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Introduction

Learning the dynamics of systems with many interactive components becomes more and more important in many applications such as physics, cellular automata, biochemical systems as well as engineering and artificial intelligence systems. In artificial intelligence systems, knowledge like action rules is employed by agents and robots for planning and scheduling. In biology, learning the dynamics of biological systems corresponds to the identification of influence of genes, signals, proteins and molecules that can help biologists to understand their interactions and biological evolution.

In modeling of dynamical systems, the notion of concurrency and nondeterminism is crucial. When modeling a biological regulatory network, it is necessary to represent the respective evolution of each component of the system. One of the most debated issues with regard to semantics targets the choice of a proper update mode of every component, that is, synchronous [START_REF] Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF], asynchronous [START_REF] Thomas | Regulatory networks seen as asynchronous automata: a logical description[END_REF] or more complex ones. The differences and common features of different semantics w.r.t. properties of interest (attractors, oscillators, etc.) have thus resulted in an area of research per itself [START_REF] Inoue | Logic programming for boolean networks[END_REF][START_REF] Naldi | Logical modeling and analysis of cellular regulatory networks with ginsim 3.0[END_REF][START_REF] Chatain | Concurrency in boolean networks[END_REF]. But the biologists often have no idea whether a model of their system of interest should intrinsically be synchronous, asynchronous, generalized, or another semantics. It thus appears crucial to find ways to model systems from raw data without burdening the modelers with an a priori choice of the proper semantics. For a decade, learning dynamics of systems has raised a growing interest in the field of inductive logic programming (ILP) [START_REF] Muggleton | Ilp turns 20[END_REF][START_REF] Cropper | Turning 30: New ideas in inductive logic programming[END_REF]. ILP is a form of logic-based machine learning where the goal is to induce a hypothesis (a logic program) that generalises given training examples and background knowledge. Whereas most machine learning approaches learn functions, ILP frameworks learn relations.

In the specific context of learning dynamical systems, previous works proposed an ILP framework entitled learning from interpretation transition (LFIT) [START_REF] Inoue | Learning from interpretation transition[END_REF] to automatically construct a model of the dynamics of a system from the observation of its state transitions. Figure 1 shows this learning process. Given some raw data, like time-series data of gene expression, a discretization of those data in the form of state transitions is assumed. From those state transitions, according to the semantics of the system dynamics, several inference algorithms modeling the system as a logic program have been proposed. The semantics of a system's dynamics can indeed differ with regard to the synchronism of its variables, the determinism of its evolution and the influence of its history. The LFIT framework [START_REF] Inoue | Learning from interpretation transition[END_REF][START_REF] Ribeiro | Learning prime implicant conditions from interpretation transition[END_REF][START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF] proposed several modeling and learning algorithms to tackle those different semantics.

In [START_REF] Inoue | Logic programming for boolean networks[END_REF][START_REF] Inoue | Oscillating behavior of logic programs[END_REF], state transitions systems are represented with logic programs, in which the state of the world is represented by a Herbrand interpretation and the dynamics that rule the environment changes are represented by a logic program P . The rules in P specify the next state of the world as a Herbrand interpretation through the immediate consequence operator (also called the T P operator ) [START_REF] Van Emden | The semantics of predicate logic as a programming language[END_REF][START_REF] Apt | Towards a theory of declarative knowledge. Foundations of deductive databases and logic programming[END_REF] which mostly corresponds to the synchronous semantics we present in Section 3. In this paper, we extend upon this formalism to model multi-valued variables and any memory-less discrete dynamic semantics including synchronous, asynchronous and general semantics. [START_REF] Inoue | Learning from interpretation transition[END_REF] proposed the LFIT framework to learn logic programs from traces of interpretation transitions. The learning setting of this framework is as follows. We are given a set of pairs of Herbrand interpretations (I, J) as positive examples such that J = T P (I), and the goal is to induce a normal logic program (NLP) P that realizes the given transition relations. As far as we know, this concept of learning from interpretation transition (LFIT) has never been considered in the ILP literature before [START_REF] Inoue | Learning from interpretation transition[END_REF].

To date, the following systems have been tackled: memory-less deterministic systems [START_REF] Inoue | Learning from interpretation transition[END_REF], systems with memory [START_REF] Ribeiro | Learning delayed influences of biological systems[END_REF], probabilistic systems [START_REF] Martínez Martínez | Learning probabilistic action models from interpretation transitions[END_REF] and their multi-valued extensions [START_REF] Ribeiro | Learning multi-valued biological models with delayed influence from time-series observations[END_REF][START_REF] Martınez | Learning relational dynamics of stochastic domains for planning[END_REF]. [START_REF] Ribeiro | Inductive learning from state transitions over continuous domains[END_REF] proposes a method that allows to deal with continuous time series data, the abstraction itself being learned by the algorithm. As a summary, the systems that LFIT handled so far were restricted to synchronous deterministic dynamics.

In this paper, we extend this framework to learn systems dynamics independently of its update semantics. For this purpose, we propose a modeling of discrete memory-less multi-valued systems as logic programs in which each rule represents that a variable possibly takes some value at the next state, extending the formalism introduced in [START_REF] Inoue | Learning from interpretation transition[END_REF][START_REF] Ribeiro | Learning prime implicant conditions from interpretation transition[END_REF]. Research in multi-valued logic programming has proceeded along three different directions [START_REF] Kifer | Theory of generalized annotated logic programming and its applications[END_REF]: bilattice-based logics [START_REF] Fitting | Bilattices and the semantics of logic programming[END_REF][START_REF] Ginsberg | Multivalued logics: A uniform approach to reasoning in artificial intelligence[END_REF], quantitative rule sets [START_REF] Van Emden | Quantitative deduction and its fixpoint theory[END_REF] and annotated logics [START_REF] Blair | Paraconsistent logic programming[END_REF][START_REF] Blair | Paraconsistent foundations for logic programming[END_REF]. Our representation is based on annotated logics. Here, to each variable corresponds a domain of discrete values. In a rule, a literal is an atom annotated with one of these values. It allows us to represent annotated atoms simply as classical atoms and thus to remain at a propositional level. This modeling allows us to characterize optimal programs independently of the update semantics, allowing to model the dynamics of a wide range of discrete systems. To learn such semantic-free optimal programs, we propose GULA: the General Usage LFIT Algorithm. We show from theoretical results that this algorithm can learn un-der a wide range of update semantics including synchronous (deterministic or not), asynchronous and generalized semantics. [START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF] proposed a first version of GULA that we substantially extend in this manuscript. In [START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF], there was no distinction between feature and target variables, i.e., variables at time step t and t + 1. From this consideration, interesting properties arise and allow to characterize the kind of semantics compatible with the learning process of the algorithm (Theorem 1). It also allows to represent constraints and to propose a new algorithm (Synchronizer, Section 5). We show through theoretical results that this second algorithm can learn a program able to reproduce any given set of discrete state transitions and thus the behavior of any discrete memory-less dynamical semantics.

Empirical evaluation provided in [START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF] was limited to scalability in complete observability cases. With the goal to process real data, we introduce a heuristic method allowing to use GULA to learn from partial observations and predict from unobserved data. It allows us to apply the method on more realistic cases by evaluating both scalability, prediction accuracy and explanation of prediction on partial data. Evaluation is performed over the three aforementioned semantics for Boolean network benchmarks from biological literature [START_REF] Klarner | PyBoolNet: a python package for the generation, analysis and visualization of boolean networks[END_REF][START_REF] Dubrova | A SAT-based algorithm for finding attractors in synchronous boolean networks[END_REF]. These experiments emphasize the practical usage of the approach: our implementation reveals to be tractable on systems up to a dozen components, which is sufficient enough to capture a large variety of complex dynamic behaviors in practice.

The organization of the paper is as follows. Section 2 provides a formalization of discrete memory-less dynamics system as multi-valued logic program. Section 3 formalizes dynamical semantics under logic programs. Section 4 presents the first algorithm, GULA, which learns optimal programs regardless of the semantics. Section 5 provides extension of the formalization and a second algorithm, the Synchronizer, to represent and learn the semantics behavior itself. In Section 6, we propose a heuristic method allowing to use GULA to learn from partial observations and predict from unobserved data. Section 7 provides experimental evaluations regarding scalability, prediction accuracy and explanation of predictions. Section 8 discusses related work and Section 9 concludes the paper. All proofs of theorems and propositions are given in Appendix.

Logical Modeling of Dynamical Systems

In this section, the concepts necessary to understand the learning algorithms we propose are formalized. In Section 2.1, the basic notions of multi-valued logic (MVL) are presented. Then, Section 2.2 presents a modeling of dynamics systems using this formalism. In the following, we denote by N := {0, 1, 2, ...} the set of natural numbers, and for all k, n ∈ N, k; n := {i ∈ N | k ≤ i ≤ n} is the set of natural numbers between k and n included. For any set S, the cardinality of S is denoted |S| and the power set of S is denoted ℘(S).

Multi-valued Logic Program

Let V = {v 1 , • • • , v n } be a finite set of n ∈ N variables, Val the set in which variables take their values and dom : V → ℘(Val) a function associating a domain to each variable. The atoms of MVL are of the form v val where v ∈ V and val ∈ dom(v). The set of such atoms is denoted by A V dom = {v val ∈ V × Val | val ∈ dom(v)} for a given set of variables V and a given domain function dom. In the following, we work on specific V and dom that we omit to mention when the context makes no ambiguity, thus simply writing A for A V dom .

Example 1 For a system of 3 variables, the typical set of variables is V = {a, b, c}. In general, Val = N so that domains are sets of natural integers, for instance: dom(a) = {0, 1}, dom(b) = {0, 1, 2} and dom(c) = {0, 1, 2, 3}. Thus, the set of all atoms is:

A = {a 0 , a 1 , b 0 , b 1 , b 2 , c 0 , c 1 , c 2 , c 3 }.
A MVL rule R is defined by:

R = v val0 0 ← v val1 1 ∧ • • • ∧ v valm m (1) 
where ∀i ∈ 0; m , v vali i ∈ A are atoms in MVL so that every variable is mentioned at most once in the right-hand part: ∀j, k ∈ 1; m , j = k ⇒ v j = v k . If m = 0, the rule is denoted: v val0 0 ← . Intuitively, the rule R has the following meaning: the variable v 0 can take the value val 0 in the next dynamical step if for each i ∈ 1; m , variable v i has value val i in the current dynamical step.

The atom on the left-hand side of the arrow is called the head of R and is denoted head(R) := v val0 0 . The notation var(head(R)) := v 0 denotes the variable that occurs in head(R). The conjunction on the right-hand side of the arrow is called the body of R, written body(R) and can be assimilated to the set {v val1 1 , • • • , v valm m }; we thus use set operations such as ∈ and ∩ on it, and we denote it ∅ if it is empty. The notation var(body(R)) := {v 1 , • • • , v m } denotes the set of variables that occurs in body(R). More generally, for all sets of atoms X ⊆ A, we denote var(X) := {v ∈ V | ∃val ∈ dom(v), v val ∈ X} the set of variables appearing in the atoms of X. A multi-valued logic program (MVLP) is a set of MVL rules. Definition 1 introduces a domination relation between rules that defines a partial anti-symmetric ordering. Intuitively, rules with more general bodies dominate other rules. In our approach, we prefer a more general rule over a more specific one.

Definition 1 (Rule Domination) Let R 1 , R 2 be two MVL rules. The rule

R 1 dominates R 2 , written R 1 ≥ R 2 if head(R 1 ) = head(R 2 ) and body(R 1 ) ⊆ body(R 2 ). Example 2 Let R 1 := a 1 ← b 1 , R 2 := a 1 ← b 1 ∧ c 0 . R 1 dominates R 2 since head(R 1 ) = head(R 2 )
= a 1 and body(R 1 ) ⊆ body(R 2 ). Intuitively, R 1 is more general than R 2 on c. R 2 does not dominate R 1 because body(R 2 ) ⊆ body(R 1 ). Let R 3 := a 1 ← a 1 ∧ b 0 , R 1 (resp. R 2 ) does not dominate R 3 (and vice versa), since body(R 1 ) ⊆ body(R 3 ): the rules have a different condition over b. Let R 4 := a 1 ← a 1 , for the same reasons, R 1 (resp. R 2 ) does not dominate R 4 . Let R 5 := a 0 ← ∅, R 1 (resp. R 2 , R 3 , R 4 ) does not dominate R 5 (and vice versa) since their head atoms are different (a 1 = a 0 ).

The most general body for a rule is the empty set (also denoted ). A rule with an empty body dominates all rules with the same head atom. Furthermore, the only way two rules dominate each over is that they are the same rule, as stated by Lemma 1.

Lemma 1 (Double Domination Is Equality

) Let R 1 , R 2 be two MVL rules. If R 1 ≥ R 2 and R 2 ≥ R 1 then R 1 = R 2 .

Dynamic Multi-valued Logic Program

We are interested in modeling non-deterministic (in a broad sense, which includes deterministic) discrete memory-less dynamical systems. In such a system, the next state is decided according to dynamics that depend on the current state of the system. From a modeling perspective, the variables of the system at time step t can be seen as target variables and the same variables at time step t -1 as features variables. Furthermore, additional variables that are external to the system, like stimuli or observation variables for example, can appear only as feature or target variables. Such a system can be represented by a MVLP with some restrictions. First, the set of variables V is divided into two disjoint subsets: T (for targets) encoding system variables at time step t plus optional external variables like observation variables, and F (for features) encoding system variables at t -1 and optional external variables like stimuli. It is thus possible that |F| = |T |. Second, rules only have a conclusion at t and conditions at t -1, i.e., only an atom of a variable of T can be a head and only atoms of variables in F can appear in a body. In the following, we also re-use the same notations as for the MVL of Section 2.1 such as head(R), body(R) and var(head(R)).

Definition 2 (Dynamic MVLP) Let T ⊂ V and F ⊂ V such that F = V \ T . A DMVLP P is a MVLP such that ∀R ∈ P, var(head(R)) ∈ T and ∀v val ∈ body(R), v ∈ F.

In the following, when there is no ambiguity, we suppose that F, T , V and A are already defined and we omit to define them again.

Example 3 Figure 2 gives an example of regulation network with three elements a, b and c. The information of this network is not complete; notably, the relative "force" of the components a and b on the component c is not explicit. Multiple dynamics are then possible on this network, among which four possibilities are given below by Program 1 to 4, defined on T := {a t , b t , c t }, a b c Fig. 2: Example of interaction graph of a regulation network representing an incoherent feed-forward loop [START_REF] Kaplan | The incoherent feed-forward loop can generate non-monotonic input functions for genes[END_REF] where a positively influences b and c, while b (and thus, indirectly, a) negatively influences c. F := {a t-1 , b t-1 , c t-1 } and ∀v ∈ T ∪ F, dom(v) := {0, 1}. Program 1 is a direct translation of the relations of the regulation network. It only contains rules producing atoms with value 1 which is equivalent to a set of Boolean functions. In Program 2, a always takes value 1 while in Program 3 it always takes value 0, a having no incoming influence in the regulation network this can represent some kind of default behavior. In Program 3, the two red rules introduce potential non-determinism in the dynamics since both conditions can hold at the same time. In Program 4, the rule apply the conditions of the regulation network but it also allows each variable to keep the value 1 at t if it has it at t -1 and no inhibition occurs. We insist on the fact that the index notation t or t -1 is part of the variable name, not its value. This allows to distinguish variables from T (t) or F (t -1).

Program 1

b 1 t ← a 1 t-1 c 1 t ← a 1 t-1 ∧ b 0 t-1 Program 2 a 1 t ← ∅ b 0 t ← a 0 t-1 b 1 t ← a 1 t-1 c 0 t ← a 0 t-1 c 0 t ← b 1 t-1 c 1 t ← a 1 t-1 ∧ b 0 t-1 Program 3 a 0 t ← ∅ b 0 t ← a 0 t-1 b 1 t ← a 1 t-1 c 0 t ← a 0 t-1 c 0 t ← b 1 t-1 c 1 t ← a 1 t-1 Program 4 a 1 t ← a 1 t-1 b 1 t ← b 1 t-1 b 1 t ← a 1 t-1 c 1 t ← c 1 t-1 ∧ b 0 t-1 c 1 t ← a 1 t-1 ∧ b 0 t-1
The dynamical system we want to learn the rules of is represented by a succession of states as formally given by Definition 3. We also define the "compatibility" of a rule with a state in Definition 4 and with a transition in Definition 5.

Definition 3 (Discrete state) A discrete state s on T (resp. F) of a DMVLP is a function from T (resp. F) to N, i.e., it associates an integer value to each variable in T (resp. F). It can be equivalently represented by the set of atoms {v s(v) | v ∈ T (resp. F)} and thus we can use classical set operations on it. We write S T (resp. S F ) to denote the set of all discrete states of T (resp. F), and a couple of states (s, s ) ∈ S F × S T is called a transition.

When there is no possible ambiguity, we sometimes (Figure 3, Figure 5, ...) denote a state only by the values of variables, without naming the variables. In this case, the variables are given in alphabetical order (a, b, c...). For instance,

{a 0 , b 1 } is denoted 01 , {a 1 , b 0 } is denoted 10 and {a 0 , b 1 , c 0 , d 3 } is denoted 0103 .
Example 4 Consider a dynamical system having two internal variables a and b, an external stimilus st and an observation variable ch used to trace some important events. The two sets of possible discrete states of a program defined on the two sets of variables T = {a t , b t , ch} and F = {a t-1 , b t-1 , st}, and the set of atoms

A = {a 0 t , a 1 t , b 0 t , b 1 t , b 2 t , ch 0 , ch 1 , a 0 t-1 , a 1 t-1 , b 0 t-1 , b 1 t-1 , b 2 t-1 , st 0 , st 1 } are: S F = { {a 0 t-1 , b 0 t-1 , st 0 }, {a 0 t-1 , b 0 t-1 , st 1 }, {a 0 t-1 , b 1 t-1 , st 0 }, {a 0 t-1 , b 1 t-1 , st 1 }, {a 0 t-1 , b 2 t-1 , st 0 }, {a 0 t-1 , b 2 t-1 , st 1 }, {a 1 t-1 , b 0 t-1 , st 0 }, {a 1 t-1 , b 0 t-1 , st 1 }, {a 1 t-1 , b 1 t-1 , st 0 }, {a 1 t-1 , b 1 t-1 , st 1 }, {a 1 t-1 , b 2 t-1 , st 0 }, {a 1 t-1 , b 2 t-1 , st 1 } } and S T = { {a 0 t , b 0 t , ch 0 }, {a 0 t , b 0 t , ch 1 }, {a 0 t , b 1 t , ch 0 }, {a 0 t , b 1 t , ch 1 }, {a 0 t , b 2 t , ch 0 }, {a 0 t , b 2 t , ch 1 }, {a 1 t , b 0 t , ch 0 }, {a 1 t , b 0 t , ch 1 }, {a 1 t , b 1 t , ch 0 }, {a 1 t , b 1 t , ch 1 }, {a 1 t , b 2 t , ch 0 }, {a 1 t , b 2 t , ch 1 } }.
Here, a t-1 and a t (resp. b t-1 and b t ) are theoretically different variables from a MVL perspective. But they actually encode the same variable at different time step and thus a (resp. b) is present in both F and T in its corresponding timed form. On the other hand, variables st and ch are respectively a stimuli and an observation variable and thus only appear in F, S F or T , S T . Depending on the number of stimuli and observation variables, states of S F can have a different size than states in S T (see Figure 4).

Definition 4 (Rule-state matching) Let s ∈ S F . The MVL rule R matches s, written R s, if body(R) ⊆ s.
We note that this definition of matching only concerns feature variables. Target variables are never meant to be matched.

Example 5 Let F = {a t-1 , b t-1 , st}, T = {a t , b t , ch} and dom(a t-1 ) = dom(st) = dom(a t ) = dom(ch) = {0, 1}, dom(b t-1 ) = dom(b t ) = {0, 1, 2}. The rule ch 0 ← a 1 t-1 ∧b 1 t-1 ∧st 1 only matches the state {a 1 t-1 , b 1 t-1 , st 1 }. The rule ch 0 ← a 0 t-1 ∧ st 1 matches {a 0 t-1 , b 0 t-1 , st 1 }, {a 0 t-1 , b 1 t-1 , st 1 } and {a 0 t-1 , b 2 t-1 , st 1 }. The rule b 2 t ← a 1 t-1 matches {a 1 t-1 , b 0 t-1 , st 0 }, {a 1 t-1 , b 0 t-1 , st 1 }, {a 1 t-1 , b 1 t-1 , st 0 }, {a 1 t-1 , b 1 t-1 , st 1 }, {a 1 t-1 , b 2 t-1 , st 0 }, {a 1 t-1 , b 2 t-1 , st 1 }.
The rule a 1 ← ∅ matches all states of S F .

The final program we want to learn should both:

match the observations in a complete (all transitions are learned) and correct (no spurious transition) way; represent only minimal necessary interactions (according to Occam's razor: no overly-complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5 we characterize the fact that a rule of a program is useful to describe the dynamics of one variable in a transition; this notion is then extended to a program and a set of transitions, under the condition that there exists such a rule for each variable and each transition. A conflict (Definition 6) arises when a rule describes a change that is not featured in the considered set of transitions. Finally, Definition 8 and Definition 7 give the characteristics of a complete (the whole dynamics is covered) and consistent (without conflict) program.

Definition 5 (Rule and program realization) Let R be a MVL rule and (s, s ) ∈ S F × S T . The rule R realizes the transition (s, s ), written s

R -→ s , if R s ∧ head(R) ∈ s .
A DMVLP P realizes (s, s ) ∈ S F × S T , written s

P -→ s , if ∀v ∈ T , ∃R ∈ P, var(head(R)) = v ∧ s R -→ s . It realizes a set of transitions T ⊆ S F × S T , written P -→ T , if ∀(s, s ) ∈ T, s P -→ s . Example 6 The rule c 1 t ← a 1 t-1 ∧ b 1 t-1 realizes the transition t = ({a 1 t-1 , b 1 t-1 , c 0 t-1 }, {a 0 t , b 1 t , c 1 t })
since it matches the first state of t and its conclusion is in the second state. However, the rule c 1 t ← a 1 t-1 ∧ b 0 t-1 does not realize t since it does not match the feature state of t.

Example 7

The transition t = ({a In the following, for all sets of transitions T ⊆ S F × S T , we denote: first(T ) := {s ∈ S F | ∃(s 1 , s 2 ) ∈ T, s 1 = s} the set of all initial states of these transitions. We note that first(T ) = ∅ ⇐⇒ T = ∅.

1 t-1 , b 1 t-1 , c 0 t-1 }, {a 0 t , b 1 t , c

Definition 6 (Conflict and Consistency

) A MVL rule R conflicts with a set of transitions T ⊆ S F × S T when ∃s ∈ first(T ), R s ∧ ∀(s, s ) ∈ T, head(R) /
∈ s . R is said to be consistent with T when R does not conflict with T .

A rule is consistent if for all initial states of the transitions of T (first(T)) matched by the rule, there exists a transitions of T for which it verifies the conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set of transitions T if P does not contain any rule R conflicting with T .

Example 8 Let s1 = {a 1 t-1 , b 0 t-1 , c 0 t-1 }, s2 = {a 1 t-1 , b 0 t-1 , c 1 t-1 }, s3 = {a 0 t-1 , b 0 t-1 , c 0 t-1 } and t1 = (s1, {a 0 t , b 1 t , c 1 t }), t2 = (s1, {a 1 t , b 1 t , c 0 t }), t3 = (s2, {a 0 t , b 1 t , c 0 t }), t4 = (s2, {a 0 t , b 0 t , c 1 t }), t5 = (s3, {a 1 t , b 1 t , c 0 t }). Let T = {t1, t2, t3, t4, t5}.
Program 1 of Example 3 is consistent with T . The rule b 1 t ← a 1 t-1 matches s1 and both s1 and b 1 t are observed in t2. The rule also matches s2 which is observed with b 1 t in t3. The rule c 1 t ← a 1 t-1 ∧ b 0 t-1 matches s1 (resp. s2), which is observed with c 1 t in t1 (resp. t3). Program 2 is not consistent with T since a 1 t ← ∅ is not consistent with T : it matches s1, s2 and s3 but the transitions of T that include s2 (t3, t4) do not contain a 1 t . Program 3 is not consistent with T since a 0 t ← ∅ matches s1, s2, s3 but the only transition that contains s3 (t5) does not contain a 0 t . Program 4 is not consistent with T since a 1 t ← a 1 t-1 matches s2 but the transitions of T that include s2 (t3, t4) do not contain a 1 t .

Definition 8 (Complete program)

A DMVLP P is complete if ∀s ∈ S F , ∀v ∈ T , ∃R ∈ P, R s ∧ var(head(R)) = v.
A complete DMVLP realizes at least one transition for each possible initial state.

Example 9 Program 1 of Example 3 is not complete since it does not have any rule over target variable a t , in fact it does not realize any transitions. Program 2 of same example is complete:

-The rule a 1 t ← ∅ will realize a 1 t from any feature state; -For b t it has a first (resp. second) rule that matches all feature state where a 0 t-1 (resp. a 1 t-1 ) appears and the domain of a t-1 being {0, 1} all cases and thus all feature states are covered by this two rules; -For c t , all combinations of values of a and b are covered by the three last rules, ∀val ∈ dom(c t-1 ),

-{a 0 t-1 , b 0 t-1 , c val t-1 } is matched by c 0 t ← a 0 t-1 ; -{a 0 t-1 , b 1 t-1 , c val t-1 } is matched by c 0 t ← b 1 t-1 (and c 0 t ← b 1 t-1 ); -{a 1 t-1 , b 0 t-1 , c val t-1 } is matched by c 0 t ← a 1 t-1 ∧ b 0 t-1 ; -{a 1 t-1 , b 1 t-1 , c val t-1 } is matched by c 0 t ← b 1 t-1 .
Program 3 is also complete, and it even realizes multiple values for c t when both a 1 t-1 and b 1 t-1 are in a feature state:

{a 1 t-1 , b 1 t-1 , c 0 t-1 } is matched by both c 0 t ← b 1 t-1 and c 1 t ← a 1 t-1 .
Program 4 is not complete: no transition is realized when a 0 t-1 is in a feature state since the only rule of a t is a 1 t ← a 1 t-1 .

Definition 9 groups all the properties that we want the learned program to have: suitability and optimality, and Proposition 1 states that the optimal program of a set of transitions is unique. Definition 9 (Suitable and optimal program) Let T ⊆ S F × S T . A DMVLP P is suitable for T when:

-P is consistent with T , -P realizes T , -P is complete, for any possible MVL rule R consistent with T , there exists R ∈ P such that R ≥ R.

If in addition, for all R ∈ P , all the MVL rules R belonging to DMVLP suitable for T are such that R ≥ R implies R ≥ R then P is called optimal.

Note that Definition 9 ensures local minimality regarding the ordering ≥ (see Definition 1). In terms of biological models, it is more interesting to focus on local minimality, thus simple but numerous rules, modeling local influences from which the complexity of the whole system arises, than global minimality that would produce system-level rules hiding the local correlations and influences. Definition 9 also guarantees that we obtain all the minimal rules which guarantees to provide biological collaborators with the whole set of possible explanations of biological phenomena involved in the system of interest.

Proposition 1 (Uniqueness of Optimal Program) Let T ⊆ S F × S T . The DMVLP optimal for T is unique and denoted P O (T ).

Example 10

Let T = { ({a 0 t-1 , b 0 t-1 , c 0 t-1 }, {a 1 t , b 0 t , c 0 t }) ({a 0 t-1 , b 0 t-1 , c 1 t-1 }, {a 1 t , b 0 t , c 0 t }) ({a 0 t-1 , b 1 t-1 , c 0 t-1 }, {a 1 t , b 0 t , c 0 t }) ({a 1 t-1 , b 0 t-1 , c 0 t-1 }, {a 1 t , b 1 t , c 1 t }) ({a 0 t-1 , b 1 t-1 , c 1 t-1 }, {a 1 t , b 0 t , c 0 t }) ({a 1 t-1 , b 0 t-1 , c 1 t-1 }, {a 1 t , b 1 t , c 1 t }) ({a 1 t-1 , b 1 t-1 , c 0 t-1 }, {a 1 t , b 1 t , c 0 t }) ({a 1 t-1 , b 1 t-1 , c 0 t-1 }, {a 1 t , b 1 t , c 1 t }) } .
Program 1 and 4 of Example 3 are not complete (see Example 9) and thus not suitable for T . Program 3 is complete but not consistent with T (see Example 8). Program 2 is complete, consistent and realizes T but is not suitable for T : indeed, c 1 t ← a 1 t-1 is consistent with T and there is no rule in Program 2 that dominates it.

Let us consider:

P := { a 1 t ← ∅ b 0 t ← a 0 t-1 b 1 t ← a 1 t-1 c 0 t ← a 0 t-1 c 0 t ← b 1 t-1 c 1 t ← a 1 t-1 c 1 t ← a 1 t-1 ∧ b 0 t-1 } .
P is complete, consistent, realizes T and all rules consistent with T are dominated by a rule of P . Thus, P is suitable for T . But P is not optimal since

c 1 t ← a 1 t-1 ∧ b 0 t-1 is dominated by c 1 t ← a 1 t-1 . By removing c 1 t ← a 1 t-1 ∧ b 0 t-1
from P , we obtain the optimal program of T .

Algorithm 1 Brute Force Enumeration

-INPUT: a set of atoms A, two sets of variables F and T and a set of transitions T ⊆ S F × S T . -Generate all possible rules over A, F, T .

-

P := {v val ← {v val | v val ∈ A ∧ v ∈ F} | v val ∈ A ∧ v ∈ T } -Keep
only the rules consistent with T .

-

P := {R ∈ P | ∀(s, s ) ∈ T, body(R) ⊆ s =⇒ ∃(s, s ) ∈ T, head(R) ∈ s } -Remove rules dominated by another rule -P := {R ∈ P | R ∈ P, R = R ∧ R ≥ R} -OUTPUT: P (P is P O (T )).
According to Definition 9, we can obtain the optimal program by a trivial brute force enumeration algorithm: generate all rules consistent with T then remove the dominated ones as shown in Algorithm 1.

The purpose of Section 4 is to propose a non-trivial approach that is more efficient in practice to obtain the optimal program. This approach also respects the optimality properties of Definition 9 and thus ensures independence from the dynamical semantics, that are detailed in next Section.

Dynamical semantics

The aim of this section is to formalize the general notion of dynamical semantics as an update policy based on a program, and to give characterizations of several widespread existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets of variables F and T that represent conditions (features) and conclusions (targets) of rules. Conclusion atoms allow to create one or several new state(s) made of target variables, from conditions on the current state which is made of feature atoms.

In Definition 10, we formalize the notion of dynamical semantics which is a function that, to a program, associates a set of transitions where each state has at least one outgoing transition. Such a set of transitions can also be seen as a function that maps any state to a non-empty set of states, regarded as possible dynamical branchings. We give examples of semantics afterwards.

Definition 10 (Dynamical Semantics) A dynamical semantics (on A) is a function that associates, to each DMVLP P , a set of transitions T ⊆ S F ×S T so that: first(T ) = S F . Equivalently, a dynamical semantics can be seen as a function of DMVLP → (S F → ℘(S T ) \ {∅}) where DMVLP is the set of DMVLPs.

A dynamical semantics has an infinity of possibility to produce transitions from a DMVLP. Indeed, like DS 1 (P ) of Example 11, a semantics can totally ignore the DMVLP rules. It can also use the rule in an adversary way like DS inverse that keeps only the transitions that are not permitted by the program. Such semantics can produce transitions that are not consistent with the input program, i.e., the rules which conclusions were not selected for the transition will be in conflict with the set of transitions from this feature state. The kind of semantics we are interested in are the ones that properly use the rule of the DMVLP and ensure the properties of consistency introduced in Definition 7.

In Example 11, the dynamical semantics DS syn , DS asyn and DS gen are example of such semantics. They are trivial forms of the synchronous, asynchronous and general semantics that are widely used in bioinformatics. Indeed, DS syn is trivial because it generates transitions towards an arbitrary state when the program P is not complete (if no rule matches for some target variable, the program produces an incomplete state), while DS asyn and DS gen are trivial because they require feature and target variables to correspond and have a specific form (labelled with t -1 and t) with no additional stimuli or observation variables. We formalize those three semantics properly under our modeling in next Section with no restriction on the feature and target variables forms.

Example 11

For this example, suppose that feature and target variable are "symmetrical" (called regular variables later):

T = {a t , b t , ..., z t } and F = {a t-1 , b t-1 , ..., z t-1 }, with: ∀x t , x t-1 ∈ T × F, dom(x t ) = dom(x t-1
). Let convert be a function of (S F → S T ) such that for any DMVLP P, ∀s ∈ S F , convert(s) = {v val t | v val t-1 ∈ s}, and s 0 ∈ S T an arbitrary target state that is used to ensure that each of the following semantics produces at least one target state. Let DS 1 , DS 2 , DS syn , DS asyn , DS gen and DS inverse be dynamical semantics defined as follows, where P is a DMVLP and s ∈ S F :

-(DS 1 (P ))(s) = {s 0 } -(DS 2 (P ))(s) = {s ∈ S T | s ⊆ {head(R) | R ∈ P, | body(R)| = 3}} ∪ {s 0 } -(DS syn (P ))(s) = {s ∈ S T | s ⊆ {head(R) | R ∈ P, body(R) ⊆ s}} ∪ {s 0 } -(DS asyn (P ))(s) = {s ∈ S T | s ⊆ convert(s) ∪ {head(R) | R ∈ P, body(R) ⊆ s} ∧ |{v val t ∈ s | v val t-1 ∈ s}| ∈ {|T |, |T | -1}} -(DS gen (P ))(s) = {s ∈ S T | s ⊆ convert(s)∪{head(R) | R ∈ P, body(R) ⊆ s} -(DS inverse (P ))(s) = (S T \ (DS syn (P ))(s)) ∪ {s 0 }
DS 1 always outputs transitions towards s 0 and totally ignores the rules of the given program and thus can produce transitions that are not consistent with the input program. DS 2 uses the rules of the DMVLP but in an improper way, as it always considers the conclusions of rules as long as they have exactly 3 conditions, whether they match the feature state or not. DS inverse uses proper rules conclusions, but in order to contradict the program: it produces transitions so that the program is not consistent, plus a transition to s 0 to ensure at least a transition.

DS syn use the rules in the expected way, i.e., it checks if they match the considered feature state and applies their conclusion; it is a trivial form of synchronous semantics as properly introduced later in Definition 15. DS asyn also uses the rules as expected: it uses the feature state to restrict the possible target states to at most one modification compared to the feature state; this is a trivial form of asynchronous semantics, as properly introduced later in Definition [START_REF] Fitting | Bilattices and the semantics of logic programming[END_REF]. DS gen also uses the rules as expected: it mixes the current feature state with rules conclusions to produce a partially new target state; it is a trivial form of general semantics, as properly introduced later in Definition 17.

We now aim at characterizing a set of semantics of interest for the current work, as given in Theorem 1. Beforehand, Definition 11 allows to denote as Conclusions(s, P ) the set of heads of rules, in a program P , matching a state s, and Definition 12 introduces a notation B| X to consider only atoms in a set B ⊆ A that have their variable in a set X ⊆ V. These two notations will be used in the next theorem and afterwards. In the following, we especially use the notation of Definition 12 with A (denoted A| X ) and on Conclusions (denoted Conclusions| X (s, P )).

Definition 11 (Program Conclusions) Let s in S F and P a MVLP. We denote: Conclusions(s, P ) := {head(R) ∈ A | R ∈ P, R s} the set of conclusion atoms in state s for the program P .

Definition 12 (Restriction of a Set of Atoms) Let B ⊆ A be a set of atoms, and X ⊆ V be a set of variables. We denote: B| X = {v val ∈ B | v ∈ X} the set of atoms of B that have their variables in X. If B is instead a function that outputs a set of atoms, we note B| X (params) instead of B(params) | X , where params is the sequence of parameters of B.

With Definition 13, we define semantics which for any DMVLP produce the same behavior using the corresponding optimal program, that is, any semantics DS such that for any DMVLP P, DS(P ) = DS(P O (DS(P ))). This kind of semantics is of particular interest since they are "stable" through learning, that is, learning the optimal program from the dynamics of a system that relies on such a semantics allows to exactly reproduce the observed behavior.

Definition 13 (Pseudo-idempotent Semantics) Let DS be a dynamical semantics. DS is said pseudo-idempotent if, for all P a DMVLP: DS(P O (DS(P ))) = DS(P ) .

Theorem 1 gives another characterisation of a semantics that also ensures that it is pseudo-idempotent, and that especially applies to the semantics we are interested in this paper and formally defined later: synchronous, asynchronous and general.

Such a semantics must produce new states based on the initial state s and the heads of matching rules of the given program Conclusions(s, P ), as stated by point [START_REF] Apt | Towards a theory of declarative knowledge. Foundations of deductive databases and logic programming[END_REF].

Intuitively, the semantics must be defined according to an arbitrary function pick that picks target states among S T considering observed feature atoms and potential target atoms (what was and what could be). When given the atoms of the target states it outputs, this function must output the same set of target states as stated by point (1), i.e., it must produce the same states given the program conclusion or given its decision over the program conclusion.

Moreover, P O (DS(P )) being consistent with DS(P ), given a state s ∈ S F , Conclusions(s, P O (DS(P ))) = s ∈DS(P )(s) s , i.e., all the target atoms observed in a target state of DS(P )(s) must be the head of some rule that matches s in the optimal program. In other words, it must be given to the semantics to choose from when the program P O (DS(P )) is used with semantics DS. Thus the semantics should produce the same states, when being given the atoms of all those next states as possibilities, as stated by point [START_REF] Akutsu | Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model[END_REF].

Those two conditions are sufficient to ensure that DS is pseudo-idempotent and thus carries "stability" through learning.

Theorem 1 (Characterisation of Pseudo-idempotent Semantics of Interest) Let DS be a dynamical semantics. If, for all P a DMVLP, there exists pick ∈ (S F × ℘(A| T ) → ℘(S T ) \ {∅}) so that:

(1) ∀D ⊆ A| T , pick(s, s ∈pick(s,D) s ) = pick(s, D), and

(2) ∀s ∈ S F , DS(P ) (s) = pick(s, Conclusions(s, P )), then DS is pseudo-idempotent.

Example 12 Let DS be a dynamical semantics, s ∈ S F be a feature state such that s = {a 0 t-1 , b 1 t-1 , st 0 }, P be a DMVLP such that Conclusions(P, s) = {a 1 t , b 1 t , ch 0 , ch 2 }. In Figure 3, from s and Conclusions(P, s), DS produces three different target states, i.e., (DS(P ))(s) = pick(s, Conclusions(s, P )) = {{a 0 t , b -When provided with a set of transitions, for instance by using a dynamical semantics, one can describe dynamical paths, that is, successions of next states, by using each next state to generate the equivalent initial state for the next transition; -Some dynamical semantics (such as the asynchronous one, see Definition 16) make use of the current state to build the next state, and as such need a way to convert target variables into feature variables.

However, such a projection cannot be defined on the whole sets of target (T ) and feature (F) variables, but only on two subsets F ⊆ F and T ⊆ T . Note that we require the projection to be a bijection, thus: |F| = |T |. These subsets T and F contain variables that we call afterwards regular variables: they correspond to variables that have an equivalent in both the initial states (at t -1) and the next states (at t). Variables in F \ F can be considered as stimuli variables: they can only be observed in the previous state but we do not try to explain their next value in the current state; this is typically the case of external stimuli (sun, stress, nutriment...) that are unpredictable when observing only the studied system. Variables in T \ T can be considered as observation variables: they are only observed in the present state as the result of the combination of other (regular and stimuli) variables; they can be of use to assess the occurrence of a specific configuration in the previous state but cannot be used to generate the next step. For the rest of this section, we suppose that F and T are given and that there exists such projection functions, as given by Definition 14. Figure 4 gives a representation of these sets of variables.

It is noteworthy that projections on states are not bijective, because of stimuli variables that have no equivalent in target variables, and observation variables that have no equivalent in feature variables (see Figure 4). Therefore, the focus is often made on regular variables (in F and T ). Especially, for any pair of states (s, s ) ∈ S F × S T , having sp T →F (s ) ⊆ s, which is equivalent to sp F →T (s) ⊆ s , means that the regular variables in s and their projection in s (or conversely) hold the same value, modulo the projection. 

ap T →F : A| T → A| F v val → vp T →F (v) val .
The inverse function of vp T →F is denoted vp F →T and the inverse function of ap T →F is denoted ap F →T . The projections on states (based on ap T →F and ap F →T ) are the functions: 

sp T →F : S T → S F s → {ap T →F (v val ) ∈ A | v val ∈ s ∧ v ∈ T } sp F →T : S F → S T s → {ap F →T (v val ) ∈ A | v val ∈ s ∧ v ∈
-ap T →F (a 1 t ) = a 1 t-1 , -ap F →T (b 0 t-1 ) = b 0 t , -sp T →F ({a 0 t , b 0 t , ch 0 }) = {a 0 t-1 , b 0 t-1 }, and -sp F →T ({a 1 t-1 , b 0 t-1 , st 1 }) = {a 1 t , b 0 t }.

Synchronous, Asynchronous and General Semantics

In the following, we present a formal definition and a characterization of three particular semantics that are widespread in the field of complex dynamical systems: synchronous, asynchronous and general. Note that some points in these definitions are arbitrary and could be discussed depending on the modeling paradigm. For instance, the policy about rules R so that ∃s ∈ S F , R s ∧ ap T →F (head(R)) ∈ s, which model stability in the dynamics, could be to include them (such as in the synchronous and general semantics) or exclude them (such as in the asynchronous semantics) from the possible dynamics. The modeling method presented so far in this paper is independent to the considered semantics as long as it respects Definition 10 and the capacity of the optimal program to reproduce the observed behavior is ensured as long as the semantics respects Theorem 1. 

a 0 t ← b 1 t-1 a 1 t ← b 0 t-1 // f(b) := not a b 0 t ← a 1 t-1 b 1 t ← a 0 t-1 // f(a) := not b a 0 t ← b 1 t-1 a 1 t ← b 0 t-1 // f(b) := not a b 0 t ← a 1 t-1 b 1 t ← a 0 t-1 // Default rules a 0 t ← a 0 t-1 a 1 t ← a 1 t-1 b 0 t ← b 0 t-1 b 1 t ← b 1 t-1 // f(a) := not b a 0 t ← b 1 t-1 a 1 t ← b 0 t-1 // f(b) := not a b 0 t ← a 1 t-1 b 1 t ← a 0 t-1 // Default rules a 0 t ← a 0 t-1 a 1 t ← a 1 t-1 b 0 t ← b 0 t-1 b 1 t ← b 1 t-1
Fig. 5: A Boolean network with two variables inhibiting each other (top). The corresponding synchronous, asynchronous and general dynamics are given as state-transition diagrams (middle). In these state-transition diagrams, each box with a label "xy" represents both the feature state {a x t-1 , b y t-1 } and the target state {a x t , b y t }, and each arrow represents a possible transitions between states. The corresponding optimal DMVLP (bottom) contain comments (in grey) that explain sub-parts of the programs. Definition 15 introduces the synchronous semantics, consisting in updating all variables at once in each step in order to compute the next state. The value of each variable in the next state is taken amongst a "pool" of atoms containing all conclusions of rules that match the current state (using Conclusions) and atoms produced by a "default function" d that is explained below. However, this is taken in a loose sense: as stated above, atoms that make a variable change its value are not prioritized over atoms that don't. Furthermore, if several atoms on the same variable are provided in the pool (as conclusions of different rules or provided by the default function), then several transitions are possible, depending on which one is chosen. Thus, for a self-transition (s, s ) ∈ S F × S T with sp T →F (s ) ⊆ s to occur, there needs to be, for each atom v val ∈ s so that v ∈ T , either a rule that matches s and whose head is v val or that the default function gives the value v val . Note however that such a loop is not necessarily a point attractor (that is, a state for which the only possible transition is the self-transition); it is only the case if all atoms in the pool are also in sp T →F (s).

As explained above, for a given state s and a given set of variables W , the function d provides a set of "default atoms" added to the pool of atoms used to build the next state, along with rules conclusions. This function d, however, is not explicitly given; the only constraints are that:

d produces atoms at least for a provided set of variables W , specifically, the set of variables having no conclusion in a given state, which is necessary in the case of an incomplete program, d(s, ∅) is a subset of d(s, W ) for all W , as it intuitively represents a set of default atoms that are always available.

Note that d(s, ∅) = ∅ always respects these constraints and is thus always a possible value. In the case of a complete program, that is, a program providing conclusions for every variables in every state, d is always called with W = ∅ and the other cases can thus be ignored. Another typical use for d is the case of a system with Boolean variables (i.e., such that ∀v ∈ V, dom(v) = {0, 1}) where a program P is built by importing only the positive rules of the system, that is, only rules with atoms v 1 t as heads. This may happen when importing a model from another formalism featuring only Boolean formulas, such as Boolean networks. In this case, d can be used to provide a default atom w 0 t for all variables w that do not appear in Conclusions(s, P ), thus reproducing the dynamics of the original system. Definition 15 (Synchronous semantics) Let d ∈ (S F × ℘(T ) → ℘(A| T )), so that ∀s ∈ S F , ∀W ⊆ T , W ⊆ var(d(s, W )) ∧ d(s, ∅) ⊆ d(s, W ). The synchronous semantics T syn is defined by: T syn : P →{(s, s ) ∈ S F × S T | s ⊆ Conclusions(s, P )∪ d(s, T \ var(Conclusions(s, P )))} Example 14 It is possible to reproduce classical Boolean network dynamics using the synchronous semantics (T syn ) with a well-chosen default function. Indeed, Boolean models are classically defined as a set of Boolean function providing conditions in which each variable becomes active, thus implying that all the other cases make them inactive. A straightforward translation of a Boolean model into a program is thus to encode the active state of a variable with state 1 and the inactive state with 0. If the Boolean functions are represented as disjunctive normal forms, the clauses can be considered as a set of Boolean atoms of the form v or ¬v. Each clause c of the DNF of a variable v can directly be converted into a rule R such that, head(R) = v 1 t and

∀v t-1 ∈ F, v 1 t-1 ∈ body(R) ⇐⇒ v ∈ c and v 0 t-1 ∈ body(R) ⇐⇒ (¬v ) ∈ c.
Finally, the following default function allows to force the variables back to 0 when the original Boolean function should not be true:

d : S F × ℘(T ) → ℘(A| T ) (s, Z) → {v 0 t | v t ∈ Z}
In Definition 16, we formalize the asynchronous semantics that imposes that no more than one regular variable can change its value in each transition. The observation variables are not counted since they have no equivalent in feature variables to be compared to. As for the previous synchronous semantics, we use here a "pool" of atoms, made of rules conclusions and default atoms, that may be used to build the next states. The default function d used here is inspired from the previous synchronous semantics, with an additional constraint: its result always contains the atoms of the initial state. Constrains are also added on the next state to limit to at most one regular variable change. Moreover, contrary to the synchronous semantics, the asynchronous semantics prioritizes the changes. Thus, for a self-transition (s, s ) ∈ S F × S T with sp T →F (s ) ⊆ s to occur, it is required that all atoms of regular variables in the pool are in sp F →T (s): Conclusions| T (s, P )∪d| T (s, T \var(Conclusions(s, P ))) = sp F →T (s), which here implies: |sp F →T (s) \ s | = 0. This only happens when (s, s ) is a point attractor, in the sense that all regular variables cannot change their value.

It is different from Example 11 where the asynchronous semantics is more permissive and allows self-loops in every state. The asynchronous semantics of Definition 16, although more complex, is more widespread in the bioinformatics community [START_REF] Chatain | Concurrency in boolean networks[END_REF][START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF][START_REF] Klarner | Computing symbolic steady states of boolean networks[END_REF][START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-ii. immunity control in bacteriophage lambda[END_REF]; the only difference are terminal states modeled instead as (terminal) self-transitions because all states must have a successor following our definition of semantics (see Definition 10).

Definition 16 (Asynchronous semantics) Let d ∈ (S F ×℘(T ) → ℘(A| T )), so that ∀s ∈ S F , ∀W ⊆ T , W ⊆ var(d(s, W )) ∧ sp F →T (s) ⊆ d(s, ∅) ⊆ d(s, W ).
The asynchronous semantics T asyn is defined by:

T asyn : P → {(s, s ) ∈ S F × S T | s ⊆ Conclusions(s, P ) ∪ d(s, T \ var(Conclusions(s, P ))) ∧ |sp F →T (s) \ s | = 1 ∨ Conclusions| T (s, P ) ∪ d| T (s, T \ var(Conclusions(s, P ))) = sp F →T (s) }
where the notations A| T , Conclusions| T and d| T come from Definition 12.

A typical mapping for d is:

d : (s, W ) → sp F →T (s) ∪ O,
where O is a set of atoms on observation variables with arbitrary values, thus conserving the previous values for regular variables and ignoring the second argument.

In Definition 17, we formalize the general semantics as a more permissive version of the synchronous one: any subset of the variables can change their value in a transition. This semantics uses the same "pool" of atoms than the synchronous semantics containing conclusions of P and default atoms provided by d, and no constraint. However, as for the asynchronous semantics, the atoms of the initial state must always be featured as default atoms. Thus, a self-transition (s, s ) ∈ S F × S T with sp F →T (s) ⊆ s occurs for each state s because, intuitively, the empty set of variables can always be selected for update. However, as for the synchronous semantics, such a self-transition is a point attractor only if all atoms of regular variables in the "pool" are in sp F →T (s). Finally, we note that the general semantics contains the dynamics of both the synchronous and the asynchronous semantics, but also other dynamics not featured in these two other semantics.

Definition 17 (General semantics) Let d ∈ (S F × ℘(T ) → ℘(A| T )), so that ∀s ∈ S F , ∀W ⊆ T , W ⊆ var(d(s, W )) ∧ sp F →T (s) ⊆ d(s, ∅) ⊆ d(s, W ).
The general semantics T gen is defined by:

T gen : P → {(s, s ) ∈ S F × S T | s ⊆ Conclusions(s, P )∪ d(s, T \ var(Conclusions(s, P )))}.
Figure 5 gives an example of the transitions corresponding to these three semantics on a simple Boolean network of two variables inhibiting each other. The corresponding optimal DMVLP is given below each transition graph. In this example, the three programs share the rules corresponding to the inhibitions:

a 0 t ← b 1 t-1 and a 1 t ← b 0 t-1 model the inhibition of a by b, while b 0 t ← a 1 t-1
and b 1 t ← a 0 t-1 model the inhibition of b by a. However, generally speaking, there may not always exist such shared rules, for instance if the interactions they represent are somehow ignored by the semantics behavior. Furthermore, in this example, we observe additional rules (w.r.t. the synchronous case) that appear in both the asynchronous and general semantics cases. Those rules capture the default behavior of both semantics, that is, the projection of the feature state as possible target atoms. Again, such rules may not appear generally speaking, because the dynamics of the system might combine with the dynamics semantics, thus possibly merging multiple rules into more general ones (for example, conservation rules becoming rules with an empty body).

Example 15 As for the synchronous semantics, it is possible to reproduce classical Boolean network dynamics using the asynchronous (T asyn ) and general semantics (T gen ) with the same encoding of rules, and a similar default function where the projection of the current state is added:

d : S F × ℘(T ) → ℘(A| T ) (s, Z) → {v 0 t | v t ∈ Z} ∪ sp F →T (s)
Finally, with Theorem 2, we state that the definitions and method developed in the previous section are independent of the chosen semantics as long as it respect Theorem 1.

Theorem 2 (Semantics-Free Correctness) Let P be a DMVLP.

-T syn (P ) = T syn (P O (T syn (P ))), -T asyn (P ) = T asyn (P O (T asyn (P ))), -T gen (P ) = T gen (P O (T gen (P ))).

The next section focuses on methods and algorithm to learn the optimal program.

GULA

In Algorithm 1 we presented a trivial algorithm to obtain the optimal program. In this section we present a more efficient algorithm based on inductive logic programming.

Until now, the LF1T algorithm [START_REF] Inoue | Learning from interpretation transition[END_REF][START_REF] Ribeiro | Learning prime implicant conditions from interpretation transition[END_REF][START_REF] Ribeiro | Learning multi-valued biological models with delayed influence from time-series observations[END_REF] only tackled the learning of synchronous deterministic programs. Using the formalism introduced in the previous sections, it can now be revised to learn systems from transitions produced from any semantics respecting Theorem 1 like the three semantics defined above. Furthermore, both deterministic and non-deterministic systems can now be learned.

Learning operations

This section focuses on the manipulation of programs for the learning process. Definition 18 and Definition 19 formalize the main atomic operations performed on a rule or a program by the learning algorithm, whose objective is to make minimal modifications to a given DMVLP in order to be consistent with a new set of transitions.

Definition 18 (Rule least specialization) Let R be a MVL rule and s ∈ S F such that R s. The least specialization of R by s according to F and A is:

L spe (R, s, A, F) := {head(R) ← body(R) ∪ {v val } | v ∈ F ∧ v val ∈ A ∧ v val ∈ s ∧ ∀val ∈ N, v val ∈ body(R)}.
The least specialization L spe (R, s, A, F) produces a set of rule which matches all states that R matches except s. Thus L spe (R, s, A, F) realizes all transitions that R realizes except the ones starting from s. Note that

∀R ∈ P, R s ∧ | body(R)| = |F| =⇒ L spe (R, s, A, F) = ∅, i.e.
, a rule R matching s cannot be modified to make it not match s if its body already contains all feature variables, because nothing can be added in its body.

Example 16 Let F := {a t-1 , b t-1 , c t-1 } and dom(a t-1 ) := {0, 1}, dom(b t-1 ) := {0, 1, 2}, dom(c t-1 ) := {0, 1, 2, 3}.
We give below three examples of least specialization on different initial rules and states. These situations could very well happen in the learning of a same set of transitions, at different steps of the process. The added conditions are highlighted in bold.

Lspe(a 0 t ← ∅, {a 0 t-1 , b 1 t-1 , c 2 t-1 }, A, F ) = { a 0 t ← a 1 t-1 , a 0 t ← b 0 t-1 , a 0 t ← b 2 t-1 , a 0 t ← c 0 t-1 , a 0 t ← c 1 t-1 , a 0 t ← c 3 t-1 } Lspe(b 0 t ← b 1 t-1 , {a 0 t-1 , b 1 t-1 , c 2 t-1 }, A, F ) = { b 0 t ← a 1 t-1 ∧ b 1 t-1 , b 0 t ← b 1 t-1 ∧ c 0 t-1 , b 0 t ← b 1 t-1 ∧ c 1 t-1 , b 0 t ← b 1 t-1 ∧ c 3 t-1 } Lspe(c 0 t ← a 0 t-1 ∧ c 2 t-1 , {a 0 t-1 , b 1 t-1 , c 2 t-1 }, A, F ) = { c 0 t ← a 0 t-1 ∧ b 0 t-1 ∧ c 2 t-1 , c 0 t ← a 0 t-1 ∧ b 2 t-1 ∧ c 2 t-1 }
For a 0 t ← ∅, the rule having an empty body, all possible variable values (given by dom) not appearing in the given state are candidate for a new condition. For b 2 t ← b 1 t-1 , there is a condition on b in the body, therefore only conditions on a and c can be added. For

c 3 t ← a 1 t-1 ∧ c 3 t-1
, only conditions on b can be added. Finally we can consider a case like L spe (a

1 t ← a 0 t-1 ∧ b 1 t-1 ∧ c 2 t-1 , {a 0 t-1 , b 1 t-1 , c 2 t-1 }, A, F) = ∅
where a condition already exists for each variable and thus no minimal specialization of the body can be produced, thus resulting in an empty set of rules.

Definition 19 (Program least revision) Let P be a DMVLP, s ∈ S F and T ⊆ S F ×S T such that first(T ) = {s}. Let R P := {R ∈ P | R conflicts with T }.
The least revision of P by T according to A and F is L rev (P, T, A, F) :=

(P \ R P ) ∪ R∈R P L spe (R, s, A, F).
Note that according to Definition 19, first(T ) = {s} implies that all transitions for T have s as initial state.

Example 17 Let F := {a t-1 , b t-1 , c t-1 } and dom(a t-1 ) := {0, 1}, dom(b t-1 ) := {0, 1, 2}, dom(c t-1 ) := {0, 1, 2, 3}.
Let T be as set of transitions and P a DMVLP as follows.

T := { ({a 0 t-1 , b 1 t-1 , c 2 t-1 }, {a 1 t , b 1 t , c 2 t }), ({a 0 t-1 , b 1 t-1 , c 2 t-1 }, {a 0 t , b 2 t , c 2 t }), ({a 0 t-1 , b 1 t-1 , c 2 t-1 }, {a 0 t , b 1 t , c 1 t }), ({a 0 t-1 , b 1 t-1 , c 2 t-1 }, {a 0 t , b 1 t , c 3 t }), } P := { a 0 t ← ∅, a 1 t ← ∅, b 0 t ← b 1 t-1 , b 1 t ← ∅, c 0 t ← a 0 t-1 ∧ b 1 t-1 ∧ c 2 t-1 , c 0 t ← c 2 t-1 , c 1 t ← a 0 t-1 , c 2 t ← a 1 t-1 , c 2 t ← b 1 t-1 , c 3 t ← c 2 t-1 } Lrev(P, T, A, F ) := { a 0 t ← ∅, a 1 t ← ∅, b 0 t ← a 1 t-1 ∧ b 1 t-1 , b 0 t ← b 1 t-1 ∧ c 0 t-1 , b 0 t ← b 1 t-1 ∧ c 1 t-1 , b 0 t ← b 1 t-1 ∧ c 2 t-1 , b 1 t ← ∅, c 0 t ← a 1 t-1 ∧ c 2 t-1 , c 0 t ← b 0 t-1 ∧ c 2 t-1 , c 0 t ← b 2 t-1 ∧ c 2 t-1 , c 1 t ← a 0 t-1 , c 2 t ← a 1 t-1 , c 2 t ← b 1 t-1 , c 3 t ← c 2 t-1 }
Here, we have first

(T ) = {{a 0 t-1 , b 1 t-1 , c 2 t-1
}} and thus the least revision of Definition 19 can be applied on P . Moreover,

R P = {b 0 t ← b 1 t-1 , c 0 t ← a 0 t-1 ∧b 1 t-1 ∧c 2 t-1 , c 0 t ← c 2 t-1
}; these rules are highlighted in bold in P . The least revision of P by T over A and F, L rev (P, T, A, F), is obtained by removing the rules of R P from P and adding their least specialization, added conditions are in bold in L rev (P, T, A, F) and are detailed in Example 16, except for a 0 t ← ∅ which does not need to be revised because it is consistent with T since a 0 t is observed in some target states.

Theorem 3 states properties on the least revision, in order to prove it suitable to be used in the learning algorithm.

Theorem 3 (Properties of Least Revision) Let R be a MVL rule and

s ∈ S F such that R s. Let S R := {s ∈ S F | R s } and S spe := {s ∈ S F | ∃R ∈ L spe (R, s, A, F), R s }.
Let P be a DMVLP and T, T ⊆ S F × S T such that |first(T )| = 1 ∧ first(T ) ∩ first(T ) = ∅. The following results hold:

1. S spe = S R \ {s}, 2. L rev (P, T, A, F) is consistent with T , 3. P -→ T =⇒ Lrev(P,T,A,F ) ---------→ T , 4. P -→ T =⇒ Lrev(P,T,A,F ) ---------→ T , 5. P is complete =⇒ L rev (P, T, A, F) is complete.
The next properties are directly used in the learning algorithm. Proposition 2 gives an explicit definition of the optimal program for an empty set of transitions, which is the starting point of the algorithm. Proposition 3 gives a method to obtain the optimal program from any suitable program by simply removing the dominated rules; this means that the DMVLP optimal for a set of transitions can be obtained from any DMVLP suitable for the same set of transitions by removing all the dominated rules. Finally, in association with these two results, Theorem 4 gives a method to iteratively compute P O (T ) for any T ⊆ S F × S T , starting from P O (∅).

Proposition 2 (Optimal Program of Empty Set

) P O (∅) = {v val ← ∅ | v ∈ T ∧ v val ∈ A| T }. Proposition 3 (From Suitable to Optimal) Let T ⊆ S F × S T . If P is a DMVLP suitable for T , then P O (T ) = {R ∈ P | ∀R ∈ P, R ≥ R =⇒ R = R}.

Theorem 4 (Least Revision and Suitability

) Let s ∈ S F and T, T ⊆ S F ×S T such that |first(T )| = 1∧first(T )∩first(T ) = ∅. L rev (P O (T ), T , A, F) is a DMVLP suitable for T ∪ T .

Algorithm

In this section we present GULA: the General Usage LFIT Algorithm, a revision of the LF1T algorithm [START_REF] Inoue | Learning from interpretation transition[END_REF][START_REF] Ribeiro | Learning prime implicant conditions from interpretation transition[END_REF] to capture a set of multi-valued dynamics that especially encompass the classical synchronous, asynchronous and general semantics dynamics. For this learning algorithm to operate, there is no restriction on the semantics. GULA learns the optimal program that, under the same semantics, is able to exactly reproduce a complete set of observations, if the semantics respect Theorem 1. Section 5 will be devoted to also learning the behaviors of the semantics itself, if it is unknown.

GULA learns a logic program from the observations of its state transitions. Given as input a set of transitions T ⊆ S F ×S T , GULA iteratively constructs a DMVLP that models the dynamics of the observed system by applying the method formalized in the previous section as shown in Algorithm 2. The algorithm can be used for both learning possibility or impossibility depending of its parameter learning mode. When learning possibility (learning mode = "possibility"), the algorithm will learn the optimal logic program P O (T ) and this is what will be discussed in this section. The second mode is used in a heuristical approach to obtain predictive model from partial observation and will be discussed in later sections.

Algorithm 2 GULA -INPUT: a set of atoms A , a set of transitions T ⊆ S F × S T , two sets of variables F and T , a string learning mode ∈ {"possibility", "impossibility"}. -For each atom v val ∈ A of each variable v ∈ T :

if learning mode = "possibility":

• Extract all states from which transition to v val does not exist:

Neg v val := {s ∈ first(T ) | s ∈ S T , (s, s ) ∈ T ∧ v val ∈ s } -if learning mode = "impossibility":
• Extract all states from which transition to v val do exist:

Neg v val := {s ∈ first(T ) | ∃s ∈ S T , (s, s ) ∈ T ∧ v val ∈ s } -Initialize P v val := {v val ← ∅}.
-For each state s ∈ Neg v val :

• Extract and remove the rules of P v val that match s:

M v val := {R ∈ P | body(R) ⊆ s} and P v val := P v val \ M v val . • LS := ∅ • For each rule R ∈ M v val :
• Compute its least specialization P = L spe (R, s, A , F ).

• Remove all the rules in P dominated by a rule in P v val .

• Remove all the rules in P dominated by a rule in LS.

• Remove all the rules in LS dominated by a rule in P .

• LS := LS ∪ P . • Add all remaining rules of LS to P v val : P v val := P v val ∪ LS.

-P := P ∪ P v val -OUTPUT: P (P is P O (T ) if learning mode = "possibility").

From the set of transitions T , GULA learns the conditions under which each v val ∈ A ⊆ A, v ∈ T ⊆ T may appear in the next state. The algorithm starts by computing the set of all negative examples of the appearance of v val in next state: all states such that v never takes the value val in the next state of a transition of T . Those negative examples are then used during the following learning phase to iteratively learn the set of rules P O (T ). The learning phase starts by initializing a set of rules

P v val to {R ∈ P O (∅) | head(R) = v val } = {v val ← ∅}. P v val is iteratively revised against each negative example neg in Neg v val .
All rules R m of P v val that match neg have to be revised. In order for P v val to remain optimal, the revision of each R m must not match neg but still matches every other state that R m matches. To ensure that, the least specialization (see Definition 18) is used to revise each conflicting rule R m .

For each variable of F so that body(R m ) has no condition over it, a condition over another value than the one observed in state neg can be added. None of those revision match neg and all states matched by R m are still matched by at least one of its revisions. Each revised rule can be dominated by a rule in P v val or another revised rules and thus dominance must be checked from both. The non-dominated revised rules are then added to P v val . Once P v val has been revised against all negatives example of Neg v val ,

P v val = {R ∈ P O (T ) | head(R) = v val }.
Finally, P v val is added to P and the loop restarts with another atom. Once all values of each variable have been treated, the algorithm outputs P which is then equal to P O (T ). More discussion of the implementation and detailed pseudocode are given in appendix. The source code of the algorithm is available at https://github.com/Tony-sama/pylfit under GPL-3.0 License.

Example 18 Execution of GULA(A, T, F, T ) on the synchronous state transitions of Figure 5 (left): 1 provides each Neg v val (first column) and shows the iterative evolution of P v val (last column) over each neg ∈ Neg v val during the execution of GULA(A, T, F, T ). Rules in red in P v val of previous step match the current negative example neg and must be revised, while rules in blue in the last column dominate rules in blue produced by the least specialization (third column).

-F = {a t-1 , b t-1 }, -T = {a t , b t }, -A = {a 0 t-1 , b 0 t-1 , a 1 t-1 , b 1 t-1 , a 0 t , b 0 t , a 1 t , b 1 t } -T = { ({a 0 t-1 , b 0 t-1 }, {a 1 t , b 1 t }), ({a 0 t-1 , b 1 t-1 }, {a 0 t , b 1 t }), ({a 1 t-1 , b 0 t-1 }, {a 1 t , b 0 t }), ({a 1 t-1 , b 1 t-1 }, {a 0 t , b 0 t }) } Table
Table 1: Iterative evolution of P v val over each element of Neg v val for each v val ∈ A| T during the execution of GULA(A, T, F, T ) over the transitions of Figure 5 (left).

• Neg a 0 t = {{a 0 t-1 , b 0 t-1 }, {a 1 t-1 , b 0 t-1 }}, P a 0 t = {a 0 t ← ∅} neg ∈ Neg a 0 t M Least specializations P a 0 t (a 0 t-1 , b 0 t-1 ) {a 0 t ← ∅} {a 0 t ← a 1 t-1 , a 0 t ← b 1 t-1 } {a 0 t ← a 1 t-1 , a 0 t ← b 1 t-1 } (a 1 t-1 , b 0 t-1 ) {a 0 t ← a 1 t-1 } {a 0 t ← a 1 t-1 ∧ b 1 t-1 .} {a 0 t ← b 1 t-1 } • Neg a 1 t = {{a 0 t-1 , b 1 t-1 }, {a 1 t-1 , b 1 t-1 }}, P a 1 t = {a 1 t ← ∅} neg ∈ Neg a 1 t M Least specializations P a 1 t (a 0 t-1 , b 1 t-1 ) {a 1 t ← ∅} {a 1 t ← a 1 t-1 , a 1 t ← b 0 t-1 } {a 1 t ← a 1 t-1 , a 1 t ← b 0 t-1 } (a 1 t-1 , b 1 t-1 ) {a 1 t ← a 1 t-1 } {a 1 t ← a 1 t-1 ∧ b 0 t-1 } {a 1 t ← b 0 t-1 } • Neg b 0 t = {{a 0 t-1 , b 1 t-1 }, {a 0 t-1 , b 0 t-1 }}, P b 0 t = {b 0 t ← ∅} neg ∈ Neg b 0 t M Least specializations P b 0 t (a 0 t-1 , b 1 t-1 ) {b 0 t ← ∅} {b 0 t ← a 1 t-1 , b 0 t ← b 0 t-1 } {b 0 t ← a 1 t-1 , b 0 t ← b 0 t-1 } (a 0 t-1 , b 0 t-1 ) {b 0 t ← b 0 t-1 } {b 0 t ← a 1 t-1 ∧ b 0 t-1 } {b 0 t ← a 1 t-1 } • Neg b 1 t = {{a 1 t-1 , b 0 t-1 }, {a 1 t-1 , b 1 t-1 }}, P b 1 t = {b 1 t ← ∅} neg ∈ Neg b 1 t M Least specializations P b 1 t (a 1 t-1 , b 0 t-1 ) {b 1 t ← ∅} {b 1 t ← a 0 t-1 , b 1 t ← b 1 t-1 } {b 1 t ← a 0 t-1 , b 1 t ← b 1 t-1 } (a 1 t-1 , b 1 t-1 ) {b 1 t ← b 1 t-1 } {b 1 t ← a 0 t-1 ∧ b 1 t-1 } {b 0 t ← a 1 t-1 }
Example 19 Execution of GULA(A, T, F, T ) on the asynchronous state transitions of Figure 5 (middle):

-F = {a t-1 , b t-1 }, -T = {a t , b t }, -A = {a 0 t-1 , b 0 t-1 , a 1 t-1 , b 1 t-1 , a 0 t , b 0 t , a 1 t , b 1 t } -T = { ({a 0 t-1 , b 0 t-1 }, {a 0 t , b 1 t }), ({a 0 t-1 , b 0 t-1 }, {a 1 t , b 0 t }), ({a 0 t-1 , b 1 t-1 }, {a 0 t , b 1 t }), ({a 1 t-1 , b 0 t-1 }, {a 1 t , b 0 t }), ({a 1 t-1 , b 1 t-1 }, {a 0 t , b 0 t }) ({a 1 t-1 , b 1 t-1 }, {a 1 t , b 1 t }) }
Table 2 provides each Neg v val (first column) and shows the iterative evolution of P v val (last column) over each neg ∈ Neg v val during the execution of GULA(A, T, F, T ). Rules in red in the last column (P v val ) match the current negative example neg and must be revised, while rules in blue in the last column dominate rules in blue produced by the least specialization (third column, next line). For the general semantics transitions of Figure 5 (right), the additional transitions that are observed compared to the asynchronous case do not alter any Neg v val , thus the learning process is the same as in Table 2 resulting in the same output program.

Table 2: Example of the execution of GULA(A, T, F, T ) over the transitions of Figure 5 (right) and, equivalently, the transitions of Figure 5 (right). For each v val ∈ A| T is given the iterative evolution over each element of Neg v val (1 st col.) of the set of matching rules M ⊆ P v val (2 nd col.), their least specializations (3 rd col.) and P v val final state.

• Neg a 0 t = {{a 1 t-1 , b 0 t-1 }}, P a 0 t = {a 0 t ← ∅} neg ∈ Neg a 0 t M Least specializations P a 0 t (a 1 t-1 , b 0 t-1 ) {a 0 t ← ∅} {a 0 t ← a 0 t-1 , a 0 t ← b 1 t-1 } {a 0 t ← a 0 t-1 , a 0 t ← b 1 t-1 } • Neg a 1 t = {{a 0 t-1 , b 1 t-1 }}, P a 1 t = {a 1 t ← ∅} neg ∈ Neg a 1 t M Least specializations P a 1 t (a 0 t-1 , b 1 t-1 ) {a 1 t ← ∅} {a 1 t ← a 1 t-1 , a 1 t ← b 0 t-1 } {a 1 t ← a 1 t-1 , a 1 t ← b 0 t-1 } • Neg b 0 t = {{a 0 t-1 , b 1 t-1 }}, P b 0 t = {b 0 t ← ∅} neg ∈ Neg b 0 t M Least specializations P b 0 t (a 0 t-1 , b 1 t-1 ) {b 0 t ← ∅} {b 0 t ← a 1 t-1 , b 0 t ← b 0 t-1 } {b 0 t ← a 1 t-1 , b 0 t ← b 0 t-1 } • Neg b 1 t = {{a 1 t-1 , b 0 t-1 }}, P b 1 t = {b 1 t ← ∅} neg ∈ Neg b 1 t M Least specializations P b 1 t (a 1 t-1 , b 0 t-1 ) {b 1 t ← ∅} {b 1 t ← a 0 t-1 , b 1 t ← b 1 t-1 } {b 1 t ← a 1 t-1 , b 1 t ← b 1 t-1 }
Theorem 5 gives the properties of the algorithm: GULA terminates and GULA is sounds, complete and optimal w.r.t. its input, i.e., all and only nondominated consistent rules appear in its output program which is the optimal program of its input. Finally, Theorem 6 characterizes the algorithm time and memory complexities.

Theorem 5 (GULA Termination, Soundness, Completeness, Optimality) Let T ⊆ S F × S T .

(1) Any call to GULA on finite sets terminates, The worst case complexity of GULA is higher than the brute force enumeration of Algorithm 1. The complexity of brute force enumeration is bound by the operation of removing the dominated rules (O(nd 2n+2 )), that also appear in GULA. This operation is done once in the brute force enumeration with all consistent rules and multiple time (for each negative example) in GULA, also GULA can generate several time the same rule. But, in practice, GULA is expected to manage much less rules than the whole set of possibility at each step since it removes dominated rules of previous step, thus globally dealing with less rules than all possibility and ending being more efficient in practice. Its scalability is evaluated in Section 7 with brute force enumeration as baseline.

To use GULA for outputting predictions, we have to assume a semantics for the model. In the next section, we will exhibit an approach to avoid such a preliminary assumption and learn a whole system dynamics, including its semantics, in the form of a single propositional logic program.

Learning From Any Dynamical Semantics using Constraints

Any non-deterministic (and thus deterministic) discrete memory-less dynamical system can be represented by a MVLP with some restrictions and a dedicated dynamical semantics. For this, programs must contain two types of rules: possibility rules which have conditions on variables at t -1 and conclusion on one variable at t, same as for DMVLP; and constraint rules which have conditions on both t and t -1 but no conclusion. In the following, we also re-use the same notations as for the MVL of Section 2.1 such as head(R), body(R) and var(head(R)).

Constraints DMVLP

Definition 20 (Constrained DMVLP) Let P be a DMVLP on A F ∪T dom , F and T two sets of variables, and ε a special variable with dom(ε) = {0, 1} so that ε / ∈ T ∪ F. A CDMVLP P is a MVLP such that

P = P ∪ {R ∈ MVL | head(R) = ε 1 ∧ ∀v val ∈ body(R), v ∈ F ∪ T }. A MVL rule R such that head(R) = ε 1 and ∀v val ∈ body(R), v ∈ F ∪ T is called a MVL constraint.
Moreover, in the following we denote V = F ∪ T ∪ {ε}. This V is different than the one of P (which is F ∪ T , without the special variable ε). From now, a constraint C is denoted:

⊥ ← -body(C). Example 20 ⊥ ← -a 0
t ∧ a 0 t-1 is a constraint that can prevent a to take the value 0 in two successive states. Using the notion of rule and constraint matching we can use a CDMVLP to compute the next possible states. Definition 22 provides such a method based on synchronous semantic and constraints. Given a state, the set of possible next states is the Cartesian product of the conclusion of all matching rules and default atoms. Constraints rules are then used to discard states that would generate non-valid transitions.

⊥ ← -b 1 t ∧ d 2 t ∧ c 2 t-
Definition 22 (Synchronous constrained Semantics) The synchronous constrained semantics T syn-c is defined by:

T syn-c : P →{(s, s ) ∈ S F × S T | s ⊆ Conclusions(s, P ) ∧ C ∈ P, head(C) = ε 1 ∧ C (s, s )}
Figure 7 shows the dynamics of the Boolean network of Figure 5 under three semantics which dynamics cannot be reproduced using synchronous, asynchronous or general semantics on a program learned using GULA. In the first example (left), either all Boolean functions are applied simultaneously or nothing occurs (self-transition using projection). In the second example (center), the Boolean functions are applied synchronously but their is also always a possibility for any variable to take value 0 in the next state. In the third example (right), either the Boolean functions are applied synchronously, or each variable value is reversed (0 into 1 and 1 into 0). The original transitions of each dynamics are in black and the additional non-valid transitions in red. Using the original black transitions as input, GULA learns programs which, under the synchronous semantics (Definition 15), would realize the original black transitions plus the non-valid red ones. The idea is to learn constraints that would prevent those non-valid transitions to occur so that the observed dynamics is exactly reproduced using the synchronous constrained semantics of Definition 22. The CDMVLP shown below each dynamics realize all original black transitions thanks to there rules and none of the red transitions thanks to their constraints.

Definition 23 (Conflict and Consistency of constraints)

The constraint C conflicts with a set of transitions T ⊆ S F × S T when ∃(s, s ) ∈ T, C (s, s ). C is said to be consistent with T when C does not conflict with T . 

a 0 t ← b 1 t-1 a 1 t ← b 0 t-1 // b := not a b 0 t ← a 1 t-1 b 1 t ← a 0 t-1 // Stability rules a 0 t ← a 0 t-1 a 1 t ← a 1 t-1 b 0 t ← b 0 t-1 b 1 t ← b 1 t-1 // Constraints ⊥ ← -a 0 t , b 1 t , b 0 t-1 ⊥ ← -a 1 t , b 0 t , a 0 t-1 ⊥ ← -a 1 t , b 0 t , b 1 t-1 ⊥ ← -a 0 t , b 1 t , a 1 t-1 // a := not b a 0 t ← b 1 t-1 a 1 t ← b 0 t-1 // b := not a b 0 t ← a 1 t-1 b 1 t ← a 0 t-1 // Stability rules a 1 t ← a 1 t-1 b 1 t ← b 1 t-1 // Degradation a 0 t ← a 1 t-1 b 0 t ← b 1 t-1 // Constraints ⊥ ← -a 1 t , b 1 t , a 1 t-1 ⊥ ← -a 1 t , b 1 t , b 1 t-1 // a := not b a 0 t ← b 1 t-1 a 1 t ← b 0 t-1 // b := not a b 0 t ← a 1 t-1 b 1 t ← a 0 t-1 // Inverse value a 0 t ← a 1 t-1 a 1 t ← a 0 t-1 b 0 t ← b 1 t-1 b 1 t ← b 0 t-1 // Constraints ⊥ ← -a 1 t , b 1 t , a 1 t-1 ⊥ ← -a 0 t , b 0 t , a 0 t-1 ⊥ ← -a 1 t , b 1 t , b 1 t-1 ⊥ ← -a 0 t , b 0 t , b 0 t-1
Fig. 7: States transitions diagrams corresponding to three semantics that do not respect Theorem 1 (in black) applied on the Boolean network of Figure 5.

Using the synchronous semantics on the optimal program of the black transitions will produce in addition the red ones. Below each diagram, a CDMVLP that can reproduce the same behavior using synchronous constrained semantics.

Therefore, a constraint is consistent if it does not match any transitions of T .

Definition 24 (Complete set of constraints) A set of constraints SC is complete with a set of transitions T if ∀(s, s ) ∈ S F × S T , (s, s ) ∈ T =⇒ ∃C ∈ SC, C (s, s ).

Definition 25 groups all the properties that we want the learned set of constraints to have: suitability and optimality, and Proposition 4 states that the optimal set of constraints of a set of transitions is unique.

Definition 25 (Suitable and optimal constraints) Let T ⊆ S F × S T . A set of MVL constraints SC is suitable for T when:

-SC is consistent with T , -SC is complete with T , for all constraints C not conflicting with T , there exists

C ∈ P such that C ≥ C.
If in addition, for all C ∈ SC, all the constraint rules C belonging to a set of constraints suitable for T are such that C ≥ C implies C ≥ C , then SC is called optimal.

Proposition 4 Let T ⊆ S F × S T . The optimal set of constraints for T is unique and denoted C O (T ).

The subset of constraints of C O (T ) that prevent transitions permitted by P O (T ) but not observed in T from happening, or, in other terms, constraints that match transitions in T syn-c (P O (T ))) \ T , is denoted C O (T ) and given in Definition 26. All constraints of C O (T ) that are not in this set can never match a transition produced by P O (T ) with T syn-c and can thus be considered useless. Finally, Theorem 7 shows that any set of transitions T can be reproduced, using synchronous constrained semantics of Definition 22 on the

CDMVLP P O (T ) ∪ C O (T ). Definition 26 (Useful Constraints) Let T ⊆ S F × S T . C O (T ) := {C ∈ C O (T ) | ∃(s, s ) ∈ S F × S T , C (s, s ) ∧ s P O (T ) ----→ s }.
Theorem 7 (Optimal DMVLP and Constraints Correctness Under Synchronous Constrained Semantics) Let T ⊆ S F × S T , it holds that

T = T syn-c (P O (T ) ∪ C O (T )).

Algorithm

In previous sections we presented a modified version of GULA: the General Usage LFIT Algorithm from [START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF], which takes as arguments a different set of variables for conditions and conclusions of rules. This modification allows to use this modified algorithm to learn constraints and thus CDMVLP.

Algorithm 3 show the Synchronizer algorithm, which given a set of transitions T ⊆ S F ×S T will output P O (T )∪C O (T ) using GULA and the properties introduced in the previous section. With the new version of GULA it is possible to encode meaning in the transitions we give as input to the algorithm. The constraints we want to learn are technically rules whose head is 1 with conditions on both F and T . It is sufficient to make the union of the two states of a transition and feed it to GULA to make it learn such rules. Constraints should match when an impossible transition is generated by the rules of the optimal program of T . GULA learns from negative examples and negative examples of impossible transitions are just the possible transitions, thus the transitions observed in T . Using the set of transitions T := {(s ∪ s , {ε 0 }) | (s, s ) ∈ T } we can use GULA to learn such constraints with GU LA(A∪{ε 1 }, T , F ∪T , {ε}). Note that ε, from the algorithmic viewpoint, is just a dummy variable used to make every transition of T a negative example of ε 1 which will be the only head of the rule we will learn here. The program produced will contain a set of rules that match none of the initial states of T and thus none of the transitions of T but matches all other possible transitions according to GULA properties. Their head being ε 1 , those rules are actually constraints over T . Since all and only such minimal rules are output by this second call to GULA, it correspond to C O (T ), which prevent every transitions that are not in T to be produced using the constraint synchronous semantics. From Theorem 7 and Theorem 8, given a set of transitions T ⊆ S F × S T , it holds that T syn-c (Synchronizer(A, T, F, T )) = T , i.e., the algorithm can be used to learn a CDMVLP that reproduce exactly the input transitions whatever the semantics that produced them.

The complexity of the Synchronizer is basically a regular call to GULA plus a special one to learn constraints and the search for a compatible set of rules in the optimal program which could be blocked by the constraint. Since constraint can have both features and target variables in their body, the complexity of learning constraints with GULA is like considering |F|+|T | features but only one target value 1 . The detailed complexity of the Synchronizer is given in Theorem 9. The worst-case time complexity of Synchronizer when learning from T belongs to O((

d 2n + 2nd n+1 + nd n+2 ) + (|T | 2 + |T | × (2m 4 d 2m+2 + 2m 3 d m+1 )) + (d n n ))
and its worst-case memory use belongs to O((

d 2n + 2nd n+1 + nd n+2 ) + (d 2m + 2md m+1 + md m+2 ) + (nd n )).
The Synchronizer algorithm does not need any assumption about the semantics of the underlying model but require the full set of observations. However, when dealing with real data, we may only get access to partial observations. That is why we propose in next section a heuristic method to use GULA in such practical cases.

Predictions From Partial Observations with Weighted DMVLPs

In this section, we present a heuristic method allowing to use GULA to learn from partial observations and predict from unobserved feature states. Previous sections were focusing on theoretical aspects of our method. The two algorithms presented in Sections 4 and 5 are sound regarding the observations they have been provided as input. Rules of an optimal program provide minimal explanations and can reproduce what is possible over observed transitions. If observation are incomplete, the optimal program will realize a transition to every possible target state from unobserved feature state, i.e. all target atoms are always possible for unobserved feature state. In practice, when observations are partial, to get predictions and explanations from our model on unobserved feature states, we also need to model impossibilities.

Definition 27 (Rule of Impossibility

) A rule of impossibility of T ⊆ S F × S T is a MVL rule R such that ∀(s, s ) ∈ T, R s =⇒ head(R) / ∈ s .
A rule of impossibility is a rule that does not realise any transition of T : the conclusion of a rule of impossibility is never observed in any transition from a feature state of first(T ) it matches, i.e., its body is a condition so that its head is not possible. Thus, such a rule either conflicts with T (see Definition 7) for every feature states it matches or matches no feature state of T (in first(T )).

Note that all conflicting rules are not necessarily rules of impossibility. Indeed, a conflicting rule can still realize some transitions of T .

Definition 28 (Optimal Program of Impossibility) Let T ⊆ S F × S T . A DMVLP P is impossibility-suitable for T when:

all rules in P are rules of impossibility of T , and for all rules of impossibility R of T , there exists R ∈ P such that R ≥ R.

If in addition, for all R ∈ P , all the MVL rules R belonging to DMVLP impossibility-suitable for T are such that R ≥ R implies R ≥ R then P is called impossibility-optimal and denoted P O (T ).

Proposition 5 (Uniqueness of Impossibility-Optimal Program) Let T ⊆ S F ×S T . The DMVLP impossibility-optimal for T is unique and denoted P O (T ).

Rules of possibility and impossibility can be weighted according to the observations to form a Weighted DMVLP as given in Definition 29.

Definition 29 (Weighted DMVLP) A weighted program is a set of weighted rules: {(w, R) | w ∈ N ∧ R is a DMVLP rule}. A weighted DMVLP, or WDMVLP, is a pair of weighted programs (P, P ) on the same set of atoms A, and the same feature and target variables F and T .

Example 21 Let W P = (P, P ) be a WDMVLP, as follows.

P = { (3, a 0 t ← b 1 t-1 ) (15, a 1 t ← b 0 t-1 ) . . . } P = { (30, a 0 t ← c 1 t-1 ) (5, a 1 t ← c 0 t-1 ) . . . } Let s := {a 0 t-1 , b 1 t-1 , c 1 t-1 }.
The rule of possibility a 0 t ← b 1 t-1 matches s, and the rule of impossibility a 0 t ← c 1 t-1 also matches s. The weight of the rule of impossibility [START_REF] Law | Iterative learning of answer set programs from context dependent examples[END_REF] being greater than that of the rule of possibility (3), we can consider that a 0 t is not likely to appear in a transition from s according to W P .

Using GULA, we can learn both rules of possibility (by using parameter learning mode = "possibility") and rules of impossibility (with parameter learning mode = "impossibility") from T ⊆ S F × S T . In Algorithm 4, GULA is used to learn two distinct DMVLPs: a program of possibility and a program of impossibility. The rules of both programs are then weighted by the number of observed feature states (that is, in T ) they match to form a weighted DMVLP. This WDMVLP can be used to make predictions from unobserved feature states (s ∈ S F , s / ∈ first(T )) by confronting the learned rules of possibility and impossibility according to their weights.

Given a feature state s ⊆ S F we can predict and explain the likelihood of each target atom by confronting the rules of possibility and impossibility that match s. The likelihoods are computed as given in Definition 30.

Algorithm 4

Learning WDMVLP with GULA -INPUT: a set of atoms A , a set of transitions T ⊆ S F × S T , two sets of variables F and T -P := GU LA(A , T, F , T , "possible") -P := GU LA(A , T, F , T , "impossible")

-W P := {(|{s ∈ S | (s, s ) ∈ T ∧ R s}|, R) ∈ N × P } -W P := {(|{s ∈ S | (s, s ) ∈ T ∧ R s}|, R) ∈ N × P } -OUTPUT: (W P, W P ).
Definition 30 (WDMVLP Prediction and Explanation)

(1) Let P be a weighted program, s ∈ S F and v val ∈ A with v ∈ T . We define the best rules of v val matching s in P as: best rules(P, s, v val ) := (w max , M ) where:

w max := max({w ∈ N | (w, R) ∈ P } ∪ {0}) M := {R | (w max , R) ∈ P ∧ head(R) = v val , R s} .
(2) Let W P = (P, P ) be a WDMVLP, s ∈ S F and v val ∈ A with v ∈ T . We define the best rules of possibility and best rules of impossibility of v val matching s in W P as:

best rules of possibility(W P, s, v val ) := best rules(P, s, v val ) best rules of impossibility(W P, s, v val ) := best rules(P , s, v val ) .

(3) We define the prediction of likelihood of the occurrence of v val in a transition from s according to W P as:

predict(W P, s, v val ) := 1 2 × 1 + w -w max({1, w + w })
where:

best rules of possibility(W P, s, v val ) = (w, M ) best rules of impossibility(W P, s, v val ) = (w , M ) .

(4) We define the explanation of the prediction of the occurrence of v val in a transition from s according to W P as:

predict and explain(W P, s, v val ) := v val , predict(W P, s, v val ), (w, R), (w , R )

where:

   (w, R) := arbitrary(best rules of possibility(W P, s, v val )) (w , R ) := arbitrary(best rules of impossibility(W P, s, v val ))) arbitrary((w , M )) = (w , R ) so that R is taken arbitrarily in M if M = ∅, or R := ∅ if M = ∅.
Intuitively, predict(W P, s, v val ) gives a normalized score between 0 and 1 of the likelihood to observe v val after state s, where 0.5 means that we are left inconclusive. In predict and explain(W P, s, v val ), one of the best rules of possibility and rules of impossibility with their respective weights are given as explanation to the prediction or a weight of 0 and no rule when no rules of possibility (resp. impossibility) match s. The weights of the selected rules are used to compute the likelihood and the rules themselves are the explanation of the predictions. Table 3 shows an example of such predictions and explanations from a WDMVLP W P from the feature state s = {a 0

t-1 , b 0 t-1 , c 0 t-1 , d 0 t-1 , e 1 t-1 , f 0 t-1 , g 0 t-1 , h 1 t-1 , i 1 t-1 , j 1 t-1 }
where F = {a t-1 , . . . , j t-1 }, T = {a t , . . . , j t } and ∀v ∈ F ∪ T , dom(v) = {0, 1}. Each row of the table provides the WDMVLP prediction of the occurrence of a target atom v val and the corresponding explanation: predict and explain(W P, s, v val ). For example, i 1 t is very likely to be observed in a transition from s since its likelihood is almost 1 (0.90). This likelihood comes from the best possibility rule of the WDMVLP:

i 1 t ← d 0 t-1 ∧j 1 t-1
, whose weight is 35, and its best impossibility rule:

i 1 t ← a 0 t-1 ∧b 0 t-1 ∧g 0 t-1 ∧h 1 t-1
, which only has a weight of 4. This WDMVLP has been learned using Algorithm 4, thus the weights correspond to the number of feature states that those rules match. Here, we can say that i 1 t is very likely to occur since 90% of the observed feature states that contain both d 0 t-1 and j 1 t-1 (like s) have i 1 t in a transition, according to the possibility rule R. We have the reverse case for a 1 t in this example, the best impossibility rule is much stronger than the best possibility rule leading to the likelihood of 0.05, thus a 1 t is very unlikely to be observed in a transition from s. In this example, the likelihood probability of the two atoms of each target variable (for example a 0 and a 1 ) sums to 1.0 because the observed transitions are deterministic, but in the general case they are not related; for instance: both a 0 and a 1 could be very likely.

Regarding the choice of the rules for prediction, here we simply take the rules with the biggest weight from each weighted program. The intuition behind this is that rules with bigger weights are more likely to be consistent with unobserved transitions, thus the biggest weighted rule(s) is (are) the most likely to be part of the real optimal program. Note that other heuristics are possible. One could for instance combine all matching rules, for example by computing the sum or average of their weights; however, combining rules can be more noise sensitive: a lot of small-weighted incorrect rules (on unobserved states) might counter a single high-weighted rule that would happen to be optimal under all observations. This is why we chose to use a single-rule heuristics, which also happens to give a unique pair of rules as explanation (why a target atom might be possible and why it might not). The capacity of this heuristic method to predict and explain from unobserved feature states is evaluated in Section 7.

Target atom (v val ) Likelihood (predict(W P, s, v val ))

Possibility explanation ((w, R))

Impossibility explanation ((w , R )) a 0 t 0.95 (54, a 0 t ← a 0 t-1 ) (3, a 0 t ← c 0 t-1 ∧ d t-1 ∧ f 0 t-1 ∧ g 0 t-1 ) a 1 t 0.05 (3, a 1 t ← c 0 t-1 ∧ d 0 t-1 ∧ f 0 t-1 ∧ g 0 t-1 ) (54, a 1 t ← a 0 t-1 ) b 0 t 0.93 (58, b 0 t ← d 0 t-1 ) (4, b 0 t ← a 0 t-1 ∧ b t-1 ∧ g 0 t-1 ∧ h 1 t-1 ) b 1 t 0.07 (4, b 1 t ← a 0 t-1 ∧ b 0 t-1 ∧ g 0 t-1 ∧ h 1 t-1 ) (58, b 1 t ← d 0 t-1 ) c 0 t 0.88 (28, c 0 t ← d 0 t-1 ∧ h 1 t-1 ) (4, c 0 t ← a 0 t-1 ∧ b t-1 ∧ d 0 t-1 ∧ g 0 t-1 ) c 1 t 0.12 (4, c 1 t ← a 0 t-1 ∧ b 0 t-1 ∧ d 0 t-1 ∧ g 0 t-1 ) (28, c 1 t ← d 0 t-1 ∧ h 1 t-1 ) d 0 t 0.85 (50, d 0 t ← i 1 t-1 ) (9, d 0 t ← b 0 t-1 ∧ f t-1 ∧ g 0 t-1 ) d 1 t 0.15 (9, d 1 t ← b 0 t-1 ∧ f 0 t-1 ∧ g 0 t-1 ) (50, d 1 t ← i 1 t-1 ) e 0 t 0.88 (51, e 0 t ← f 0 t-1 ) (7, e 0 t ← b 0 t-1 ∧ g t-1 ∧ i 1 t-1 ) e 1 t 0.12 (7, e 1 t ← b 0 t-1 ∧ g 0 t-1 ∧ i 1 t-1 ) (51, e 1 t ← f 0 t-1 ) f 0 t 0.42 (11, f 0 t ← a 0 t-1 ∧ b 0 t-1 ∧ f 0 t-1 ) (15, f 0 t ← d 0 t-1 ∧ g t-1 ∧ j 1 t-1 ) f 1 t 0.58 (15, f 1 t ← d 0 t-1 ∧ g 0 t-1 ∧ j 1 t-1 ) (11, f 1 t ← a 0 t-1 ∧ b t-1 ∧ f 0 t-1 ) g 0 t 0.36 (9, g 0 t ← b 0 t-1 ∧ g 0 t-1 ∧ h 1 t-1 ) (16, g 0 t ← a 0 t-1 ∧ d t-1 ∧ j 1 t-1 ) g 1 t 0.64 (16, g 1 t ← a 0 t-1 ∧ d 0 t-1 ∧ j 1 t-1 ) (9, g 1 t ← b 0 t-1 ∧ g t-1 ∧ h 1 t-1 ) h 0 t 0.40 (8, h 0 t ← b 0 t-1 ∧ c 0 t-1 ∧ d 0 t-1 ∧ i 1 t-1 ) (12, h 0 t ← a 0 t-1 ∧ g t-1 ∧ h 1 t-1 ) h 1 t 0.60 (12, h 1 t ← a 0 t-1 ∧ g 0 t-1 ∧ h 1 t-1 ) (8, h 1 t ← b 0 t-1 ∧ c t-1 ∧ d 0 t-1 ∧ i 1 t-1 ) i 0 t 0.10 (4, i 0 t ← a 0 t-1 ∧ b 0 t-1 ∧ g 0 t-1 ∧ h 1 t-1 ) (35, i 0 t ← d 0 t-1 ∧ j 1 t-1 ) i 1 t 0.90 (35, i 1 t ← d 0 t-1 ∧ j 1 t-1 ) (4, i 1 t ← a 0 t-1 ∧ b t-1 ∧ g 0 t-1 ∧ h 1 t-1 ) j 0 t 0.63 (12, j 0 t ← e 1 t-1 ∧ f 0 t-1 ∧ g 0 t-1 ) (7, j 0 t ← a 0 t-1 ∧ c t-1 ∧ d 0 t-1 ∧ j 1 t-1 ) j 1 t 0.37 (7, j 1 t ← a 0 t-1 ∧ c 0 t-1 ∧ d 0 t-1 ∧ j 1 t-1 ) (12, j 1 t ← e 1 t-1 ∧ f t-1 ∧ g 0 t-1 )
Table 3: Example of prediction of a WDMVLP W P from a non-observed feature state s using Definition 30.

Evaluation

In this section, both the scalability, accuracy and explanations of GULA are evaluated using Boolean network benchmarks from the biological literature. The scalability of Synchronizer is also evaluated (details are given in ap-pendix). All experiments1 were conducted on one core of an Intel Core i3 (6157U, 2.4 GHz) with 4 Gb of RAM.

In our experiments we use Boolean networks2 from Boolenet [START_REF] Dubrova | A SAT-based algorithm for finding attractors in synchronous boolean networks[END_REF] and Pyboolnet [START_REF] Klarner | PyBoolNet: a python package for the generation, analysis and visualization of boolean networks[END_REF]. Benchmarks are performed on a wide range of networks. Some of them are small toy examples, while the biggest ones come from biological case study papers like the Boolean model for the control of the mammalian cell cycle [START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF] or fission yeast [START_REF] Davidich | Boolean network model predicts cell cycle sequence of fission yeast[END_REF]. Boolean networks are converted to DMVLP where ∀v ∈ V, dom(v) = {0, 1}. In [START_REF] Dubrova | A SAT-based algorithm for finding attractors in synchronous boolean networks[END_REF][START_REF] Klarner | PyBoolNet: a python package for the generation, analysis and visualization of boolean networks[END_REF] file formats, for each variable, Boolean functions are given in disjunctive normal form (DNF), a disjunction of conjunction clauses that can be considered as a set of Boolean atoms of the form v or ¬v. Each clause c of the DNF of a variable v is directly converted into a rule R such that, head(R) = v 1 t and v 1 t-1 ∈ body(R) ⇐⇒ v ∈ c and v 0 t-1 ∈ body(R) ⇐⇒ ¬v ∈ c. For each such DMVLP the set T of all transitions are generated for the three considered semantics (see Section 3). For each generation, to simulate the cases where Boolean functions are false, each semantics uses a default function that gives v 0 , ∀v ∈ T when no rule R, v(head(R)) = v matches a state. Table 4 provides the number of variables of each benchmark used in our experiments together with the number of transitions under synchronous, asynchronous and general semantics.

7.1 GULA Scalability Figure 9 shows the run time (log scale) of GULA (Algorithm 2) and brute force enumeration (Algorithm 1) when learning a WDMVLP from Boolean networks (grouped by number of variables) transitions of Table 4. Since we learn WDMVLP the run time corresponds to the sum of two calls to GULA (resp. brute force enumeration) (possibility and impossibility mode) and the computation of each rule weight (see Algorithm 4). For the impossibility mode of the brute force enumeration (Algorithm 1), we keep impossibility rules in place of consistent rules: it suffices to replace P := {R ∈ P | ∀(s, s ) ∈ T, body(R) ⊆ s =⇒ ∃(s, s ) ∈ T, head(R) ∈ s } by P := {R ∈ P | ∀(s, s ) ∈ T, body(R) ⊆ s =⇒ (s, s ) ∈ T, head(R) ∈ s }. For each benchmark, learning is performed on 10 random subsets of 1%, 5%, 10%, 25%, 50%, 75%, 100% of the whole set of transitions with a time out of 1, 000 seconds.

For all benchmarks, we clearly see that GULA is more efficient than the trivial brute force enumeration, the difference exponentially increasing with the number of variables: about 10 times faster with 6 variables and 100 times faster with 9 variables. The brute force enumeration reaches the time out for 10 variables benchmarks and beyond. [START_REF] Dubrova | A SAT-based algorithm for finding attractors in synchronous boolean networks[END_REF] and PyBoolNet [START_REF] Klarner | PyBoolNet: a python package for the generation, analysis and visualization of boolean networks[END_REF] used as benchmark in this experimental section.

For a given number of variables, we observe that for each benchmark the run time increases with the number of transitions until some ratio (for example 50% for 7 variables) at which point more transition can actually speed up the process. More transitions reduce the probability for a rule to be consistent, thus both methods have less rules to check for domination. This tendency is observed on the three semantics. It is important to note that the systems are deterministic with the synchronous semantics and thus the number of transitions in the synchronous case is much lower than for the two other semantics and one may expect better run time. But the quantity of transitions has little impact in fact and most of the run time goes into rule domination check (see Theorem 6). Actually, more input transitions can even imply less learning time for GULA. Having more diverse initial states can also allow the sorting of the negatives example to reduce the quantity of specialization made at each step, a freshly revised rule being revised again will not have much non-dominated candidates to generate. For example, for the benchmarks with 13 variables, for some variable values, given 25% of the transitions, the number of stored rules reached several thousands. On the other hand, when given 100% of the transitions, it rarely exceeds hundreds stored rules. Same logic can apply to the faster run time of general semantics with "low" subset of transitions: the total number of transitions being higher, more diversity appears in its subset thus higher chance for the sorting to have effect on reducing the need for least specialization. The rules are simpler for the two other semantics since rules of the form v val t ← v val t-1 are always consistent and quickly obtained. Such simple Fig. 9: Run time in seconds (log scale) of two calls to GULA (in blue) and brute force enumeration (in red) when learning a WDMVLP from a random set of 1%, 5%, 10%, 25%, 50%, 75%, 100% of the transitions of a Boolean network from Boolenet and PyBoolNet with size varying from 3 to 13 variables. Time out is set at 1, 000 seconds and 10 runs where performed for each setting.

rules have great dominance power, reducing the quantity of stored rules and thus checked for domination at each step.

GULA succeeds in learning a WDMVLP from the benchmarks with up to 10 variables for all semantics before the time-out of 1,000 seconds for all considered sub-sets of transitions. Benchmarks from 12 variables need a substantial amount of input transitions to prevent the explosion of consistent rules and thus reaching the time out. For both semantics, the 12 variables benchmarks reached the time out several times when given less than 100% of the transitions. Even if this may seem small compared to the intrinsic complexity of biological systems, ten components are sufficient to capture the dynamic behavior of critical, yet significant, mechanisms like the cell cycle [START_REF] Gibart | Totembionet enrichment methodology: Application to the qualitative regulatory network of the cell metabolism[END_REF].

Compared to our previous algorithm LF1T [START_REF] Ribeiro | Learning prime implicant conditions from interpretation transition[END_REF], GULA is slower in the synchronous deterministic Boolean case (even when learning only P O (T )). This was expected since it is not specifically dedicated to learning such networks: GULA learns both values (0 and 1) of each variable and pre-processes the transitions before learning rules to handle non-determinism. On the other hand, LF1T is optimized to only learn rules that make a variable take the value 1 in the next state and assume only one transition from each initial state. furthermore, LF1T only handles Boolean values and deterministic transitions while GULA can deal with multi-valued variable and any pseudo-idempotent (Theorem 1) semantics transitions.

The current implementation of the algorithm is rather naive and better performances are expected from future optimizations. In particular, the algorithm can be parallelized into as many threads as the number of different rule heads (one thread per target variable value). We are also developing 3an approximated version of GULA that outputs a subset of P O (T ) (resp. P O (T )) sufficient to explain T [START_REF] Ribeiro | Les enjeux de l'inférence de modèles dynamiques des systèmes biologiques à partir de séries temporelles[END_REF]. The complexity of this new algorithm is polynomial, greatly improving the scalability of our approach but to the sacrifice of completeness. However, this algorithm is still under development and is beyond the scope of this paper.

Learning constraints is obviously more costly than learning regular rules since both feature and target variables can appear in the body, i.e., the number of features becomes |F| + |T |. Thus by running the Synchronizer on the Boolean network benchmark it implies a call to GULA with double the number of variables to learn constraints. Under the same experimental settings, the Synchronizer reached the time-out of 1,000 seconds on the benchmarks of 7 variables. The contribution regarding CDMVLP being focused on theoretical results, we provided the detailed evaluation of the Synchronizer in appendix to save space.

GULA Predictive Power

When addressing biological systems, a major challenge arises: even if the amount of produced data is increasing through the development of highthroughput RNA sequencing, it is still low with regard to all the theoretical contexts.

In this experiment, we thus evaluate the quality of the models learned by GULA in their ability to correctly predict possible values for each variable from unseen feature states, i.e., the capacity of the learned model to generalize to unobserved cases. Practically speaking, this ensures the resulting models can provide relevant information about biological experiments that were (or could) not be performed.

For each Boolean network benchmark, we first generate the set of all possible feature states. Those states are then randomly split into two sets: at least 20% will be test feature states and the remaining 80% will be potential training feature states. According to the Boolean formula of the network and a given semantics, all transitions from test feature states are generated to make the test set. All transitions are also computed from the training feature states, but only x% of the transitions are randomly chosen to form the training set with x ∈ {1, 5, 10, 20, 30, ..., 100}. Figure 10 The training set is used as input to learn a WDMVLP using GULA. The learned WDMVLP W P is then used to predict from each feature state s of the test set, the possibility of occurrence of each target atoms v val according to Proposition 30, i.e., predict(W P, s, v val ). The forecast probabilities are compared to the observed values of the test set. Let T be the set of all transitions, T the training set of transitions and T the test set of transitions. For all v val ∈ A| T and s ∈ first(T ), we define:

actual(v val , s, T ) = 1, if ∃(s, s ) ∈ T , v val ∈ s 0, otherwise .
To evaluate the accuracy of prediction from the learned WDMVLP, W P , over the test set T we consider a ratio of precision given by the complement to one of the mean absolute error between its prediction and the actual value:

accuracy(W P, T ) = s∈first(T ) v val ∈A| T 1 -|actual(v val , s, T ) -predict(W P, s, v val )| |A| T | × |first(T )|
Formally, if T is the whole set of transitions of the Boolean network, this experiment consists in learning the WDMVLP (P O (T ), P O (T )) from the training set T ⊂ T and checking both the consistency and realization of the test set T ⊂ T , with first(T )∩first(T ) = ∅. Here, we chose |T | ≈ x×0.8×|T | and |T | ≈ 0.2×|T |, where x ∈ {0.01, 0.05, 0.1, 0.2, 0.3, ..., 1.0}. Intuitively, the WDMVLP learned in these experiments can be seen as an approximation of (P O (T ), P O (T )) on partial observations: the learned rules can be different. These experiments aim to evaluate the discrepancies in their behaviors, i.e., we only measure the consequences of the use of the rules, not the quality of the rules themselves (which is the subject of the next experiment).

Example 22 Let T be the test set of Figure 10 and W P be the WDMVLP of Example 21. Let s := (a 1 t-1 , b 1 t-1 , c 1 t-1 ) (111). -Expected prediction from s according to T : {(v val , actual(v val , s, T ))} = {(a 0 t , 1), (a 1 t , 0), (b 0 t , 1), (b 1 t , 1), (c 0 t , 1), (c 1 t , 1)} -Predictions from s according to W P : {(v val , predict(W P, s, v val ))} = {(a 0 t , 0.9), (a 1 t , 0.2), (b 0 t , 0.8), (b 1 t , 0.6), (c 0 t , 1.0), (c 1 t , 0.0)} -Accuracy (unique state): 1 -|1-0.9|+|0-0.2|+|1-0.8|+|1-0.6|+|1-1.0|+|1-0.0| |A| T |=6 = 0.58 On state s, the model prediction mean absolute error w.r.t. T is 0.42, thus giving an accuracy of 0.58, meaning that in average, 58% of the predictions are correct.

Figures 11a, 11b and11c show the accuracy of the predicted possible values w.r.t. the ratio of training data going from 1% to 100% with the three considered semantics.

Here, we also consider four trivial baselines that are random predictions and always predicting 0, 0.5 or 1.0, i.e., ∀s ∈ S F , ∀v val ∈ A| T :

baseline random(s, v val ) = rand(0.0, 1.0) baseline always 0.0(s, v val ) = 0.0 baseline always 0.5(s, v val ) = 0.5 baseline always 1.0(s, v val ) = 1.0 Accuracy score for the random baseline is expected to be around 0.5 for every semantics since the problem is equivalent to a binary classification, i.e., each atom can appear or not. Accuracy score of the three fixed baselines is exactly 0.5 in synchronous case since transitions are deterministic here: only one atom v val is possible (either v 0 or v 1 ) for each target variable v for each feature state of the test set, i.e., always one of the two must be predicted to 0.0 and the other one to 1.0. For asynchronous and general semantics the transitions are non-deterministic, thus always predicting 0.0 or 1.0 for each target atoms will lead to different accuracy score. Both semantics using previous value as default, it is more likely for each atom to appear in a target state, thus always predicting 1.0 is expected to perform better than 0.5 and always predicting 0.0 is expected to perform worst. That explain why, in Figures 11b and11c we can observe an accuracy score of 0.6 to 0.8 for always predicting 1.0 and 0.2 to 0.4 for always predicting 0.0.

With synchronous semantics transitions, when given only 5% of the possible transitions, GULA starts to clearly outperform the baseline on the test set for all benchmarks size. It reaches more than 80% accuracy when given at least 40% of the transitions for benchmarks with 6 variables and only 5% of input transitions is enough to obtain same performance with 9 variables. These results show that the models learned by GULA effectively generalise Fig. 11: Accuracy of the WDMVLP learned by GULA and trivial baselines when predicting possible target atoms from unseen states with different amounts of training data of transitions from Boolean network benchmarks with synchronous, asynchronous and general semantics. For the non-deterministic case of asynchronous and general semantics the performance of GULA are similar but the differences with the baselines that always predict 1.0 is smaller. As stated before, since both semantics use previous value as default, it is more likely for each atom to appear in a target state, thus predicting that all atoms are always possible is less risky. Furthermore, the transition being non-deterministic, the way we select the training set (see Figure 10) may lead to have missing transitions from some feature state in the training set, generating false negative example for GULA equivalent to noisy data. Still, GULA start to outperforms the baseline that always predict 1.0 (and all others) for the two semantics when given more than 50% of the possible transitions as input. The performances of GULA also increase when considering more variables, with 9 variables benchmarks 20% of transition is enough to obtain 80% accuracy over unseen test data for asynchronous case and about 2% for general case. Performances are globally similar for the three semantics, showing that our method can handle a bit of noise caused by missing observations.

If one is only interested by prediction accuracy, it is certainly easier to achieve better results using statistical machine learning methods like neural networks or random forest since prediction here is basically a binary clas-sification for each target variables values. In the cases where explainability is of interest, the rules used for the predictions and their weights may be quite simple human readable candidates for explanations (i.e., exhibit dynamic relations between biological interacting components). For a given feature state, a WDMVLP provides (using Definition 30) for each target atom the likelihood of its occurrence in a transition but also the two rules (possibility/impossibility) that explain this prediction as shown in Table 3. We consider the evaluation of explanation in the following experiment.

GULA Explanation Quality

In this experiment, we evaluate the quality of the models learned by GULA in their ability to correctly explain their predictions. Benchmarks and train/test sets generation is the same as in previous experiment (see Figure 10). The learned model must predict correctly the possibility for each target atom as previously, and also provide a rule that can explain the prediction. When a target atom is possible (resp. impossible), we expect a rule of the optimal program (resp. optimal program of impossibility) to be given as explanation. By computing the Hamming distance between the rules used in the model learned from incomplete observations (P O (T ), P O (T )), and the optimal rules from the full observations (P O (T ), P O (T )), we can have an idea of how close we are from the theoretically optimal explanations. For that, for each experiment, we compute the optimal program and the optimal program of impossibility from the set of all transitions (T ) before splitting it into train/test sets.

A WDMVLP is then learned using GULA from the training set (T ) as in previous experiment. The learned WDMVLP is then used to predict from each feature state of the test set (T ), the possibility of occurrence of each target atom according to Proposition 30 as well as a rule to explain this prediction. The forecast probabilities and explanations are compared to the observed values of the test set and the rules of the optimal programs. For all v val ∈ A| T and s ∈ first(T ), we define:

actual(v val , s, T ) = (1, {R ∈ P O (T ) | head(R) = v val ∧ R s}), if ∃(s, s ) ∈ T , v val ∈ s (0, {R ∈ P O (T ) | head(R) = v val ∧ R s}), otherwise .
To compare the forecast rules and the ideal rules, we consider the Hamming distance over their bodies:

distance(R, R ) = |(body(R) ∪ body(R )) \ (body(R) ∩ body(R ))| .
We expect both correct forecast of possibility and explanation, in the sense that an incorrect prediction yields the highest error (1.0) while a good prediction yields an error depending on the quality of the explanation (0.0 when an ideal rule is used). This is summed up in the following error function:

error((f orecast proba, f orecast rule), (actual proba, actual rules)) =      1.0 if f orecast rule = ∅ 1.0 if f orecast proba = 0.5 1.0 if f orecast proba > 0.5 ∧ actual proba = 0 1.0 if f orecast proba < 0.5 ∧ actual proba = 1 min({distance(f orecast rule,R)|R∈actual rules}) |F | otherwise
This allows to compute an explanation score, combining both accuracy and explanation quality from the learned WDMVLP, W P , over the test set T :

explanation score(W P, T ) = 

-P O (T ) = {a 1 t ← a 1 t-1 , a 1 t ← b 1 t-1 ∧ c 1 t-1 , a 1 t ← b 0 t-1 ∧ c 0 t-1 , a 0 t ← c 0 t-1 , ...} -P O (T ) = {a 1 t ← a 0 t-1 , a 1 t ← b 0 t-1 , a 1 t ← c 0 t-1 , a 0 t ← c 1 t-1 , ...}
-Let us suppose that from the test feature state s :=

{a 1 t-1 , b 1 t-1 , c 1 t-1 }, the target atom a 1
t is observed in some transitions from s in T thus we expect a probability of 1.0 and a rule from P O (T ) that matches s and produce a 1 t (any of the blue rules) as explanation:

-actual(a 1 t , s, T ) = (a 1 t , 1.0, {a 1 t ← a 1 t-1 , a 1 t ← b 1 t-1 ∧ c 1 t-1 }
) -Let W P be a WDMVLP learned from T and we suppose that:

predict and explain(W P, s, a 1 t ) = (a 1 t , 1.0, a 1 t ← b 1 t-1 ) -The predicted possibility is correct, thus the explanation score will depend on the explanation. -The explanation a 1 t ← b 1 t-1 has a Hamming distance of 2 with a 1 t ← a 1 t-1

(the conditions on a t-1 and b t-1 are wrong, the condition on c t-1 is correct), thus the error will be 2

|F | = 2 3 . -The Hamming distance is only of 1 with rule a 1 t ← b 1 t-1 ∧ c 1 t-1
(the conditions on a t-1 and b t-1 are correct, the condition on c t-1 is wrong), thus the error will be 1

|F | = 1 3 . -The final score for target a 1 t is 1 -min({ 2 3 , 1 3 }) ≈ 0.66
The prediction is correct for target a 1 t from s, but the explanation a 1 t ← a 1 t-1 is not perfect. Still, 66% of its conditions correspond to an optimal rule (a

1 t ← b 1 t-1 ∧ c 1 t-1
) that can explain this prediction.

-Now let us suppose that from the test feature state s := {a 0 t-1 , b 1 t-1 , c 0 t-1 }, the target atom a 1 t is never observed in any transition from s in T . Thus, we expect a predicted probability of 0.0 and, as an explanation, a rule from P O (T ) that matches s and has a 1 t as conclusion (any of the red rules):

-actual(a 1 t , s, T ) = (a 1 t , 0.0, {a 1 t ← a 0 t-1 , a 1 t ← c 0 t-1 }
) -Let W P be a WDMVLP and suppose that:

predict and explain(W P, s, a 1 t ) = (a 1 t , 0.0, a 1 t ← ∅) -The explanation a 1 t ← ∅ has an Hamming distance of 1 when compared with a 1 t ← a 0 t-1 (the condition on a t-1 is wrong, the conditions on b t-1 and c t-1 are correct), thus the error will be 1

|F | = 1 3 .
example, we see that optimal rules of the same target atoms matching the same feature state can be very different (for instance, the two actual P O (T ) rules of c 1 that have no feature atom in common) that is why we consider the minimal Hamming distance in our scoring. As a final comment, we can observe that for a given target variable, the rules for one value (for instance, a 0 ) in P O (T ) have exactly the same body than the rules for the other value (for instance, a 1 ) in P O (T ). This is due to the Boolean deterministic nature of the example tackled here, but it could not be the case in general (multi-valued or non-deterministic case).

Figures 12a, 12b and12c show the results of the evolution of the explanation score when learning a WDMVLP using GULA from approximately 1% to 80% of the transitions of a Boolean network. We also use 4 trivial methods as baselines, each having a perfect value prediction, thus their score is only influenced by their explanation. The baselines explanations are trivial and take the form of a random rule, no rules, the most specific rule, the most general rule, i.e., ∀s ∈ firstT , ∀v val ∈ A| T , perf ect prediction = actual(v val , s, T ):

baseline random rules(s, v val ) = (perf ect prediction, v val ← body ⊆ s) baseline no rules(s, v val ) = (perf ect prediction, ∅) baseline most general rules(s, v val ) = (perf ect prediction, v val ← ∅) baseline most specif ic rules(s, v val ) = (perf ect prediction, v val ← s)

The random baseline is expected to score around 0.5, while the no rule baseline will always have a score of 0.0. The most specific rule baseline will have all conditions of each expected rule, but also unnecessary ones. The most general rules will miss all specific conditions but avoid all unnecessary ones. Since optimal rules rarely use more than half of the total number of variable as conditions (at least for these Benchmarks), the most general rule is expected to have a better score in average compared to most specific. That's why we observe random rule score around 0.4 to 0.5, most specific score around 0.1 to 0.4 and most general score around 0.6 to 0.8 for all semantics considered.

With synchronous semantics transitions, when given only 50% of the possible transitions, GULA start to clearly outperform the baselines on the test set for all benchmarks size. It reaches more than 80% accuracy when given at least 25% of the transitions for benchmarks with 6 variables and only 10% of input transitions is enough to obtain same performance with 9 variables. These results show that GULA, in a deterministic context, effectively learns rules that are close to the optimal ones even with a partial set of observations, showing its capacity in practice to generalize to unseen data. Such results will help to validate, using the data, models that were previously built and designed by the sole expert knowledge of the biological experts. Meanwhile we cannot rely only on deterministic semantics, as well-known models from the literature (e.g., the switch between the lytic and lysogenic cycles of the lambda phage [START_REF] Thieffry | Dynamical behaviour of biological regulatory networks-ii. immunity control in bacteriophage lambda[END_REF], which is composed of four components in interaction) require non-determinism to be captured efficiently.

For the non-deterministic case of asynchronous and general semantics the performance of GULA are similar but more observation are needed to obtain 

a 0 1.0 0.95 0.95 [a 0 ← a 0 ] [] (54, a 0 ← a 0 ) (3, a 0 ← c 0 ∧ d 0 ∧ f 0 ∧ g 0 ) 1.0 a 1 0.0 0.05 0.95 [] [a 1 ← a 0 ] (3, a 1 ← c 0 ∧ d 0 ∧ f 0 ∧ g 0 ) (54, a 1 ← a 0 ) 1.0 b 0 1.0 0.93 0.93 [b 0 ← d 0 ] [] (58, b 0 ← d 0 ) (4, b 0 ← a 0 ∧ b 0 ∧ g 0 ∧ h 1 ) 1.0 b 1 0.0 0.07 0.93 [] [b 1 ← d 0 ] (4, b 1 ← a 0 ∧ b 0 ∧ g 0 ∧ h 1 ) (58, b 1 ← d 0 ) 1.0 c 0 1.0 0.88 0.88 [c 0 ← h 1 ∧ i 1 , c 0 ← c 0 ∧ f 0 ] [] (28, c 0 ← d 0 ∧ h 1 ) (4, c 0 ← a 0 ∧ b 0 ∧ d 0 ∧ g 0 ) 0.8 c 1 0.0 0.12 0.88 [] [c 1 ← h 1 ∧ i 1 , c 1 ← c 0 ∧ f 0 ] (4, c 1 ← a 0 ∧ b 0 ∧ d 0 ∧ g 0 ) (28, c 1 ← d 0 ∧ h 1 )
0.8

d 0 1.0 0.85 0.85 [d 0 ← i 1 ] [] (50, d 0 ← i 1 ) (9, d 0 ← b 0 ∧f 0 ∧g 0 ) 1.0 d 1 0.0 0.15 0.85 [] [d 1 ← i 1 ] (9, d 1 ← b 0 ∧f 0 ∧g 0 ) (50, d 1 ← i 1 ) 1.0 e 0 1.0 0.88 0.88 [e 0 ← f 0 ] [] (51, e 0 ← f 0 ) (7, e 0 ← b 0 ∧ g 0 ∧ i 1 )
1.0

e 1 0.0 0.12 0.88 [] [e 1 ← f 0 ] (7, e 1 ← b 0 ∧ g 0 ∧ i 1 ) (51, e 1 ← f 0 ) 1.0 f 0 0.0 0.42 0.58 [] [f 0 ← c 0 ∧ d 0 ∧ g 0 , f 0 ← d 0 ∧ g 0 ∧ j 1 ] (11, f 0 ← a 0 ∧b 0 ∧f 0 ) (15, f 0 ← d 0 ∧g 0 ∧j 1 )
1.0

f 1 1.0 0.58 0.58 [f 1 ← c 0 ∧ d 0 ∧ g 0 , f 1 ← d 0 ∧ g 0 ∧ j 1 ] [] (15, f 1 ← d 0 ∧g 0 ∧j 1 ) (11, f 1 ← a 0 ∧b 0 ∧f 0 ) 1.0 g 0 0.0 0.36 0.64 [] [g 0 ← a 0 ∧ d 0 ∧ j 1 ] (9, g 0 ← b 0 ∧g 0 ∧h 1 ) (16, g 0 ← a 0 ∧d 0 ∧j 1 )
1.0

g 1 1.0 0.64 0.64 [g 1 ← a 0 ∧ d 0 ∧ j 1 ] [] (16, g 1 ← a 0 ∧d 0 ∧j 1 ) (9, g 1 ← b 0 ∧g 0 ∧h 1 ) 1.0 h 0 1.0 0.40 0.40 [h 0 ← b 0 ∧ c 0 ∧ d 0 ∧ i 1 ] [] (8, h 0 ← b 0 ∧ c 0 ∧ d 0 ∧ i 1 ) (12, h 0 ← a 0 ∧g 0 ∧h 1 ) 0.0 h 1 0.0 0.60 0.40 [] [h 1 ← b 0 ∧c 0 ∧d 0 ∧i 1 ] (12, h 1 ← a 0 ∧g 0 ∧h 1 ) (8, h 1 ← b 0 ∧ c 0 ∧ d 0 ∧ i 1 ) 0.0 i 0 0.0 0.10 0.90 [] [i 0 ← c 0 ∧ d 0 , i 0 ← d 0 ∧ j 1 ] (4, i 0 ← a 0 ∧ b 0 ∧ g 0 ∧ h 1 ) (35, i 0 ← d 0 ∧ j 1 )
1.0

i 1 1.0 0.90 0.90 [i 1 ← c 0 ∧ d 0 , i 1 ← d 0 ∧ j 1 ] [] (35, i 1 ← d 0 ∧ j 1 ) (4, i 1 ← a 0 ∧ b 0 ∧ g 0 ∧ h 1 )
1.0

j 0 0.0 0.63 0.37 [] [j 0 ← a 0 ∧c 0 ∧d 0 ∧j 1 ] (12, j 0 ← e 1 ∧f 0 ∧g 0 ) (7, j 0 ← a 0 ∧ c 0 ∧ d 0 ∧ j 1 )
0.0

j 1 1.0 0.37 0.37 [j 1 ← a 0 ∧c 0 ∧d 0 ∧j 1 ] [] (7, j 1 ← a 0 ∧ c 0 ∧ d 0 ∧ j 1 ) (12, j 1 ← e 1 ∧f 0 ∧g 0 ) 0.0
Table 5: Example of prediction of a WDMVLP from a non-observed feature state using Definition 30 and accuracy/explanation scoring. same performances. Like for previous experiments, in those cases we can have missing transitions for some of the observed feature states, leading to false negative examples extraction in GULA. This is more likely to happen with asynchronous semantics, since only one transition will show the change of a specific variable value from a given state while the general semantics will have several subset of change combined in a transitions. It also makes transitions less valuable in quantity of information in the asynchronous case, i.e., only one variable changes its value, starting from the second transition from the same state, all transitions only provide one positive example for the only variable that is changing its value. Still, GULA starts to outperform the most general rule baseline (and all others) for the two semantics when given more than 50% of the possible transitions as input. This shows again that our method can handle a bit of noise caused by missing observations also at the explanation level. The performances of GULA are similar when considering more variables here, the gain observed in value precision compensating the additional possibility for explanation error introduced by new variables.

It is important to recall that the baselines used here have perfect value prediction while our method also need to predict proper value to have it's explanation evaluated. As stated before, it is certainly easier to achieve better prediction results using statistical machine learning methods. Furthermore, when good prediction model can be built from training data, it can replace our learned model to forecast the value but could be used to improve the output of GULA. Indeed, one can use such models to directly generate positive/negative examples of each atom from observed and unseen states that can be given as input to GULA in place of the raw observations. It can help to deal with noisy data and improve the diversity of initial state that can speed up and improve the quality of the rules of GULA and thus also its approximated version [START_REF] Ribeiro | Les enjeux de l'inférence de modèles dynamiques des systèmes biologiques à partir de séries temporelles[END_REF]. Actually, as long as feature and target variables are discrete (or can be properly discretized), GULA (or its approximated version for big systems) could be used to generate rules that could explain in a more human readable way the behavior of other less explainable models. Such a combination of predictive statistical model and WDMVLP learning study is out of the scope of this paper but will be an interesting application part of our future works. This would not only allow to output relevant predictions w.r.t. dynamical trajectories of biological systems but also help to get a precise understanding of the underlying key interactions between components. Such an approach can also be considered for a broader range of applications. In [START_REF] Ortega | Symbolic ai for xai: Evaluating lfit inductive programming for fair and explainable automatic recruitment[END_REF], the authors investigate the promises conveys to provide declarative explanations in classical machine learning by neural networks in the context of automatic recruitment algorithms.

Readability of the model

So far we formalized methods and proposed algorithms in order to learn models of dynamical systems which predictions can be explained by human readable rules. Experiments and metrics of the previous sections evaluate the use of the model regarding both accuracy of predictions and quality of the explanation of the predictions. But one could also be interested about the explainability of the model itself: we could consider the readability of the program learned not only its use. In this section we do a short case study of the program learned by GULA on one of the benchmarks used in the previous experiments. Here we consider again the "faure cellcycle" Boolean network [START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF] that is composed of ten variables. Starting from the seminal contribution of Novak and Tyson, Fig. 12: Explanation score of the WDMVLP learned by GULA and trivial baselines when predicting possible target atoms from unseen states with different amounts of training data of the transitions from Boolean network benchmarks with synchronous, asynchronous and general semantics. who proposed a set of ordinary differential equations (ODE) to model the mammalian cell cycle [START_REF] Novák | A model for restriction point control of the mammalian cell cycle[END_REF], the authors of [START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF] synthesized the knowledge about the core control of mammalian cell division into a single logical model. This model, whose biological significance is high, appears as a good candidate to illustrate the impact of our contribution. As in the previous experiment, the original Boolean network is converted into its DMVLP equivalent as shown in Figure 13.

A training set and test set are randomly produced from all its synchronous transitions as in Figure 10. Here we take about 10% of the transitions as the training set T and 20% as the test set T , with no common initial states in the two sets, as previously. The WDMVLP (P O (T ), P O (T )) learned by GULA using the training set T as input achieves 87.97% accuracy and 94.85% explanation score. Each prediction explanation of the model is at most 40 rules: 10 Boolean variables make 20 possible atoms, and each target atom probability is explained by a rule of possibility and impossibility, thus multiplying by 2. The prediction explanation could arguably be considered readable but the program itself contains several thousands rules, in this example run: |P O (T )| = 9, 439 and |P O (T )| = 4, 520.

To make the program more human readable, we can use a heuristic. What is readable or not depends of the context; for this case study, we will consider that a total of 40 rules is a reasonable number for our model and that rules

targets, factors CycD, CycD Cdc20, CycB CycA, !cdh1&!Rb&E2F&!Cdc20 | !UbcH10&!Rb&E2F&!Cdc20 | !cdh1&!Rb&CycA&!Cdc20 | !UbcH10&!Rb&CycA&!Cdc20 CycB, !cdh1&!Cdc20 CycE, !Rb&E2F E2F, p27&!Rb&!CycB | !Rb&!CycB&!CycA Rb, !CycE&!CycD&!CycB&!CycA | p27&!CycD&!CycB UbcH10, UbcH10&CycB | UbcH10&CycA | UbcH10&Cdc20 | !cdh1 cdh1, p27&!CycB | !CycB&!CycA | Cdc20 p27, p27&!CycE&!CycD&!CycB | p27&!CycD&!CycB&!CycA | !CycE&!CycD&!CycB&!CycA DMVLP equivalent: { CycD 1 t ← CycD 1 t-1 Cdc20 1 t ← CycB 1 t-1 CycA 1 t ← Cdc20 0 t-1 ∧ E2F 1 t-1 ∧ Rb 0 t-1 ∧ cdh1 0 t-1 CycA 1 t ← Cdc20 0 t-1 ∧ E2F 1 t-1 ∧ Rb 0 t-1 ∧ U bcH10 0 t-1 CycA 1 t ← Cdc20 0 t-1 ∧ CycA 1 t-1 ∧ Rb 0 t-1 ∧ cdh1 0 t-1 CycA 1 t ← Cdc20 0 t-1 ∧ CycA 1 t-1 ∧ Rb 0 t-1 ∧ U bcH10 0 t-1 CycB 1 t ← Cdc20 0 t-1 ∧ cdh1 0 t-1 CycE 1 t ← E2F 1 t-1 ∧ Rb 0 t-1 E2F 1 t ← CycB 0 t-1 ∧ Rb 0 t-1 ∧ p27 1 t-1 E2F 1 t ← CycA 0 t-1 ∧ CycB 0 t-1 ∧ Rb 0 t-1 Rb 1 t ← CycD 0 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ∧ CycE 0 t-1 Rb 1 t ← CycD 0 t-1 ∧ CycB 0 t-1 ∧ p27 1 t-1 U bcH10 1 t ← CycB 1 t-1 ∧ U bcH10 1 t-1 U bcH10 1 t ← CycA 1 t-1 ∧ U bcH10 1 t-1 U bcH10 1 t ← Cdc20 1 t-1 ∧ U bcH10 1 t-1 U bcH10 1 t ← cdh1 0 t-1 cdh1 1 t ← CycB 0 t-1 ∧ p27 1 t-1 cdh1 1 t ← CycA 0 t-1 ∧ CycB 0 t-1 cdh1 1 t ← Cdc20 1 t-1 p27 1 t ← CycD 0 t-1 ∧ CycB 0 t-1 ∧ CycE 0 t-1 ∧ p27 1 t-1 p27 1 t ← CycD 0 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ∧ p27 1 t-1 p27 1 t ← CycD 0 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ∧ CycE 0 t-1 }
Fig. 13: Boolean functions of the "faure cellcycle" Boolean network [START_REF] Fauré | Dynamical analysis of a generic boolean model for the control of the mammalian cell cycle[END_REF], in .bnet file format from PyBoolNet [START_REF] Klarner | PyBoolNet: a python package for the generation, analysis and visualization of boolean networks[END_REF] (top) and the equivalent DMVLP (bottom). The rules colored in red are missing from the final learned model of Figure 14.

with more than four conditions are not readable (thus bounding the maximal size of clauses observed in the Boolean network). As we have 10 variables in the studied Boolean network, we force to have no more than four rules per variable to achieve at most 40 rules of activation (rule with value of 1 as head) that will form our final readable model. For this, the best four rules for each possible head are selected according to their weight, the others are filtered out. We end up with at most 80 rules of possibility (resp. impossibility).

Applying this heuristic on (P O (T ), P O (T )), we obtain a new WDMVLP W P = (W P , W P ), with W P ⊆ P O (T ) and W P ⊆ P O (T ) (given in appendix in Figure 15). The accuracy of W P is 97.45% (+9.47%) and explanation score is 98.37% (+3.52%). In this example, the heuristic improved both scores but it could also reduce it; an important aspect of such a heuristic is to not lose too much prediction/explanation quality for readability. Furthermore, the rules of impossibility can now be ignored since they are only used for probabilistic predictions. Also, since we are considering only Boolean variables (and we know the system is determinist) we can also discard the rules with head atoms encoding the false value (typically: all atoms x 0 ). We end up with the 40 activation rules of Figure 14 and can compare them to the original rules of the Boolean network. Here, 20 of the 22 original rules are in the final output, there are two missing rules (shown in Figure 13) and 20 spurious rules. Most of the original program is found and the missing/spurious rules have a small impact as shown by the accuracy/explanation score. The presence of spurious rules is due to the lack of training observations, a few more negative examples could specialize them enough so that they become dominated by the original rules learned. For example, the three spurious rules of Cdc20 1 t will end up needing CycB 1 t-1 as condition to remain consistent (since it is the only way to have Cdc20 1 t in the original program) with the observation and will be dominated by Cdc20 1 t ← CycB 1 t-1 and discarded. Discarding those spurious rules without the needed observation is not trivial, we could use a minimal weight of 10 for example to discard most of them but we would lose some original rules like the one of p27 1 t . The weight of the rules, which is already used as a degree of confidence for the prediction of the dynamics, could also be used on the static model as a degree of confidence of the correctness of the rules. More complex analysis of the rule conditions and its relation with other rules could produce a better pruning, for example we could detect rules that will never be used for prediction, i.e., when another rule with better weight can always be applied. Developing such heuristics to ensure readability (in the sense simplicity) of the model itself would be interesting and the subject of future works.

Pruned P O (T ) = { (48, CycD 1 t ← CycD 1 t-1 ), (6, CycD 1 t ← E2F 1 t-1 ∧ Rb 1 t-1 ∧ U bcH10 1 t-1 ∧ p27 1 t-1 ), (6, CycD 1 t ← CycA 0 t-1 ∧ CycE 0 t-1 ∧ U bcH10 1 t-1 ∧ p27 1 t-1 ), (6, CycD 1 t ← Cdc20 0 t-1 ∧ CycB 0 t-1 ∧ CycE 0 t-1 ∧ U bcH10 1 t-1 ), (44, Cdc20 1 t ← CycB 1 t-1 ), (6, Cdc20 1 t ← Cdc20 1 t-1 ∧ E2F 0 t-1 ∧ U bcH10 0 t-1 ∧ p27 0 t-1 ), (6, Cdc20 1 t ← CycA 0 t-1 ∧ E2F 0 t-1 ∧ Rb 0 t-1 ∧ U bcH10 0 t-1 ), (6, Cdc20 1 t ← CycD 0 t-1 ∧ Cdc20 1 t-1 ∧ E2F 0 t-1 ∧ cdh1 1 t-1 ), (7, CycA 1 t ← Cdc20 0 t-1 ∧ CycA 1 t-1 ∧ Rb 0 t-1 ∧ cdh1 0 t-1 ), (7, CycA 1 t ← Cdc20 0 t-1 ∧ CycA 1 t-1 ∧ Rb 0 t-1 ∧ p27 1 t-1 ), (7, CycA 1 t ← Cdc20 0 t-1 ∧ CycB 0 t-1 ∧ Rb 0 t-1 ∧ U bcH10 0 t-1 ), (6, CycA 1 t ← Cdc20 0 t-1 ∧ E2F 1 t-1 ∧ Rb 0 t-1 ∧ U bcH10 0 t-1 ), (25, CycB 1 t ← Cdc20 0 t-1 ∧ cdh1 0 t-1 ), (9, CycB 1 t ← Cdc20 0 t-1 ∧ E2F 0 t-1 ∧ Rb 0 t-1 ), (7, CycB 1 t ← Cdc20 0 t-1 ∧ CycA 1 t-1 ∧ CycE 0 t-1 ∧ p27 1 t-1 ), (7, CycB 1 t ← CycD 1 t-1 ∧ Cdc20 0 t-1 ∧ CycA 1 t-1 ∧ p27 1 t-1 ), (21, CycE 1 t ← E2F 1 t-1 ∧ Rb 0 t-1 ), (7, CycE 1 t ← Cdc20 0 t-1 ∧ Rb 0 t-1 ∧ cdh1 1 t-1 ), (6, CycE 1 t ← CycA 0 t-1 ∧ CycB 0 t-1 ∧ Rb 0 t-1 ∧ U bcH10 0 t-1 ), (5, CycE 1 t ← CycD 0 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ∧ Rb 0 t-1 ), (15, E2F 1 t ← CycB 0 t-1 ∧ Rb 0 t-1 ∧ p27 1 t-1 ), (11, E2F 1 t ← CycA 0 t-1 ∧ CycB 0 t-1 ∧ Rb 0 t-1 ), (9, E2F 1 t ← CycB 0 t-1 ∧ E2F 1 t-1 ∧ Rb 0 t-1 ∧ U bcH10 0 t-1 ), (7, E2F 1 t ← Cdc20 1 t-1 ∧ CycB 0 t-1 ∧ E2F 0 t-1 ∧ Rb 0 t-1 ), (16, Rb 1 t ← CycD 0 t-1 ∧ CycB 0 t-1 ∧ p27 1 t-1 ), (6, Rb 1 t ← CycD 0 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ∧ CycE 0 t-1 ), (5, Rb 1 t ← CycD 0 t-1 ∧ Cdc20 1 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ), (5, Rb 1 t ← CycD 0 t-1 ∧ Cdc20 1 t-1 ∧ cdh1 0 t-1 ∧ p27 1 t-1 ), (52, U bcH10 1 t ← cdh1 0 t-1 ), (33, U bcH10 1 t ← CycA 1 t-1 ∧ U bcH10 1 t-1 ), (27, U bcH10 1 t ← Cdc20 1 t-1 ∧ U bcH10 1 t-1 ), (25, U bcH10 1 t ← CycB 1 t-1 ∧ U bcH10 1 t-1 ), (53, cdh1 1 t ← Cdc20 1 t-1 ), (35, cdh1 1 t ← CycB 0 t-1 ∧ p27 1 t-1 ), (26, cdh1 1 t ← CycA 0 t-1 ∧ CycB 0 t-1 ), (20, cdh1 1 t ← CycB 0 t-1 ∧ E2F 1 t-1 ∧ U bcH10 0 t-1 ), (7, p27 1 t ← CycD 0 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ∧ p27 1 t-1 ), (6, p27 1 t ← CycD 0 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ∧ CycE 0 t-1 ), (6, p27 1 t ← CycD 0 t-1 ∧ CycB 0 t-1 ∧ CycE 0 t-1 ∧ p27 1 t-1 ), (5, p27 1 t ← CycD 0 t-1 ∧ Cdc20 1 t-1 ∧ CycA 0 t-1 ∧ CycB 0 t-1 ), }
8 Related Work

Modeling Dynamics

In modeling of dynamical systems, the notion of concurrency is crucial. Historically, two main dynamical semantics have been used in the field of systems biology: synchronous (Boolean networks of Stuart Kauffman [START_REF] Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF]) and asynchronous (René Thomas' networks [START_REF] Thomas | Regulatory networks seen as asynchronous automata: a logical description[END_REF]), although other semantics are sometimes proposed or used [START_REF] Fages | Artificial intelligence in biological modelling[END_REF].

The choice of a given semantics has a major impact on the dynamical features of a model: attractors, trap domains, bifurcations, oscillators, etc. The links between modeling frameworks and their update semantics constitute the scope of an increasing number of papers. In [START_REF] Inoue | Logic programming for boolean networks[END_REF], the author exhibited the translation from Boolean networks into logic programs and discussed the point attractors in both synchronous and asynchronous semantics. In [START_REF] Noual | Synchronism versus asynchronism in monotonic boolean automata networks[END_REF], the authors studied the synchronism-sensitivity of Boolean automata networks with regard to their dynamical behavior (more specifically their asymptotic dynamics). They demonstrate how synchronism impacts the asymptotic behavior by either modifying transient behaviors, making attractors grow or destroying complex attractors. Meanwhile, the respective merits of existing synchronous, asynchronous and generalized semantics for the study of dynamic behaviors has been discussed by Chatain and Paulevé in a series of recent papers. In [START_REF] Chatain | Non-atomic transition firing in contextual nets[END_REF], they introduced a new semantics for Petri nets with read arcs, called the interval semantics. Then they adapted this semantics in the context of Boolean net-works [START_REF] Chatain | Boolean networks: Beyond generalized asynchronicity[END_REF], and showed in [START_REF] Chatain | Concurrency in boolean networks[END_REF] how the interval semantics can capture additional behaviors with regard to the already existing semantics. Their most recent work demonstrates how the most common synchronous and asynchronous semantics in Boolean networks have three major drawbacks that are to be costly for any analysis, to miss some behaviors and to predict spurious behaviors. To overcome these limits, they introduce a new paradigm, called Most Permissive Boolean Network which offers the guarantee that no realizable behavior by a qualitative model will be missed [START_REF] Paulevé | Reconciling qualitative, abstract, and scalable modeling of biological networks[END_REF].

The choice of a relevant semantics appears clearly not only in the recent theoretical works bridging the different frameworks, but also in the features of the software provided to the persons involved in Systems Biology modeling (e.g., the GinSIM tool offers two updating modes, that are fully synchronous and fully asynchronous [START_REF] Naldi | Logical modeling and analysis of cellular regulatory networks with ginsim 3.0[END_REF]). Analysis tools offer the modelers the choice of the most appropriate semantics with regard to their own problem.

Learning Dynamics

In this paper, we proposed new algorithms to learn the dynamics of a system independently of its update semantics, and apply it to learn Boolean networks from the observation of their states transitions. Learning the dynamics of Boolean networks has been considered in bioinformatics in several works [START_REF] Liang | Reveal, a general reverse engineering algorithm for inference of genetic network architectures[END_REF][START_REF] Akutsu | Identification of genetic networks by strategic gene disruptions and gene overexpressions under a boolean model[END_REF][START_REF] Pal | Generating boolean networks with a prescribed attractor structure[END_REF][START_REF] Lähdesmäki | On learning gene regulatory networks under the boolean network model[END_REF][START_REF] Fages | Artificial intelligence in biological modelling[END_REF]. In biological systems, the notion of concurrency is central. When modeling a biological regulatory network, it is necessary to represent the respective evolution of each component of the system. One of the most debated issues with regard to semantics targets the choice of a proper update mode of every component, that is, synchronous (Boolean networks of Stuart Kauffman [START_REF] Kauffman | Metabolic stability and epigenesis in randomly constructed genetic nets[END_REF]), or asynchronous (René Thomas' networks [START_REF] Thomas | Regulatory networks seen as asynchronous automata: a logical description[END_REF]), or more complex ones. The differences and common features of different semantics w.r.t. properties of interest (attractors, oscillators, etc.) have thus resulted in an area of research per itself, especially in the field of Boolean networks [START_REF] Noual | Synchronism versus asynchronism in monotonic boolean automata networks[END_REF][START_REF] Chatain | Boolean networks: Beyond generalized asynchronicity[END_REF][START_REF] Chatain | Concurrency in boolean networks[END_REF].

In [START_REF] Fages | Artificial intelligence in biological modelling[END_REF], Fages discussed the differential semantics, stochastic semantics, Boolean semantics, hybrid (discrete and continuous) semantics, Petri net semantics, logic programming semantics and some learning techniques. Rather than focusing on particular semantics, our learning methods are complete algorithms that learn transition rules for any memory-less discrete dynamical systems independently of the update semantics.

As in [START_REF] Pal | Generating boolean networks with a prescribed attractor structure[END_REF], we can also deal with partial transitions, but will not need to identify or enumerate all possible complete transitions. [START_REF] Pasula | Learning symbolic models of stochastic domains[END_REF] learns a model as a probability distribution for the next state given the previous state and an action. Here, exactly one dynamic rule fires every time-step, which corresponds to the asynchronous semantics of Definition 16.

In [START_REF] Schüller | Best-effort inductive logic programming via fine-grained costbased hypothesis generation[END_REF], action rules are learned using inductive logic programming but require as input background knowledge. In [START_REF] Bain | Identification of biological transition systems using metainterpreted logic programs[END_REF], the authors use logic program as a meta-interpreter to explain the behaviour of a system as stepwise transitions in Petri nets. They produce new possible traces of execution, while our output is an interaction model of the system that aims to explain the observed behavior. In practice, our learned programs can also be used to predict unobserved behavior using some heuristics as shown in the experiments of Section 7.

In [START_REF] Klarner | Computing symbolic steady states of boolean networks[END_REF], Klarner et al. provide an optimization-based method for computing model reduction by exploiting the prime implicant graph of the Boolean network. This graph is similar to the rules of P O (T ) that can be learned by GULA. But while [START_REF] Klarner | Computing symbolic steady states of boolean networks[END_REF] requires an existing model to work, we are able to learn this model from observations.

In [START_REF] Lähdesmäki | On learning gene regulatory networks under the boolean network model[END_REF], Lähdesmäki et al. propose algorithms to infer the truth table of Boolean functions of gene regulatory network from gene expression data. Each positive (resp. negative) example represents a variable configuration that makes a Boolean function true (resp. false). The logic programs learned by GULA are a generalization of those truth tables.

Inductive Logic Programming

From the inductive logic programming point of view, GULA performs a general to specific search, also called top-down approach. Algorithmically, GULA shares similarities with Progol [START_REF] Muggleton | Inverse entailment and progol[END_REF][START_REF] Muggleton | Learning from positive data[END_REF] or Aleph [START_REF] Srinivasan | The aleph manual[END_REF], two state-of-the-art ILP top-down approaches. Progol combines inverse entailment with general-tospecific search through a refinement graph. GULA is limited to propositional logic while those two methods handle first order predicates. Learning the equivalent of DMVLP rules should be possible using Progol or Aleph assuming some proper encoding. But both methods would only learn enough rules to explain the positive examples, whereas GULA outputs all optimal rules that can explain these examples. The completeness of the output program is critical when learning constraint of a CDMVLP to guarantee the exact reproduction of the observed transitions. Thus, nor Progol or Aleph can replace GULA in the Synchronizer algorithm to learn the optimal CDMVLP. But the completeness of the search of GULA comes with a higher complexity cost w.r.t. Progol and Aleph. The search of Progol and Aleph is guided by positives examples. Indeed, given a positive example, Progol performs an admissible A*-like search, guided by compression, over clauses which subsume the most specific clause (corresponding to the example). The search of GULA is guided by negative examples. It can also be seen as an A*-like search but for all minimal clauses that subsume none of the most specific clauses corresponding to the negative examples. [START_REF] Evans | Making sense of sensory input[END_REF][START_REF] Evans | Evaluating the apperception engine[END_REF] propose the Apperception Engine, a system able to learn programs from a sequence of state transitions. The first difference is that our approach is limited to propositional atoms while first order logic is considered in this approach. Furthermore, the Aperception Engine can predict the future, retrodict the past, and impute missing intermediate values, while we only consider rules to explain what can happen in a next state. But our input can represent transitions from multiple trajectories, while they consider a single trajectory and thus our setting can be considered as a generalized apperception task in the propositional case. Another major difference is that they only consider deterministic inputs while we also capture non-deterministic behaviors. Given the same kind of single trajectory and a DMVLP (or CDMVLP), it should be possible to produce candidates past states or to try to fill in missing values. But in practice that would suppose to have many other transitions to build such DMVLP using GULA while the Aperception Engine can perform the task with only the given single trajectory. This system can also produce a set of constraints as well as rules. The constraints perform double duty: on the one hand, they restrict the sets of atoms that can be true at same time; on the other hand, they ensure what they call the frame axiom: each atom remains true at the next time-step unless it is overridden by a new fact which is incompatible with it. The constraints of CDMVLP can prevent some combinations of atoms to appear, but only in next states, while in [START_REF] Evans | Making sense of sensory input[END_REF][START_REF] Evans | Evaluating the apperception engine[END_REF], constraints can prevent some states to exist anywhere in the sequence, and ensure the conservation of atoms. From Theorem 7, the conservation can also be reproduced by CDMVLP by the right combination of optimal rules and constraints.

In [START_REF] Law | Iterative learning of answer set programs from context dependent examples[END_REF] the authors propose a general framework named ILASP for learning answer set programs. ILASP is able to learn choice rules, constraints and preferences over answer sets. Our problem settings is related to what is called "context-dependant" tasks in ILASP. Our input can be straightforwardly represented using ILASP when variables are Boolean, but the learned program does not respect our notion of optimality, and thus our learning goals differ, i.e., we guarantee to miss no potential dynamical influence. Indeed, ILASP minimizes a program as a whole, i.e., the sum of the length of all rules and constraints; in contrast, we aim to minimize each rule and constraint individually and expect to find as many of them in practice and all of them in theory to ensure good properties regarding dynamical semantics. [START_REF] Katzouris | Incremental learning of event definitions with inductive logic programming[END_REF] proposes an incremental method to learn and revise event-based knowledge in the form of Event Calculus programs using XHAIL [START_REF] Ray | Nonmonotonic abductive inductive learning[END_REF], a system that jointly abduce ground atoms and induce first-order normal logic programs. XHAIL needs to be provided with a set of mode declarations to limit the search space of possible induced rules, while our method do not require background knowledge. Still it is possible to exploit background knowledge with GULA: for example one could add heuristic inside the algorithm to discard rules with "too many" conditions; influences among variables, if known, could also be exploited to reduce possible bodies. Finally, XHAIL does not model constraints, thus is not able to prevent some combinations of atoms to appear in transitions, which can be achieve using our Synchronizer.

General research about evaluation of explainability in AI systems has been led into two major directions [START_REF] Islam | Towards quantification of explainability in explainable artificial intelligence methods[END_REF]. One of them is about the evaluation of model complexity, while the second one focuses on human evaluation of explainability based on experimental studies involving a set of humans. Especially in the ILP litterature, [START_REF] Muggleton | Ultrastrong machine learning: comprehensibility of programs learned with ILP[END_REF] the authors study the comprehensibility of logic programs and provide a definition of comprehensibility of hypotheses which can be estimated using human participant trials. In this work they evaluate the readability of entire programs while our explainability metric only considers the quality of the rules used for a prediction in a learned model. Furthermore, our metric evaluates a learned model against an ideal model that we consider readable at least by the experts that build it by hand, i.e., the biologists who build the Boolean network. Thus our metric cannot be used on a program alone contrary to the study of [START_REF] Muggleton | Ultrastrong machine learning: comprehensibility of programs learned with ILP[END_REF] but requires the knowledge of the original program. The goal of our proposed explanation metric is to assess how the dynamics of a learned program approaches an expected one, not to provide a readability measure. This is done by considering both the choice taken (the value predicted) and the way the choice is made (the rules used).

Conclusions

While modeling a dynamical system, the choice of a proper semantics is critical for the relevance of the subsequent analysis of the dynamics. The works presented in this paper aim to widen the possibilities offered to a system designer in the learning phase. Until now, the systems that the LFIT framework handles were restricted to synchronous deterministic dynamics. However, many other dynamics exist in the field of logical modeling, in particular the asynchronous and generalized semantics which are of deep interest to model biological systems. In this paper, we proposed a modeling of memory-less multi-valued dynamic systems in the form of annotated logic programs and a first algorithm, GULA, that learns optimal programs for a wide range of semantics (see Theorem 1) including notably the asynchronous and generalized semantics. But the semantics need to be assumed to use the learned model, in order to produce predictions for example. Our second proposition is a new approach that makes a decisive step in the full automation of logical learning of models directly from time series, e.g., gene expression measurements along time (whose intrinsic semantics is unknown or even changeable). The Synchronizer algorithm that we proposed is able to learn a whole system dynamics, including its semantics, in the form of a single propositional logic program. This logic program explains the behavior of the system in the form of human readable propositional logic rules, as well as, be able to reproduce the behavior of the observed system without the need of knowing its semantics. Furthermore, the semantics can be explained, without any previous assumption, in the form of human readable rules inside the logic program.

This provides a precious output when dealing with real-life data coming from, e.g., biology. Typically, time series data capturing protein (i.e., gene) expressions come without any assumption on the most appropriate semantics to capture the relevant dynamical behaviors of the system. The methods introduced in this paper generate a readable view of the relationships between the different biological components at stake. GULA can be used when biological collaborators provide partial observations (as shown by our experiments), for example when addressing gene regulatory networks. Meanwhile the Synchronizer algorithm is of interest for systems with the full set of observations, e.g., when refining a model that was manually built by experts.

We took care to show the benefits of our approach on several benchmarks. While systems with ten components are able to capture the behavior of complex biological systems, we exhibit that our implementation is scalable to systems up to 10 components on a computer as simple as a single-core computer with a 1000 seconds time-out. Further work will consist in a practical use of our method on open problems coming from systems biology.

An approximate version of the method is a necessity to tackle large systems and is under development [START_REF] Ribeiro | Les enjeux de l'inférence de modèles dynamiques des systèmes biologiques à partir de séries temporelles[END_REF]. In addition, lack of observations and noise handling is also an issue when working with biological data. Data science methodologies and deep learning techniques can then be good candidates to tackle this challenge. The combination of such techniques to improve our method may be of prime interest to tackle real data.

A Appendix: Proofs of Section 2

Lemma 1: Double Domination Is Equality Let R 1 , R 2 be two MVL rules. If R 2 ≥ R 1 and R 1 ≥ R 2 then R 1 = R 2 . Proof. Let R 1 , R 2 be two MVL rules such that R 2 ≥ R 1 and R 1 ≥ R 2 .
Then head(R 1 ) = head(R 2 ) and body(R 1 ) ⊆ body(R 2 ) and body(R 2 ) ⊆ body(R 1 ), hence body(R 1 ) ⊆ body(R 2 ) ⊆ body(R 1 ) thus body(R 1 ) = body(R 2 ) and R 1 = R 2 .

Proposition 1: Uniqueness of Optimal Program Let T ⊆ S F × S T . The MVLP optimal for T is unique and denoted P O (T ). Proof. Let T ⊆ S F × S T . Assume the existence of two distinct MVLPs optimal for T , denoted by P O 1 (T ) and P O 2 (T ) respectively. Then w.l.o.g. we consider that there exists a MVL rule R such that R ∈ P O 1 (T ) and R ∈ P O 2 (T ). By the definition of a suitable program, R is not conflicting with T and there exists a MVL rule R 2 ∈ P O 2 (T ), such that R 2 ≥ R. Using the same definition, there exists

R 1 ∈ P O 1 (T ) such that R 1 ≥ R 2 since R 2 is not conflicting with T . Thus R 1 ≥ R and by the definition of an optimal program R ≥ R 1 . By Lemma 1, R 1 = R, thus R 2 ≥ R and R ≥ R 2 hence R 2 = R, a contradiction.

B Appendix: Proofs of Section 3

Theorem 1: Characterisation of Pseudo-idempotent Semantics of Interest Let DS be a dynamical semantics. If, for all P a DMVLP, there exists pick ∈ (S F × ℘(A| T ) → ℘(S T ) \ {∅}) so that:

(1) ∀D ⊆ A| T , pick(s, s ∈pick(s,D) s ) = pick(s, D), and

(2) ∀s ∈ S F , DS(P ) (s) = pick(s, Conclusions(s, P )), then DS is pseudo-idempotent. Proof. Let DS be a dynamical semantics, P a DMVLP, pick a function from S F × ℘(A T ) to ℘(S T ) \ {∅} with the properties described in (1) and [START_REF] Apt | Towards a theory of declarative knowledge. Foundations of deductive databases and logic programming[END_REF].

In this proof, we use the following equivalent notations, for all (s, s ) ∈ S F × S T : (s, s ) ∈ DS(P ) ⇐⇒ s ∈ DS(P ) (s).

By Lrev(P,T,A, 

T . 3. Let (s 1 , s 2 ) ∈ T thus s 1 = s. From definition of realization, v val ∈ s 2 =⇒ ∃R ∈ P, head(R) = v val , R s 1 . If ¬R s then R ∈ Lrev(P, T, A, F ) and Lrev(P,T,A,F ) ----------→ (s 1 , s 2 ). If R s, from the first point ∃R ∈ Lspe(R, s, A, F ), R s 1 and since head(R ) = head(R) = v val ,
3: From Suitable to Optimal Let T ⊆ S F × S T . If P is a DMVLP suitable for T , then P O (T ) = {R ∈ P | ∀R ∈ P, R ≥ R =⇒ R ≥ R }.
Proof. Since any possible MVL rule consistent with T is dominated, all the rules of the optimal program are dominated. Since the only rules dominating a rule of the optimal program is the rule itself, the optimal program is a subset of any suitable program. If we remove the dominated rules, only remains the optimal program. -→ T ∪ T . Since P O (T ) is complete, by Theorem 3, P is also complete. To prove that P verifies the last point of the definition of a suitable MVLP, let R be a MVL rule not conflicting with T ∪ T . Since R is also not conflicting with T , there exists R ∈ P O (T ) such that R ≥ R. If R is not conflicting with T , then R will not be revised and R ∈ P , thus R is dominated by a rule of P . Otherwise, R is in conflict with T , thus R s and ∀(s, s ) ∈ T , head(R ) ∈ s . Since R is not in conflict with T and head(R) = head(R ), since R ≥ R then body(R) = body(R ) ∪ I, ∃v val ∈ I, v val ∈ s. By definition of least revision and least specialization, there is a rule R ∈ Lspe(R , s) such that v val ∈ body(R ) and since R = head(R ) ← body(R ) ∪ v val thus R ≥ R. Thus R is dominated by a rule of P .

Theorem 5: GULA Termination, Soundness, Completeness, Optimality Let T ⊆ S F × S T .

(1) Any call to GULA on finite sets terminates,

GULA(A, T, F , T ) = P O (T ), ( (2) 
) ∀A ⊆ A| T , GULA(A F ∪ A , T, F , T ) = {R ∈ P O (T ) | head(R) ∈ A }. Proof. 3 
In this proof we refer to the detailed pseudo-code of GULA given in Appendix in Algorithm 5 and Algorithm 6.

(1) The algorithm of GULA iterates on finite sets, and thus terminates.

(3) Let T ⊆ S F × S T . The algorithm iterates over each atom v val ∈ A , A ⊆ A T iteratively to extract all states s such that (s, s ) ∈ T =⇒ v val ∈ s . This is equivalent to group the transitions by initial state: generate the set Let us assume that before the (i+1) th iteration of the main loop, P v val = {R ∈ P O (T i ) | head(R) = v val }. Through the loop of lines 25-28, P = {R ∈ P O (T i ) | R does not conflict with T i+1 ∧head(R) = v val } is computed. Then the set P = R∈P O (T i )\P ∧head(R)=v val Lspe(R, s, A, F ) is iteratively build through the calls to least specialization (Algorithm 6) at line 31 and the dominated rules are pruned as they are detected by the loop of lines 32-49. Each revised rule can be dominated by a rule in {R ∈ P O (T i )\P } or another revised rule and thus dominance must be checked from both. But only a revised rule (R ∈ P ) can be dominated by a revised rule: if a rule in {R ∈ P O (T i )\P } is dominated by a revised rule, then it was dominated by its original rule in {R ∈ P O (T i )} which is impossible since 

T T = {T s ⊆ T | s ∈ S F , first(T s ) = {s} ∧ ∀s ∈ S T , (s, s ) ∈ T =⇒ (s, s ) ∈ T s }. To prove that ∀A ⊆ A T , GULA(A F ∪ A , T, F , T ) = {R ∈ P O (T ) | head(R) ∈ A }
P v val = {R ∈ P O (T i ) | head(R) = v val }.
P v val = {R ∈ P O ( T ∈T T T ) | head(R) = v val } = {R ∈ P O (T ) | head(R) = v val } since it has
iterated on all elements of T T . Since the same operation holds for each v val ∈ A ,

P = v val ∈A P v val = {R ∈ P O (T ) | head(R) = v val ∧ v val ∈ A }
after all iterations of the loop of line line 6. Finally: 

∀A ⊆ A T , GULA(A F ∪ A , T, F , T ) = {R ∈ P O (T ) | head(R) ∈ A }. (2) Thus GULA(A, T, F , T ) = GULA(A F ∪ A T , T, F , T ) = {R ∈ P O (T ) | head(R) ∈ A T } = P O (T ).
(d 2n + 2nd n+1 + nd n+2 ). Proof. Let d f := max({|dom(v)| ∈ N | v ∈ F }) (resp. dt := max({|dom(v)| ∈ N | v ∈ T }))
be the maximal number of values of features (resp. target) variables. The algorithm takes as input a set of transition T ⊆ S F ×S T bounding the memory use to O(d 

|F | f )×d |T | t ) = O(d 2n
|F | f ×d |T | t +d |F | f )+d |F | f ) = O(d |F | f × d |T | t + 2d |F | f )), which is bound by O(d 2n + 2d n ).
|F | f × d f |F | ≤ d n × dn extending the memory bound to O(d |F | f × d |T | t + 2d |F | f ) + d f |F | × d |F | f ) bounded by O(d 2n + 2d n + nd n+1 ). Learning is performed for each v val ∈ A ⊆ T , thus the memory usage of GULA is therefore O(d |F | f ×d |T | t +|A |(2d |F | f +d f |F |×d |F | f )), bounded by O(d |F | f ×d |T | t +tdt(2d |F | f )+ d f |F | × d |F | f )) wich is bounded by O(d 2n + dn(2d n + nd n+1 )) = O(d 2n + 2nd n+1 + nd n+2 ). The worst-case memory use of GULA is thus O(d 2n + 2nd n+1 + nd n+2 ).
All rules of LS are compared to the rule of P v val for domination check, this operation has a complexity of op [START_REF] Blair | Paraconsistent foundations for logic programming[END_REF] Let us suppose ∃(s, s From definition of T , (s, s ) ∈ T =⇒ (s∪s , {ε 0 }) ∈ T , thus ∀C ∈ P , C is a constraint (property 4).

= O(2 × |LS| × |P v val | × |F | 2 ) = O(2 × d |F | f × d f |F | × d n × n 2 ) = O(2 × |F | 3 × d 2|F |+1 f ) which is bounded by O(2 × n 3 × d 2n+1 ). Learning is performed for each v val ∈ A ⊆ T , |A | ≤ |T |dt, thus the complexity is bound by O(op 1 + |T | × |T | × dt(op 2 + op 3 + op 4 )) = O(|T | 2 + |T | times|T | × dt(d |F | f × |F | + d |F | f ×n 2 +2×|F | 3 ×d 2|F |+1 f )) which is bounded by O(|T | 2 +|T |×nd(d n ×n 2 +d n ×n 2 +2×n 3 × d 2n+1 )) = O(|T | 2 + |T | × nd(2n 3 d 2n+1 + 2n 2 d n )) = O(|T | 2 + |T | × (2n 4 d 2n+2 + 2n 3 d n+1 )). The computational complexity of GULA is thus O(|T | 2 + |T | × (2n 4 d 2n+2 + 2n 3 d n+1 )).
) ∈ T syn-c (P O (T ) ∪ C O (T )), (s, s ) / ∈ T . From Definition 22, ∀v val ∈ s , ∃R ∈ P O (T ), body(R) s, head(R) = v val . From Definition 25, ∃C ∈ C O (T ), C (s, s ) since (s, s ) / ∈ T . But since ∃(s, s ) ∈ T syn-c (P O (T )∪C O (T )), thus C / ∈ C O (T ). From Definition 26, it implies that ∃v val ∈ s , R ∈ P O (T ), head(R) = v val , ∀w ∈ F , ∀val , val ∈ dom(w), w val ∈ body(R) ∧ w val ∈ body(C) =⇒ val = val . Since body(C ) ⊆ (s ∪ s ), R ∈ P O (T ), head(R) = v val , body(R) ⊆ s,
-From property 2 and 4: (s, s ) ∈ T =⇒ (s ∪ s , {ε 0 }) ∈ T =⇒ C ∈ P , C (s, s ), P consistent with T . -From property 3 and 4: (s, s ) ∈ T =⇒ (s ∪ s ) ∈ first(T ) =⇒ ∃R ∈ P , R (s, s ), P is complete with T . -If there exists a constraint consistent with T that is not dominated by a constraint in P it implies that a rule consistent with T whose head is ε 1 is not dominated by a rule in G2 wich is in contradiction with Theorem 5. All constraint consistent with T are dominated by a constraint in P . -From Theorem 5, the rules of G2 do not dominate eachover, thus the same hold for the constraint of P . 

(R) | val ∈ dom(v) ∧ R ∈ combi}| ≤ 1, contradiction. 2) Suppose that C / ∈ C O (T ) but C ∈ P , meaning that P contains a useless constraint C. Thus, {(s, s ) ∈ S F × S T | s P O (T ) -----→ s ∧ C (s, s )} = ∅. Since C ∈ P there is a combi such that |{v val ∈ body(R) | val ∈ dom(v) ∧ R ∈ combi}| ≤ 1, thus ∃s ∈ S F , body(C) ∩ A T ⊆ s ∧ ∀R ∈ combi, R s. Let S := {s ∈ S T | s P O (T ) -----→ s }. Because P O (T ) is complete, S = ∅. Since ∀R ∈ combi,

G Synchronizer Scalability

Figure 15 shows the run time of Synchronizer when learning from transitions of Boolean networks from Boolenet [START_REF] Dubrova | A SAT-based algorithm for finding attractors in synchronous boolean networks[END_REF] and PyBoolnet [START_REF] Klarner | PyBoolNet: a python package for the generation, analysis and visualization of boolean networks[END_REF] with same settings as in the experiements of Table 4. For the synchronous and general semantics, it is only when we are given a subset of all possible transitions that the algorithm output constraints, since all combination of heads of matching rules are allowed for those two semantics. Those constraint at least prevent transitions from unseen states and also some combination of atoms that are missing in next states but that are observed individually. Even when it outputs an empty set of constraint, the learning process needs to produce and revises constraint until its no more possible, so run time of full set of transitions is also considered. In the asynchronous case, given a set of transitions T , it needs to learn the constraints ensuring at most one change per transitions, i.e., { ⊥ ← -a i t , b j t , a i t-1 , b j t-1 | a, b ∈ A T , i = i ∧ j = j } and the ones preventing the projection when only one variable can be updated: {C | {a i t , a i t-1 } ∈ body(C), a ∈ A T , (s, s ) ∈ T, body(C) ⊆ s ∪ s }. Those second kind of constraint will be specific to the few states this limitation occurs and show the limits of propositional representation for the explanation of the dynamics.

Learning constraints is obviously more costly than learning regular rules since both features and targets variables can appear in the body, i.e., number of features becomes |F | + |T |. The algorithm reached the time out of 1, 000 seconds with benchmarks of 10 nodes for synchronous semantics and 7 nodes for asynchronous and general semantics. Scalability of the algorithm can be greatly improved by using the approximated version of GULA for learning both rules and constraints. If learning rules can be done in polynomial time, learning constraints remains exponential. Since we do not present this approximated algorithm in this paper we will not go into the details. In short, this approximated version needs positives examples and thus require to generate the Cartesian product of all applicable rules heads for each initial state observed which is exponential. Scalability, readability and applicability could be improved by considering first order generalization of both rule and constraints but those generalization are application dependant and thus remains as future work. Such generalization is required to perform proper prediction from unseen states, thus application of the synchronizer output for prediction from unseen states are out of the scope of this paper.

H Complete pruned WDMVLP of Section 7.4 

I Information About this Paper

I.1 History of the paper

This paper is a substantial extension of [START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF] where a first version of GULA was introduced. In [START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF], there was no distinction between feature and target variables, i.e., variables at time step t and t + 1. From this consideration, interesting properties arise and allow to characterize the kind of semantics compatible with the learning process of the algorithm (Theorem 1). It also allows to represent constraints and to propose an algorithm (Synchronizer, Section 5) to learn programs whose dynamics can mimic any given set of transitions with optimal properties on both rules and constraints. It also allows to use GULA to learn human readable explanations in form of rules on static classification problems (as long as all variables are discrete), which will be one of the focus of our future works.

I.2 Main contributions of the paper

The main contributions of this paper are:

-A modeling of discrete memory-less dynamics system as multi-valued propositional logic.

This modeling is independent of the dynamical semantics the system relies on, as long as it respects some given properties we provided in this paper. The main contributions of this formalism is the characterization of optimality and the study of which semantics are compatible with this formalism (which includes notably synchronous, asynchronous and general semantics). -A first algorithm named GULA, to learn such optimal programs. -The formalism is also extended to represent and use constraints. This allows to reproduce any discrete memory-less dynamical semantics behaviors inside the logic program when the original semantics is unknown. -A second algorithm named Synchronizer, that exploits GULA to learn a logic program with constraints that can reproduce any given set of state transitions. The method we proposed is able to learn a whole system dynamics, including its semantics, in the form of a single propositional logic program. This logic program not only explains the behavior of the system in the form of human readable propositional logic rules but also is able to reproduce the behavior of the observed system without the need of knowing its semantics. Furthermore, the semantics can be explained, without any previous assumption, in the form of human readable rules inside the logic program. In other words, the approach allows to learn all the previously cited semantics, as well as new ones.

-A heuristic method allowing to use GULA to learn a model able to predict from unseen case. -Evaluation of these methods on benchmarks from biological litterature regarding scalability, prediction accuracy and explanation quality.

I.3 What evidence is provided

We show through theoretical results the correctness of our approach for both modeling and algorithms (see above contribution for details). Empirical evaluation is performed on benchmarks coming from biological literature. It shows the capacity of GULA to produce correct models when all transitions are available. Also, we observe that learned models generalize to unseen data when given a partial input in those experiments.

We added more discussion about the limitations of the approach regarding readability. The limitations of the Synchronizer approach are also discussed in the corresponding scalability evaluation in appendix. We clarified Section 6 that makes the link between the theory and the experiments and add more discussion about the significance of the results.

I think the paper is still very heavy with maths notations and definitions and difficult to follow though the new examples added in the revised version are helpful.

We clarified some definitions in Section 3 and Section 6.

Please include examples of learned rules (wrt to the specific problem/applications) in the evaluation section to exemplify the claim that "In the case where explainability is of interest, the rules used for the predictions and their weights may be quite simple human readable candidates for explanations.".

We added examples of predictions explanation and scoring containing rules learned during experiments and a case study section about readability of program learned with the detailed programs.

The significance results and the limitation of the proposed approach (e.g. the new measure for explainability) in this paper should be discussed in more details and compared with other relevant work.

We clarified in the discussion that our explanation scoring is a metric of quality of the explanation not its readability and compared with the paper you suggested [START_REF] Muggleton | Ultrastrong machine learning: comprehensibility of programs learned with ILP[END_REF] about comprehensiveness measurement of logic programs in related work section.

K.2 reviewer 4

Thank you for your comments, we fixed the typos you found and addressed your claims as follows.

I find some points in the paper to need more explanation or rephrasing. For example, Theorem 1 and its preceding explanation and Example 12 are not easy to grasp. I find it difficult to understand the intuitive meaning of 'pick'.

We tried to clarify explanations of theorem 1 and its example to give more intuition about the "pick" function.

I also think that the new section (Section 6) is very brief and dense. Definition 29 is not readable and there is also no intuition behind the scoring definition. For example, I was expecting that the weights should add up for the rules with the same head and matching bodies.

The section has been extended with an example of prediction and explanation with corresponding detailed description. Definition 29 (now Definition 30) has been re-organised to be less dense and more clear. We gave more details about the choice in our prediction heuristics. The intuition behind our choice is that rules with bigger weight are more likely to be consistent with unobserved transitions, thus the rule(s) with the biggest weight is (are) the most likely to be part of the real optimal program Other viable heuristics are possible of course. One could for instance combine all matching rules, for example by computing the sum or average of their weights like you propose; however, combining rules can be more noise sensitive: a lot of small-weighted incorrect rules might counter a single high-weighted rule that would happen to be optimal under all observations. This is why we chose to use a single-rule heuristics, which also happens to give a unique pair of rules as explanation (why a target atom might be possible and why it might not) and is easier to compare against rules of the original model. I am also not sure if the addition of Section 6 makes the paper stronger. In my opinion it needs a more careful rewrite.

We tried to improve Section 6. This section is crucial to make predictions with our method. Subsections 7.2 to 7.4 are dedicated to scoring the predictions and explanations provided by a WDMVLP. It does not provide much regarding theoretical aspects but is useful regarding the practical use of the method. We believe it is important to provide a concrete way to use the model we learn. page 2, line 25: there is an ellipsis which I am not sure how to interpret. We replaced "..." by "or another semantics" page 11, line 1: "ensures local minimality": please clarify the ordering,presumably the ≤ in Def 1.

We clarified page 13, example 11, line 30-38: I think the definitions are wrong: Take DS2. It requires that s is an atom (in the set of the heads). I think you should change ∈ with ⊆. Same for the rest of the definitions. Indeed, corrected. page 14, line 30: I would recommend to have a formal definition about which semantics are called pseudo-idempotent. I am guessing: A dynamical semantics DS is called pseudoidempotent iff DS(P ) = DS(P O (DS(P ))). This is also used in later sections as if there was a definition about pseudo-idempotency (e.g. Lemma 2) We added a dedicated definition for a pseudo-idempotent semantics and adapted Theorem 1 and discussion accordingly. Definition of example 11 is a simpler asynchronous semantics where:

-Feature and target variables correspond, which is not necessarily the case in Def 15 (now Definition 16 in last version); -More importantly, in Example 11, the semantics always allows self-transitions (s → s)

while Definition 16 only allows it when no other transition is possible (which corresponds to what is usually considered as "purely" asynchronous semantics in bioinformatics literature).

However, it is a matter of choice and your proposition is still (another) valid semantics which could be called asynchronous. We added more discussion on this matter before this definition.

page 25, algorithm 2: The definition of the N eg vv al is confusing. After the response of the authors I think the definition should be N eg vv al := {s| s , (s, s ) ∈ T, v val ∈ s}

Corrected, although we changed the last s of your definition to s (must have been a typo) and quantified both s and s . page 34, def 26, line 11: "such that for all s ∈ S F , R s, (s, s ) ∈ T Corrected, but we quantified both s and s' at the transition level. page 36, line 40: (resp. brute force): Which is the brute force method for weighted programs? Is it algorithm 4 if we substitute GULA calls with algorithm 1?

Yes, what we referred as brute force is Algorithm 1, we clarified it in the discussion and explained the changes to be done on the brute force algorithm to compute impossibility rules. page 39, line 17: "Because of space limitations"? The current version of the paper is 56 pages.

We removed this statement. page 41, line 2: "approximation of the pair". Please define what an approximation of a pair of programs is. Needs more careful phrasing especially in a sentence that starts with "Formally".

Corrected, we rephrased.

Fig. 1 :

 1 Fig.1: Assuming a discretization of time series data of a system as state transitions, we propose a method to automatically model the system dynamics.
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Fig. 6 :

 6 Fig. 6: Preprocessing of the general semantics state transitions of Figure 5 (right) into positive/negative example of the occurence of each value of variable a in next state. In blue (resp. red) are positives (resp. negatives) examples of the occurence of a 0 t (left) and a 1 t (right) in next state.

  GULA(A, T, F, T ) = P O (T ), (3) ∀A ⊆ A| T , GULA(A F ∪ A , T, F, T ) = {R ∈ P O (T ) | head(R) ∈ A }. Lemma 2 (Gula can learn from any pseudo-idempotent semantics) Let DS be a pseudo-idempotent semantics, then DS(GULA(A, DS(P ), F, T )) = DS(P O (DS(P ))) = DS(P ).Lemma 2 is trivially proven from Theorem 5 since for any dynamical semantics DS and any DMVLP P , GULA(A, DS(P ), F, T ) = P O (DS(P )).Lemma 3 (Gula can learn from synchronous, asynchronous and general semantics) -T syn (GULA(A, T syn (P ), F, T )) = T syn (P O (T syn (P ))) = T syn (P ) -T asyn (GULA(A, T asyn (P ), F, T )) = T asyn (P O (T asyn (P ))) = T asyn (P ) -T gen (GULA(A, T gen (P ), F, T )) = T gen (P O (T gen (P ))) = T gen (P ) Lemma 3 is trivially proven from Theorem 2. Thus the algorithm can be used to learn from transitions produced from both synchronous, asynchronous and general semantics. Theorem 6 (GULA Complexity) Let T ⊆ S F ×S T be a set of transitions, Let n := max(|F|, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. The worstcase time complexity of GULA when learning from T belongs to O(|T | 2 +|T |× (2n 4 d 2n+2 + 2n 3 d n+1 )) and its worst-case memory use belongs to O(d 2n + 2nd n+1 + nd n+2 ).

⊥

  ← -a 0 t-1 ∧ b 0 t-1 is a constraint with only conditions in F, it prevents any transitions from a state where a and b have value 0, thus creating final states.Definition 21 (Constraint-transition matching) Let (s, s ) ∈ S F × S T . The constraint C matches (s, s ), written C (s, s ), iff body(C) ⊆ s ∪ s .

Fig. 8 :

 8 Fig. 8: Preprocessing of the state transitions of Figure 7 (left) into negative examples of the application of constraints.

Theorem 9 (

 9 Synchronizer Complexity) Let T ⊆ S F × S T be a set of transitions, let n := max(|F|, |T |) and d := max({|dom(v)| ∈ N | v ∈ F ∪ T }) and m := |F| + |T |.

Fig. 10 :

 10 Fig. 10: Experiments settings: data generation, train/test split.

s∈first(T ) v val ∈A| T 1 -

 1 |error(predict and explain(W P, s, v val ), actual(v val , s, T ))| |A| T | × |first(T )| Example 23 Let F = {a t-1 , b t-1 , c t-1 }, T = {a t , b t , c t }, a complete set of transitions T ⊆ S F × S T , a train set of transitions T ⊆ T and a test set of transitions T ⊆ T with T ∩ T = ∅ such that:

T

  a rg e t a to m A c tu a l v a lu e P re d ic te d v a lu e A c c u ra c y A c tu a l P O (T ) ru le s A c tu a l P O (T ) ru le s P o ss ib il it y e x p la n a ti o n Im p o ss ib il it y e x p la n a ti o n E x p la n a ti o n sc o re

Fig. 14 :

 14 Fig. 14: The set of activation rules of the WDMVLP (P O (T ), P O (T )) learned by GULA after pruning for readability. The rules that appear in the original DMVLP of Figure 13 are colored in blue.

  Definition 10, first(DS(P )) = S F ( * ). By Definition 9, P O (DS(P )) realizes DS(P ). Therefore, according to Definition 5, for all (s, s ) in DS(P ) and v val in s , because v ∈ T , there exists R in P O (DS(P )) so that var(head(R)) = v ∧ R s ∧ head(R) ∈ s . Because of Definition 3, a discrete state cannot contain two different atoms on the same variable: from var(head(R)) = v ∧ v val ∈ s ∧ head(R) ∈ s , it comes: head(R) = v val . Moreover, by definition of Conclusions, because R ∈ P ∧ R s, we have: v val ∈ Conclusions(s, P O (DS(P ))). By generalizing on all v val , it comes: s ⊆ Conclusions(s, P O (DS(P ))). By generalizing on all s , it comes: ∀s ∈ S F , s ∈(DS(P ))(s) s ⊆ Conclusions(s, P O (DS(P ))) ( †). By Definition 9, P O (DS(P )) is also consistent with DS(P ). Therefore, according to Definition 7: ∀R ∈ P O (DS(P )), ∀s ∈ first(DS(P )), R s =⇒ ∃s ∈ DS(P ) (s), head(R) ∈ s . From ( * ), first(DS(P )) = S F , thus ∀s ∈ S F , ∀v val ∈ Conclusions(s, P O (DS(P ))), ∃s ∈ DS(P )(s), v val ∈ s . Thus: ∀s ∈ S F , Conclusions(s, P O (DS(P ))) ⊆ s ∈(DS(P ))(s) s ( §).

  From ( †) and ( §): ∀s ∈ S F , Conclusions(s, P O (DS(P ))) = s ∈(DS(P ))(s) s ( ).

From ( ) and ( 2 ) 4 Theorem 3 :

 243 : ∀s ∈ S F , Conclusions(s, P O (DS(P ))) = s ∈pick(s,Conclusions(s,P )) s (♦). Let s in S F . -From (2): DS(P O (DS(P ))) (s) = pick(s, Conclusions(s, P O (DS(P )))).-From (♦): DS(P O (DS(P ))) (s) = pick(s, s ∈pick(s,Conclusions(s,P )) s )-From (1): DS(P O (DS(P ))) (s) = pick(s, Conclusions(s, P )) -From (2): DS(P O (DS(P ))) (s) = DS(P ) (s).Thus: ∀s ∈ S F , DS(P O (DS(P ))) (s) = DS(P ) (s), QED.Theorem 2 Semantics-Free Correctness Let P be a DMVLP.-Tsyn(P ) = Tsyn(P O (Tsyn(P ))), -Tasyn(P ) = Tasyn(P O (Tasyn(P ))), -Tgen(P ) = Tgen(P O (Tgen(P ))).Proof. Let d ∈ (S F × ℘(T ) → ℘(A T )), so that ∀s ∈ S F , ∀W ⊆ T , W ⊆ var(d(s, W )) ∧ d(s, ∅) ⊆ d(s, W ).Let p be a function fromS F ×℘(A T ) to ℘(S T )\{∅} so that ∀s ∈ S F , ∀D ⊆ A T , p(s, D) = {s ∈ S T | s ⊆ D ∪ d(s, T \ var(D))}. Since T \ var(D) ⊆ var(d(s, W )), ∅ ∈ p(s,D). Thus from Definition 15, ∀s ∈ S F , Tsyn(P )(s) = p(s, Conclusions(s, P )) (property 1). Since ∀W ⊆ T , d(s, ∅) ⊆ d(s, W ), ∀D ⊆ A T , d(s, ∅) ⊆ D ∪ d(s, T \ var(D)), thus d(s, ∅) ⊆ s ∈p(s,D) s (property 2). Moreover, ∀D ⊆ A T , let D := s ∈p(s,D) s . Straightforwardly: D = D∪d(s, T \var(D)) because we can always create a state with any atom in D ∪ d(s, T \ var(D)), thus all atoms of this set are in D , and conversely (property 3). p(s, D ) = {s ∈ S T | s ⊆ D ∪ d(s, T \ var(D ))} by definition of p. p(s, D ) = {s ∈ S T | s ⊆ D ∪ d(s, ∅)} since var(D ) = T by definition of D and p. p(s, D ) = {s ∈ S T | s ⊆ D } from property 2. p(s, D ) = {s ∈ S T | s ∈ D ∪ d(s, T \ var(D))} = p(s, D) from property 3. Therefore p respects (1). Since Tsyn(P ) = p(s, Conclusions(s, P )), p also respects (2). Thus, Tsyn(P ) = Tsyn(P O (Tsyn(P ))) according to Theorem 1. By definition of Tgen: ∀s ∈ S F , (Tgen(P ))(s) = {s ∈ S T | s ⊆ Conclusions(s, P ) ∪ d(s, T \var(Conclusions(s, P )))} with sp F →T (s) ⊆ d(s, ∅). Thus, the same proof gives Tgen(P ) = Tgen(P O (Tgen(P ))) according to Theorem 1.[Let us show that: Tasyn(P ) = Tasyn(P O (Tasyn(P ))).] Let p be a function fromS F × ℘(A T ) to ℘(S T ) \ {∅} so that ∀s ∈ S F , ∀D ⊆ A T : p(s, D) = {s ∈ S T | s ⊆ D ∪ d(s, T \ var(D)) ∧ |s \ sp F →T (s)| -|T \ T | = 1 ∨ (D ∪ d(s, T \ var(D))) T = sp F →T (s))}where A T and D T are restriction notations from Definition 12. From Definition 16, we have: TasynP = p(s, Conclusions(s, P )).[Let us show that: ∀D ⊆ A T , p(s, s ∈p(s,D) s ) = p(s, D).] Let D in A T . -If (D ∪ d(s, T \ var(D))) T = sp F →T (s), then s ∈p(s,D) s = D and thus p(s, s ∈p(s,D) s ) = p(s, D). -If there exists v val ∈ A T so that var(D ∪ d(s, T \ var(D)) \ sp F →T (s)) ∩ T = {v}, then for all state s ∈ p(s, D), s differs from s on the regular variable v and on variables in T \ T . Thus, s ∈p(s,D) s = (D ∪ d(s, T \ var(D))) \ {v val | v val ∈ s}. By construction of p, it comes: p(s, s ∈p(s,D) s ) = p(s, D) because v val ∈ s would contradict the condition |s \ sp F →T (s)| -|T \ T | = 1. -Otherwise, |var(D ∪ d(s, T \ var(D)) \ sp F →T (s)) ∩ T | > 1 then there exists two states s 1 , s 2 ∈ p(s, D), so that they differ from s on a different regular variable each. Especially, by construction of p, sp F →T (s) ⊆ s 1 ∪ s 2 ⊆ D ∪ d(s, T \ var(D)). Therefore, s ∈p(s,D) s ⊆ D ∪ d(s, T \ var(D)). Finally, and by definition of p, D ∪ d(s, T \ var(D)) ⊆ s ∈p(s,D) s because for each atom in D ∪ d(s, T \ var(D)), it is possible to build a state s containing it: either as the projection of the initial state s or as the only variable changing its value in s compared to sp F →T (s). In conclusion: D ∪ d(s, T \ var(D)) = s ∈p(s,D) s , which gives: p(s, s ∈p(s,D) s ) = p(s, D). Thus, Tasyn(P ) = Tasyn(P O (Tasyn(P ))), according to Theorem 1. C Appendix: Proofs of Section Properties of Least Revision Let R be a MVL rule and s ∈ S F such that R s. Let S R := {s ∈ S F | R s } and Sspe := {s ∈ S F | ∃R ∈ Lspe(R, s, A, F ), R s }. Let P be a DMVLP and T, T ⊆ S F × S T such that |first(T )| = 1∧first(T )∩first(T ) = ∅. The following results hold:1. Sspe = S R \ {s}, 2. Lrev(P, T, A, F ) is consistent with T , 3. P -→ T =⇒ Lrev(P,T,A,F ) ----------→ T , 4. P -→ T =⇒ Lrev(P,T,A,F ) ----------→ T , 5. P is complete =⇒ Lrev(P, T, A, F ) is complete. Proof. 1. First, let us suppose that ∃s ∈ S R \ {s} such that ∃R ∈ Lspe(R, s, A, F ), R s . By definition of matching R s =⇒ body(R ) ⊆ s . By definition of least specialization, body(R ) = body(R)∪{v val }, v val ∈ s, v val ∈ body(R), val = val . Let us suppose that s = s, then body(R ) ⊆ s since v val ∈ body(R ) and v val ∈ s, this is a contradiction. Let us suppose that s = s then ¬(R s ), thus body(R) ⊆ s and body(R ) ⊆ s , this is a contradiction. Second, let us assume that ∃s ∈ S R \ {s} such that ∀R ∈ Lspe(R, s, A, F ), ¬(R s ). By definition of S R , R s . By definition of matching ¬(R s ) =⇒ body(R ) ⊆ s . By definition of least specialization, body(R ) = body(R) ∪ {v val }, v val ∈ s, val = val . By definition of matching R s =⇒ body(R) ⊆ s =⇒ s = body(R)∪I, body(R)∩I = ∅ and thus body(R ) ⊆ s =⇒ v val ∈ I. The assumption implies that ∀v val ∈ I, ∀R ∈ Lspe(R, s, A, F ), v val ∈ body(R ), val = val . By definition of least specialization, it implies that v val ∈ s and thus I = s \ body(R) making s = s, which is a contradiction. Conclusion: Sspe = S R \ {s} 2. By definition of a consistent program, if two sets of MVL rules SR 1 , SR 2 are consistent with T then SR 1 ∪ SR 2 is consistent with T . Let R P = {R ∈ P | R s, ∀(s, s ) ∈ T, head(R) ∈ s } be the set of rules of P that conflict with T . By definition of least revision Lrev(P, T, A, F ) = (P \ R P ) ∪ R∈R P Lspe(R, s, A, F ). The first part of the expression P \ R P is consistent with T since R ∈ P \ R P such that R conflicts with T . The second part of the expression R∈R P Lspe(R, s, A, F ) is also consistent with T : R ∈ Lspe(R, s, A, F ), R s thus R ∈ Lspe(R, s, A, F ) that conflict with T and R∈R P Lspe(R, s, A, F ) is consistent with T . Conclusion: Lrev(P, T, A, F ) is consistent with

(s 1

 1 , s 2 ). Applying this reasoning on all elements of T implies thatP -→ T =⇒ Lrev(P,T,A,F ) ----------→ T . 4. Let (s 1 , s 2 ) ∈ T , since P -→ T by definition of realization ∀v val ∈ s 2 , ∃R ∈ P, R s 1 , head(R) = v val . By definition of conflict, R is not in conflict with T thus R ∈ Lrev(P, T, A, F ) and Lrev(P,T,A,F ) ----------→ T . 5. Let (s 1 , s 2 ) ∈ S F × S T , if P is complete, then by definition of a complete program ∀v ∈ V, ∃R ∈ P, R s 1 , var(head(R)) = v. If ¬(R s) then R ∈ Lrev(P, T, A, F ). If R s,from the first point ∃R ∈ Lspe(R, s, A, F ), R s 1 and thus R ∈ Lrev(P, T, A, F ) and since var(head(R )) = var(head(R)) = v, Lrev(P, T, A, F ) is complete. Proposition 2: Optimal Program of Empty Set P O (∅) = {v val ← ∅ | v val ∈ A T }. Proof. Let P = {v val ← ∅ | v val ∈ A T }. The MVLP P is consistent and complete by construction. Like all MVLPs, P -→ ∅ and there is no transition in ∅ to match with the rules in P . In addition, by construction, the rules of P dominate all MVL rules.

Proposition

  

Theorem 4 : 3 P

 43 Least Revision and Suitability Let s ∈ S F and T, T ⊆ S F × S T such that |first(T )| = 1 ∧ first(T ) ∩ first(T ) = ∅. Lrev(P O (T ), T , A, F ) is a DMVLP suitable for T ∪ T . Proof. Let P = Lrev(P O (T ), T ). Since P O (T ) is consistent with T , by Theorem 3, P is also consistent with T and thus consistent with T ∪ T . Since P O (T ) realizes T by Theorem 3, P -→ T . Since s ∈ first(T ), a MVL rule R such that body(R) = s does not conflict with T . By definition of suitable program ∃R ∈ P O (T ), R ≥ R, thus P O (T ) ----→ T . Since P O (T ) ----→ T by Theorem -→ T and thus P

  and thus GULA(A, T, F , T ) = P O (T ), it suffices to prove that the main loop (Algorithm 5, lines 23-50) preserves the invariantP val v = {R ∈ P O (T i ) | head(R) = v val ∈ A }after the i th iteration where T i is the union of all set of transitions of T T already selected line 23 after the i th iteration for all i from 0 to |T T |.Line 22 initializes P v val to {v val ← ∅}. Thus by Proposition 2, after line 22, P v val = {R ∈ P O (∅) | head(R) = v val }.

  Thus it is safe to only check domination of the revised rules by previous rules (P O (T i ) \ P ) or by other revised rules (P ). Thus by Theorem 4 and Proposition 3, P v val = {R ∈ P O (T i+1 ) | head(R) = v val } after the (i + 1) th iteration of the main loop. By induction, at the end of all the loop lines 23-50,

Theorem 6 :

 6 GULA Complexity Let T ⊆ S F × S T be a set of transitions, Let n := max(|F |, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. The worst-case time complexity of GULA when learning from T belongs to O(|T | 2 + |T | × (2n 4 d 2n+2 + 2n 3 d n+1 )) and its worst-case memory use belongs to O

  ). The learning is performed iteratively for each possible rule head v val ∈ A ⊆ A T . The extraction of negative example requires to compare each transition of T one to one and thus has a complexity of op 1 = O(|T | 2 ). Those transitions are stored in Neg v val which size is at most |S F | extending the memory use to O(d is bounded by O(d 2n + d n ). The learning phase revises a set of rule P v val where each rule has the same head v val . There are at most d |F | f ≤ d n possible rule bodies and thus |P v val | ≤ d |F | t ≤ d n , the memory use of |P v val | is then O(d |F | t ) extending the memory bound to O(d

  For each state s of Neg v val , each rule of P v val that matches s are extracted into a set of rules Rm. This operation has a complexity of op 2 = O(d |F | f × |F |) bound by O(nd n ). Each rule of Rm are then revised using least specialization, this operation has a complexity of O(|F | 2 ) bound by O(n 2 ). |Rm| ≤ d |F | f ≤ d n thus the revision of all matching rules is op 3 = O(d |F | f × n 2 ) bounded by O(d n × n 2 ). All revisions are stored in LS and there are at most d f × |F | ≤ dn revisions for each rule, thus |LS| ≤ d

D Appendix: Proofs of Section 5 Theorem 7 :

 57 Optimal DMVLP and Constraints Correctness Under Synchronous Constrained Semantics Let T ⊆ S F × S T , it holds that T = T syn-c (P O (T ) ∪ C O (T )). Proof. From Definition 9, ∀(s, s ) ∈ T, s ⊆ Conclusions(s, P O (T )) thus according to Definition 22, s ∈ T syn-c (P O (T ))(s), thus T ⊆ T syn-c (P O (T )) (property 1). By Definition 25, ∀(s, s ) ∈ T, C ∈ C O (T ), C (s, s ), thus since C O (T ) ⊆ C O (T ), C ∈ C O (T ), C (s, s ) and then T ⊆ T syn-c (P O (T ) ∪ C O (T )) (property 2).

  thus s ⊆ Conclusions(s, P O (T )) and by Definition 22, (s, s ) ∈ T syn-c (P O (T ) ∪ C O (T )), contradiction, thus T syn-c (P O (T ) ∪ C O (T )) ⊆ T (property 3). From property 2 and 3: T syn-c (P O (T ) ∪ C O (T )) = T . Theorem 8: Synchronizer Correctness Given any set of transitions T , Synchronizer(A, T , F , T ) outputs P O (T ) ∪ C O (T ). Proof. Let G1 = GU LA(A, T, F , T ) and G2 = GU LA(A F ∪T ∪{ε 1 } , T , F ∪ T , {ε}). From Theorem 5, P = G1 = P O (T ) (property 1). Let P = G2. By definition of T : ∀(s, s ) ∈ T , s = {ε 0 }. Thus ∀R ∈ P , R is consistent with T by Theorem 5, thus (s, s ) ∈ T , R s, since head(R) = ε 1 because ∀(s, s ) ∈ T , s = {ε 0 } (property 2). From Theorem 5, P = {R ∈ P O (T ) | head(R) = ε 1 }. From Definition 9, P O (T ) is complete thus ∀(s, s ) ∈ S F × S T , ss := s ∪ s , ss / ∈ first(T ), ∃R ∈ P , R ss (property 3).

-

  From Definition 25, P = C O (T ) (property 5). Now let us prove that P = C O (T ). Let us suppose that P = C O (T ). Since P ⊆ C O (T ), according to Definition 26, therefore P is missing a useful optimal constraint (C O (T ) \ P = ∅), or contains a useless optimal constraint (P \ C O (T ) = ∅). 1) Suppose that C / ∈ P but C ∈ C O (T ), meaning that P misses a useful constraint C. Since C ∈ C O (T ), ∃(s, s )s P O (T ) -----→ s , C (s, s ). Since s P O (T ) -----→ s , according to Definition 5 ∃S ⊆ P O (T ), s = {head(R) | R ∈ S} ∧ ∀R ∈ S, R s. By Definition 21, C ⊆ s ∪ s thus body(C) ∩ A F ⊆ s and body(C) ∩ A T ⊆ s . By definition of C rules , ∀v val ∈ body(C) ∩ A T , ∀R ∈ S, var(head(R)) = v ∧ head(R) ∈ body(C) =⇒ R ∈ C rules (v) and since s P O (T ) -----→ s , ∀v ∈ Ctargets, C rules (v) = ∅. Thus there exists a combi such that ∀v ∈ F , |{v val ∈ body

  R ∈ P O (T ), ∃s ∈ S, ∀R ∈ combi, head(R) ∈ s . Since body(C) ∩ A T = {head(R) | R ∈ combi} ⊆ s , C (s, s ). Thus P = C O (T ) (property 6).From property 1 and 6, Synchronizer(A, T, F , T ) = P O (T ) ∪ C O (T ).

Theorem 8 :

 8 Synchronizer Complexity Let T ⊆ S F × S T be a set of transitions, let n := max(|F |, |T |) and d := max({|dom(v)| ∈ N | v ∈ F ∪ T }) and m := |F | + |T |.The worst-case time complexity of Synchronizer when learning from T belongs to O((d 2n + 2nd n+1 + nd n+2 ) + (|T | 2 + |T | × (2m 4 d 2m+2 + 2m 3 d m+1 )) + (d n n )) and its worstcase memory use belongs to O((d 2n +2nd n+1 +nd n+2 )+(d 2m +2md m+1 +md m+2 )+(nd n )). Proof. Let d f := max({|dom(v)| ∈ N | v ∈ F }) (resp. dt := max({|dom(v)| ∈ N | v ∈ T })) be themaximal number of values of features (resp. target) variables. Let n := max(|F |, |T |) and d := max({|dom(v)| ∈ N | v ∈ F ∪ T }) and m := |F | + |T |. The first call to GULA has complexity of O(|T | 2 + |T | × (2n 4 d 2n+2 + 2n 3 d n+1 )) and the memory is bound by O(d 2n + 2nd n+1 + nd n+2 ) according to Theorem 6. Computing T := {(s ∪ s , {ε 0 }) | (s, s ) ∈ T } has a linear complexity of O(|T |). The call GU LA(A F ∪T ∪{ε 1 } , T , F ∪ T , {ε}) considers target variables as features variables to learn constraints, i.e., the body of constraints can have m conditions. Thus the complexity of this call to GULA is bound by O(|T | 2 + |T | × (2m 4 d 2m+2 + 2m 3 d m+1 )) = O(|T | 2 + |T | × (2m 4 d 2m+2 + 2m 3 d m+1 )) since |T | = |T | and the memory is bound by O(d 2m + 2md m+1 + md m+2 ) according to Theorem 6. To discard useless constraints, Algorithm 3 searches for a set of rules that can be applied at the same time as the constraint: first it extract the constraint target variables Ctargets := {v ∈ T | ∃val ∈ dom(v), v val ∈ body(C)} and search for compatible rules with the constraint ∀v ∈ Ctargets, C rules (v) := {R ∈ P | var(head(R)) = v ∧ head(R) ∈ body(C) ∧ ∀w ∈ F , ∀val, val ∈ dom(w), w val ∈ body(R) ∧ w val ∈ body(C) =⇒ val = val }. The constraint contains at most |T | target conditions. For each target variable, there is at most d |F | f rules in P . Thus, computing the Cartesian product of rules grouped by head variables has a time complexity of O(d |F | |T | f ) which is bound by O(d n n ) and a memory complexity of O(|P |) which is bound by O(nd n ). The computational complexity of Synchronizer is thus O((d 2n + 2nd n+1 + nd n+2 ) + (|T | 2 + |T | × (2m 4 d 2m+2 + 2m 3 d m+1 )) + (d n n )) and its memory is bound by O((d 2n + 2nd n+1 + nd n+2 ) + (d 2m + 2md m+1 + md m+2 ) + (nd n )).

Algorithm 6 6 :Fig. 15 :

 6615 Fig.15: Run time of Synchronizer from a random set of 1%, 5%, 10%, 25%, 50%, 75%, 100% of the transitions of a Boolean network from Boolenet and PyBoolNet with size varying from 3 to 10 variables. Time out is set at 1, 000 seconds and 10 runs where performed for each setting.

Fig. 15 :

 15 Fig. 15: Final learned WDMVLP W P = (W P , W P ) of Section 7.4 after pruning of (P O (T ), P O (T )) for readability, |W P | = |W P | = 80. The rules that appear in the original DMVLP of Figure 13 are colored in blue.

page 15 ,

 15 example 12, line 27: DS(s, D) should be pick(s,D)? Corrected. page 20, definition 15: If I am not mistaken I think that definition can be more simple. page 20, definition 15: Is this definition coincide with the definition in example 11? The definition in example 11 seems to me much more simple than the one in def 15. Can you simplify def 15? I am not sure but I think you can say |sp F -> T (s) -s | <= 1.

  1 t }) is realized by Program 3 of Example 3, by using the rules a 0

t ← ∅, b 1 t ← a 1 t-1 and c 1 t ← a 1 t-1 . However, Program 2 of the same Example does not realize t since the only rule that could produce c 1 t , that is, c 1 t ← a 1 t-1 ∧ b 0 t-1 , does not match {a 1 t-1 , b 1 t-1 , c 0 t-1 }; moreover, no rule can produce a 0 t . Programs 1 and 4 of the same Example cannot produce a 0 t either and thus do not realize t.

  The projection on atoms (based on vp T →F ) is the bijective function:

	F \ F (Stimuli)		F (Regular variables)		
	. . .	sm	(v1)t-1	. . .	(vn)t-1	F (Feature variables)
					Projections	
	(Target variables) T	(v1)t	. . .	(vn)t	c1	. . .	ck
			T (Regular variables)	T \ T (Observation variables)
	Fig. 4: Representation of a state transition of a dynamical system over n
	variables, m stimuli and k observation variables, i.e., |F| = n + m, |T | = n + k.
	Definition 14 (Projections) A projection on variables is a bijective func-
	tion vp T →F : T → F so that T ⊆ T , F ⊆ F, and: ∀v ∈ T , dom(vp T →F (v)) =
	dom(v).						

  F} .

	Example 13 In Example 12, there are three feature variables (a t-1 , b t-1 , st)
	and three target variables (a t , b t , ch). If we consider that the regular variables
	are T = {a t , b t } and F = {a t-1 , b t-1 }, we can define the following (bijective)
	projection on variables: vp T →F :	a t → a t-1 b t → b t-1	. Following Definition 14, we
	have, for instance:		

  1 is a constraint that can prevent to have both b 1 and d 2 in the next state if c 2 appears in the initial state. 0 t ∧ b 0 t is a constraint with only conditions in T , it prevents a and b to take value 0 at same time.

⊥

← -a

Table 4 :

 4 Number of variables and total number of transitions under the three semantics of the Boolean networks from Boolenet

  illustrates the construct of both training and test sets for a Boolean network of 3 variables.

	Generate All Features States	000	001	010	100	011	101	111
	Shuffle and Split	Training Feature States	011	100	010	000	001	111	101	Test Feature States
	Generate All	Shuffle and							Generate All Test
	Training Transitions	keep x%							Transitions
	011	011	010	111							111	010
	011	000	011	011	Training Set T'					111	000
	010 100	111 001	001 100	110 001					Test Set T''	111	001
											101	010
	000	000	000	000						
											101	111
	001	011	011	000						
	001	110	001	011						

Available at: https://github.com/Tony-sama/pylfit. Using command "python3 evaluations/mlj2020/mlj2020 all.py" from the repository's tests folder, results will be in the tests/tmp folder. All experiements were run with the release version 0.2.2 https: //github.com/Tony-sama/pylfit/releases/tag/v0.2.2.

Original Boolenet Boolean network files: https://people.kth.se/ ~dubrova/boolenet. html. Original PyBoolNet Boolean network files: https://github.com/hklarner/ PyBoolNet/tree/master/PyBoolNet/Repository.

The polynomial approximation of GULA, currently named PRIDE is also available at: https://github.com/Tony-sama/pylfit

-We obtain the same Hamming distance of 1 when compared with a 1 t ← c 0 t-1 .

-The final score for target a 1 t from s is 1 -min({ 1 3 , 1 3 }) ≈ 0.66. The prediction is correct for target a 1 t from s, but the explanation a 1 t ← ∅ is not perfect. Still, 66% of its conditions correspond to an optimal rules of impossibility (a 1 t ← a 0 t-1 and a 1 t ← c 0 t-1 ) that can explain this prediction. It is important to note that the metric we consider here only evaluates the quality of the explanation in the predictions, not of the entire program. Also this metrics can only be used when the actual real program is known and thus cannot be used to evaluate a model when only observations are available. Table 5 shows an example of scoring of the predictions of a WDMVLP (both accuracy and explanation score) from the feature state s = {a 0 t-1 , b 0 t-1 , c 0 t-1 , d 0 t-1 , e 1 t-1 , f 0 t-1 , g 0 t-1 , h 1 t-1 , i 1 t-1 , j 1 t-1 } where F = {a t-1 , . . . , j t-1 }, T = {a t , . . . , j t } and ∀v ∈ F ∪ T , dom(v) = {0, 1}. This example was generated using the Boolean network "faure cellcycle" synchronous transitions (see Table 4) where we replaced variable names by letters from a to j and omitted time subscript to make the table more compact and easy to read. From the set of all transitions T are computed P O (T ) and P O (T ). T is also partitioned into a training set T (about 10% of T ) and a test set T (about 20% of T ) such that T ∩ T = ∅. Here, in the test set, there is only one possible transition from s: (s, s ), s = {a 0 , b 0 , c 0 , d 0 , e 0 , f 1 , g 1 , h 0 , i 1 , j 1 } (deterministic transition). Thus, for atoms that appear in s , the model is expected to predict a probability of 1.0 (> 0.5) and 0.0 (< 0.5) for the others. Furthermore, when correctly predicting the occurrence it should also provide one of the corresponding optimal rules (possibility rule if predicted possible, rule of impossibility otherwise). For instance, for a 0 , the model predicted a likelihood of 0.95, and since the atom was effectively observed in s , a likelihood of 1.0 is expected, thus its accuracy is 0.95. For a 1 , since it is not in s , we expect a likelihood of 0.0; because the predicted likelihood is 0.05, its accuracy is also 0.95. Regarding the explanation score, the accuracy is checked before computing the rule distance with the expected optimal rules. For a 0 , the likelihood prediction is above 0.5, thus the model considers a 0 possible and since it is indeed observed in s , the explanation score depends of the prediction possibility rule R; since R ∈ P O (T ), the explanation is considered perfect and the score is 1.0. For a 0 , we have another perfect case of explanation but for the impossibility scenario: the atom a 0 is not in s , it is predicted unlikely, and the impossibility rule of the prediction R is in P O (T ). When considering instead h 0 and h 1 , we have a wrong likelihood prediction, thus the explanation score is directly 0.0. Regarding c 0 , the likelihood prediction is correct, and the provided possibility rule R := c 0 ← d 0 ∧ h 1 has (at most) 8 conditions out of 10 that are in common with a rule of P O (T ) (that is, rule c 0 ← h 1 ∧ i 1 ): indeed, both rules have h 1 as condition, but R misses i 1 and contains a spurious d 0 , while the 7 remaining feature variables do not appear in both rules, leading to an explanation score of 8/10 = 0.8. We observe the same for the impossibility rules of c 1 , although the score could have been different than for c 0 . In this F Appendix: detailed pseudo-code of Section 4

Algorithms 5 and 6 provide the detailed pseudocode of GULA. Algorithm 5 learns from a set of transitions T the conditions under which each value val of each variable v may appear in the next state. Here, learning is performed iteratively for each value of variable to keep the pseudo-code simple. But the process can easily be parallelized by running each loop in an independent thread, bounding the run time to the variable for which the learning is the longest. In the case where we are not interested about the dynamics of some variables, the parameter A and T can be reduced accordingly. The algorithm starts by the preprocessing of the input transitions. Lines 7-18 of Algorithm 5 correspond to the extraction of Neg v val , the set of all negative examples of the appearance of v val in next state: all states such that v never takes the value val in the next state of a transition of T . For efficiency purpose, it is important that the negatives examples are ordered in a way that reduce the difference between nearby elements, for example lexicographically. Indeed, it increase the proportion of revised rules (produced to satisfy a previous example) still consistent with the following examples, reducing the average number of rules stored and thus checked in the following processes. Those negative examples are then used during the following learning phase (lines 21-50) to iteratively learn the set of rules P O (T ). The learning phase starts by initializing a set of rules

P v val is iteratively revised against each negative example neg in Neg v val . All rules Rm of P v val that match neg have to be revised. In order for P v val to remain optimal, the revision of each Rm must not match neg but still matches every other state that Rm matches. To ensure that, the least specialization (see Definition 18) is used to revise each conflicting rule Rm. Algorithm 6 shows the pseudo code of this operation. For each variable of F so that body(Rm) has no condition over it, a condition over another value than the one observed in state neg can be added (lines 3-8). None of those revision match neg and all states matched by Rm are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in P v val or another revised rules and thus dominance must be checked from both. But only revised rule can be dominated by a revised rule: if a rule in P v val is dominated by a revised rule, then it was dominated by its original rule and thus could not be part of P v val since it would have been discard in a previous step. Thus we can safely only check the revised rules to discard the ones dominated by the new current revised rule. The non-dominated revised rules are then added to P v val .

Once P v val has been revised against all negatives example of Neg v val , P v val = {R ∈ P O (T ) | head(R) = v val }, that is, P v val is the subset of rules of the final optimal program having v val as head. Finally, P v val is added to P and the loop restarts with another atom. Once all values of each variable have been treated, the algorithm outputs P which is then equal to P O (T ).

Algorithm 5 GULA(A ,T ,F ,T , learning mode) 1: INPUT: A set of atoms A , a set of transitions T ⊆ S F × S T , two sets of variables F and T , a string learning mode ∈ {"possibility", "impossibility"}.

2: OUTPUT: P O (T ) if learning mode = "possibility" or P O (T ) if learning mode = "impossibility". for each R ∈ P v val do // Extract all rules that conflict and remove them from P

3: T

26:

if body(R) ⊆ neg then

27:

M := M ∪ {R} 28:

29:

LS := ∅

30:

for each Rm ∈ M do // Revise each conflicting rule

31:

P := least specialization(Rm, neg, A , F )

32:

for each R ls ∈ P do

33:

dominated := f alse

34:

for each Rp ∈ P v val do // Check if the revision is dominated by P v val 

I.4 Related work

The paper refers to relevant related work. As we discussed in the related work section, our approach is quite related to Bain and Srinivasan [START_REF] Bain | Identification of biological transition systems using metainterpreted logic programs[END_REF], Evans et al. [START_REF] Evans | Making sense of sensory input[END_REF][START_REF] Evans | Evaluating the apperception engine[END_REF], Katzouris et al. [START_REF] Katzouris | Incremental learning of event definitions with inductive logic programming[END_REF], Fages [START_REF] Fages | Artificial intelligence in biological modelling[END_REF].

The techniques we propose in this paper are a continuation of the works on the LFIT framework from [START_REF] Inoue | Learning from interpretation transition[END_REF][START_REF] Ribeiro | Learning prime implicant conditions from interpretation transition[END_REF][START_REF] Ribeiro | Learning dynamics with synchronous, asynchronous and general semantics[END_REF].

In [START_REF] Inoue | Logic programming for boolean networks[END_REF][START_REF] Inoue | Oscillating behavior of logic programs[END_REF], state transitions systems are represented with logic programs, in which the state of the world is represented by a Herbrand interpretation and the dynamics that rule the environment changes are represented by a logic program P . The rules in P specify the next state of the world as a Herbrand interpretation through the immediate consequence operator (also called the T P operator ) [START_REF] Van Emden | The semantics of predicate logic as a programming language[END_REF][START_REF] Apt | Towards a theory of declarative knowledge. Foundations of deductive databases and logic programming[END_REF] which mostly corresponds to the synchronous semantics we present in Section 3. In this paper, we extend upon this formalism to model multivalued variables and any memory-less discrete dynamic semantics including synchronous, asynchronous and general semantics. [START_REF] Inoue | Learning from interpretation transition[END_REF] proposed the LFIT framework to learn logic programs from traces of interpretation transitions. The learning setting of this framework is as follows. We are given a set of pairs of Herbrand interpretations (I, J) as positive examples such that J = T P (I), and the goal is to induce a normal logic program (NLP) P that realizes the given transition relations. As far as we know, this concept of learning from interpretation transition (LFIT) has never been considered in the ILP literature before [START_REF] Inoue | Learning from interpretation transition[END_REF]. In this paper, we propose two algorithms that extend upon this previous work: GULA to learn the minimal rules of the dynamics from any semantics states transitions that respect Theorem 1 and Synchronizer that can capture the dynamics of any memory-less discrete dynamic semantics.
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K Response to Reviewers

We thank again the reviewers for their care in providing feedback and suggestions to improve the paper.

Summary of updates:

-Majors -Improved WDMVLP section (Section 6), clarified definition of predictions, added a detailed example and corresponding discussion with more details about the choice of heuristics. -Added an example of predictions scoring in evaluation section (Section 7) to clarify the claim about explainability regarding quality of the explanation of prediction. -Added a case study section (Section 7.4) in evaluation part to illustrate explainability claim by the means of readability. In this case study, we show that some heuristics can be used to approach the original Boolean network rules. -Minors -Improved the part about pseudo-idempotent semantics in Section 3.

-Clarified notations.

-Compared explainability measure with other works.

In the following, we provide comments on how every remark from the panel of reviewers has been taken into account.

K.1 Reviewer 3

Thank you for your comments, we addressed your claims as follows.

The revised version has addressed several issues raised in my previous review. In particular, I think the authors have properly applied some of suggestions about 1) adding examples for formal definitions & theorems to make them more readable, 2) re-organising the experimental results, adding baselines, and more discussions. However, I am not sure if other required changes have been addressed properly. For example, I couldn't find examples of 'problem specific' learned rules in the evaluation section to exemplify the claim that "In the case where explainability is of interest, the rules used for the predictions and their weights may be quite simple human readable candidates for explanations."

We added an example (coming from one of the benchmarks from the experiments: mammalian cell cycle) where explanation rules appear in Section 6 and the corresponding scoring in Section 7 to show the readability of the predictions. We also added a section with a case study regarding readability of an entire program learned where we show how we can approach the original rules of a Boolean network using some heuristics.

On the other hand, the new version has introduced a new measure on "Explainability Power" and included additional results based on this new measure. However, I didn't understand why this measure which seems to be defined as a similarity measure (using hamming distance) between a given hypothesis and the target concept could be a measure for explainability ?

The measure we propose assesses the quality of the prediction explanation, in our case we expect the model to explain the predictions with the original rules of the observed system. The metric we propose is indeed a similarity measure and can only be used when we know the perfect hypotheses to be found. Here the goal is to show that given enough observations, the programs we learn behave like the observed system and also use similar rules to perform this behavior. We clarified it in the discussions and changed the term "explainability" for "explanation" when needed to avoid confusion.

The theoretical framework seems to be appropriate, however I haven't checked the correctness of all proofs in the paper (and there are more in the appendix). There are some discussions on the previous version of this work and its limitations. However, the limitation of the proposed approach in this paper should be also discussed in more details. The experimental results and the connections with the theory should be also clarified further.