— a hash function we denote H;

— an encryption method in which Alice generates a private key K, and a public key
Kpp. She transmits the public key K, to Bob by a not necessary secured channel and
keeps the private key K, secret.

2.1.2. Preparing sighed message

Alice prepares the signed message in the following manner:

— she produces a condensate of the message m in using the chosen hash function [5]
H(m);

— she encrypts this condensate with the encryption function C' using her private key

K. The result obtained is the signature of the message we denote S,,, which is defined
by:

Sm = C(Kpr, H(m));

— she prepares the signed message by placing the clear message m and the signature
S, in any container. The signed message is defined by:

Msigned = (Sm7 m)

Alice then sends mg;gneq to Bob whatever the communication channel used (secured or
not).

2.1.3. Receiving signed message

Once Bob received the signed message, to verify its authenticity he proceeds as fol-
lows:

— he produces a condensate of the plaintext by using the agreed hash function H(m);

— he decrypts the signature using the decryption function D with Alice public key
K. The decrypted message is Dy, = D(Kpp, S )s

— he compares Dg,,, with H(m).
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If the signature is authentic, Dg,, and H(m) will be equals due to the property of the
asymmetric encryption:

DSm = D(Kpln Sm)
= D(Kpp, C(Kpr, H(m))) €))
= H(m)

If (1) is satisfied then the message will be authenticated.

2.2. Overview on elliptic curve cryptography

ECC is independently proposed by Neal Koblitz and Victor Saul Miller in 1985 [6, 7].

To explain the functioning of ECC, we first present the mathematical concepts of the
elliptic curves, as well as the most important operation on curves i.e. the scalar multi-
plication. We then present the set of cryptographic protocols that are based on elliptic
curves.

2.2.1. Short overview on elliptic curves

Yanbo Shou in his thesis [8] showed that Weierstrass’ equation of an elliptic curve can
be simplified over a prime finite field IF,, and becomes:

E:y?> =23+ ax+b, (2)

where aetb € F,.
The set of elliptic curves being an additive group, it is important to remember the
addition of two points and the multiplication of a point by a scalar.

2.2.1.1. Addition of points

Let us consider an elliptic curve E of (2) and two points Py (x1,y1) and Py (2, y2)
belonging to this curve. The addition of P; and P is the point Ps(z3,y3) of E (P3 =
P; + Py) defined as Y. Shou illustrates it in [8].

Fig. 1 illustrates the addition of two points P and @) (R = P+ Q) on the elliptic curve
defined by:

P =a3 -2z +1.

In that figure (Fig. 1), the line that goes through both P and () intersects the elliptic curve
in a third point which is the negation of the sum of P and Q.

2.2.1.2. Scalar multiplication

Based upon point addition, we can perform the multiplication, denoted by @ = kP
on an elliptic curve E where k € Z* and (P, Q) € E?®. Scalar multiplication is in fact
a sequence of addition of points [9]:

Q=kP=P+P+---+P )
N—— —

k times

2.2.2. Elliptic curve cryptography protocols

Below are the main cryptographic protocols which are based on the theory of elliptic
curves.
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y2=x3—2x+1

Figure 1. Addition of points on elliptic curves.

Table 1. The key lengths of different algorithm.

Algorithms Key lengths (bits)

Key lengths label 1 \ 2 \ 3 \ 4 \ 5
Symmetric 80 112 128 192 256
ECC 163 233 283 409 571
RSA 1024 | 2240 | 3072 | 7680 | 15360

— Diffie-Hellman key exchange protocol [10];

— Elliptic Curve Integrated Encryption Scheme (ECIES) [11]
— EI Gamal method [12];

— Elliptic Curve Nyberg-Rueppel (ECNR) [13]

— Elliptic Curve Digital Signature Algorithm (ECDSA) [14];

— Elliptic Curve Menezes-Qu-Vanstone (ECMQV) [15].

The resistance of ECC is related to the problem of the discrete logarithm on the cor-
responding group for the elliptic curve. ECC is an alternative to conventional public key
cryptography.

In section 3 we will make a comparative study between an algorithm based on elliptic
curves and RSA algorithm. First, let us present the used materials and methods.

2.3. Materials and methods

Arjen K. Lenstra and Eric R. Verheul achieved a work identifying equivalent key
lengths, for three algorithms (symmetric, RSA and ECC algorithms) [16], which can
provide the same level of robustness. For better understanding, key lengths in the same
column are expected to provide the same level of robustness (see Table 1). Considering
key lengths label 2 in Table 1, a key of a symmetric algorithm of 112 bits would produce
the same robustness as that of an asymmetric algorithm ECC of 233 bits and that of RSA
of 2240 bits.

The computer used by A. Lenstra et al. is characterized by a 2.0 GHz Intel processor
and a RAM of 512 MB [16]. Results are available at the URL!.

1. http://www.keylength.com/fr/1/. Last accessed June, 24t 2019.
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We will set up cryptosystems with elliptic curve algorithm and RSA algorithm by
using equivalent key lengths obtained by Lenstra et al. to evaluate the performance of
these types of algorithms for both encryption and digital signature.

3. Simulation results

We have firstly presented the encryption scheme with the RSA algorithm and one with
the elliptic curve algorithm i.e. the ECIES. Secondly, we have given the results for the
digital signature. Then, we have compared these results to determine the best way to
secure documents.

3.1. Encrytion scheme
Two steps are in concern when dealing with encryption scheme which are encryption
and decryption processes.

3.1.1. ECIES encrytion

The ECIES protocol is indeed a standardized version of Elgamal. Suppose that Alice
wants to send a message m to Bob in a secure way, they must first have all the following
information:

— K FC: key derivation function that allows to generate several keys from a reference
secret value;

— M AC message authentication code transmitted with data to ensure its integrity;
— SY M: Symmetric encryption algorithm;

— E(F,): elliptic curve used with the generator G whose ord,(G) = n;

— Kp: public key of Bob K = kg G where kg € [1,n — 1] is his private key.

3.1.1.1. Encryption process

To encrypt the message m, Alice proceeds as follows:

1) Choose a random number k belonging to the interval [1,n — 1] and compute
R=EkG.

2) Calculate Z = k Kp.

3) Generate the keys k; and ks such that (k1, k2) = K DF(abscisse(Z), R).
4) Encrypt the message m by doing C' = SY M (ky,m).

5) Generate the MAC code t = M AC (k2,C).

6) Send (R, C,t) to Bob.

3.1.1.2. Decryption process

To decrypt the message (R, C, t), Bob must perform the following calculations:
1) Verify if R € E(F,). Otherwise reject the message.
2) Compute Z =kp R=kpkG =k Kp.
3) Generate the keys k; and ks such as (k1, ko) = K DF(abscisse(Z), R).
4) Generate the MAC code t' = M AC (ks, C).
5) Verify if ¢ = t. Otherwise reject the message.
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6) Decrypt the message by computing M = SY M ~!(ky, C).
3.1.2. RSA encrytion

We have firstly to generate the RSA keys. The key generation process in RSA algo-
rithm is as follows:

1) Choose two distinct prime numbers p and g such as the number of bits of the
two integers is approximately equal.

2) Compute their product n = p X ¢ called the encryption module.
3) Compute p(n) = (p — 1)(¢ — 1) the value of the Euler indicator in n.

4) Choose an integer e which is the encryption exponent such as e € |1, ¢(n)[ and
ged(e, o(n)) = 1.

5) Calculate the deciphering exponent d such as e d = 1(modulus n).
The pair (n,e) is the public key of the encryption whereas the number d is the corre-
sponding private key.

3.1.2.1. Encryption process

After Bob obtains Alice’s public key, he can encrypt the message m and then sends it
to Alice. He computes the ciphertext C, using Alice’s public key e, corresponding to:

C =m® (modulus n). 4)

Bob then transmits C' to Alice.
3.1.2.2. Decryption process

Alice can recover m from C' by using her private key (exponent d) by computing D
such that:

D = C? (modulus n)
= [(m)°]? (modulus n) )
=m.

This can be done reasonably quickly, even for very large numbers, using modular expo-
nentiation.

3.2. Digital signature
3.2.1. Digital signature with RSA algorithm

Three steps are in concern when dealing with digital signature embedded in RSA
algorithm which are key generation, signature generation and signature verification.

3.2.1.1. RSA key generation
The key generation using RSA algorithm is the same as described in subsection 3.1.2
3.2.1.2. RSA signature generation

To sign a message m with RSA, it is sufficient to encrypt the digest of the message
with the private key d. The signed message becomes:

s = [hash(m)]¢ (modulus n), (6)
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where hash is a hash function. For the purpose of this paper we use SH A — 256 as re-
commended by FIPS? 180-4 [20]. Once the message m is signed, the sender will transmit
it with its signature to the recipient.

3.2.1.3. RSA signature verification

To verify the received signature, the recipient must decrypt the signature with the
sender public key according to the following relation:

h = s (modulus n)

= [hash(m)?]® (modulus n) (7

To authenticate the author of the message, the recipient applies the same hash function to
the message m and checks whether the result is equal to the previously calculated value
which is h.

3.2.2. Digital signature with elliptic curves

As we previously presented, there are several algorithms that implement the digital
signature with elliptic curves. We will use these algorithms for the performance study.
Let us present the EDCSA algorithm.

3.2.2.1. ECDSA key generation

We consider the elliptic curve retained in (2). To generate the keys using the elliptic
curves, one proceeds as follows:

1) Select a number «, strictly smaller than the order n of the curve.

2) Compute P such as P = x GG, G being the generator of the curve.
Thus, our key pair is (P, z) where P is the public key and x the private key. Let us recall
that P as well as the parameters n, a, b and G must be published.

3.2.2.2. Generating an ECDSA signature

To create the signature S of a message m, one proceeds as follows:
1) Choose a random number % belonging to the interval [1,n — 1].
2) Calculate R(z1,y1) suchas R = kG.
3) Compute r = x1 (modulus n). If r = 0 then return to the step i.
4) Calculate k=1 (modulus n).

5) Calculate SHA — 1(m), and convert it into an integer e (instead of the SHA-1
one may use SHA-256 or SHA-512).

6) Calculate s = k~(e + xr) (modulus n) where x is the private key. If s = 0
then return to the step i.
The signature S of the message m is the pair (r, s).

3.2.2.3. ECDSA signature verification

To verify the signature S = (r, s) of the message m using the public parameters, we

2. Federal Information Processing Standards
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Table 2. Running time for key generation.
Key lengths (bits) | Computational time (sec) |

ECC RSA ECC RSA
163 1024 0.219 0.958
233 2 240 0.257 1.615
283 3072 0.197 6.122
409 7 680 0.224 162.357
571 15 360 0.156 2029.909

proceed as follows:
1) Check if 7 and s are integers within the interval [1,n — 1].
2) Calculate SHA — 1(m), and convert it into an integer e.
3) Calculate w = s~ (modulus n).
4) Calculate u; = ew (modulus n) and ug = r w (modulus n).
5) Calculate X (21,y1) suchas X = u1 G + us P.

6) If X = 0 then S is not valid. Otherwise, calculate v = x1 (modulus n).
The signature S of the message m is valid if v = 7.

3.3. Performance comparison

In this subsection we make the comparison between RSA and ECIES algorithms for
the encryption scheme, ECDSA and ECNR algorithms over RSA algorithms for digital
signature. The comparison is done in terms of execution time of each algorithm. The ma-
chine on which the various tests are performed has a dual core processor of 2.4 GHz and
equipped with 2 GB RAM. As other processes running on the computer, the computation
time retained in this paper is the average time after a certain number of execution of the
different cryptosystems.

3.3.1. Encryption scheme

For this process, we have two steps: encryption and decryption. But we have firstly to
generate a pair of key. The comparison in terms of execution time is also done according
to the same steps. We then wrote two programs in Java[19] that implement these algo-
rithms. We have encrypted one text file of 4 Ko and after we have decrypted it. Then, we
can calculate the computational time of each step.

3.3.1.1. Key generation

The results, in terms of computational time, at the level of key generation are reported
in Table 2.

We found that the key generation by the ECIES algorithm is much faster than the key
generation in RSA algorithm. While this generation time increases linearly with an almost
zero slope, it exponentially increases in case of RSA. Therefore, from a key generation
point of view, the ECC-based algorithm is much more optimal.

3.3.1.2. Encryption process

The results, in terms of computational time, at the level of encryption using RSA and
ECIES algorithms are reported in Table 3.
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Table 3. Running time for encryption.
Key lengths (bits) | Computational time (sec) |

ECC RSA ECC RSA
163 1024 1.147 0.063
233 2 240 1.265 0.031
283 3072 1.395 0.031
409 7 680 1.375 0.031
571 15 360 1.265 0.015

Table 4. Running time for decryption.
’ Key lengths (bits) \ Computational time (sec) ‘

ECC RSA ECC RSA
163 1024 0.015 0.062
233 2240 0.029 0.032
283 3072 0.019 0.047
409 7 680 0.026 0.375
571 15 360 0.047 2.66

We noted that the encryption by the RSA algorithm is faster than the one with ECC
algorithm. But the gap between the two computational times is not so great. Therefore,
from an encryption point of view, we can conclude that the two algorithms present the
same performance but RSA-based algorithm performs better.

3.3.1.3. Decryption process

The results, in terms of computational time, at the level of decryption are reported in
Table 4.

We obtain opposite results in comparison with those obtained during the encryption
step. The decryption by the ECC algorithm is more faster than the one with RSA.Therefore,
from an decryption point of view, we can conclude that ECC-based algorithm performs
better.

3.3.2. Digital signature

As previously elucidated in the description of algorithms, we have three main steps in
their implementation namely the key generation, the signature generation and the signa-
ture verification. We will use two common algorithms of elliptic curves — ECDSA and
ECNR - and compare their performance with RSA-based algorithm.

The comparison in terms of execution time is also done according to the same steps.
We then wrote three programs in Java using the same library JCE [19] to implement these
algorithms.

3.3.2.1. Key generation

The results, in terms of computational time, at the level of key generation are reported
in Table 5.

We found that the key generation by the ECC algorithm is much faster than the key
generation in RSA algorithm. The performance between ECDSA and ECNR is not very
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Table 5. Running time for key generation.
Key lengths (bits) [ Computational time (sec) |
ECC
ECC RSA ECDSA | ECNR RSA
163 1024 0.466 0.528 0.958
233 2240 0.337 0.65 1.615
283 3072 0.318 0.579 6.122
409 7 680 0.374 0.538 162.357

571 15 360 0.317 0.559 | 2029.909

Table 6. Signature generation execution time.
Key lengths (bits) [ Computational time (sec) |

ECC
ECC RSA ECDSA | ECNR RSA
163 1024 0.009 0.057 | 0.036
233 2240 0.01 0.061 | 0.037
283 3072 0.01 0.060 | 0.067

409 7 680 0.014 0.067 | 0.479
571 15 360 0.018 0.083 | 3.015

different. As we noted in 3.3.1 during key generation, while this generation time increases
linearly with an almost zero slope, it exponentially increases in case of RSA. Therefore,
from a key generation point of view, the ECC-based algorithm is much more optimal.

3.3.2.2. Signature generation

The results at the level of the signature generation are reported in Table 6.

The Table 6 shows that ECDSA performs better than ECNR and RSA algorithms.
When the length of the ECNR key is greater than 409 bits, the signature generation time
of this algorithm is not better than its equivalent in terms of security with RSA. Elsewhere,
the RSA algorithm is a little faster than the ECCNR algorithm. In any case, the perfor-
mance of the two algorithms is not too different up to a given key length (409 bits) and
beyond, ECNR becomes more efficient. In fine, we have understood that ECC performs
better than RSA in terms of signature generation.

3.3.2.3. Signature verification

The results in terms of computational time at the level of the signature verification are
presented in the Table 7.

They all have almost the same performance except that the RSA results are better
than those of ECC (ECDSA and ECNR). For signature verification, the RSA algorithm
becomes much more efficient than ECC since it performs a modular exponentiation.
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Table 7. Execution time of signature verification.

Key lengths (bits) [ Computational time (sec) |
ECC
ECC RSA ECDSA | ECNR RSA
163 1024 0.0053 | 0.047 | 0.007
233 2240 0.005 0.069 | 0.004
283 3072 0.008 0.049 | 0.006
409 7 680 0.017 0.054 | 0.01

571 15 360 0.025 0.056 | 0.015

4. Discussion and analysis

We observed that memory consumption is much lower with the ECC algorithm (see
Table 1), since shorter keys are allowed. Secondly, the key generation and message signa-
ture computation are faster with the ECC algorithm than the RSA algorithm. To evaluate
and to compare the performance of the RSA and ECC algorithms, Nicholas Jansma and
Brandon Arrendondo proposed two (02) implementations using respectively two cryp-
tosystems [21]. They concluded that ECC can have the same level of security as RSA
with a much shorter key.

By analyzing the suggested key length in [16] (see Table 1), it emerges that:

— Firstly, symmetric algorithms use a small key size to ensure the same level of secu-
rity. For instance, the key of 256 bits length is enough for the symmetric algorithm, to
reach the same level of security for the RSA algorithm with the key length of 15 360 bits.
It means that the key length of RSA is 60 times the key length of the symmetric algorithm.
But the difficulty in these algorithms lies in the preservation of the secret key.

— Secondly, the ECC algorithm requires fewer bits in terms of key length than the
RSA algorithm to provide the same level of security. However, it requires about twice the
key length of the symmetric algorithm to offer the same robustness.

R. Sinha et al. achieved the paper "Performance Based Comparison Study of RSA
and Elliptic Curve Cryptography" [17] in which they analyzed the results obtained by
Nicholas Jansma and Brandon Arrendondo. In this work, we performed by ourself with
the nowaday ressources the cryptosystem to identify the best way to secure more data.

Due to the major drawback of the symmetric algorithms, we therefore concluded the
algorithms implementing the elliptic curves are less costly in terms of key length. This
is the main reason why the ECC algorithm is increasingly becoming the preferred choice
for embedded systems with very limited memory and computing power.

Considering Bandwidth saving, ECC offers considerable bandwidth savings over RSA
and considering computational overheads, ECC offers Roughly 10 times than that of RSA
can be saved [18]. Considering key sizes, System parameters and key pairs are shorter for
the ECC than RSA and After the different results obtained at the level of the encryption
and decryption and those obtained for the digital signature, we have deduced that the
elliptic curve algorithms are more efficient than the one based on the RSA. Also, we
found that the digital signature ECDSA is more efficient than the ECNR. This is why
among the algorithms based on the elliptic curves, the ECDSA algorithm was adopted
and published as an international standard in ANSI X9.62°.

3. Public Key Cryptography For The Financial Services Industry: The Elliptic Curve Digital Signature
Algorithm (ECDSA)
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5. Concluding remarks

We evaluated the performance of asymmetric cryptography through elliptic curve
cryptography versus that with the RSA algorithm. Then, we achieved RSA cryptosys-
tems and some others by using elliptic curve cryptography protocols — Elliptic Curve
Nyberg-Rueppel (ECNR), Elliptic Curve Digital Signature Algorithm (ECDSA) and El-
liptic Curve Integrated Encryption Scheme (ECIES).

Systems based upon elliptic curves are an effective alternative to the RSA cryptosys-
tems since they involved different mathematical approaches. Elliptic curve cryptosystems
are reputed for robustness equivalent to RSA cryptosystems with shorter key length. Ac-
cordingly, elliptic curve cryptosystems are perfectly suitable for embedded systems, e.g.,
smart cards, documents in which memory and power of the processors are not sufficient
to achieve computation as required by RSA cryptosystems.

However, ECC and RSA cryptosystems involved the use of keys for security. We will
in our future work investigate this drawback by developing a hybrid blockchain.
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