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Abstract TV archives are growing in size so fast that manually indexing be-
comes unfeasible. Automatic indexing techniques can be applied to overcome
this issue, and this work proposes an unsupervised technique for multimodal
person discovery. To achieve this goal, we propose a hierarchical label prop-
agation technique based on quasi-flat zones theory, that learns from labeled
and unlabeled data and propagates names through a multimodal graph repre-
sentation. In this representation, we combine audio, video, and text processing
techniques to model the data as a graph of speaking faces. In the proposed mod-
eling, we extract names via optical character recognition and propagate them
through the graph using audiovisual relationships between speaking faces. We
also use a random walk label propagation and two graph clustering strategies to
serve as baselines. The proposed label propagation techniques always outper-
form the clustering baselines on the quantitative assessments. Our approach
also outperforms all literature methods tested on the same dataset except
for one, which uses a different preprocessing step. The proposed hierarchical
label propagation and the random walk baseline produce highly equivalent
results according to the Kappa coefficient, but the hierarchical propagation is
parameter-free and over 9 times faster than the random walk under the same
configurations.

1 Introduction

With TV being one of the main means of communication during the past
decades, the amount of content produced and stored by TV channels is ex-
tremely vast and is continuously growing in size. Although, it is irrelevant to
have an extensive amount of data that is not searchable, and with that in mind
many approaches for automatically indexing TV videos were developed. In-
dexes that represent the identity of people in these archives are essential when
searching for content since human nature leads people to be very interested in
other people. However, at the moment that content is created or broadcasted,
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it is not always possible to predict which people will be the most relevant in
the future. For this reason, it is not possible to assume that any model capable
of detecting a specific individual will be present at indexing time. This com-
bined with the impossibility of manually labeling entire databases ends up on
the creation of partially, usually minimally, annotated archives. To solve such
a problem, many methods to automatically index video databases are studied.

The problem of detecting and naming people on videos without supervi-
sion can be addressed as a person discovery (PD) task. No prior knowledge,
such as person biometric models, should be used on PD since it is an unsu-
pervised problem by definition. To tackle such a task, one can make use of
the many sources of information present on a video, using only one channel of
information to solve the PD problem (i.e., using visual-only or acoustic-only
sources) or using multi-channel analysis. Methods that use multiple channels
of information try to take advantage of the multimodal nature of videos to
improve results, and when they are applied to tackle the PD problem, we can
describe the approach as a multimodal person discovery (MPD).

The first approaches for automatic person identification [9,10] used name
extraction techniques based on pronounced names; while other works make
use of biometric models for speaker identification [19,35,62]. However, these
methods are highly impacted by poor speech transcription and poorly detected
named entities. Even if the methods for assigning labels (names in this case)
to speakers are good, the use of noisy labels can lead to high error rates. In ad-
dition, visual-only approaches were proposed, using overlaid text recognition
for extracting name labels. Similarly to the audio-only approaches, the per-
formance of these methods are very dependent on the quality of the extracted
names [24,56,67,68]. Tuytelaars et al. [63] proposed an approach for naming
persons in TV news by extracting names from video transcripts and using
graph-based label propagation algorithms to assign names to other appearing
persons. Two common obstacles found in these works are related to the use
of monomodal approaches and the adoption of unsupervised name extraction
strategies.

Started in 2011, the REPERE challenge aimed at supporting research
on multimodal person recognition [20,26] to overcome some limitations of
monomodal approaches, and annual evaluations were organized in 2012, 2013,
and 2014. Much progress was achieved in either supervised or unsupervised
multimodal person recognition [4,8,22,25,45,46,49,52,66,73,76].The MediaE-
val Person Discovery task [47] can be seen as a follow-up campaign, which
focused on unsupervised person identification. In this challenge, participants
were encouraged to develop multimodal approaches without using any prior
biometric models. Two campaigns of the MPD task were promoted in 2015
and 2016, leading to collaborative advances on the task [30,48].

More recently, Azab et al. [3] proposed a multimodal optimization approach
for speaker naming in movies. Although, they use information from movie
subtitles to perform the naming of speakers, which is not always available in
the context considered in this work. Similarly, in other works [41,54] movie
scripts and video metadata are used to extract person names. Additionally,
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Kakaletsis et al. propose a method for fast identity label propagation [27],
but in this work, initial labels are manually given on the dataset. The manual
labeling removes part of the automatic and unsupervised aspects of an MPD
approach.

Without having any prior knowledge of person names and by automatically
extracting them from visual or acoustic sources, we are prone to getting a small
number of good quality labels. To deal with the label shortage, many works on
multimedia processing use semi-supervised learning approaches, which build
models from both labeled and unlabeled data [32,65,72]. Some of these works
use semi-supervised approaches to make name-person assignments, using for
example Laplacian support vector machines [66] and label propagation [76].

In this work, we extend the study of a semi-supervised hierarchical label
propagation method to propagate initially extracted names to all occurrences
of the same person in a video, as proposed in our previous work [14]. This label
propagation approach is inspired by a seeded hierarchical image segmentation
method [1,42,43]. Image segmentation is a task that consists of separating
distinct objects on an image, consequently grouping perceptually coherent
objects. Many image segmentation methods rely on the similarity present in
the local neighborhood to define boundaries between distinct regions of an
image [13,69]. Similarly to the image segmentation proposal, in the context of
PD we want to separate distinct persons that appear in a video by relying on
their similarities, to be able to correctly propagate labels from labeled persons
to unlabeled ones.

Some image segmentation methods have qualities that are greatly desir-
able in other data processing domains, such as being very computationally
efficient or being resistant to extensive amounts of noise present in data [70,
71,11]. With that in mind, being able to adapt image segmentation methods
to general data processing can bring many benefits. We propose in this work
the reformulation of the previously proposed label propagation method [14]
in the form of quasi-flat-zones hierarchy theory [13], using a highly efficient
algorithm for propagating labels during the creation of this hierarchy. This
formulation opens doors to other adaptations of image segmentation methods
to the multimedia processing domain.

To assess the quality of the proposed label propagation method we com-
pare it to a random walk label propagation method, as an adaptation of [74].
Another common way to solve the PD problem is by clustering the appear-
ing persons in a video and then performing cluster-name associations. Even
though it looks like a more classical approach, clustering instances is vastly
used for naming persons and other multimedia indexing problems [44,49,60,
64]. To compare the graph-based label propagation strategies with more clas-
sical approaches, we use two graph clustering methods as baselines for naming
persons.

To create a better suited representation considering the specificities of the
PD problem, we use in this work multimodal graph-based modeling for the
PD task as an extended version of our previous work [14]. In this modeling,
we combine feature extraction and multimedia processing techniques available
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on the literature such as face detection and tracking [15,16], speech diariza-
tion [53], visual feature extraction [58,57], audio feature extraction [21], and
named entity recognition [50] to create a multimodal representation for each
video. By using this representation, we can effectively exploit the audio-visual
relationship between persons appearing in the same video. Besides that, to
deal with problems on name extraction which may lead to very few annota-
tions, we propose a label propagation approach that learns from both labeled
and unlabeled data by using the multimodal graph topology.

The main contributions presented in this work are twofold: (i) a formu-
lation of the hierarchical propagation using quasi-flat-zone theory and fast
component tree creation algorithms, leading to an efficient and parameter-free
algorithm and opening doors to the adaptation of other image processing ap-
proaches to general multimedia analysis; and (ii) a deeper assessment of the
multimodal graph representation and label propagation methods by analyz-
ing how audiovisual weight fusion approaches (early, intermediate and late
fusion), feature specificity level, and edge pruning intensities (light, moderate
and intense pruning) impacts the whole labeling process.

The remainder of this paper is organized as follows. Section 2 contains the
MPD problem formulation with graphs. In Section 3, the strategies for fusing
different modalities are presented and discussed. In Section 4, the hierarchical
label propagation process is fully described. In Section 5, some experiments
and analysis are given to illustrate the relevance of our proposal, and finally,
some conclusions are drawn in Section 6.

2 Multimodal graph modeling for MPD

The multimodal person discovery task consists in automatically tagging all
shots of a set of broadcast TV videos with the names of people both speaking
and appearing at the same time during each shot. As defined in the MediaEval
MPD task [7], it is a completely unsupervised task as the list of appearing
persons is not provided a priori. Consequently, the only way to identify person
names is by extracting them via speech transcription or using optical character
recognition (OCR) over video overlays.

Extracting and associating names from audio sources is not a trivial task,
containing two major challenges: (i) dealing with noise resulting from the
automatic speech transcription; and (ii) correctly associating a spoken name to
an appearing person on a video. When using visual information one must also
deal with noise on the extracted text, but the person-name association is easier
since in most cases there is a temporal overlap between the appearing person
and its name. This advantage highly encourages the use of OCR extracted
names, but imposes other limitations. The number of shots where a person
appears is much larger than the number of shots where its name is visually
shown. Also, depending on the broadcasted content, overlaid names are not
available, and other sources must be used to extract name information.
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To produce the output containing the names of the active persons, i.e., per-
sons that are speaking and appearing at the same time on all shots of a video,
one must: (i) detect the active persons on a video; (ii) extract the appearing
names; (iii) associate the extracted names to the active person on the same
shot; and (iv) propagate the names to other shots where the same active per-
son appears. Many works that tackle the MPD problem propose some kind of
clustering-based approach to propagate the initially associated names to other
instances of the same person throughout the video. Although, these approaches
are prone to limitations of clustering techniques, such as initially selecting the
number of clusters for some methods, and dealing with situations where there
are multiple labels in one cluster. Badly addressing these issues can lead to
mistakes in person-name associations.

An alternative to avoid the clustering issues is the use of semi-supervised
label propagation approaches, which use the information of both labeled and
unlabeled data to propagate labels properly. Also, as stated in other works, la-
bel propagation methods excel where the number of labeled data is excessively
small and supervised methods are not a viable option [63,74]. In this work,
we propose a hierarchical label propagation approach, inspired by a highly ef-
ficient seeded image segmentation algorithm using quasi-flat zone hierarchies
(QFZ).

Inspired by [42,43], the pipeline for performing multimodal label propaga-
tion over quasi-flat zone hierarchies can be outlined as follows: (i) transforma-
tion of the multimedia data into a graph; (ii) computation of a hierarchy from
the graph (e.g., quasi-flat zone hierarchy); and (iii) computation of the final
label propagation from the hierarchy according to a criterion (e.g., number of
labels to be propagated). Here, we compute the QFZ from a graph of active
persons on a video named speaking face graphs. In this graph, each node rep-
resents a person, and each edge represents the audio-visual similarity between
two persons. The details for the speaking face graph creation are discussed in
the following.

2.1 Speaking face graph modeling

To take advantage of the complementary information on multiple data sources
and to work around the difficulty of combining several modalities, we have used
a graph-based approach to merge multimodal information taking into account
audiovisual data. We accomplish this by combining different well-established
techniques of multimedia processing to create the multimodal graph represen-
tation. We define the creation of this representation as follows.

Given a video, we first segment it into shots. Then, a face detection and
a face clustering methods are applied to each shot. This results in clusters of
frames which are contiguous in time and are related to a single face. These
sequences of frames are denoted face tracks. We also compute a set of speech
turns, by applying a speaker diarization method on the video, creating seg-
ments of audio related to a single speaker. The set of face tracks and speech
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Fig. 1: Speaking face creation

turns are represented by FT and ST , respectively. A speaking face Vk repre-
sents an association of a face track FTi with a co-occurring speech segment
STj , both assumed to belong to the same person, as illustrated in Fig. 1. In
particular, Vk exists if and only if the intersection of temporal spans of FTi
and STj is non-empty.

To create a representation that fits well on the MPD problem, a multimodal
graph representation of speaking faces was proposed in [55]. In this modeling,
a speaking face graph G = (V,E) is a graph in which each node in V represents
a person who appears speaking on a video, and edges represent audiovisual
relations between these nodes. Let Y be a set of names extracted from the
video. In a graph of speaking faces, each vertex Vk can have a name Yt assigned
to it. A speaking face graph is illustrated in Fig. 2.

Let G = (V,E) be a speaking face graph in which V = {Vk}1≤k≤N , N ∈ N
is the set of speaking faces. If W is a map from the edge set of G to R, then the
pair (G,W ) is called a weighted speaking face graph. If (G,W ) is a weighted
speaking face graph, for any edge Ei,j = (Vi, Vj) ∈ E, with Vi, Vj ∈ V of G, the
value Wi,j is called the weight of Ei,j (for W ), and it stands for the similarity
between two speaking faces with value in [0, 1], which can be a visual similarity,
an acoustic similarity, or their combination. For instance, let vi and vj be a pair
of speaking faces, the visual similarity σV measures the resemblance between
the face tracks represented by them; while audio similarity σA measures the
proximity between speech segments also represented by the two speaking faces.

2.2 Graph Pruning

On the speaking face graph creation, we calculate the similarities between
all pairs of nodes on the graph, leading to the creation of complete graphs.
However, it is not always possible to get complete graphs under real scenarios.
Sometimes the number of nodes is too big, and calculating all similarities
between them can be costly. In other circumstances, one can have access to
an already preprocessed graph instead of the raw data, and calculating the
remaining relationships can be impossible.

To mimic these circumstances and create graphs with missing relation-
ships, we apply a graph pruning with an adaptive threshold on the speaking
face graphs. To calculate the threshold, let (G,W ) be a weighted graph in
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Fig. 2: Speaking face graph illustration, in which each node represents a speak-
ing face. Eventually, some nodes are associated with their respectively labels
(or names).

which each edge Ei has a weight Wi, and N be the total number of edges on
the graph, i.e., N = |E|. The method comprises setting a threshold,

T =
1

N

∑
i∈E

Wi − δ ×
√

1

N

∑
i∈E

(std−Wi), (1)

in which std is the standard deviation of the similarities of the graph and δ is
a parameter that controls the intensity of the pruning.

3 Audiovisual fusion

We use the speaking face graph topology to propagate the initial labels to
other persons on the same video, based on the audiovisual similarities between
them. Multiple sources of data from distinct natures can have complementary
information, thus combining these multiple sources can produce more power-
ful descriptions, and consequently, more discriminative similarities. Although,
there are many ways to combine different modalities to produce multimodal
relationships, and we study some of them in this work.

According to [17], there are three different fusion categories: data, feature,
and decision level fusion, depending on the processing stage where the fusion
occurs. Atrey et al. [2] claimed that the most widely used strategy is to fuse
multimodal information at the feature level, which is also known as early fu-
sion. The other approach is decision level fusion or late fusion, which combines
multiple modalities in the semantic space. Atrey et al. also describe in [2] that
a combination of these approaches is also practiced and called a hybrid fusion
approach.
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In [23], it is presented the existence of multimodal fusion (MF) techniques
in diverse research areas. In this work, a class of fusion methods called early fu-
sion is presented. It combines various modalities to generate new modalities by
incorporating the latent correlated information. It is also claimed in [23] that
fusion is implemented within the feature space in the early stage of multimedia
analysis, generally using feature concatenation and feature space transforma-
tion to produce a high-dimension feature space. Late fusion is also described as
another class of methods where detectors (or classifiers) are trained indepen-
dently for each modality and then combined to obtain a more comprehensive
prediction, usually implemented by combining likelihoods or scores from those
detectors.

More recently in [6], multimodal fusion is also referred to as integrating
multiple data modalities, their associated features, or the intermediate deci-
sions to perform an analysis task (following the concepts described in [2]). Gen-
erally speaking, two types of fusion are considered, depending on the level at
which the fusion takes place: early or feature-level fusion and late or decision-
level fusion. In näıve early fusion schemes, features from different modalities
are concatenated before the learning takes place. According to [2], we can di-
vide fusion methods into the following three categories: rule-based methods,
classification-based methods, and estimation-based methods.

From the literature [2,28], it has been observed that many fusion methods
such as linear weighted fusion, support vector machine (SVM), and dynamic
bayesian networks (DBN) have been used more often in comparison to the
other methods. According to [2], this is due to the fact the linear weighted
fusion can be easily used to prioritize different modalities while fusing; SVM
has improved classification performance in many multimedia analysis scenar-
ios; and the DBN fusion method is capable of handling temporal dependencies
among multimodal data, which is an important issue often considered in mul-
timodal fusion. For more extensive treatments on multimodal data fusion, the
reader may refer to [2,28].

In this work, we study the impact of three different fusion approaches for
audio and visual modalities, named early fusion, intermediate fusion, and late
fusion. The different adopted fusion types are described hereinafter:

– Early fusion approach: audio and visual features are concatenated in one
vector, creating an audiovisual feature, which is then used to compute
similarities between nodes. For instance, the cosine similarity is chosen to
calculate similarities between these vectors;

– Intermediate fusion approach: visual and audio similarities are combined
using a weighted average, i.e., σAV = f(σV , σA) = γσA + (1 − γ)σV , in
which γ is in the range [0, 1];

– Late fusion approach: label propagation is done for each modality, pro-
ducing two labels and two confidence scores for each speaking face. This
is equivalent to using two distinct weighted average functions: one with
γ = 1; and another one with γ = 0, resulting in σAV1 = σV and σAV2 = σA.
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Then, the label with the highest confidence score is kept for each speaking
face.

4 Label Propagation Strategy

Extracting names from either visual overlays or automatically generated speech
transcripts leads to a small number of detected names and, usually, only a
very small portion of the speaking faces is initially annotated. This highly
encourages us to make use of semi-supervised graph-based label propagation
approaches to label the speaking faces that were not initially labeled.

Semi-supervised methods stand between the unsupervised methods and the
supervised ones, as they use labeled and unlabeled data together to work. For
some minimally annotated datasets, the use of semi-supervised approaches
has shown better results than the use of supervised ones [74]. Even though
methods like the label propagation in [74] and random walks in [75] show
good results in these conditions, their iterative versions consist of a series of
matrix multiplications, which are computationally costly.

In this work, a novel hierarchical approach based on quasi-flat zones is
used for propagating labels over weighted speaking face graph. Here, we extract
a quasi-flat zone hierarchy (QFZ) from a component tree, which is constructed
in a quasi-linear time [36]. After this construction, we guide the propagation of
the labels by the QFZ hierarchy in which labels are assigned to every speaking
face detected, leaving none unlabeled node at the end of the propagation. We
calculate a confidence score for each labeled node, representing the level of
certainty of that labeling being correct. The confidence score can take values
between 0 and 1, with 0 representing weak correctness of an associated name,
and 1 standing for a very strong certainty that the labeling is correct. We
assume that the initial labels have a confidence score of 1, and this must not
change during the label propagation phase.

Using the quasi-linear algorithm for creating a component tree, that depicts
a QFZ hierarchy for the weighted speaking face graph, depends on the weight
map which represents the audiovisual similarities. Taking into account that a
label must be first propagated between nodes with high similarity, and without
loss of generality, for the component tree creation, we have considered the edges
into a non-increasing order of their weight values for forcing the propagation in
the edges with high weight values, i.e., high similarity. Contrarily, if the weight
values of the edges represent dissimilarity (instead of similarity), we consider
the edges in a non-decreasing order of their weight values which represent
small distances.

Inspired by [42,43] which propagate a label through the hierarchy to per-
form supervised image segmentations, we propose a hierarchical multi-label
propagation. Before discussing the proposed method, we give some important
definitions.
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4.1 Preliminary concepts

Let (G,W ) be a weighted speaking face graph in which the weight map W
represents the audiovisual similarities. Following [13], the hierarchy is con-
structed according to a weight map that represents distances between the
nodes, thus we define (G,W ′) as a weighted distance speaking face graph in
which W ′ = 1−W . We define E = [0, 1] as the set of values of W ′.

Let λ be a number in E. A λ-level edge set of G is the set of all edges in
which the weights are smaller than λ. The λ-level graph of G is the subgraph
Gλ of G which contains the edges of the λ-level edge set of G, and all vertices
of G. We say that a graph G is connected if there exists a path between all
pairs of nodes of G. We say that the nodes V ′ of a subgraph G′ of G is a
connected component if there is no other subgraph greater than G′ in which
there exists a path between all nodes of V ′ in G′. The set of all connected
component partitions C(Gλ) induced by the λ-level graphs of G represented
by the following sequence

QFZ(G) = (C(Gλ) | λ ∈ E) (2)

is considered a quasi-flat zone hierarchy of G.
The connected components on the lower parts of the QFZ hierarchy (i.e. for

lower values of λ) contain elements with small distances (or high similarities)
between themselves, which we can see as components composed by very simi-
lar elements. As the λ value increases, the components of higher levels of the
QFZ hierarchy are unions of components of lower levels, and the average dis-
tance within these components also increases. This means that elements on a
connected component of C(Gλ) for large values of λ are not necessarily simi-
lar. Thus, we propose a hierarchical multi-label propagation algorithm based
on QFZ hierarchies, in which labels are propagated over the connected com-
ponent partitions on a weighted distance speaking face graph for propagating
label between connected components on a QFZ hierarchy taking into account
an extension of the propagation method proposed in [43] to cope with multi-
labels. The choice of which label to propagate depends on a confidence score
we compute for each node.

4.2 Hierarchical multi-label propagation

In a previous work [14], we have developed a label propagation based on mini-
mum spanning trees; and, according to [13], a QFZ hierarchy and a minimum
spanning tree (MST) are equivalent, thus a QFZ hierarchy can be computed
from a component tree or one can compute an MST to produce the same hi-
erarchy since both are equivalent. Here, we take advantage of this equivalence
to create an efficient implementation of the QFZ label propagation, using the
procedure for creating component trees in quasi-linear time [36].

The procedure for creating the component tree is based on three main
operations:
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– Make-Set(Vi): Create a connected component composed by the element
Vi;

– Find(Vi): Find the connected component Si that contains the element Vi;
– Merge(Vi, Vj): Create a new connected component by merging the con-

nected components that contain the elements Vi and Vj . Two connected
components Si and Sj that contains Vi and Vj , respectively, can only be
merged if they are not the same.

With these three operations, the procedure for computingQFZLP as showed
in Algorithm 1, can be simplified into the following steps: (i) taking a graph
(G,W ′) as input, create a unitary connected component Si for each element
Vi in V ; (ii) then, for each edge Ei,j taken in non-decreasing order, check if
Vi and Vj are in the same connected component by applying Find(Vi) and
Find(Vj); and (iii) if they belong to different connected components, apply
Merge(Vi, Vj). Repeat steps (ii) and (iii) until all edges are visited.

To perform the hierarchical multi-label propagation, we have proposed a
new operation so-called Propagate as described in the Algorithm 2. The
Propagate operation is called whenever two disjoint connected components
are merged (right after the operation Merge), considering three different sit-
uations: (i) if only one of the connected components is labeled, its label propa-
gates to all nodes belonging to the other connected components, as illustrated
in Fig. 3a; (ii) if none of the connected components is labeled, nodes of both
connected components remain unlabeled, as illustrated in Fig. 3b; and (iii) if
both connected components are labeled, their labels do not change, and one
of the labels is taken to represent the new connected component formed (this
representative label will be the one propagated to other groups when the new
connected component eventually merge with another one), as illustrated in
Fig. 3c. To choose the representing label for the new merged connected com-
ponent in the latter case, the confidence scores of the connected components
are compared, and the one with the biggest score is selected.

To calculate the confidence scores when propagating a label to an un-
labeled connected component, we multiply the weight of the edge Ei,j that
merged both components by the confidence score of the labeled component.

Algorithm 1: QFZLP Algorithm

QFZ Propagation ((G,W ′), in which W ′ = 1−W );1

Input : Partially labeled graph distance graph G
Output: The set of labels L for the speaking faces
foreach vertex Vi ∈ G do2

Make-Set(Vi);3

foreach edge u = Ei,j in a non-decreasing order of W ′ do4

if Find(Vi) 6= Find(Vj) then5

Sk ← Merge(Vi, Vj);6

/* The Sk label will be either Si or Sj label, if exists label to

propagate. */

Propagate(Sk,Si,Sj ,W ′(u));7
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Algorithm 2: Pseudo-code for the label propagation from two connected
components.

Propagate (Sk, Si, Sj , w);1

Input : The connected components (with confidence scores and labels) and the
weight value of the edge that connects the subgraphs

Output: Label and confidence of the new connected component
(Li, Ci) ← LabelAndConfidence(Si);2

(Lj , Cj) ← LabelAndConfidence(Sj);3

if Li and Lj are unlabeled then4

Lk ← Null; Ck ← 0;5

else6

if Li and Lj are labeled then7

if Ci ≤ Cj then8

Ck ← Cj × score function(w);9

Lk ← Lj ;10

else11

Ck ← Ci × score function(w);12

Lk ← Li;13

else14

if Li is labeled then15

Ck ← Ci × score function(w);16

Lj ← Li; Lk ← Li;17

else18

Ck ← Cj × score function(w);19

Li ← Lj ; Lk ← Lj ;20

It is worth to mention that the initial labels have a confidence score equal
to 1. The confidence score of the new labeled connected component will be the
product between the confidence score of the merged connected components
and a scoring function applied to W ′. For instance, the score function(w) may
return the similarity value between Vi and Vj , which can be simply referred
as Wi,j . Hence, if a labeling occurs between similar elements, the confidence
score will be high (closer to 1), and if it occurs between dissimilar elements,
the resulting confidence score will be smaller, closer to 0.

Since there is only one new operation on the union-find step for this algo-
rithm when compared to the original algorithm, the complexity order is still
the same. In this case, the complexity is O(E×φ(E)), where φ is a slow-growing
diagonal inverse of the Ackermann’s function (in [36], φ(1080) ≈ 4).

5 Experiments

To evaluate the proposed methods, we adopted the test set of the MediaEval
2016 MPD task, which was manually annotated during the campaign of the
respective year [7]. This set is divided into three parts, named as 3-24, INA, and
DW. The 3-24 part comprises a Catalan TV news channel named 3-24. The
second INA part is a subset from the INA dataset composed of two different
French TV channels. Lastly, the DW part comprises videos downloaded from
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Fig. 3: Merging cases of the hierarchical label propagation.

the Deutsche Welle website, containing videos in English and German. The
INA part represents 90 hours of content, the DW part has a total duration
of 50 hours, and the 3-24 part has a duration of 13 hours of TV broadcast.
The dataset did not include annotations before the MediaEval 2016 event, and
it was annotated based on the participants’ submissions and feedback. More
details about the annotation process can be found in [7]. The final annotation
version assembled on October 16, 2016, is used in this work as ground-truth.
The ground-truth contains 3, 431 annotated shots, with one or more names
assigned to each shot.

Along with the raw data, the MediaEval organization also provided a base-
line, containing pre-processed data related to all steps of MPD. Since they give
a baseline, one can select key parts of the entire process to tweak, without hav-
ing to process all other steps that are not related to the improvements. The
provided baseline includes:

– Segmentation of the video stream as a sequence of contiguous shots;
– Detection of face tracks within video streams;
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Fig. 4: Block diagram of the MPD framework.

– Detection and transcription of the overlays from video frames for finding
names;

– Segmentation of the audio streams into speech segments;
– Similarity values between all high-level features; and
– Speech transcription that can be also used for name detection.

5.1 Pre-Processing and Feature Extraction

The pipeline of the MPD approach applied in this work is illustrated in Fig. 4.
The provided pre-computed features are used in some of the framework steps,
while in the others, we compute features either to improve results or to fill
specific needs of this work. From the provided features, we use: (i) shot seg-
mentation (notice that we discard shots whose duration is less than 1 second
or over 10 seconds); (ii) text detection and recognition by IDIAP [12]; (iii)
segments of speech obtained with the speaker diarization system from LIUM
[53]; (iv) face tracks obtained with a histogram of oriented gradients-based
detector [15] and a correlation tracker [16].

We compute two visual features in this work. One is a generic convolutional
neural network (CNN) based feature, and the other is also a convolutional
network based descriptor, but it is specific for describing faces. Previous works
show how to extract generic visual descriptors from pre-trained Convolutional
Neural Networks. Oquab et al. [39] extract features from intermediate layers
to build mid-level generic visual representations for classification. Razavian et
al. [51] similarly build descriptions for image retrieval. More recently, Tolias
et al. [61] use convolutional layers of a pre-trained CNN to efficiently build
the MAC and R-MAC descriptors for retrieval, while Sicre et al. [58] use both
fully connected and convolutional layers outputs to build region descriptors.
For calculating visual features, each face track is first represented by its central
face, or key face. The image of the face is further described by one of the two
descriptors:
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– FaceNet: A face specific descriptor based on FaceNet network[57];
– CNN: A generic descriptor [58] based on VGG-19 [59] CNN, trained on

the ImageNet dataset.

For the CNN feature, similarly to Tolias et. al. [61], the last convolutional
layer of the network is extracted, then an average pooling followed by power
normalization is performed, i.e., signed square root and L2 -normalization. The
final descriptor is 512-dimensional and can be used to compute similarities be-
tween faces using cosine similarity. The resulting similarity σV takes values
between 0 and 1 as these visual features are normalized. For the FaceNet de-
scriptors, similarities are also calculated using cosine similarity between those
features.

For the audio description we calculate two different features:

– GMM: For calculating the first feature, each speech segment is described
by a sequence of Mel-Frequency Cepstral Coefficients from which is learned
a Gaussian Mixture Model with 16 components. We compute them by using
the SPro1 and Audioseg2 toolboxes;

– i-vector: For the second feature, an i-vector is calculated. The i-vector
for an audio segment is obtained by stacking all the mean coefficients of
the GMMs in a supervector and expressing this supervector in a reduced
space emphasizing speaker similarity regarding channel properties [21].

For calculating audio features, each speech segment is described by a se-
quence of Mel-Frequency Cepstral Coefficients (hop size 10 ms, window size
20 ms) from which is learned a Gaussian Mixture Model with 16 components.
Two speech segments are compared using a normalized distance approximat-
ing of the Kullback-Liebler divergence [5]. We transform this distance into a
similarity by:

σAi,j = exp(αδAi,j), (3)

where σAi,j and δAi,j are the similarity and the distance between segments i and
j, respectively. With i-vector descriptors, the computation of the cosine sim-
ilarity between them incorporates a channel compensation processing which
emphasizes again the similarity between channels [18]. In the end, all the sim-
ilarities are values between 0 and 1, with 1 meaning most similar possible.
Two pairs of audiovisual features are created in this work, one containing a
more generic audiovisual description (the CNN-GMM combination), another
being the combination of a face-specific descriptor and a state-of-the-art audio
descriptor (FaceNet-iVector).

To extract initial names from the videos, we use the OCR extracted text
provided by the MediaEval dataset. Then, we filter the provided text by ap-
plying a name entity detection tool, designed for the French language [50].
We use OCR instead of speech transcripts since a considerable part of the
used dataset comprises TV news broadcasts, and visual overlays are regularly

1 https://gforge.inria.fr/projects/spro/
2 https://gforge.inria.fr/projects/audioseg/

https://gforge.inria.fr/projects/spro/
https://gforge.inria.fr/projects/audioseg/
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available. Besides that, the initial name assignment is also easier and more
reliable, considering that the names appearing on the screen are related to a
person appearing at the same time. It is important to note that when using
the proposed framework on a dataset where visual overlays are not available,
one must choose another source to extract names.

For the initial labeling of the speaking faces graphs, we take the set of ex-
tracted names and check if they temporally overlap any of the created speaking
faces. If a name Yi co-occurs (in time) with a speaking face Vi, Yi is assigned
to Vi with a confidence score of 1. If the set of names Y is empty for a given
video, meaning that no names were automatically extracted from the video,
none of the nodes on the graph will be initially labeled. Without initial labels,
the label propagation methods have no effect and the detected persons on the
video will remain unlabeled.

5.2 Baselines

To compare the proposed label propagation method to a traditional label
propagation algorithm, we adopt a random walk with absorbing states as a
label propagation baseline. As discussed on [34], random walk methods have
been used in tasks ranging from locomotion of animals and descriptions of
financial markets to ranking systems. Label propagation can also be achieved
by utilizing random walks on graphs. The classification of unlabeled data is
made based on the expected random steps required for an unlabeled node
to reach each labeled one. Thus, as a baseline for label propagation, we use
random walks with absorbing states, adapting the proposal from [74].

To perform a random walk label propagation (RWLP ), we first build a
probability matrix P from an input graph (G,W ). We calculate the transition
probabilities based on the similarities between speaking faces, generating high
transition probabilities between similar elements. To ensure that the initial
labels will not change, the initially labeled speaking faces are set as absorbing
states on P , so the probability of a labeled element taking random steps to
any other element is 0. After calculating the random walks with t steps on
P , unlabeled elements receive the label from the labeled element that they
have the highest probability of randomly walking to. The confidence score of
a labeled element Vi that received its label from Vj is equal to the probability
Pi,j . To ensure more consistency with the initial labeling as in [74], we use a
slowing factor, which is set to 0.5.

A more classical approach to tackle the MPD problem is to label ele-
ments that are grouped into clusters. The usual procedure applies a clustering
method on the elements and then adopts an intra-cluster labeling policy [31].
To assess the proposed label propagation approaches against more commonly
used methods, but without leaving the speaking face graph scenario, we pro-
pose two graph clustering baselines, one using spectral clustering and another
using Markov clustering.
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The graph clustering baselines are identical to the proposed label propaga-
tion method up to the initial labeling part, differing only on the propagation
step, in which graph clustering techniques are used to label speaking faces that
were not initially labeled. To perform the baseline labeling, we apply one of the
graph clustering methods on a weighted speaking face graph (G,W ). We set
the number of clusters as the number of distinct labels on each graph plus one,
with this one extra cluster representing possible speaking faces which do not
have a name related to them. After clustering the nodes, a cluster can contain
a combination of unlabeled nodes and nodes with distinct labels. To decide
which labels will be propagated, we calculate a histogram of labels for each
cluster, and the label with the highest number of incidence on each cluster
is used to label the unlabeled nodes on that same cluster, with a confidence
score set to 0.5. Note that unlike the other propagation methods, in the graph
clustering baseline methods some nodes can remain unlabeled due to clusters
formed only by unlabeled nodes.

5.3 Evaluation Metrics

Since the ground-truth of the used dataset is not fully annotated, we consider
the Mean Average Precision at K (MAP@K) used in MediaEval3 [7] to eval-
uate our proposals, as recommended by the MediaEval MPD task. To have
complementary insights on the performance of the distinct methods, we also
use the error and recall rates. When measuring the level of agreement of two
different configurations, we apply the Kappa coefficient.

To calculate the error and recall rates, for each video document v, let na be
the number of (name, shot) ca couples found by the algorithm and let nr be the
number of (reference name, shot) cr couples associated to this video. Let NC

be the size of the intersection between ca and cr. We allow a small tolerance
for matching two labels, i.e., when a symmetrized and normalized Levenshtein
distance between them is below 0.2. Let ND be the number of deletions and
let N I the number of insertions to get the list of reference names of the video
from the list of estimated names of the algorithm. We then calculate the error
rate metric and recall metric by:

Err =
ND +N I

nr
, (4)

R =
NC

nr
. (5)

5.4 Setup

In the experiments, there are parameter settings regarding the audiovisual sim-
ilarities and graph pruning. For the pruning parameter, we manually set values

3 We have adopted the same evaluation script written and provided by Hervé Bredin in
the context of the MPD task.
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of δ as 0, 1 and 2. We selected these values in a way that leads to very light
pruning, to a moderate pruning, or to an intense one. On the FaceNet-iVector
configuration, the light pruning removes around 1% of the total amount of
edges present on the dataset; while on the intense pruning, it removes approx-
imately 80% of the edges.

The α parameter is used for the distance-to-similarity transformation when
using GMM audio features, and the γ parameter is used for doing the weighted
average on the intermediate fusion of modalities. In Section 5.5 we analyze the
impacts of using different value combinations for the two parameters, using
the hierarchical label propagation as labeling strategy. Besides this evaluation,
we tune the α and γ parameters for the remaining experiments using a 10-
fold cross-validation protocol with recall as the evaluation metric and the
hierarchical label propagation as labeling strategy. After the tuning, α is set
as 0.3 and γ as 0.5 for the CNN-GMM configuration. For the Facenet-iVector
configuration, γ is set as 0.3 (there is no α in this configuration since it is only
used with the GMM distances).

5.5 Results

To analyze the impacts of the α and γ on our experiments, we test different
value combinations for the parameters using the QFZLP as labeling method.
Table 1 shows error and recall rates for different values of α and γ, with the
best results (higher recall and smaller errors) highlighted in bold. When using
γ set as 0 and 1 we have video-only and audio-only similarities, respectively.
The results using monomodal similarities never achieve better results when
compared to multimodal similarities. We can observe this behavior on both
CNN-GMM and Facenet-iVector configurations.

On the following results, we specify each configuration by the labeling
method followed by one of the fusion approaches, where EF stands for early
fusion, IF for intermediate fusion, and LF for late fusion. In the first batch
of experiments displayed on Table 2 one can observe error and recall rates,
along with MAP@K results of the proposed method and the baselines. We
highlight the two best scoring methods for each metric in bold. If there is a
tie, all methods scoring the best and second-best values are highlighted.

In Table 2a one can observe that all labeling methods improve the re-
sults when compared to the initial labeling only (NoProp). This suggests that
by only using OCR extracted names it is not possible to correctly name all
appearing persons on a video, thus labeling techniques can help to solve this is-
sue. The experiments also show that the label propagation methods RWLP and
QFZLP achieved the best scores on all metrics, using either intermediate fusion
or late fusion approaches. The label propagation methods also perform better
than the näıve clustering approaches, ranging from 0.500 to 0.512 against 0.412
to 0.440 on MAP@100. This shows that in our context, using semi-supervised
learning algorithms leads to better results than using clustering-based labeling
processes.
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Table 1: Error and recall rates for different α and γ values for the two feature
configurations, using QFZLP for label propagation.

CNN-GMM

α γ Error Recall

0.3 0.0 0.66 0.47
0.3 0.3 0.51 0.52
0.3 0.5 0.49 0.52
0.3 0.7 0.49 0.52
0.3 1.0 0.51 0.50
0.5 0.0 0.66 0.47
0.5 0.3 0.50 0.52
0.5 0.5 0.49 0.52
0.5 0.7 0.50 0.52
0.5 1.0 0.51 0.50
0.7 0.0 0.66 0.47
0.7 0.3 0.50 0.52
0.7 0.5 0.49 0.52
0.7 0.7 0.50 0.52
0.7 1.0 0.51 0.50

Facenet-iVector

γ Error Recall

0.0 0.65 0.49
0.3 0.57 0.51
0.5 0.51 0.52
0.7 0.51 0.51
1.0 0.53 0.49

In Table 2b we tested the strategies using the combination of a face-specific
image descriptor and a state-of-the-art audio descriptor, as opposed to the
prior CNN-GMM configuration, which uses good but more generic descrip-
tors. The results show that improving the quality of the features does not nec-
essarily improve the results obtained with the proposed framework. In some
cases, like the QFZLP , the scores are improved by using the FaceNet-iVector
configuration, but the opposite happens for the RWLP propagation.

In this work, three different fusion approaches are utilized, named early
fusion, intermediate fusion, and late fusion. To assess the impact of different
fusion strategies on the labeling methods, the three different fusion strategies
are tested on both graph configurations. The results for all methods are shown
on Fig. 5a and Fig. 5b. One can observe that the behaviors of all methods
remain constant on the two graph clustering approaches concerning the fusion
strategies. On the label propagation methods, i.e., QFZLP and RWLP , the
best performing fusion strategy is the intermediate fusion, followed by the late
fusion and early fusion, in that order. The behavior on the graph-clustering
based baselines is different, but what is common between all methods, is that
the early fusion approach was the worst-performing fusion strategy.

By analyzing these results, it is possible to assume that simply applying a
generic similarity function over the concatenation of acoustic and visual fea-
tures does not create better discriminant relationships. This happens since two
feature vectors, not normalized and extracted from two different information
channels, are combined naively. Using a better suited multimodal feature fu-
sion and a more appropriate similarity metric for the new multimodal features
could lead to improvements in the early fusion performance.

We show the results for all propagation methods using intermediate and
late fusion under the different pruning levels in Fig. 6a and Fig. 6b. These
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Table 2: Error and recall rates, and MAP@K results for the two graph config-
urations.

(a) CNN-GMM

Method Error Recall MAP@1 MAP@5 MAP@10 MAP@100

NoProp 0.83 0.18 0.543 0.342 0.323 0.312
Markov EF 0.72 0.29 0.608 0.447 0.421 0.405
Spectral EF 0.64 0.38 0.591 0.426 0.405 0.389
QFZLP EF 0.54 0.48 0.644 0.510 0.486 0.469
RWLP EF 0.53 0.49 0.636 0.504 0.482 0.467
Markov IF 0.60 0.41 0.618 0.471 0.448 0.433
Spectral IF 0.59 0.44 0.604 0.447 0.426 0.412
QFZLP IF 0.49 0.52 0.658 0.546 0.523 0.506
RWLP IF 0.51 0.54 0.671 0.553 0.531 0.512
Markov LF 0.64 0.41 0.628 0.479 0.456 0.440
Spectral LF 0.60 0.44 0.613 0.457 0.436 0.420
QFZLP LF 0.53 0.53 0.659 0.543 0.520 0.502
RWLP LF 0.49 0.54 0.663 0.539 0.517 0.500

(b) FaceNet-iVector

Method Error Recall MAP@1 MAP@5 MAP@10 MAP@100

NoProp 0.83 0.18 0.543 0.342 0.323 0.312
Markov EF 0.72 0.29 0.601 0.447 0.423 0.406
Spectral EF 0.65 0.37 0.591 0.420 0.400 0.384
QFZLP EF 0.53 0.49 0.634 0.503 0.482 0.466
RWLP EF 0.52 0.50 0.641 0.502 0.482 0.467
Markov IF 0.62 0.42 0.604 0.443 0.426 0.413
Spectral IF 0.68 0.42 0.594 0.417 0.398 0.386
QFZLP IF 0.57 0.51 0.669 0.550 0.528 0.510
RWLP IF 0.59 0.53 0.659 0.535 0.508 0.490
Markov LF 0.62 0.44 0.626 0.478 0.454 0.439
Spectral LF 0.63 0.42 0.604 0.433 0.414 0.400
QFZLP LF 0.58 0.52 0.653 0.515 0.493 0.476
RWLP LF 0.59 0.52 0.649 0.520 0.494 0.477
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Fig. 5: Comparative results between the different types of fusion on all prop-
agation methods using the FaceNet-iVector and CNN-GMM configurations.

results are heterogeneous over the methods at a certain level, but they show
in most cases that pruning is prejudicial to the propagation methods regarding
the evaluation scores. Although, the score differences are not substantial, and
even with a very low quantity of edges the propagation methods can still per-
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Fig. 6: Comparative results between the different pruning intensities on all
propagation methods. The black line represents the MAP@100 score for when
there is no propagation used.

form well and improve the efficacy compared to not using any labeling method
(represented by the horizontal line on the plots). This is a very interesting char-
acteristic, meaning that the proposed method still performs well on scenarios
where there is a low percentage of edges, which can decrease drastically the
computational cost without suffering much loss on the resulting labeling.

Table 3 shows the comparative results of the participant teams on Medi-
aEval MPD 2016 and the proposed propagation methods using the Facenet-
iVector descriptors. The best performing method is proposed by EUMSSI team
[31], and it is the only one not based on speaker and face diarization. Apart
from the EUMSSI team, our proposed strategy outperformed all the other
literature methods by a significant margin.

When comparing the proposed methods with the ones that used speaker
or face diarization, it can be observed that the NoProp configuration (which
stands for the initial labeling only) is almost equivalent to the UPC team [33],
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Table 3: Comparative results between the proposed methods using the
FaceNet-iVector descriptors and the literature. For each metric, the two best
performing methods are highlighted in boldface.

Method MAP@1 MAP@5 MAP@10 MAP@100

MediaEval Participants Methods
EUMSII [31] 0.791 0.672 0.650 0.629

GTM-UVIGO [40] 0.249 0.199 0.188 0.166
HCMUS [37] 0.100 0.091 0.089 0.086

Tokyo Tech [38] 0.254 0.173 0.157 0.147
UPC [33] 0.474 0.350 0.335 0.323

Our Methods
NoProp 0.543 0.342 0.323 0.312

Markov EF 0.601 0.447 0.423 0.406
Spectral EF 0.591 0.420 0.400 0.384
QFZLP EF 0.634 0.503 0.482 0.466
RWLP EF 0.641 0.502 0.482 0.467
Markov IF 0.604 0.443 0.426 0.413
Spectral IF 0.594 0.417 0.398 0.386
QFZLP IF 0.669 0.550 0.528 0.510
RWLP IF 0.659 0.535 0.508 0.490
Markov LF 0.626 0.478 0.454 0.439
Spectral LF 0.604 0.433 0.414 0.400
QFZLP LF 0.653 0.515 0.493 0.476
RWLP LF 0.649 0.520 0.494 0.477

and already better than the Tokyo Tech, HCMUS [37] and GTM-UVIGO [40]
scores. When using the proposed hierarchical label propagation QFZLP , it
outscores the second-best method by 0.183 on MAP@100.

To further compare the two best-performing label propagation methods
(RWLP IF and QFZLP IF on the MAP@K metric), we measure their level
of agreement using the Kappa coefficient and compare their processing time.
The Kappa coefficient scored a level of agreement of 0.847 between the two
methods, which according to [29] can be considered as an almost perfect agree-
ment. The processing time for the RWLP IF is 184.72 seconds, while for the
QFZLP IF it is only 19.8 seconds. The processing time comprises the average
total time to process all graphs in one configuration (Facenet-iVector without
pruning), ignoring only the graphs without initial labels. This shows that even
though the hierarchical approach reaches slightly lower scores when compared
to the random walk, its results are highly equivalent to the best performing
propagation method and it achieves a speedup of 9.33 times.

6 Conclusion

In this work, we proposed the use of speaking face graphs along with an ef-
ficient, parameter-free, graph-based hierarchical label propagation approach
to tackle the multimodal person discovery task. The hierarchical propagation
was inspired by an image segmentation approach, and thanks to the theoret-
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ical framework used, this work opens doors to more adaptations of efficient
graph-based image processing methods to the multimedia analysis context.

We showed that the proposed label propagation method and the label
propagation baseline outperform conventional graph clustering techniques for
the selected database. We also showed that our proposed method performs
better than the literature methods tested in the same dataset, except for
one method that does not use conventional speaker and face diarization as
pre-processing. We showed that using multiple modalities increases the result-
ing score of our propagation methods when compared to using only visual
or acoustic modalities. We also showed that pruning the graphs impacts the
RWLP and QFZLP methods negatively, but the score losses are small, even
when a large number of edges are pruned. For the modality fusion strategies,
its inconclusive if the intermediate or late fusion performs better, but both
outperform the early fusion strategy. Furthermore, it was statistically shown
that the QFZLP with late fusion and the RWLP produce highly equivalent
results, but the proposed hierarchical method is more than 9 times faster.
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