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• A novel online Headspace-Solid Phase Microextraction-Gas Chromatography-Mass 21 

Spectrometry-based untargeted metabolomics approach was developed to study the 22 

environmental fate of an emerging complex bioherbicide: the Myrica gale extract. 23 

• A green, non-destructive automated HS-SPME-GC-MS method was developed and 24 

applied for a comparative 38-day kinetics experiment to study the fate of herbicide’s 25 

volatile xenometabolome after its application on soil samples. 26 

• Untargeted metabolomics and multivariate statistical analyses explained the evolution of 27 

herbicide residues over time and allowed for the putative annotation of 96 compounds. 28 

• The approach proved its reliability for high throughput analyses and only required a small 29 

number of samples that were not destroyed during the study. 30 

Graphical Abstract 31 

Placed at the end of the manuscript. 32 

Abstract 33 

This work introduces a novel online Headspace-Solid Phase Microextraction-Gas 34 

Chromatography-Mass Spectrometry-based untargeted metabolomics approach, suggested as 35 

an alternative tool to study the environmental fate of volatile xenometabolites in emerging 36 

complex biopesticides, e.g. the Myrica gale methanolic extract herbicide containing several 37 

unknown metabolites. A “living” microcosm sample was designed for non-destructive 38 

analysis by a 35-minute HS-SPME automated extraction and a 36-minute GC-MS run. A 38-39 

day kinetics study was then applied on two groups of soil samples: control and spiked. 40 

Statistical tools were used for the comparative kinetics study. The Principal Component 41 

Analysis revealed and explained the evolution and the dissipation of the herbicide volatile 42 

xenometabolome over time. The time-series Heatmap and Multivariate Empirical Bayes 43 

Analysis of Variance allowed the prioritization of 101 relevant compounds including 22 44 
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degradation by-products. Out of them, 96 xenometabolites were putatively identified. They 45 

included 63 compounds that are identified as herbicide components for the first time. The 46 

Orthogonal Projections to Latent Structures Discriminant Analysis and its Cross-Validation 47 

test were used to assess the total dissipation of the herbicide volatile residues. The 48 

reproducibility of the method was also assessed. The highest inter-samples (n = 3) Peak Area 49 

RSD was 7.75%. The highest inter-samples (n = 3) and inter-days (n = 8) Retention Time SD 50 

were 0.43 sec and 3.44 sec, respectively. The work presents a green, non-laborious and high-51 

throughput approach. It required a small number of environmental samples (6 microcosms) 52 

that were analyzed 8 times and were not destroyed during the study. 53 

1. Introduction 54 

Pesticides research, development and production are constantly expanding since these 55 

chemicals and agents are essential for several anthropogenic and economic activities (e.g. 56 

agriculture, food production and protection, disease vectors control). Their development 57 

however, faces numerous problems due to their potential impact on human health [1–3] and 58 

ecology [4,5]. These issues reinforce the requirement and the importance of prior in-depth 59 

studies of their fate, impacts and risks on health and environment. Also, the development of 60 

new pesticides of natural origins, known as “biopesticides” or “biocontrol agents” (BA), is 61 

one of the suggested alternatives to chemical/synthetic pesticides, as they are presumed to be 62 

less harmful for human health and environment. Moreover, their dissipation is likely to be 63 

relatively fast [6]. 64 

Extracted from plants or different types of microorganisms, these emerging natural products 65 

are mostly based on one or several bioactive compounds which usually act in a synergic 66 

and/or pleiotropic mode of action. Their complex (bio)chemical nature containing several 67 

different and unknown molecules and/or macromolecules is requiring new conceptual and 68 



Page 4/52 
 

analytical challenges for the assessment of their transformation and dissipation. The classic 69 

concepts of fate assessment, such as the DT50 approach [7], are non-applicable for such types 70 

of complex pesticides. These classic targeted approaches are limited to known compounds 71 

and molecules. In addition, the DT50 approach does not consider the transformation products 72 

(TPs) of the pesticide, in particular the unknown TPs. Additional protocols and approaches 73 

are therefore needed in order to assess the pesticide transformation in the environment, and to 74 

study the impact of its application on environmental biodiversity. 75 

New analytical proxies were thus suggested as alternative approaches for the emerging 76 

complex biopesticides, mainly based on untargeted metabolomics strategies [8,9]. A new 77 

approach called Environmental Metabolic Footprinting (EMF) was recently introduced by 78 

Patil et al. [10] and Salvia et al. [11]. This new approach presents the application of the 79 

untargeted metabolomics as a universal tool for kinetics studies in order to assess both the fate 80 

and impact of different types of complex pesticides. This aims to introduce an integrative 81 

concept called “resilience time”. 82 

In the two previous mentioned works [10,11], kinetics studies were performed on an 83 

important number of samples by applying destructive Solid-Liquid Extractions (SLE) 84 

followed by Liquid Chromatography-Mass Spectrometry (LC-MS) analysis. They were 85 

restricted to the solid phase of the environmental matrices (soil and sediments). However, 86 

studying the volatile part of the xenometabolome, i.e. pesticide compounds and their TPs, is 87 

essential for the risk assessment of these emerging biopesticides, and in particular for 88 

products based on plant essential oils, which contain an important amount of volatile and 89 

semi-volatile organic compounds. The OECD guidelines for the testing of chemicals and their 90 

transformation recommend the consideration of the volatile part [12,13]. In fact, studying 91 

pesticide volatile residues can provide complementary information to better understand its 92 

environmental fate. In addition, pesticide volatile residues screening allows to assess the 93 
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exposure risk to pesticide compounds for farmers/workers, insects and plants, as well as the 94 

exposure to their TPs that might be more toxic. Therefore, the aim of the present work is to 95 

introduce the concept of a new untargeted metabolomics-based approach, dedicated to 96 

analyze and study the volatile residues of emerging complex biopesticides applied on 97 

environmental matrices, by using online Headspace-Solid Phase Microextraction-Gas 98 

Chromatography-Mass Spectrometry (HS-SPME-GC-MS). 99 

HS-SPME is an appropriate technique for volatile organic compounds analysis. It is based on 100 

extracting and isolating these analytes from the sample by adsorbing and concentrating them 101 

on the layer of a coated fiber. Thus, they can be eventually desorbed and introduced in the 102 

analytical instrument with or without the need of extraction solvents [14,15]. Since its 103 

introduction in 1989 by Belardi & Pawliszyn [16], the SPME is still being widely developed 104 

and extensively used for different types of targeted and untargeted analytical approaches as 105 

broadly described by Reyes-Garcés et al. [17]. For pesticides research, several works have 106 

been reported and were mainly focused on targeted screening and quantification of pesticide 107 

residues in different environmental and food matrices [18–20]. Untargeted screening to study 108 

the transformation of pesticides and to identify their by-products was also reported, but in a 109 

much fewer number of publications [18,21,22]. 110 

SPME presents several advantages as a green, non-destructive and cost-effective technique. 111 

Its automation provides additional advantages, particularly for metabolomics approaches, 112 

mainly by enhancing the robustness and the reproducibility of the applied extraction method. 113 

Moreover, reducing the laborious time-consuming manual work and sample preparation steps 114 

is essential for high throughput analyses and to minimize errors related to sample handling. 115 

Otherwise, as a green non-destructive method, the application of the HS-SPME reduces the 116 

number of environmental samples needed, by making it possible to analyze the same sample 117 

for several time points, particularly in case of kinetics tracking study. This can also enhance 118 
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the performance of the approach by reducing sample preparation and random biological 119 

variations-related biases. 120 

On the other hand, GC-MS analytical technique provides several advantages concerning 121 

untargeted metabolomics. The GC is a suitable separation technique for volatile and semi-122 

volatile organic compounds. It is well known for its significant analytical robustness, 123 

affording high chromatographic resolution and precise retention time repeatability [23]. GC 124 

also provides a tool for compounds’ identification by allowing the calculation of Kováts 125 

Retention Index (RI) [24], which is an advantage for the identification of unknown 126 

xenometabolites. Mass spectrometers are highly sensitive detectors capable of characterizing 127 

and quantifying compounds. In this work, the chosen detector is a Single Quadrupole MS, 128 

equipped with an Electron Impact (EI) ionization system. The main advantages of this 129 

spectrometer are the large dynamic range of the Quadrupole mass analyzer, its high scan 130 

frequency, and the ability of the EI to provide reproducible fragmentations for the analyzed 131 

compounds [23]. This presents an essential tool for characterizing unknown compounds by 132 

fast spectral library search and/or by structural elucidation. 133 

All of these advantages were considered for the development of an online HS-SPME-GC-MS 134 

method, which was dedicated for studying the environmental fate of an emerging bioherbicide 135 

applied on soil: the Myrica gale methanolic extract. 136 

Introduced by Popovici et al. [25,26], the herbicide composition was partially identified by 137 

several studies [25–30]. Its bioactive compound is Myrigalone A, an allelochemical, mixed 138 

with several other compounds: mainly triketones and terpenes. The herbicide mode of action 139 

was described by Oracz et al. [31]. This research work revealed a potential synergic activity 140 

between Myrigalone A and terpenes. This activity was recently confirmed and explained by 141 

Khaled et al. [32]. Therefore, an optimal herbicide activity requires the application of the total 142 
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complex mixture of the plant extract. However, several components in this complex mixture 143 

are still unknown, and their transformation in nature is not deeply understood. Thus, the 144 

untargeted metabolomics approach is a potential solution for studying the environmental fate 145 

of this bioherbicide. Therefore, in order to prove the concept of the suggested HS-SPME-GC-146 

MS-based untargeted metabolomics approach, the Myrica gale methanolic extract was 147 

selected as a typical complex bioherbicide in order to study the dissipation of its volatile 148 

residues after its application on soil, through a 38-days kinetics study. The study targets 149 

exclusively volatile residues that are spontaneously released to the gas phase above soil (the 150 

headspace) during imitated environmental conditions applied to microcosm samples. 151 

2. Material and methods 152 

2.1. Chemicals 153 

Methanol HPLC grade was purchased from VWR International (Fontenay-sous-Bois, France). 154 

The dry methanolic extract of Myrica gale was prepared as described Popovici et al. [25]. The 155 

spiking herbicide solution for application on soil samples was prepared at a concentration of 156 

72 mg mL-1 of dry extract dissolved in Methanol (containing 18 mg mL-1 of the bioactive 157 

compound Myrigalone A). C7-C30 Saturated Alkanes mix (1000 µg mL-1 of each component 158 

in Hexane) was purchased from Sigma-Aldrich (Saint-Quentin-Fallavier, France). 159 

2.2. Soil material 160 

Soil sample was collected from an arable field at the agricultural domain of the “Institut 161 

Universitaire de Technologie” (IUT) of Perpignan, France (42°40'55.1"N 2°53'51.2"E). The 162 

surface layer (15 cm) of soil was collected on 3 different points separated by 1.5 meter. After 163 

collection, the soil was homogenized and passed through a 2 mm sieve. Then, it was stocked 164 

in the dark at 4 °C until the experiment. The soil composition analysis and characterization 165 

were performed by Arterris Laboratory (Toulouges, France) accredited by the French 166 
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Accreditation Committee (Cofrac). Results were the following: 13.9 % of clay, 60.5 % of silt, 167 

25.6 % of sand, 20 % of soil humidity, 1.7 % of organic matter, 0.98 % of organic Carbon, 168 

15.5 meq 100 g−1 cation exchange capacity (CEC), 214 % Ca2+/CEC and pH of 8.1 in water. 169 

According to the Soil Textural Triangle of the United States Department of Agriculture [33], 170 

this soil is classified as a silt loam soil. It was never been contaminated or exposed to 171 

herbicides. 172 

2.3. Soil samples set-up 173 

Samples consisted of 6 g of soil weighted in 20 mL HS-SPME vials (Thermo Fisher 174 

Scientific, Courtabœuf, France). This weight was optimized in order to keep 2/3 of the vial 175 

volume as headspace. After, vials were hermetically closed by a crimped septum, and two 176 

18G×1 ½" (1.2 × 38 mm) Agani™ needles (Terumo®, Leuven, Belgium) were implanted on 177 

the extremity sides of the septum (Figure A 1 – Appendix A). This is to assure aerobic 178 

conditions by allowing air exchange between the internal headspace and the outside. The 179 

prepared soil vials were incubated in a GC 401 growth chamber (Nüve, Saracalar, Turkey) for 180 

24 hours before the spiking in order to reestablish the biological and microbial activity. 181 

Incubation conditions were 24 hours day/night cycle with alternation of light/dark, 28 °C/18 182 

°C of temperature, and 40 % RH/65 % RH of humidity (Figure A 2 – Appendix A). The soil 183 

moisture was maintained at 20 % during the incubation and throughout the experiment, 184 

following a standardized environmental protocol implemented and published in previous 185 

works [10,34], aiming to assure conditions that are comparable to real environmental cases. 186 

The aim of implementing this sample design was to assure a “living system”. As mentioned 187 

previously, samples will be used for several kinetic time points, so measures were taken to 188 

ensure that they will not be destroyed during the study. 189 
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The preparation of herbicide-spiked soil samples was performed by applying the Myrica gale 190 

methanolic extract with a dose equivalent to 300 µg of the active compound (Myrigalone A) 191 

per gram of soil (1.2 mg of dry Myrica gale methanolic extract per gram of soil). This 192 

corresponds to ten-times the agronomical field dose, following testing guidelines 193 

recommendations [12,13] in order to assess their transformation and risks on health and 194 

environment in an extreme pollution scenario [34]. 195 

2.4. Headspace-Solid Phase Microextraction development 196 

Automated Headspace-Solid Phase Microextraction (HS-SPME) was performed using a 197 

TriPlus™ RSH™ autosampler (Thermo Fisher Scientific, Waltham, U.S.). The extraction 198 

method was developed by optimizing the following conditions and parameters: the SPME 199 

fiber coating, the incubation time, the extraction time, and the extraction temperature. Tests 200 

were performed by analyzing herbicide-spiked soil samples (prepared following the protocol 201 

described in Section 2.3.) 202 

SPME fiber coating tests were performed by comparing 6 different types of coatings: 100 µm 203 

Polydimethylsiloxane (100 µm PDMS, Fused Silica, 23 Ga, Autosampler), 7 µm 204 

Polydimethylsiloxane (7 µm PDMS, Fused Silica, 24 Ga, Autosampler), 85 µm Polyacrylate 205 

(85 µm PA, Fused Silica, 23 Ga, Autosampler), 65 µm Polydimethylsiloxane/Divinylbenzene 206 

(65 µm PDMS/DVB, Stableflex, 23 Ga, Autosampler), 85 µm 207 

Carboxen/Polydimethylsiloxane (85 µm CAR/PDMS, Stableflex, 23 Ga, Autosampler), and 208 

50/30 µm Divinylbenzene/Carboxen/Polydimethylsiloxane (50/30 µm DVB/CAR/PDMS, 209 

Stableflex, 23 Ga, Autosampler), all purchased from Supelco (Bellefonte, U.S.). Tests were 210 

performed by applying the following HS-SPME conditions: 5 min of incubation time, 30 min 211 

of extraction time, and 40 °C of extraction temperature. 212 
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Next, the duration of sample incubation before the SPME extraction (incubation time) was 213 

assessed in order to choose the optimal condition. 3 different incubation times were tested 214 

using the selected 50/30 µm DVB/CAR/PDMS fiber: 5 min, 15 min, and 30 min (extraction 215 

time: 30 min, extraction temperature: 40 °C). 216 

After, the exposure duration of the SPME fiber to the Headspace (extraction time or 217 

adsorption time) was assessed. 7 different values were tested: 5 min, 10 min, 20 min, 30 min, 218 

40 min, 50 min and 60 min (incubation time: 5 min, extraction temperature: 40 °C, fiber 219 

coating: 50/30 µm DVB/CAR/PDMS). 220 

Regarding extraction temperature, 3 values were tested in order to assess the impact of 221 

increasing temperature on volatile metabolic profiles. Tested temperatures are the following: 222 

40 °C, 60 °C, and 80 °C (incubation time: 5 min, extraction time: 30 min, fiber coating: 50/30 223 

µm DVB/CAR/PDMS). 224 

Finally, a dose response curve was applied after adapting optimal conditions. This in order to 225 

examine fiber’s over-saturation. 6 different herbicide doses were applied on 6 different 226 

batches of soil samples (with 3 biological replicates for each dose batch), and then analyzed 227 

and compared to control untreated soil samples (3 biological replicates) in order to assess 228 

method’s detection limit. The 6 applied doses corresponded to: 10-3-time, 10-2-time, 10-1-time, 229 

1-time, 10-times, and 20-times the agronomic field dose of the herbicide. 230 

For all optimization tests and method’s application, the incubated sample vial was shaken 231 

vigorously throughout the incubation and the extraction procedures in order to enhance the 232 

homogenization of sample temperature. 233 

2.5. Gas Chromatography-Mass Spectrometry 234 

Gas Chromatography-Mass Spectrometry analyses were performed on a Focus GC system 235 

coupled to an Electron Impact-Single Quadrupole DSQ II Mass Spectrometer (Thermo Fisher 236 
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Scientific, Waltham, U.S.; Bremen, Germany). An Agilent J&W DB-5MS GC column was 237 

used (length: 30 m, inner diameter: 0.25 mm, film thickness: 0.25 µm, Agilent Technologies, 238 

Santa Clara, U.S.). Desorption was performed in Splitless mode for a duration of 1 min at an 239 

inlet temperature of 230 °C, followed by a 5 min post-injection fiber conditioning at 260 °C in 240 

order to prevent fiber carryovers. The 36-min GC run was developed for an optimal 241 

compounds separation. It consisted of a 1 mL min-1 constant flow method with Helium as 242 

carrier gas. The oven temperature was programed as the following: an initial temperature of 243 

60 °C was held for 1 min, and was then followed by a first ramp of 10 °C min-1 in order to 244 

reach 100 °C. After, a second ramp of 3 °C min-1 was applied and held until a temperature of 245 

182 °C was reached. Finally, the last ramp of 25 °C min-1 was applied until a temperature of 246 

230 °C was reached. This end temperature was held for 2 min in order to prevent any 247 

potential column carryover. GC-MS transfer line temperature was maintained on 240 °C 248 

throughout the run. 249 

The MS acquisition method was a Full MS scan for positive ions with an m/z range of 40-400. 250 

The scan rate was 5 scans sec-1 (2027.11 amu sec-1). The source temperature was set to 250 251 

°C and the applied detector gain was 30000. 252 

2.6. Software and data processing 253 

GC-MS piloting and data acquisition were performed using Xcalibur 3.0.63 (Thermo Fisher 254 

Scientific, Waltham, U.S.). Data were acquired in RAW format and then converted to ANDI 255 

format (NetCDF) in order to upload and process them using Galaxy Workflow4Metabolomics 256 

platform [35–37]. The automated processing workflow used the metaMS package (Galaxy 257 

Version 2.1.1) [38] dedicated for GC-MS data. All of its conditions and parameters were 258 

published on the platform [39,40]. In brief, a “matchedFilter” algorithm was used for peak 259 

piking, with a Full Width at Half Maximum (FWHM) of 5 (Gaussian model peak) [41]. In 260 
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addition, GC-MS peaks were considered for peak piking only if: i) their pseudo-spectra 261 

contained a minimum of 5 m/z features, ii) if these peaks were present in at least 70 % of 262 

samples belonging to a defined condition. Between the different injections/runs, the similarity 263 

threshold between peaks pseudo-spectra was set to 0.7, and maximum peak Retention Time 264 

(RT) variation was set to 15 sec in order to prevent any potential splitting of a metabolite 265 

feature into two different features. After generating the data matrix, statistical analyses were 266 

performed using the R-based MetaboAnalyst platform [42–44]. Xcalibur 4.1.31.9 (Thermo 267 

Fisher Scientific, Waltham, U.S.) and AMDIS 2.72 (National Institute of Standards and 268 

Technology, Gaithersburg, U.S.) were used for the deconvolution of MS spectra and the 269 

manual data processing to cross-check the results obtained by the automated processing. 270 

Compass DataAnalysis 4.3 (Bruker Daltonik GmbH, Bremen, Germany) was used for EIC 271 

peak area integration and for counting molecular features’ number. NIST 14 library search for 272 

putative identification of compounds was performed using NIST MS Search 2.2 (National 273 

Institute of Standards and Technology, Gaithersburg, U.S.). Welch Two Sample T-test for 274 

independent means comparison was performed using the R Commander 2.4-2 “Rcmdr” 275 

package [45] of R 3.3.3 software. 276 

2.7. Application for a kinetics study 277 

After all analytical conditions were optimized and set-up, a 38-day kinetics tracking study 278 

was conducted to prove the concept of the suggested approach. The studied environmental 279 

samples consisted of two different groups of soil vials/microcosms (described in the Section 280 

2.3.) with 3 replicates of each: an untreated control soil (UnTr), and an herbicide-spiked soil 281 

(MyrN). After spiking, samples were incubated in the growth chamber with the day/night 282 

cycle conditions mentioned in Section 2.3., in order to imitate natural conditions for herbicide 283 

transformation in soil. 284 
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Next, 8 different kinetic time points were analyzed: day 1, day 2, day 3, day 4, day 8, day 17, 285 

day 24, and day 38 after spiking. The same soil samples were analyzed by the HS-SPME-GC-286 

MS developed method for all the 8 time points. The order of injections of the different 287 

samples was randomized in order to reduce the impact of potential analytical drifts. Blank 288 

injections were performed during each time point analysis, by extracting and analyzing the 289 

headspace of an empty 20 mL vial using the same HS-SPME-GC-MS method. For Kováts RI 290 

calculation, 20 µL of the C7-C30 Alkanes mix solution were introduced to a 20 mL vial, then 291 

it was analyzed by applying the same HS-SPME-GC-MS method. 292 

After each analysis, soil microcosms were re-incubated in the growth chamber until the next 293 

kinetics time point. 294 

3. Results and discussion 295 

3.1. Headspace-Solid Phase Microextraction optimization 296 

The HS-SPME method was optimized in order to establish a compromise between three 297 

major criteria: i) assuring an optimal sensitivity for a wide-range detection of different types 298 

of volatile compounds, ii) applying non-destructive conditions to soil samples, iii) preventing 299 

an induced volatilization of compounds that are relatively less volatile in the imitated 300 

environmental conditions, as the approach targets exclusively volatile residues that are 301 

spontaneously released to the gas phase above soil. 302 

For the selection of the SPME fiber coating, Results of tests are shown in Figure A 3 and 303 

Table A 1 (Appendix A). PDMS/DVB, DVB/CAR/PDMS and CAR/PDMS showed better 304 

results in term of total TIC area and number of molecular features when compared to the 2 305 

PDMS and the PA coatings. In addition, CAR/PDMS fiber coating showed the highest total 306 

TIC area and the highest number of molecular features, followed by the DVB/CAR/PDMS, 307 

and then the PDMS/DVB. 308 
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Nonetheless, performances of PDMS/DVB, DVB/CAR/PDMS and CAR/PDMS coatings 309 

were in-depth examined. A data matrix was generated by processing GC-MS raw data of fiber 310 

tests (using the same processing method described in Section 2.6.), and then a Heatmap 311 

analysis was applied on the dataset. Heatmap (Figure A 4 – Appendix A) shows that 312 

PDMS/DVB and CAR/PDMS coatings differ by their specificity for different types of 313 

herbicide compounds (as highlighted with yellow boxes in the Figure A 4). However, 314 

DVB/CAR/PDMS coating is able to extract simultaneously a part of compounds that are 315 

extracted with the PDMS/DVB exclusively, and another part of compounds that are extracted 316 

with the CAR/PDMS exclusively (as outlined by the green boxes in the Figure A 4). 317 

Therefore, for the current work, the use of the DVB/CAR/PDMS coating is considered as the 318 

best compromise between the highest sensitivity and the widest molecular diversity. 319 

Regarding the duration of sample incubation before the SPME extraction (incubation time), 320 

Figure A 5 and Table A 2 (Appendix A) show that the increase of incubation time decreases 321 

the sensitivity of the method (in term of total TIC area and number of molecular features). 322 

This decrease of sensitivity can be hypothetically explained by the accumulation of a higher 323 

ratio of water vapor in the headspace. This may prevent the optimal adsorption of some 324 

compounds to the SPME fiber, such as L-α-bornyl acetate containing an Ester function, and 325 

epi-γ-Eudesmol and α-Terpineol both containing a Hydroxyl function (Table A 3 – Appendix 326 

A). Therefore, an incubation time of 5 min was chosen as an optimum for sensitivity. 327 

Concerning the exposure duration of the SPME fiber to the Headspace (extraction time or 328 

adsorption time), results in Figure A 6 and Table A 4 (Appendix A) show that a significant 329 

difference (in term of total TIC area and number of molecular features) is observed when 330 

comparing 5 min, 10 min and 20 min, vs. 30 min, 40 min, 50 min and 60 min. For those last 4 331 

values of extraction time, total TIC areas and numbers of molecular features seem to be no 332 
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more evolving. Therefore, a 30 min extraction time was chosen as a compromise between 333 

sensitivity and short-time analysis. 334 

Regarding extraction temperature, this parameter is constrained by two problematics: i) the 335 

application of relatively high temperatures risks to deteriorate the environmental samples. 336 

These risks should be avoided as the current study aims to implement a non-destructive 337 

method. ii) As mentioned previously, the scope of the approach is to target exclusively 338 

volatile residues that are spontaneously released to the headspace during the imitated 339 

environmental conditions. Applying relatively high temperature can provoke an induced 340 

volatilization of compounds that are relatively less volatile in those conditions, which should 341 

be avoided in order to prevent a conceptual bias. The provocation of this induced 342 

volatilization was proved by testing 3 extraction temperatures: 40 °C, 60 °C, and 80 °C. 343 

According to results in Figure A 7 and Table A 5 (Appendix A), the increase of extraction 344 

temperature led to a decrease in signal for compounds eluted between 40 °C and 130 °C (0 345 

min to 11 min of RT), meanwhile an increase in signal for compounds eluted between 130 °C 346 

and 230 °C (11 min to 21 min) was observed. Therefore, beside its destructive aspect, 347 

increasing extraction temperature seems to decrease method’s sensitivity for the relatively 348 

volatile compounds, meanwhile it increases the signal of compounds that are relatively less 349 

volatile in environmental conditions. 350 

On the other hand, temperatures below 40 °C were non-applicable in the current work due to 351 

problems in stabilizing incubator temperature. This problem risks deteriorating the 352 

reproducibility of the extraction. Thus, 40 °C is considered as the optimal compromise for 353 

extraction temperature. 354 

To sum up, the optimal HS-SPME conditions applied for the study are the following: 50/30 355 

µm DVB/CAR/PDMS as fiber coating, 5 min of incubation time, 30 min of extraction time, 356 
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and 40 °C of extraction temperature. To assess the over-saturation of the fiber with these 357 

conditions, a dose response curve was examined. Results in Figure A 8 and Figure A 9 358 

(Appendix A) show that at 20-times the field dose, the Total TIC area and the number of 359 

detected molecular features are still increasing. This means that at the optimized HS-SPME 360 

conditions, the fiber is not yet over-saturated when analyzing 10-times the field dose (i.e. the 361 

dose applied for the kinetics study), as the fiber is still able to adsorb higher number and 362 

quantity of compounds. 363 

It is worth mentioning that despite the important influence of moisture ratio on the detection 364 

of several volatile metabolites, the variation of this parameter is constrained by the 365 

complexity of the environmental context. In fact, the moisture ratio fixed at 20 % throughout 366 

the current study aims to assure conditions that are comparable to real environmental cases 367 

(following previously published protocols [10,34]). Setting a moisture ratio that does not 368 

represent the standardized environmental/biochemical conditions question of the study risks 369 

to change the abiotic and biotic transformation pathways of xenometabolites during the 370 

kinetics study. In addition, the variation of moisture ratio can de facto provoke the 371 

volatilization of metabolites that are relatively less volatile when the standardized 372 

environmental conditions are in-place. 373 

3.2. Herbicide residues detection and low matrix background 374 

After 1 day of spiking, a rich profile of extracted herbicide volatile residues was detected by 375 

HS-SPME-GC-MS analysis, as shown in Figure 1. The detected analytes were eluted between 376 

60 °C and 175 °C (1 min to 30 min of RT), presenting a complex volatile fingerprint with 377 

several major and minor compounds. 378 

In contrast to the spiked soil, the HS-SPME extract of the untreated control soil samples did 379 

not contain an important number of detected compounds (Figure 1). Compared to the blank 380 
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GC-MS profiles, there was no significant difference. In both groups, all detected peaks mainly 381 

consisted of silicon-derivate compounds. These compounds are probably issued from the 382 

bleeding of septum, fiber and/or GC column. 383 

Figure 1: GC-MS chromatograms of HS-SPME extracts after one day of spiking for spiked samples “MyrN” (red), control 384 

untreated “UnTr” samples (green) and blanks (grey). 385 

For the two sample groups, figures consist of three overlaid chromatograms (TIC) of the three biological replicates. For 386 

blanks, two chromatograms of the two analytical replicates are overlaid. 387 

Chromatograms were performed with Compass DataAnalysis 4.3 software. The intensity scale is fixed to 3.50E8. 388 

The poor GC-MS profile of the untreated control soil HS-SPME extracts reveals the difficulty 389 

in extracting and/or detecting endogenous metabolites originating from soil. Thus, this 390 

method is not suitable for studying the impact of the applied herbicide on the soil biodiversity. 391 

The advantage, however, is the selectivity of the HS-SPME-GC-MS method to the residues of 392 

Myrica gale extract in the current study, leading to a low matrix background. This can 393 

improve the study of the environmental fate of the herbicide, by enhancing the detection, the 394 

quantification and the identification of volatile compounds issued from its xenometabolome, 395 

and preventing matrix effects and interferences originating from the matrix. 396 

3.3. Untargeted metabolomics analyses 397 

To prove the concept of the suggested untargeted approach, the 38-day kinetics tracking was 398 

performed by applying the HS-SPME-GC-MS analysis on the two groups of samples; the 399 

control untreated soil and the soil spiked with the Myrica gale extract herbicide (as described 400 

in Section 2.7.). After the end of the kinetics tracking and the acquisition of all data, RAW 401 

files were converted to ANDI format (NetCDF) and then uploaded on the Galaxy 402 

Workflow4Metabolomics platform for data preprocessing (Section 2.6.). The generated data 403 

matrix consisted of 64 analyzed samples (24 untreated control samples, 24 spiked samples, 404 

and 16 blank injections), and 376 variables. Each of these variables represents a “picked” 405 

pseudo-spectrum after it was defined by retention time-based clustering of its m/z fragment 406 

ion signals using CAMERA package [38,46]. In fine, depending on the applied parameters of 407 
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the preprocessing [39], each variable should represent a relevant detected compound (without 408 

neglecting the high possibility of considering noise and artefacts). This acquired data matrix 409 

was used for the statistical analyses. 410 

3.3.1. Principal Component Analysis 411 

Figure 2: Principal Component Analysis (PCA). 412 

Plot generated using MetaboAnalyst. 413 

First, the Principal Component Analysis (PCA) was applied. All kinetics time points of both 414 

untreated control (UnTr) and spiked (MyrN) samples were integrated. The PCA played an 415 

important role for understanding the results that were acquired with this approach. It shows 416 

that over time, the volatile metabolic profiles of the spiked samples tend to converge with 417 

those of the untreated control samples (Figure 2). According to the first principal component 418 

axis (PC1), the later kinetics time points, i.e. days 17, 24 and 38 after spiking, were more 419 

similar to the control profiles in comparison with the earlier kinetics time points. This means 420 

that after 17 days of herbicide application, an important dissipation of its xenometabolome 421 

had occurred. In fact, the PC1 that explains 81.4 % of variations, consists of the regression of 422 

the main features issued from the xenometabolome. This was confirmed by exploring the 423 

loadings of the PC1, revealed by the loading plot of the PCA and the Biplot (Figure 3). The 6 424 

most significant features of the PC1 were only present in the extracts of spiked soils as shown 425 

in Figure 4. They were more abundant particularly in the earlier kinetics time points, i.e. days 426 

1, 2, 3, 4 and 8 after spiking. 427 

Figure 3: Loading plot and Bioplot showing correlations between samples and features of the PC1 and the PC2. 428 

Plots generated using MetaboAnalyst. 429 

Another important result regarding the degradation of the herbicide was revealed by the PCA. 430 

In fact, a progressive evolution of the volatile profiles of the earlier kinetics time points, i.e. 431 

from day 1 (T01) to day 8 (T08), was significantly observed on the second principal 432 

component axis (PC2). The explanation of this result is that the PC2, which accounts for 7 % 433 
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of variations, consists of two main types of volatile xenometabolites: the major herbicide 434 

volatile compounds contained in the Myrica gale extract, and the volatile degradation by-435 

products issued from herbicide compounds. These two “families” of xenometabolites 436 

constituted the two opposed sides of the PC2 as shown in Figure 2. This explanation was 437 

confirmed by the loadings of the PC2 (Figure 3). The 6 most significant features of the upper 438 

part of the PC2 axis were the compounds of the herbicide. Their highest abundance was at 439 

day 1 (T01), and then started to decay over time (Figure 5A). For the 6 features with the 440 

highest contributions in variation on the lower part of the PC2 axis, their abundance increased 441 

over time, before starting to decay in the later kinetics time points (Figure 5B). Thus, these 442 

features represent the by-products issued from the degradation of the herbicide mixture. 443 

Figure 4: Boxplots of features with the highest contributions in variation of PC1. The abundance in the two groups of soil 444 

samples and their evolution over time are represented. 445 

Boxplots show the null abundance of these features in all control samples (UnTr). The abundance decay over time in spiked 446 

samples is also shown (MyrNT01 to MyrNT38, respectively). 447 

Features plots are sorted according to the descending order of their PC1 scores (in absolute value), from the left to the right, 448 

and then from the top to the bottom. 449 

Plots generated using MetaboAnalyst. 450 

Figure 5: Boxplots of features with the highest contributions in variation on the two opposite sides of the PC2. 451 

A: Most significant features on the upper part of PC2 axis. Their highest abundance is at day 1 (MyrNT01), and then it starts 452 

to decay through time. 453 

B: Most significant features on the lower part of PC2 axis. Their abundance increases through time until starting to decay by 454 

days 8 and/or 17 (MyrNT08 and/or MyrNT17). 455 

All these features show a null intensity in the control samples (UnTr). 456 

Features plots are sorted according to the descending order of their PC2 scores (in absolute value), from the left to the right. 457 

Plots generated using MetaboAnalyst. 458 

It is worth mentioning that according to PCA, there was no significant difference between 459 

volatile profiles of the untreated control samples over time. This proves another advantage of 460 

reducing the matrix background, by eliminating soil biochemical evolution factor from 461 

analyses. Therefore, tracking and understanding herbicide’s environmental fate are enhanced 462 

from a chemical-analytical point of view. 463 

Ultimately, PCA provided a general understanding of the evolution of xenometabolome 464 

through the time. In-depth analyses were then conducted to explain this evolution by filtering 465 

and tracking xenometabolites over time, in order to identify their nature and to annotate them. 466 
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3.3.2. Xenometabolome features prioritization by time-series Heatmap 467 

As mentioned previously, PCA represented a good tool for an overview understanding of 468 

xenometabolome evolution through the time. However, only major molecular traces were 469 

revealed by this model. In-depth xenometabolome discovery required different statistical tools 470 

dedicated to prioritize and filtrate molecular features of the detected volatile xenometabolites. 471 

Therefore, a second different statistical analysis was exploited in this work: the time series-472 

based Heatmap. 473 

The time series-based Heatmap considers all features present in the data matrix, in order to 474 

visualize the evolution of their abundances over time. Moreover, it performs a clustering in 475 

order to group the correlated variables (molecular features), basing on their evolution profiles 476 

over the time, and their abundances in the different sample conditions. Thus, it facilitates the 477 

“fishing” of features according to their chemical/biochemical nature. 478 

Results of the applied time series-based Heatmap are shown in Figure 6. The Heatmap was 479 

applied on all of the kinetics time points (day 1 to day 38) for both untreated control soil and 480 

herbicide-spiked soil groups. In this Heatmap, samples were not clustered but sorted 481 

according to treatment condition as the first factor, and then according to time evolution as the 482 

second. Features however, were clustered without a priori, according to the correlation of 483 

their abundances between the different samples. 484 

Figure 6: Time series-based Heatmap. Clustering algorithm: Ward, distance measure: Euclidean. 485 

Plots generated using MetaboAnalyst. 486 

The clustering of features led to the identification of 4 main zones of interest. Zone A, divided 487 

into two sub-zones, A1 and A2, consisted of compounds that were only present in the spiked 488 

samples. The majority of these features were at their highest level of abundance at day 1 and 489 

then started to decay over time. Thus, they are considered as components of the Myrica gale 490 

extract herbicide. The difference between the two A sub-zones was that in comparison to the 491 
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A2 sub-zone features, A1 sub-zone features presented a higher intensity at the beginning of the 492 

kinetics tracking, and their decay over time was faster. A2 sub-zone features however, had 493 

lower intensities at the beginning of the tracking compared to A1 sub-zone features. They 494 

decayed more slowly and some of these features were still present on day 38. 495 

Zone B consisted of features that appeared at the middle of the kinetics tracking. Therefore, 496 

those features were considered as degradation by-products. Zone C features were also 497 

considered as degradation by-products. They appeared at the end of the kinetics tracking, 498 

however. 499 

Zone D, also divided into two sub-zones, D1 and D2, represented features that were abundant 500 

in both control and spiked samples. Most of these features were considered as noise and 501 

artefacts as they showed a random dispersion of abundances between replicates. For sub-zone 502 

D1, features were identified as random artefacts and noise issued from the complex 503 

xenometabolome profile. As this complexity is relatively higher in spiked samples at day 1 504 

and day 2, this can explain the reason why this noise is higher in those samples, and less 505 

intense in the control samples. For sub-zone D2 the most relevant of these features were 506 

examined by a fast putative annotation using NIST 14 library. All of these features were 507 

silicon-derivate compounds. Thus, they were considered as products of septum, fiber and 508 

column bleeding. These features were also found in blank injections, which confirmed this 509 

hypothesis. It is worth mentioning that the significant features of the D2 sub-zone were more 510 

abundant in the untreated control soil samples. This can be explained by the possible fact that 511 

in the spiked samples, the adsorption sites of the SPME fiber were less “available” due to the 512 

presence of a rich volatile xenometabolome, bleeding compounds originating from the vial 513 

septum were thus less able to fixate on the fiber. 514 
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Afterwards, as important numbers of features were prioritized by the Heatmap, a verification 515 

procedure was performed in order to filter and remove the eventual hidden artefacts. This 516 

procedure was performed using the Multivariate Empirical Bayes Analysis of Variance 517 

(MEBA) approach for time series, based on the timecourse method [47], and designed for the 518 

comparison of temporal profiles across different conditions or groups of treatments. 519 

3.3.3. Xenometabolome kinetics tracking and putative compounds identification 520 

All of the prioritized significant features, revealed by the Heatmap and verified by the MEBA, 521 

were manually tracked over time by integrating their GC-MS pseudo-spectra peak areas over 522 

all the RAW files. This was done in order to draw their time evolution curves according to the 523 

38-day kinetics tracking. In addition, this manual tracking is recommended in order to 524 

crosscheck the automatically generated results and to avoid any false positives that may occur 525 

due to the potential errors of the automated data preprocessing. 526 

The manual tracking finally led to consider 101 features as relevant, including 22 features that 527 

were considered as degradation by-products according to the kinetics profiles/curves 528 

evolution over time. All of these kinetics profiles are shown in Appendix B. Two orthogonal 529 

tools were used for putative identification of compounds: the EI-MS fragmentation patterns 530 

search on NIST 14 spectral library, and the calculation of Kováts RI that were compared to RI 531 

values reported in the NIST library. Kováts RI calculation was performed following the 532 

method of Lucero et al. [48]. Out of the 101 relevant features, 96 compounds including 20 533 

degradation by-products, representing 99.83 % of the total TIC area after blank subtraction 534 

were putatively identified on the levels “2” and “3” of identification confidence according to 535 

Sumner et al. [49]. The most abundant compounds and all identified degradation by-products 536 

are shown in Table 1. Detailed annotations of all the 101 prioritized features are summarized 537 

in Table A 6 (Appendix A). Furthermore, out of the 96 annotated compounds, 33 were 538 
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reported in the literature as Myrica gale essential oil components [28–30]. All of these 33 539 

compounds found in the literature were abundant at day 1 after spiking, representing 67.82 % 540 

of the total TIC area after blank subtraction. Meanwhile 63 compounds (47 herbicide 541 

components and 16 degradation by-products) are identified for the first time as compounds 542 

originating from the Myrica gale extract. Figure 7 shows kinetic profiles of the 6 major 543 

compounds identified: Eucalyptol, L-terpinen-4-ol, α-Terpineol, α-Terpineol acetate, 3,7(11)-544 

Selinadiene and Germacrone. The rest of the xenometabolites were predominantly terpenes, 545 

aromatic and aliphatic esters, alcohol and ketones (Table A 6 – Appendix A). 546 

Figure 7: Kinetic profiles of the 38-day degradation tracking of the 6 major compounds detected. 547 

The Peak Areas represent the sum of EICs of the major EI-fragments/ions. 548 

Otherwise, several of the identified degradation by-products could be hypothetically related to 549 

the detected Myrica gale extract compounds. For instance, Figure 8 shows the kinetics 550 

profiles of 2,3-Dehydro-1,8-cineole, Camphor, and Camphene hydrate, that are hypothetically 551 

the by-products of Eucalyptol and Borneol after oxidation, and Camphene after hydration, 552 

respectively. 553 

Figure 8: Kinetics profiles of the 38-day degradation tracking of the 3 volatile degradation by-products: 2,3-Dehydro-1,8-554 

cineole, Camphor, and Camphene hydrate. 555 

The Peak Areas represent the sum of EICs of the major EI-fragments/ions. 556 

It is worth to mention that several degradation by-products (14 out of 22, representing 5.49 % 557 

of the total TIC area after blank subtraction), were detected at the day 1 after spiking. This can 558 

be explained by three different hypotheses: i) the degradation of their parents was very fast so 559 

they started to appear after 1 day of the application of the herbicide, ii) they were already 560 

present in the applied herbicide mixture due to a slight degradation of their parents during the 561 

extraction and/or the stock of the Myrica gale extract, iii) these compounds are not only 562 

degradation by-products but also essential components of the Myrica gale extract. This last 563 

case can be considered for the Camphor and the Camphene hydrate that were reported in the 564 
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literature as components of the Myrica gale essential oil, as well as their hypothetic parents, 565 

i.e. Borneol and Camphene, respectively. 566 

Thereby, this fast putative identification, based on fast library search for EI-MS fragmentation 567 

spectra and the Kováts RI calculations, presents one of the main advantages of this approach. 568 

Indeed, it allowed studying the complex mixture of the emerging natural herbicide, where 569 

several of its unknown components and TPs could be putatively identified. The EI 570 

fragmentation patterns and their reproducibility allowed the fast annotation of several of these 571 

unknown xenometabolites by a simple spectral library search, despite the low resolution of 572 

Quadrupole mass analyzer in measuring ions’ m/z values. Kováts RI calculations assured 573 

higher identification confidence by providing an additional and orthogonal tool for 574 

metabolites characterization. 575 

Table 1: Summary of putative identifications of the most relevant features (herbicide xenometabolites with EICs area/total 576 

TIC area ≥ 1 %, and identified degradation by-products). 577 

†: The given-code represents the retention time of the compound (in minutes) preceded by the Retention Time “RT” 578 

abbreviation. 579 

‡: If MF ≥ 700, and Δ between experimental and NIST RI ≤ 10, the considered level of identification confidence is “2”. If MF 580 

< 700, or Δ between experimental and NIST RI > 10, the considered level of identification confidence is “3” (levels defined 581 

by Sumner et al. 2007 [49]). 582 

⸸: The percentage of the “sum of major fragments EICs area/total TIC area” ratio, calculated at day 1 after spiking. 583 

N/A: Not Available. N/C: Not Calculated. The relative intensity was not calculated for degradation by-products that were not 584 

detected at day 1. 585 

3.3.4. Dissipation assessment by Orthogonal Projections to Latent Structures Discriminant 586 

Analysis (OPLS-DA) 587 

Regarding limitations of classic concepts for environmental fate assessment of complex 588 

biopesticides, the targeted tracking is not applicable for the present study as described 589 

previously. Thus, the comparison of volatile metabolic profiles of both spiked samples and 590 

untreated control samples can be considered as an alternative concept to determine the 591 

dissipation of volatile compounds of the studied bioherbicide. The total dissipation is 592 

considered when the difference between the volatile metabolic profiles of the compared 593 

groups is no more significant. Therefore, the choice of the comparative statistical approach 594 
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should lay on its ability to reveal the minor differences between the compared profiles. In 595 

addition, the significance of those minor differences should be also assessed to avoid the 596 

misleading conclusions or the loss of information. 597 

The PCA model is a suitable tool for a holistic overview of the acquired data, as for revealing 598 

the major differences. However, minor differences will be hidden and it is difficult to 599 

determine them with this descriptive multivariate analysis. Thus, a discriminant analysis is 600 

needed for this aim. In this work, Orthogonal Projections to Latent Structures Discriminant 601 

Analysis (OPLS-DA) [50,51], and its Cross-Validation (CV) test, were considered to quarry 602 

and validate the significance of minor differences that are still present after 38 days of kinetics 603 

tracking between spiked samples and control samples. 604 

PCA, OPLS-DA and the CV test of OPLS-DA were applied to compare the volatile metabolic 605 

profiles of both spiked soil and untreated control soil samples at day 38 after spiking. This in 606 

order to check if the total dissipation of the herbicide has occurred. First, the PCA showed a 607 

discrimination between the two conditions according to both PC1 and PC2, explaining 84.9 % 608 

and 13.2 % of variations, respectively (Figure A 10 – Appendix A). However, PCA loadings 609 

showed that the significance of the two major discriminant features of the PC1 was unreliable, 610 

as an important intra-group variation had been noticed (Figure A 11 – Appendix A). 611 

Contrariwise, the three major features of the PC2 showed a significant difference between 612 

groups (Figure A 11 – Appendix A). Two of those features were considered as persistent 613 

xenometabolites as they were not detected in the untreated control samples (RT5.501: o-614 

Cymene and RT1.766: Methyl benzyl sulfoxide). The third feature showing a higher 615 

abundance in the untreated control samples was identified as a silicon derivate compound 616 

issued from bleeding. It was also detected in the blank injections. 617 
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Results of PCA led to conclude that in this descriptive unsupervised multivariate analysis, 618 

minor significant discriminations between groups risk to be hidden by the random 619 

contaminations and artefacts. Therefore, the OPLS-DA and its CV test were applied as 620 

explicative supervised multivariate analyses, in order to reveal significant differences related 621 

to the two pre-defined groups (untreated control samples vs. spiked samples). These 622 

differences in variables (molecular features) will be revealed by the predictive component (p) 623 

of the OPLS-DA. Moreover, the significance of these features will be assessed by introducing 624 

the confidence dimension represented by the orthogonal (o) component of the OPLS-DA. 625 

As described in Figure A 12 (Appendix A), the T score shows that the predictive (p) 626 

component explains 55.3 % of variations between the volatile profiles of spiked soil and the 627 

control soil. The orthogonal component, that explains intra-group variations, represents 16.3 628 

% of variations (Orthogonal T score). Thus, the CV test was performed to assess the 629 

significance of “between-groups” and “intra-group” discriminations. The “between-groups” 630 

discrimination is assessed by calculating the correlation of samples (R2Y) according to the 631 

regressed features of the p component, and by the prediction/significance estimated by the Q2 632 

value. The “intra-group” variations are also assessed by calculating the R2Y and Q2 applied 633 

to the orthogonal component. 634 

The CV test results shown in Appendix A (Figure A 13) were the following: for the p 635 

component, R2Y and Q2 were 98.7 % and 92.3 %, respectively. For the o component, R2Y 636 

and Q2 were 1.25 % and 1.94 %, respectively. These results show both R2Y and Q2 above 90 637 

%, with R2Y higher than R2X and Q2, meaning that the OPLS-DA model is valid. Thus, the 638 

discrimination between the two defined groups of samples is significant. In addition, there is a 639 

high confidence in the significance of discrimination as the “intra-group” variations were not 640 

significant (R2Y and Q2 below 50 %, with R2Y lower than R2X and Q2). 641 
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Hence, this result means that at day 38 after spiking, the total dissipation of the volatile 642 

xenometabolome was not reached. Therefore, to reveal the persistent xenometabolites, the 643 

OPLS-DA score plot (S-Plot) can be used as shown in Figure 9. The S-Plot showed several 644 

persistent herbicide compounds that were still significantly abundant in the volatile profiles of 645 

spiked soil at day 38, e.g. RT1.766: Methyl benzyl sulfoxide, RT5.501: o-Cymene, RT25.500: 646 

Germacrone, RT20.371: 3,5,11-Eudesmatriene, RT4.333: Methyl 2-methylhexanoate, 647 

RT19.447: Calamenene, RT8.073: Camphene hydrate, RT22.148: cis-β-Elemenone. The last 648 

6 mentioned features were difficult to reveal using the PCA loading plot. In addition, the 649 

kinetics curves proved coherent results with the S-Plot by showing the persistence of these 650 

features after 38 days of herbicide application (Appendix B). 651 

Another advantage of the OPLS-DA S-Plot was its ability to explain the high 652 

risk/insignificance of artefacts and contamination features (RT2.671 and RT4.641) previously 653 

revealed by the PCA loadings, despite their high contribution in discrimination between 654 

groups. This is thanks to the confidence/reliability dimension represented by the p(corr)[1] 655 

axis, as explained in Figure 9. 656 

It is worth mentioning that the determination of the total dissipation time of the Myrica gale 657 

extract herbicide necessitated a longer kinetics study. This however was not in the scope of 658 

the present work. 659 

Figure 9: OPLS-DA Score Plot showing the markers of discrimination between the two defined groups of soil samples. 660 

The further the feature from the 0 of the p[1] axis, the higher the magnitude of its variation between the two groups. 661 

The further the feature from the 0 of the p(corr)[1] axis, the lower its intra-group variation, thus the higher the confidence of 662 

its variation significance [52–54]. 663 

Plot generated using MetaboAnalyst. 664 

3.4. Repeatability and detection limit assessment 665 

3.4.1. Repeatability 666 

The analytical repeatability of the HS-SPME-GC-MS method was assessed by selecting 667 

several important compounds to calculate their Retention Time (RT) and Peak Area (PA) 668 



Page 28/52 
 

deviations. The 5 chosen compounds were distributed on the chromatogram RT range (Table 669 

2). “Inter-samples” Peak Area Relative Standard Deviation (RSD) and Retention Time 670 

Standard Deviation (SD) were calculated using the 3 biological replicates at the same day 671 

(day 1). The highest PA RSD was 7.75 % for the 3,7(11)-Selinadiene, and the highest RT SD 672 

was 0.43 sec for Germacrone (Table 2). This proved that the method was highly repeatable. 673 

“Inter-days” Retention Time Standard Deviation (SD) was also calculated for the selected 674 

compounds using the same sample that was injected 8 times with the following time gaps: 1, 675 

2, 3, 4, 8, 17, 24, 38 days. The highest SD was for the Germacrone with 3.44 sec of deviation 676 

(Table 2). “Inter-days” PA variation, however, was not assessed due to the difficulty of the 677 

application of Internal Standards (IS) with this type of approach. In fact, as the sample is a 678 

living system analyzed for several time points for a period of 38 days, a degradation of IS 679 

may occur during the experiment. 680 

Table 2: “Inter-samples” and “inter-days” variations of Peak Area (PA) and Retention Time (RT) over the experiment. 681 

“Inter-samples” PA RSD and “inter-samples” RT SD were calculated using the 3 biological replicates. 682 

“Inters-days” RT SD was calculated after the same sample was injected 8 times with the following time gaps: 1, 2, 3, 4, 8, 683 

17, 24, 38 days. 684 

3.4.2. Detection limit 685 

As the current study is suggesting an untargeted metabolomics-based approach, classic 686 

protocols for targeted method validation are not reasonable (e.g. absolute quantification of 687 

targeted compounds using reference standards and calibration curves). Thus, a different 688 

concept was applied to assess the detection limit at day 1 of the kinetics study, based on a 689 

comparative approximation related to herbicide’s field dose. Untreated control samples were 690 

compared to each dose level of the spiked soil samples (described in Section 2.4.). 691 

Comparisons were performed using 3 indicators: the Total TIC area integration, the number 692 

of the detected molecular features, and by applying OPLS-DA Cross-Validation tests using a 693 

data matrix generated after raw data of dose response curve were processed (using the same 694 

processing method described in Section 2.6.). Results in Table 3 show that the method is able 695 
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to discriminate between the 2 conditions (spiked vs. untreated) from 20-times and until 10-1-696 

time the field dose, as significant differences between the compared conditions are observed 697 

for Total TIC areas and for numbers of the detected molecular features (Welch Two Sample 698 

T-test p-Values < 5 %), and as a reliable predictivity of the OPLS-DA model is observed for 699 

these dose levels (Q2 of the p1 > 50 %). Therefore, a detection limit relative to herbicide dose 700 

is estimated between 10-1-time and 10-2-time the field dose at day 1 of the kinetics study. 701 

Table 3: Summary of OPLS-DA CV test and Welch Two Sample T-test results. 702 

3.5. Sample design: a living system after 8 extraction operations 703 

As previously mentioned, the sample design described in Section 2.3. was optimized in order 704 

to create a “living system”, such that the same prepared samples (soil vials) could then be 705 

tracked by several kinetics time point analyses, as the HS-SPME extraction is a non-706 

destructive method. 707 

After the application of 8 extractions on each vial/sample during the 38-day kinetics study, 708 

green plants were observed on top of the soil layer of untreated control samples. The 709 

development of this plant layer was progressive during the kinetics study and was even 710 

observed 44 days after the end of the kinetics tracking as shown in Figure 10. This indicates 711 

that the implemented sample design and the optimized HS-SPME extraction was successful in 712 

providing appropriate conditions to sustain a living micro-ecosystem. 713 

Figure 10: The evolution of the untreated control soil vials/microcosms during the experiment. 714 

Photo A was taken before the kinetics tracking began. Photo B was taken at the end of the kinetics tracking (at day 38, after 715 

analyses). Photos C was taken 44 days after the last time point was analyzed (i.e. after 82 days of the beginning of the 716 

kinetics tracking). 717 

4. Conclusion 718 

The present work aimed to introduce a novel HS-SPME-GC-MS-based untargeted 719 

metabolomics approach dedicated to study the environmental fate of complex biopesticides. 720 

The approach was developed and applied to study the volatile residues of the Myrica gale 721 
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methanolic extract; an emerging natural herbicide applied to soil, consisting of a complex 722 

mixture of identified and non-identified compounds. The developed analytical method was 723 

proved reliable in the detection of a rich volatile profile originating from the herbicide, with a 724 

low matrix background and a significant robustness. This allowed the fast putative 725 

identification of 96 xenometabolites including 33 compounds reported in the literature, 47 726 

compounds identified for the first time as Myrica gale extract components, and 16 new 727 

degradation by-products, by a 38-day kinetics tracking experiment. A comparison of 728 

herbicide-spiked and untreated control soil samples over time demonstrated the advantages of 729 

applying the untargeted metabolomics and its statistical tools as an alternative concept for 730 

complex pesticides study. The evolution of the herbicide volatile xenometabolome over time 731 

can be visualized and explained by using the PCA. The time-series Heatmap method is a 732 

suitable tool for prioritizing the relevant xenometabolites and sorting them according to their 733 

temporal evolution in the different groups of samples. This is done in order to characterize 734 

and identify new xenometabolites and TPs, which can then help to better understand the 735 

environmental fate of the herbicide, as well for assessing its potential risk and toxicity on the 736 

health and the environment. The OPLS-DA and its CV test provided a sensitive and confident 737 

determination of minor discriminations between the different groups of samples in order to 738 

assess the total dissipation of the herbicide volatile xenometabolome. 739 

The developed approach successfully revealed all of the significant results and conclusions 740 

through an analysis of only 6 environmental samples that were not destroyed throughout the 741 

course of the study. Thus, this non-destructive green automated method has now been shown 742 

to be capable of cost-effective high throughput analyses. Nevertheless, further analytical and 743 

technical developments should be performed to improve the current approach, in order to 744 

expand its potential application in environmental fate studies and emerging pesticides 745 

research. 746 
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Compound 

given-code† 

Putative identity‡ 
(level 2 or 3 of identification confidence) 

MF RI 
(Experimental) 

RI 
(NIST) 

Relative 

intensity 

(%)⸸ 

Reference 

Myrica gale methanolic extract components 

 
RT5.492 p-Cymene 881 1026 1025 ± 2 1.56 [28–30] 
RT5.501 o-Cymene 902 1029 1022 ± 2 1.46 N/A 
RT5.599 Eucalyptol 910 1036 1032 ± 2 11.09 [28–30] 
RT8.421 Borneol 903 1172 1166 ± 7 1.25 [30] 
RT8.688 L-terpinen-4-ol 934 1179 1182 ± 0 7.09 [29,30] 
RT9.090 α-Terpineol 913 1193 1189 ± 2 7.94 [29,30] 
RT11.233 Methyl hydrocinnamate 928 1267 1279 ± 2 1.28 N/A 
RT11.751 2-Undecanone 922 1285 1294 ± 2 1.60 [28] 
RT13.338 α-Terpineol acetate 934 1342 1350 ± 3 4.75 [30] 
RT17.570 Aromadendrene, dehydro- 784 1466 1464 ± 1 5.74 N/A 
RT18.448 (+)-β-Selinene 853 1488 1486 ± 3 2.49 [30] 
RT18.573 α-Selinene 904 1492 1494 ± 3 1.70 [30] 
RT19.299 β-Cadinene 850 1516 1518 ± 10 3.90 [29] 
RT20.047 γ-Selinene 907 1541 1544 ± N/A 8.30 N/A 
RT20.170 3,7(11)-Selinadiene 913 1547 1542 ± 3 5.96 [28] 
RT21.778 Aristolene epoxide 817 1585 N/A 2.84 N/A 
RT22.148 cis-β-Elemenone 905 1595 1593 ± 3 1.42 [29,30] 
RT23.095 1,4-Benzenedipropanol, α,α',γ,γ,γ',γ'-

hexamethyl- 
710 1622 N/A 1.81 N/A 

RT25.500 Germacrone 930 1691 1693 ± 3 5.81 [28–30] 
Degradation by-products 

 
RT2.425 Methyl isovalerate 831 777 773 ± 5 0.04 N/A 
RT3.050 Tyranton 834 843 838 ± 8 <0.01 N/A 
RT4.259 Butanoic acid, 2,2-dimethyl-3-oxo-, methyl 

ester 
800 946 936 N/C N/A 

RT4.333 Methyl 2-methylhexanoate 770 952 953 ± 2 N/C N/A 
RT4.441 Camphene 932 957 952 ± 2 0.02 [29,30] 
RT4.459 β-Pinene 678 960 979 ± 2 <0.01 [29,30] 
RT4.953 2,3-Dehydro-1,8-cineole 819 991 991 ± 2 <0.01 N/A 
RT6.690 Methyl 2-propylheptanoate 720 1096 1155 ± N/A N/C N/A 
RT6.885 3-Acetyl-2,5-dimethylfuran 590 1101 1099 ± 4 0.01 N/A 
RT7.536 Methyl octanoate 584 1133 1126 ± 2 N/C N/A 
RT7.877 (+)-Camphor 932 1148 1143 ± 9 2.80 [28] 
RT8.073 Camphene hydrate 870 1155 1148 ± 2 0.31 [28] 
RT8.140 3-Isopropyl-2-methylcyclopentanone 715 1157 1174 ± N/A N/C N/A 
RT8.267_2 cis-p-Menthan-3-one 809 1164 1164 ± 6 0.35 N/A 
RT8.677 2(3H)-Benzofuranone, hexahydro-3a,7a-

dimethyl-, cis- 
729 1182 N/A N/C N/A 

RT9.209 Tetrahydrocarvone 856 1200 1208 ± N/A 0.01 N/A 
RT11.495 8,9-Dehydrothymol methyl ether 733 1281 1247 ± N/A 0.02 N/A 
RT12.486 5-Methoxy-4,4,6-trimethyl-7-

oxabicyclo[4.1.0]heptan-2-one 
645 1314 N/A N/C N/A 

RT16.983 Selinan 621 1450 1476 ± 12 0.01 N/A 
RT20.371 3,5,11-Eudesmatriene 859 1547 1495 ± N/A 1.92 N/A 
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Compound Retention Time 

(min) 

PA RSD (%) 

“Inter-samples”  

(n = 3) 

RT SD (sec) 

“Inter-samples”  

(n = 3) 

RT SD (sec) 

“Inter-days”  

(n = 8) 

Eucalyptol 5.60 6.79 0.25 1.61 
L-terpinen-4-ol 8.69 4.20 0.18 1.00 
α-Gurjunene 17.17 5.34 0.36 0.92 
3,7(11)-Selinadiene 20.17 7.75 0.18 2.53 
Germacrone 25.50 2.86 0.43 3.44 
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Applied dose  

(the field dose) 

p1 o1 T-test (-Log10[p-Value]) 

R2X R2Y Q2 R2X R2Y Q2 Total TIC area 
Number of Molecular 

Features 

20-times 70.30 99.90 98.30 07.68 00.09 00.28 *** 3.67 *** 5.48 
10-times 69.40 100.00 98.30 07.64 00.02 00.45 *** 3.93 *** 6.54 

1-time 56.60 99.80 94.80 12.70 00.21 00.97 ** 3.15 *** 3.49 
10-1-time 44.60 99.40 88.50 16.30 00.55 03.76 *** 3.51 ** 2.57 
10-2-time 26.20 84.80 48.30 24.30 14.00 11.10 0.70 1.19 

10-3-time 26.40 75.00 43.60 24.50 24.30 00.43 0.60 0.42 
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