
HAL Id: hal-02925942
https://hal.science/hal-02925942v4

Preprint submitted on 26 Jun 2021 (v4), last revised 13 Oct 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning any semantics for dynamical systems
represented by logic programs

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue

To cite this version:
Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue. Learning any semantics for dy-
namical systems represented by logic programs. 2021. �hal-02925942v4�

https://hal.science/hal-02925942v4
https://hal.archives-ouvertes.fr


Noname manuscript No.
(will be inserted by the editor)

Learning any memory-less discrete semantics for
dynamical systems represented by logic programs

Tony Ribeiro · Maxime Folschette ·
Morgan Magnin · Katsumi Inoue

Received: date / Accepted: date

Abstract Learning from interpretation transition (LFIT) automatically con-
structs a model of the dynamics of a system from the observation of its state
transitions. So far the systems that LFIT handled were mainly restricted to
synchronous deterministic dynamics. However, other dynamics exist in the
field of logical modeling, in particular the asynchronous semantics which is
widely used to model biological systems. In this paper, we propose a model-
ing of discrete memory-less multi-valued dynamic systems as logic programs
in which a rule represents what can occur rather than what will occur. This
modeling allows us to represent non-determinism and to propose an exten-
sion of LFIT to learn regardless of the update schemes, allowing to capture a
large range of semantics. We also propose a second algorithm which is able to
learn a whole system dynamics, including its semantics, in the form of a single
propositional logic program with constraints. We show through theoretical re-
sults the correctness of our approaches. Practical evaluation is performed on
benchmarks from biological literature.

Tony Ribeiro
Independant Researcher
Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: tony.ribeiro@ls2n.fr,

Maxime Folschette
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Morgan Magnin
Centrale Nantes, Université de Nantes, CNRS, LS2N, F-44000 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Katsumi Inoue
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan



2 Tony Ribeiro et al.

Keywords inductive logic programming · dynamic systems · logical
modeling · dynamic semantics

1 Introduction

Learning the dynamics of systems with many interactive components becomes
more and more important in many applications such as physics, cellular au-
tomata, biochemical systems as well as engineering and artificial intelligence
systems. In artificial intelligence systems, knowledge like action rules is em-
ployed by agents and robots for planning and scheduling. In biology, learning
the dynamics of biological systems corresponds to the identification of influence
of genes, signals, proteins and molecules that can help biologists to understand
their interactions and biological evolution.

In modeling of dynamical systems, the notion of concurrency and non-
determinism is crucial. When modeling a biological regulatory network, it is
necessary to represent the respective evolution of each component of the sys-
tem. One of the most debated issues with regard to semantics targets the
choice of a proper update mode of every component, that is, synchronous [24],
asynchronous [52] or more complex ones. The differences and common features
of different semantics w.r.t. properties of interest (attractors, oscillators, etc.)
have thus resulted in an area of research per itself [19,36,6]. But the biologists
often have no idea whether a model of their system of interest should intrin-
sically be synchronous, asynchronous, generalized... It thus appears crucial to
find ways to model systems from raw data without burdening the modelers
with an a priori choice of the proper semantics.

State Transitions Model
of the Dynamics

Learning
Algorithm

LFIT

Time Series Data
Abstraction

Prediction

Query
Answering

Decision
Making

Planning

...

Fig. 1: Assuming a discretization of time series data of a system as state
transitions, we propose a method to automatically model the system dynamics.

For a decade, learning dynamics of systems has raised a growing interest
in the field of inductive logic programming (ILP) [35,9]. ILP is a form of
logic-based machine learning where the goal is to induce a hypothesis (a logic
program) that generalises given training examples and background knowledge.
Whereas most machine learning approaches learn functions, ILP frameworks
learn relations.

In the specific context of learning dynamical systems, previous works pro-
posed an ILP framework entitled learning from interpretation transition (LFIT)
[20] to automatically construct a model of the dynamics of a system from the



Title Suppressed Due to Excessive Length 3

observation of its state transitions. Figure 1 shows this learning process. Given
some raw data, like time-series data of gene expression, a discretization of
those data in the form of state transitions is assumed. From those state tran-
sitions, according to the semantics of the system dynamics, several inference
algorithms modeling the system as a logic program have been proposed. The
semantics of a system’s dynamics can indeed differ with regard to the syn-
chronism of its variables, the determinism of its evolution and the influence
of its history. The LFIT framework [20,45,43] proposed several modeling and
learning algorithms to tackle those different semantics.

In [19,21], state transitions systems are represented with logic programs,
in which the state of the world is represented by an Herbrand interpretation
and the dynamics that rule the environment changes are represented by a logic
program P . The rules in P specify the next state of the world as an Herbrand
interpretation through the immediate consequence operator (also called the
TP operator) [54,2] which mostly corresponds to the synchronous semantics
we present in Section 3. In this paper, we extend upon this formalism to
model multi-valued variables and any memory-less discrete dynamic semantics
including synchronous, asynchronous and general semantics.

[20] proposed the LFIT framework to learn logic programs from traces of
interpretation transitions. The learning setting of this framework is as fol-
lows. We are given a set of pairs of Herbrand interpretations (I, J) as positive
examples such that J = TP (I), and the goal is to induce a normal logic pro-
gram (NLP) P that realizes the given transition relations. As far as we know,
this concept of learning from interpretation transition (LFIT) has never been
considered in the ILP literature before [20].

To date, the following systems have been tackled: memory-less determin-
istic systems [20], systems with memory [46], probabilistic systems [32] and
their multi-valued extensions [47,31]. [48] proposes a method that allows to
deal with continuous time series data, the abstraction itself being learned by
the algorithm. As a summary, the systems that LFIT handled so far were
restricted to synchronous deterministic dynamics.

In this paper, we extend this framework to learn systems dynamics inde-
pendently of its update semantics. For this purpose, we propose a modeling of
discrete memory-less multi-valued systems as logic programs in which each rule
represents that a variable possibly takes some value at the next state, extend-
ing the formalism introduced in [20,45]. Research in multi-valued logic pro-
gramming has proceeded along three different directions [25]: bilattice-based
logics [16,18], quantitative rule sets [53] and annotated logics [5,4]. Our rep-
resentation is based on annotated logics. Here, to each variable corresponds a
domain of discrete values. In a rule, a literal is an atom annotated with one
of these values. It allows us to represent annotated atoms simply as classical
atoms and thus to remain at a propositional level. This modeling allows us to
characterize optimal programs independently of the update semantics, allow-
ing to model the dynamics of a wide range of discrete systems. To learn such
semantic-free optimal programs, we propose GULA: the General Usage LFIT
Algorithm. We show from theoretical results that this algorithm can learn un-



4 Tony Ribeiro et al.

der a wide range of update semantics including synchronous (deterministic or
not), asynchronous and generalized semantics.

[43] proposed a first version of GULA that we substantially extend in
this manuscript. In [43], there was no distinction between feature and tar-
get variables, i.e., variables at time step t and t+ 1. From this consideration,
interesting properties arise and allow to characterize the kind of semantics
compatible with the learning process of the algorithm (Theorem 1). It also al-
lows to represent constraints and to propose a new algorithm (Synchronizer,
Section 5). We show through theoretical results that this second algorithm can
learn a program able to reproduce any given set of discrete state transitions
and thus the behavior of any discrete memory-less dynamical semantics.

Empirical evaluation provided in [43] was limited to scalability in complete
observability cases. With the goal to proceed real data, we introduce a heuristic
method allowing to use GULA to learn from partial observations and predict
from unobserved data. It allows us to apply the method on more realistic cases
by evaluating both scalability, prediction accuracy and explanation of predic-
tion on partial data. Evaluation is performed over the three aforementioned
semantics for Boolean network benchmarks from biological literature [27,11].
These experiments emphasize the practical usage of the approach: our imple-
mentation reveals to be tractable on systems up to a dozen components, which
is sufficient enough to capture a large variety of complex dynamic behaviors
in practice.

The organization of the paper is as follows. Section 2 provides a formal-
ization of discrete memory-less dynamics system as multi-valued logic pro-
gram. Section 3 formalizes dynamical semantics under logic programs. Section
4 presents the first algorithm, GULA, which learns optimal programs regard-
less of the semantics. Section 5 provides extension of the formalization and
a second algorithm, the Synchronizer, to represent and learn the semantics
behavior itself. In Section 6, we propose a heuristic method allowing to use
GULA to learn from partial observations and predict from unobserved data.
Section 7 provides experimental evaluations regarding scalability, prediction
accuracy and explanation of predictions. Section 8 discusses related work and
Section 9 concludes the paper. All proofs of theorems and propositions are
given in Appendix.

2 Logical Modeling of Dynamical Systems

In this section, the concepts necessary to understand the learning algorithms
we propose are formalized. In Section 2.1, the basic notions of multi-valued
logic (MVL) are presented. Then, Section 2.2 presents a modeling of dynamics
systems using this formalism. In the following, we denote by N := {0, 1, 2, ...}
the set of natural numbers, and for all k, n ∈ N, Jk;nK := {i ∈ N | k ≤ i ≤ n}
is the set of natural numbers between k and n included. For any set S, the
cardinality of S is denoted |S| and the power set of S is denoted ℘(S).



Title Suppressed Due to Excessive Length 5

2.1 Multi-valued Logic Program

Let V = {v1, · · · , vn} be a finite set of n ∈ N variables, Val the set in which
variables take their values and dom : V → ℘(Val) a function associating a
domain to each variable. The atoms ofMVL are of the form vval where v ∈ V
and val ∈ dom(v). The set of such atoms is denoted by AVdom = {vval ∈
V × Val | val ∈ dom(v)} for a given set of variables V and a given domain
function dom. In the following, we work on specific V and dom that we omit
to mention when the context makes no ambiguity, thus simply writing A for
AVdom.

Example 1 For a system of 3 variables, the typical set of variables is V =
{a, b, c}. In general, Val = N so that domains are sets of natural integers, for
instance: dom(a) = {0, 1}, dom(b) = {0, 1, 2} and dom(c) = {0, 1, 2, 3}. Thus,
the set of all atoms is: A = {a0, a1, b0, b1, b2, c0, c1, c2, c3}.

A MVL rule R is defined by:

R = vval0
0 ← vval1

1 ∧ · · · ∧ vvalm
m (1)

where ∀i ∈ J0;mK, vvali
i ∈ A are atoms in MVL so that every variable is

mentioned at most once in the right-hand part: ∀j, k ∈ J1;mK, j 6= k ⇒ vj 6=
vk. If m = 0, the rule is denoted: vval0

0 ← >. Intuitively, the rule R has
the following meaning: the variable v0 can take the value val0 in the next
dynamical step if for each i ∈ J1;mK, variable vi has value vali in the current
dynamical step.

The atom on the left-hand side of the arrow is called the head of R and
is denoted head(R) := vval0

0 . The notation var(head(R)) := v0 denotes the
variable that occurs in head(R). The conjunction on the right-hand side of
the arrow is called the body of R, written body(R) and can be assimilated to
the set {vval1

1 , · · · , vvalm
m }; we thus use set operations such as ∈ and ∩ on it,

and we denote it ∅ if it is empty. The notation var(body(R)) := {v1, · · · , vm}
denotes the set of variables that occurs in body(R). More generally, for all sets
of atoms X ⊆ A, we denote var(X) := {v ∈ V | ∃val ∈ dom(v), vval ∈ X}
the set of variables appearing in the atoms of X. A multi-valued logic program
(MVLP) is a set of MVL rules.

Definition 1 introduces a domination relation between rules that defines
a partial anti-symmetric ordering. Intuitively, rules with more general bodies
dominate other rules. In our approach, we prefer a more general rule over a
more specific one.

Definition 1 (Rule Domination) Let R1, R2 be twoMVL rules. The rule
R1 dominates R2, written R1 ≥ R2 if head(R1) = head(R2) and body(R1) ⊆
body(R2).

Example 2 Let R1 := a1 ← b1, R2 := a1 ← b1 ∧ c0. R1 dominates R2 since
head(R1) = head(R2) = a1 and body(R1) ⊆ body(R2). Intuitively, R1 is more



6 Tony Ribeiro et al.

general than R2 on c. R2 does not dominate R1 because body(R2) 6⊆ body(R1).
Let R3 := a1 ← a1 ∧ b0, R1 (resp. R2) does not dominate R3 (and vice versa),
since body(R1) 6⊆ body(R3): the rules have a different condition over b. Let
R4 := a1 ← a1, for the same reasons, R1 (resp. R2) does not dominate R4. Let
R5 := a0 ← ∅, R1 (resp. R2, R3, R4) does not dominate R5 (and vice versa)
since their head atoms are different (a1 6= a0).

The most general body for a rule is the empty set (also denoted >). A rule
with an empty body dominates all rules with the same head atom. Further-
more, the only way two rules dominate each over is that they are the same
rule, as stated by Lemma 1.

Lemma 1 (Double Domination Is Equality) Let R1, R2 be two MVL
rules. If R1 ≥ R2 and R2 ≥ R1 then R1 = R2.

2.2 Dynamic Multi-valued Logic Program

We are interested in modeling non-deterministic (in a broad sense, which in-
cludes deterministic) discrete memory-less dynamical systems. In such a sys-
tem, the next state is decided according to dynamics that depend on the
current state of the system. From a modeling perspective, the variables of the
system at time step t can be seen as target variables and the same variables at
time step t−1 as features variables. Furthermore, additional variables that are
external to the system, like stimuli or observation variables for example, can
appear only as feature or target variables. Such a system can be represented
by aMVLP with some restrictions. First, the set of variables V is divided into
two disjoint subsets: T (for targets) encoding system variables at time step t
plus optional external variables like observation variables, and F (for features)
encoding system variables at t− 1 and optional external variables like stimuli.
It is thus possible that |F| 6= |T |. Second, rules only have a conclusion at t
and conditions at t − 1, i.e., only an atom of a variable of T can be a head
and only atoms of variables in F can appear in a body. In the following, we
also re-use the same notations as for theMVL of Section 2.1 such as head(R),
body(R) and var(head(R)).

Definition 2 (Dynamic MVLP) Let T ⊂ V and F ⊂ V such that F =
V \ T . A DMVLP P is a MVLP such that ∀R ∈ P, var(head(R)) ∈ T and
∀vval ∈ body(R), v ∈ F .

In the following, when there is no ambiguity, we suppose that F , T , V and
A are already defined and we omit to define them again.

Example 3 Figure 2 gives an example of regulation network with three ele-
ments a, b and c. The information of this network is not complete; notably,
the relative “force” of the components a and b on the component c is not ex-
plicit. Multiple dynamics are then possible on this network, among which four
possibilities are given below by Program 1 to 4, defined on T := {at, bt, ct},



Title Suppressed Due to Excessive Length 7

a

b

c

Fig. 2: Example of interaction graph of a regulation network representing an
incoherent feed-forward loop [22] where a positively influences b and c, while
b (and thus, indirectly, a) negatively influences c.

F := {at−1, bt−1, ct−1} and ∀v ∈ T ∪ F , dom(v) := {0, 1}. Program 1 is a
direct translation of the relations of the regulation network. It only contains
rules producing atoms with value 1 which is equivalent to a set of Boolean
functions. In Program 2, a always takes value 1 while in Program 3 it always
takes value 0, a having no incoming influence in the regulation network this
can represent some kind of default behavior. In Program 3, the two red rules
introduce potential non-determinism in the dynamics since both conditions
can hold at the same time. In Program 4, the rule apply the conditions of the
regulation network but it also allows each variable to keep the value 1 at t if
it has it at t− 1 and no inhibition occurs. We insist on the fact that the index
notation t or t − 1 is part of the variable name, not its value. This allows to
distinguish variables from T (t) or F (t− 1).

Program 1
b1t ← a1t−1
c1t ← a1t−1 ∧ b0t−1

Program 2
a1t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1 ∧ b0t−1

Program 3
a0t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1

Program 4
a1t ← a1t−1
b1t ← b1t−1
b1t ← a1t−1
c1t ← c1t−1 ∧ b0t−1
c1t ← a1t−1 ∧ b0t−1

The dynamical system we want to learn the rules of is represented by
a succession of states as formally given by Definition 3. We also define the
“compatibility” of a rule with a state in Definition 4 and with a transition in
Definition 5.

Definition 3 (Discrete state) A discrete state s on T (resp. F) of aDMVLP
is a function from T (resp. F) to N, i.e., it associates an integer value to each
variable in T (resp. F). It can be equivalently represented by the set of atoms
{vs(v) | v ∈ T (resp. F)} and thus we can use classical set operations on it.
We write ST (resp. SF ) to denote the set of all discrete states of T (resp. F),
and a couple of states (s, s′) ∈ SF × ST is called a transition.

When there is no possible ambiguity, we sometimes (Figure 3, Figure 5, ...)
denote a state only by the values of variables, without naming the variables. In
this case, the variables are given in alphabetical order (a, b, c...). For instance,

{a0, b1} is denoted 01 , {a1, b0} is denoted 10 and {a0, b1, c0, d3} is denoted

0103 .



8 Tony Ribeiro et al.

Example 4 Consider a dynamical system having two internal variables a and
b, an external stimilus st and an observation variable ch used to trace some
important events. The two sets of possible discrete states of a program defined
on the two sets of variables T = {at, bt, ch} and F = {at−1, bt−1, st}, and the
set of atoms A = {a0t , a1t , b0t , b1t , b2t , ch0, ch1, a0t−1, a1t−1, b0t−1, b1t−1, b2t−1, st0, st1}
are:
SF = {
{a0t−1, b0t−1, st0}, {a0t−1, b0t−1, st1},
{a0t−1, b1t−1, st0}, {a0t−1, b1t−1, st1},
{a0t−1, b2t−1, st0}, {a0t−1, b2t−1, st1},
{a1t−1, b0t−1, st0}, {a1t−1, b0t−1, st1},
{a1t−1, b1t−1, st0}, {a1t−1, b1t−1, st1},
{a1t−1, b2t−1, st0}, {a1t−1, b2t−1, st1} }

and ST = {
{a0t , b0t , ch0}, {a0t , b0t , ch1},
{a0t , b1t , ch0}, {a0t , b1t , ch1},
{a0t , b2t , ch0}, {a0t , b2t , ch1},
{a1t , b0t , ch0}, {a1t , b0t , ch1},
{a1t , b1t , ch0}, {a1t , b1t , ch1},
{a1t , b2t , ch0}, {a1t , b2t , ch1} }.

Here, at−1 and at (resp. bt−1 and bt) are theoretically different variables
from a MVL perspective. But they actually encode the same variable at dif-
ferent time step and thus a (resp. b) is present in both F and T in its corre-
sponding timed form. On the other hand, variables st and ch are respectively
a stimuli and an observation variable and thus only appear in F ,SF or T ,ST .
Depending on the number of stimuli and observation variables, states of SF
can have a different size than states in ST (see Figure 4).

Definition 4 (Rule-state matching) Let s ∈ SF . TheMVL ruleR matches
s, written R u s, if body(R) ⊆ s.

We note that this definition of matching only concerns feature variables.
Target variables are never meant to be matched.

Example 5 Let F = {at−1, bt−1, st}, T = {at, bt, ch} and dom(at−1) = dom(st)
= dom(at) = dom(ch) = {0, 1}, dom(bt−1) = dom(bt) = {0, 1, 2}. The rule
ch0 ← a1t−1∧b1t−1∧st1 only matches the state {a1t−1, b1t−1, st1}. The rule ch0 ←
a0t−1∧st1 matches {a0t−1, b0t−1, st1}, {a0t−1, b1t−1, st1} and {a0t−1, b2t−1, st1}. The
rule b2t ← a1t−1 matches {a1t−1, b0t−1, st0}, {a1t−1, b0t−1, st1}, {a1t−1, b1t−1, st0},
{a1t−1, b1t−1, st1}, {a1t−1, b2t−1, st0}, {a1t−1, b2t−1, st1}. The rule a1 ← ∅ matches
all states of SF .

The final program we want to learn should both:

– match the observations in a complete (all transitions are learned) and cor-
rect (no spurious transition) way;

– represent only minimal necessary interactions (according to Occam’s razor:
no overly-complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5
we characterize the fact that a rule of a program is useful to describe the
dynamics of one variable in a transition; this notion is then extended to a
program and a set of transitions, under the condition that there exists such
a rule for each variable and each transition. A conflict (Definition 6) arises
when a rule describes a change that is not featured in the considered set of
transitions. Finally, Definition 8 and Definition 7 give the characteristics of



Title Suppressed Due to Excessive Length 9

a complete (the whole dynamics is covered) and consistent (without conflict)
program.

Definition 5 (Rule and program realization) Let R be aMVL rule and

(s, s′) ∈ SF ×ST . The rule R realizes the transition (s, s′), written s
R−→ s′, if

R u s ∧ head(R) ∈ s′.
A DMVLP P realizes (s, s′) ∈ SF × ST , written s

P−→ s′, if ∀v ∈ T ,∃R ∈
P, var(head(R)) = v ∧ s R−→ s′. It realizes a set of transitions T ⊆ SF × ST ,

written
P
↪−→ T , if ∀(s, s′) ∈ T, s P−→ s′.

Example 6 The rule c1t ← a1t−1 ∧ b1t−1 realizes the transition t = ({a1t−1, b1t−1,
c0t−1}, {a0t , b1t , c1t}) since it matches the first state of t and its conclusion is in
the second state. However, the rule c1t ← a1t−1 ∧ b0t−1 does not realize t since
it does not match the feature state of t.

Example 7 The transition t = ({a1t−1, b1t−1, c0t−1}, {a0t , b1t , c1t}) is realized by
Program 3 of Example 3, by using the rules a0t ← ∅, b1t ← a1t−1 and c1t ←
a1t−1. However, Program 2 of the same Example does not realize t since the
only rule that could produce c1t , that is, c1t ← a1t−1 ∧ b0t−1, does not match
{a1t−1, b1t−1, c0t−1}; moreover, no rule can produce a0t . Programs 1 and 4 of the
same Example cannot produce a0t either and thus do not realize t.

In the following, for all sets of transitions T ⊆ SF × ST , we denote:
first(T ) := {s ∈ SF | ∃(s1, s2) ∈ T, s1 = s} the set of all initial states of
these transitions. We note that first(T ) = ∅ ⇐⇒ T = ∅.

Definition 6 (Conflict and Consistency) A MVL rule R conflicts with
a set of transitions T ⊆ SF × ST when ∃s ∈ first(T ),

(
R u s ∧ ∀(s, s′) ∈

T, head(R) /∈ s′
)
. R is said to be consistent with T when R does not conflict

with T .

A rule is consistent if for all initial states of the transitions of T (first(T))
matched by the rule, there exists a transitions of T for which it verifies the
conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set
of transitions T if P does not contain any rule R conflicting with T .

Example 8 Let s1 = {a1t−1, b0t−1, c0t−1}, s2 = {a1t−1, b0t−1, c1t−1}, s3 = {a0t−1, b0t−1,
c0t−1} and t1 = (s1, {a0t , b1t , c1t}),
t2 = (s1, {a1t , b1t , c0t}),
t3 = (s2, {a0t , b1t , c0t}),
t4 = (s2, {a0t , b0t , c1t}),
t5 = (s3, {a1t , b1t , c0t}).
Let T = {t1, t2, t3, t4, t5}.

Program 1 of Example 3 is consistent with T . The rule b1t ← a1t−1 matches
s1 and both s1 and b1t are observed in t2. The rule also matches s2 which is



10 Tony Ribeiro et al.

observed with b1t in t3. The rule c1t ← a1t−1 ∧ b0t−1 matches s1 (resp. s2), which
is observed with c1t in t1 (resp. t3).

Program 2 is not consistent with T since a1t ← ∅ is not consistent with T :
it matches s1, s2 and s3 but the transitions of T that include s2 (t3, t4) do not
contain a1t . Program 3 is not consistent with T since a0t ← ∅ matches s1, s2,
s3 but the only transition that contains s3 (t5) does not contain a0t . Program
4 is not consistent with T since a1t ← a1t−1 matches s2 but the transitions of
T that include s2 (t3, t4) do not contain a1t .

Definition 8 (Complete program) A DMVLP P is complete if ∀s ∈
SF ,∀v ∈ T ,∃R ∈ P,R u s ∧ var(head(R)) = v.

A complete DMVLP realizes at least one transition for each possible initial
state.

Example 9 Program 1 of Example 3 is not complete since it does not have
any rule over target variable at, in fact it does not realize any transitions.
Program 2 of same example is complete:

– The rule a1t ← ∅ will realize a1t from any feature state;
– For bt it has a first (resp. second) rule that matches all feature state where
a0t−1 (resp. a1t−1) appears and the domain of at−1 being {0, 1} all cases and
thus all feature states are covered by this two rules;

– For ct, all combinations of values of a and b are covered by the three last
rules, ∀val ∈ dom(ct−1),
– {a0t−1, b0t−1, cvalt−1} is matched by c0t ← a0t−1;
– {a0t−1, b1t−1, cvalt−1} is matched by c0t ← b1t−1 (and c0t ← b1t−1);
– {a1t−1, b0t−1, cvalt−1} is matched by c0t ← a1t−1 ∧ b0t−1;
– {a1t−1, b1t−1, cvalt−1} is matched by c0t ← b1t−1.

Program 3 is also complete, and it even realizes multiple values for ct when
both a1t−1 and b1t−1 are in a feature state: {a1t−1, b1t−1, c0t−1} is matched by both
c0t ← b1t−1 and c1t ← a1t−1. Program 4 is not complete: no transition is realized
when a0t−1 is in a feature state since the only rule of at is a1t ← a1t−1.

Definition 9 groups all the properties that we want the learned program
to have: suitability and optimality, and Proposition 1 states that the optimal
program of a set of transitions is unique.

Definition 9 (Suitable and optimal program) Let T ⊆ SF × ST . A
DMVLP P is suitable for T when:

– P is consistent with T ,
– P realizes T ,
– P is complete,
– for any possible MVL rule R consistent with T , there exists R′ ∈ P such

that R′ ≥ R.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to DMVLP
suitable for T are such that R′ ≥ R implies R ≥ R′ then P is called optimal.



Title Suppressed Due to Excessive Length 11

Note that Definition 9 ensures local minimality. In terms of biological mod-
els, it is more interesting to focus on local minimality, thus simple but numer-
ous rules, modeling local influences from which the complexity of the whole
system arises, than global minimality that would produce system-level rules
hiding the local correlations and influences. Definition 9 also guarantees that
we obtain all the minimal rules which guarantees to provide biological collab-
orators with the whole set of possible explanations of biological phenomena
involved in the system of interest.

Proposition 1 (Uniqueness of Optimal Program) Let T ⊆ SF × ST .
The DMVLP optimal for T is unique and denoted PO(T ).

Example 10

Let T = { ({a0t−1, b0t−1, c0t−1}, {a1t , b0t , c0t})
({a0t−1, b0t−1, c1t−1}, {a1t , b0t , c0t})
({a0t−1, b1t−1, c0t−1}, {a1t , b0t , c0t})
({a1t−1, b0t−1, c0t−1}, {a1t , b1t , c1t})
({a0t−1, b1t−1, c1t−1}, {a1t , b0t , c0t})
({a1t−1, b0t−1, c1t−1}, {a1t , b1t , c1t})
({a1t−1, b1t−1, c0t−1}, {a1t , b1t , c0t})
({a1t−1, b1t−1, c0t−1}, {a1t , b1t , c1t}) } .

Program 1 and 4 of Example 3 are not complete (see Example 9) and
thus not suitable for T . Program 3 is complete but not consistent with T
(see Example 8). Program 2 is complete, consistent and realizes T but is not
suitable for T : indeed, c1t ← a1t−1 is consistent with T and there is no rule in
Program 2 that dominates it.

Let us consider:

P := { a1t ← ∅
b0t ← a0t−1

b1t ← a1t−1

c0t ← a0t−1

c0t ← b1t−1

c1t ← a1t−1

c1t ← a1t−1 ∧ b0t−1 } .

P is complete, consistent, realizes T and all rules consistent with T are dom-
inated by a rule of P . Thus, P is suitable for T . But P is not optimal since
c1t ← a1t−1 ∧ b0t−1 is dominated by c1t ← a1t−1. By removing c1t ← a1t−1 ∧ b0t−1
from P , we obtain the optimal program of T .



12 Tony Ribeiro et al.

Algorithm 1 Brute Force Enumeration

– INPUT: a set of atoms A, two sets of variables F and T and a set of
transitions T ⊆ SF × ST .

– Generate all possible rules over A,F , T .
– P := {vval ← {v′val′ | v′val′ ∈ A ∧ v′ ∈ F} | vval ∈ A ∧ v ∈ T }

– Keep only the rules consistent with T .
– P := {R ∈ P | ∀(s, s′) ∈ T, body(R) ⊆ s =⇒ ∃(s, s′′) ∈ T, head(R) ∈
s′′}

– Remove rules dominated by another rule
– P := {R ∈ P | @R′ ∈ P,R′ 6= R ∧R′ ≥ R}

– OUTPUT: P (P is PO(T )).

According to Definition 9, we can obtain the optimal program by a trivial
brute force enumeration: generate all rules consistent with T then remove the
dominated ones as shown in Algorithm 1.

The purpose of Section 4 is to propose a non-trivial approach that is more
efficient in practice to obtain the optimal program. This approach also respects
the optimality properties of Definition 9 and thus ensures independence from
the dynamical semantics, that are detailed in next Section.

3 Dynamical semantics

The aim of this section is to formalize the general notion of dynamical seman-
tics as an update policy based on a program, and to give characterizations of
several widespread existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets
of variables F and T that represent conditions (features) and conclusions
(targets) of rules. Conclusion atoms allow to create one or several new state(s)
made of target variables, from conditions on the current state which is made
of feature atoms.

In Definition 10, we formalize the notion of dynamical semantics which is
a function that, to a program, associates a set of transitions where each state
has at least one outgoing transition. Such a set of transitions can also be seen
as a function that maps any state to a non-empty set of states, regarded as
possible dynamical branchings. We give examples of semantics afterwards.

Definition 10 (Dynamical Semantics) A dynamical semantics (on A) is a
function that associates, to each DMVLP P , a set of transitions T ⊆ SF×ST
so that: first(T ) = SF . Equivalently, a dynamical semantics can be seen as a
function of

(
DMVLP → (SF → ℘(ST ) \ {∅})

)
where DMVLP is the set of

DMVLPs.

A dynamical semantics has an infinity of possibility to produce transitions
from a DMVLP. Indeed, like DS1(P ) of Example 11, a semantics can to-
tally ignore the DMVLP rules. It can also use the rule in an adversary way



Title Suppressed Due to Excessive Length 13

like DSinverse that keeps only the transitions that are not permitted by the
program. Such semantics can produce transitions that are not consistent with
the input program, i.e., the rules which conclusions were not selected for the
transition will be in conflict with the set of transitions from this feature state.
The kind of semantics we are interested in are the ones that properly use the
rule of the DMVLP and ensure the properties of consistency introduced in
Definition 7.

In Example 11, the dynamical semantics DSsyn, DSasyn and DSgen are
example of such semantics. They are trivial forms of the synchronous, asyn-
chronous and general semantics that are widely used in bioinformatics. In-
deed, DSsyn is trivial because it generates transitions towards an arbitrary
state when the program P is not complete (if no rule matches for some target
variable, the program produces an incomplete state), while DSasyn and DSgen

are trivial because they require feature and target variables to correspond and
have a specific form (labelled with t − 1 and t) with no additional stimuli or
observation variables. We formalize those three semantics properly under our
modeling in next Section with no restriction on the feature and target variables
forms.

Example 11 For this example, suppose that feature and target variable are
“symmetrical” (called regular variables later): T = {at, bt, ..., zt} and F =
{at−1, bt−1, ..., zt−1}, with: ∀xt, xt−1 ∈ T × F , dom(xT ) = dom(xt−1). Let
convert be a function of (SF → ST ) such that for any DMVLP P,∀s ∈
SF , convert(s) = {vval

t | vval
t−1 ∈ s}, and s0 ∈ ST an arbitrary target state

that is used to ensure that each of the following semantics produces at least
one target state. Let DS1, DS2, DSsyn, DSasyn, DSgen and DSinverse be
dynamical semantics defined as follows, where P is a DMVLP and s ∈ SF :

– (DS1(P ))(s) = {s0}
– (DS2(P ))(s) = {s′ ∈ ST | s′ ∈ {head(R) | R ∈ P, |body(R)| = 3}} ∪ {s0}
– (DSsyn(P ))(s) = {s′ ∈ ST | s′ ∈ {head(R) | R ∈ P,body(R) ⊆ s}} ∪ {s0}
– (DSasyn(P ))(s) = {s′ ∈ ST | s′ ∈ convert(s) ∪ {head(R) | R ∈ P,

body(R) ⊆ s} ∧ |{vval
t ∈ s′ | vval

t−1 ∈ s}| ∈ {|T |, |T | − 1}}
– (DSgen(P ))(s) = {s′ ∈ ST | s′ ∈ convert(s)∪{head(R) | R ∈ P,body(R) ⊆
s}

– (DSinverse(P ))(s) = (ST \ (DSsyn(P ))(s)) ∪ {s0}

DS1 always outputs transitions towards s0 and totally ignores the rules of
the given program and thus can produce transitions that are not consistent
with the input program. DS2 uses the rules of the DMVLP but in an improper
way, as it always considers the conclusions of rules as long as they have exactly
3 conditions, whether they match the feature state or not. DSinverse uses
proper rules conclusions, but in order to contradict the program: it produces
transitions so that the program is not consistent, plus a transition to s0 to
ensure at least a transition.

DSsyn use the rules in the expected way, i.e., it checks if they match the
considered feature state and applies their conclusion; it is a trivial form of



14 Tony Ribeiro et al.

synchronous semantics as properly introduced later in Definition 14. DSasyn

also uses the rules as expected: it uses the feature state to restrict the possible
target states to at most one modification compared to the feature state; this is
a trivial form of asynchronous semantics, as properly introduced later in Def-
inition 15. DSgen also uses the rules as expected: it mixes the current feature
state with rules conclusions to produce a partially new target state; it is a
trivial form of general semantics, as properly introduced later in Definition 16.

We now aim at characterizing a set of semantics of interest for the current
work, as given in Theorem 1. Beforehand, Definition 11 allows to denote as
Conclusions(s, P ) the set of heads of rules, in a program P , matching a state
s, and Definition 12 introduces a notation B|X to consider only atoms in a
set B ⊆ A that have their variable in a set X ⊆ V. These two notations will
be used in the next theorem and afterwards. In the following, we especially
use the notation of Definition 12 with A (denoted A|X) and on Conclusions
(denoted Conclusions|X(s, P )).

Definition 11 (Program Conclusions) Let s in SF and P a MVLP. We
denote: Conclusions(s, P ) := {head(R) ∈ A | R ∈ P,Rus} the set of conclusion
atoms in state s for the program P .

Definition 12 (Restriction of a Set of Atoms) Let B ⊆ A be a set of
atoms, and X ⊆ V be a set of variables. We denote: B|X = {vval ∈ B | v ∈ X}
the set of atoms of B that have their variables in X. If B is instead a function
that outputs a set of atoms, we note B|X(params) instead of

(
B(params)

)
|X ,

where params is the sequence of parameters of B.

With Theorem 1, we characterize semantics which for any DMVLP pro-
duce the same behavior using the corresponding optimal program, that is,
any semantics DS such that for any DMVLP P,DS(P ) = DS(PO(DS(P ))).
Such a semantics produces new states based only on the initial state s and the
heads of matching rules of the given program Conclusions(s, P ), as stated by
point (2). Moreover, PO(DS(P )) being consistent with DS(P ), given a state
s ∈ SF , Conclusions(s, PO(DS(P ))) =

⋃
s′∈DS(P )(s)

s′, i.e., all the target atoms observed

in a target state of DS(P )(s) will be the head of some rule that matches s
in the optimal program. In other words, it will be given to the semantics to
choose from when the program PO(DS(P )) is used with semantics DS. Thus
the semantics should produce the same states, when being given the atoms of
all those next states as possibilities, as stated by point (1). Those two con-
ditions are sufficient to ensure that DS(PO(DS(P ))) = DS(P ) and thus can
be used to assert if the dynamics of a given semantics, for any given origi-
nal program P , can be reproduced using the corresponding optimal program
PO(DS(P )) with the same semantics.

Theorem 1 (Pseudo-idempotent Semantics and Optimal DMVLP)
Let DS be a dynamical semantics.
If, for all P a DMVLP, there exists pick ∈ (SF × ℘(A|T )→ ℘(ST ) \ {∅}) so
that:



Title Suppressed Due to Excessive Length 15

010 {a1t , b1t , ch0, ch2}+ 012

{a0t , a1t , b0t , b1t , ch2}010

002 102

+

Feature state Set of atoms
Set of target states

s D
DS

s D′

DS
Union

Semantics

Fig. 3: Example of a pseudo-idempotent semantics DS.

(1) ∀D ⊆ A|T , pick(s,
⋃

s′∈pick(s,D)

s′) = pick(s,D), and

(2) ∀s ∈ SF ,
(
DS(P )

)
(s) = pick(s,Conclusions(s, P )),

then, for all P a DMVLP, DS(PO(DS(P )))) = DS(P ).

Example 12 Let DS be a dynamical semantics, s ∈ SF be a feature state such
that s = {a0t−1, b1t−1, st0}, P be a DMVLP such that Conclusions(P, s) =
{a1t , b1t , ch0, ch2}. In Figure 3, from s and Conclusions(P, s), DS produces
three different target states, i.e., (DS(P ))(s) = pick(s,Conclusions(s, P )) =
{{a0t , b1t , ch2}, {a0t , b0t , ch2}, {a1t , b0t , ch2}}. Let D = Conclusions(P, s), here, the
set of occurring atoms in the states produced by DS(s,D) is D′ =

⋃
s′∈pick(s,D)

=

{a0
t , a

1
t ,b

0
t , b

1
t , ch

2}. In this example, the function pick uses all target atoms of
D except ch0 and introduces two additional atoms a0

t , b0
t , it also only produces

3 of the 4 possible target states composed of those atoms: this semantics does
not allows a1t and b1t to appear together in transition from s. If we call the func-
tion pick by replacing the program conclusions by the semantics conclusions
we observe the same resulting states, i.e., pick(s,D′) = pick(s,D). Given the
target atoms selected by the semantics, it reproduces the same set of target
states in this example; if the semantics has this behavior for any feature state
s and any program P , it is pseudo-idempotent.

Up to this point, no link has been made between corresponding feature
(in F) and target (in T ) variables or atoms. In other words, the formal link
between the two atoms vval

t and vval
t−1 with the same value has not been made

yet. This link, called projection, is established in Definition 13, under the only
assumption that dom(vt) = dom(vt−1). It has two purposes:

– When provided with a set of transitions, for instance by using a dynamical
semantics, one can describe dynamical paths, that is, successions of next
states, by using each next state to generate the equivalent initial state for
the next transition;



16 Tony Ribeiro et al.

– Some dynamical semantics (such as the asynchronous one, see Defini-
tion 15) make use of the current state to build the next state, and as
such need a way to convert target variables into feature variables.

However, such a projection cannot be defined on the whole sets of target
(T ) and feature (F) variables, but only on two subsets F ⊆ F and T ⊆ T .
Note that we require the projection to be a bijection, thus: |F| = |T |. These
subsets T and F contain variables that we call afterwards regular variables:
they correspond to variables that have an equivalent in both the initial states
(at t − 1) and the next states (at t). Variables in F \ F can be considered
as stimuli variables: they can only be observed in the previous state but we
do not try to explain their next value in the current state; this is typically
the case of external stimuli (sun, stress, nutriment...) that are unpredictable
when observing only the studied system. Variables in T \ T can be considered
as observation variables: they are only observed in the present state as the
result of the combination of other (regular and stimuli) variables; they can be
of use to assess the occurrence of a specific configuration in the previous state
but cannot be used to generate the next step. For the rest of this section,
we suppose that F and T are given and that there exists such projection
functions, as given by Definition 13. Figure 4 gives a representation of these
sets of variables.

It is noteworthy that projections on states are not bijective, because of
stimuli variables that have no equivalent in target variables, and observation
variables that have no equivalent in feature variables (see Figure 4). Therefore,
the focus is often made on regular variables (in F and T ). Especially, for any
pair of states (s, s′) ∈ SF ×ST , having spT→F (s′) ⊆ s, which is equivalent to
spF→T (s) ⊆ s′, means that the regular variables in s and their projection in
s′ (or conversely) hold the same value, modulo the projection.

Definition 13 (Projections) A projection on variables is a bijective func-
tion vpT→F : T → F so that T ⊆ T , F ⊆ F , and: ∀v ∈ T , dom(vpT→F (v)) =
dom(v). The projection on atoms (based on vpT→F ) is the bijective function:

apT→F : A|T → A|F
vval 7→

(
vpT→F (v)

)val
.

The inverse function of vpT→F is denoted vpF→T and the inverse function of
apT→F is denoted apF→T .

The projections on states (based on apT→F and apF→T ) are the functions:

spT→F : ST → SF

s′ 7→ {apT→F (vval) ∈ A | vval ∈ s′ ∧ v ∈ T }

spF→T : SF → ST

s 7→ {apF→T (vval) ∈ A | vval ∈ s ∧ v ∈ F} .



Title Suppressed Due to Excessive Length 17

s1 . . . sm (v1)t−1 . . . (vn)t−1

F \ F (Stimuli) F (Regular variables)

F (Feature variables)

(v1)t . . . (vn)t c1 . . . ck

T (Regular variables) T \ T (Observation variables)

(Target variables) T

Projections

Fig. 4: Representation of a state transition of a dynamical system over n
variables, m stimuli and k observation variables, i.e., |F| = n+m, |T | = n+k.

Example 13 In Example 12, there are three feature variables (at−1, bt−1, st)
and three target variables (at, bt, ch). If we consider that the regular variables
are T = {at, bt} and F = {at−1, bt−1}, we can define the following (bijective)

projection on variables: vpT→F :

{
at 7→ at−1
bt 7→ bt−1

. Following Definition 13, we

have, for instance:

– apT→F (a1t ) = a1t−1,
– apF→T (b0t−1) = b0t ,
– spT→F ({a0t , b0t , ch0}) = {a0t−1, b0t−1}, and
– spF→T ({a1t−1, b0t−1, st1}) = {a1t , b0t}.

3.1 Synchronous, Asynchronous and General Semantics

In the following, we present a formal definition and a characterization of three
particular semantics that are widespread in the field of complex dynami-
cal systems: synchronous, asynchronous and general.Note that some points
in these definitions are arbitrary and could be discussed depending on the
modeling paradigm. For instance, the policy about rules R so that ∃s ∈
SF , R u s ∧ apT→F (head(R)) ∈ s, which model stability in the dynamics,
could be to include them (such as in the synchronous and general semantics)
or exclude them (such as in the asynchronous semantics) from the possible dy-
namics. The modeling method presented so far in this paper is independent to
the considered semantics as long as it respects Definition 10 and the capacity
of the optimal program to reproduce the observed behavior is ensured as long
as the semantics respects Theorem 1.

Definition 14 introduces the synchronous semantics, consisting in updating
all variables at once in each step in order to compute the next state. The value
of each variable in the next state is taken amongst a “pool” of atoms containing
all conclusions of rules that match the current state (using Conclusions) and
atoms produced by a “default function” d that is explained below. However,
this is taken in a loose sense: as stated above, atoms that make a variable



18 Tony Ribeiro et al.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

// f(a) := not b

a0
t ← b1t−1

a1
t ← b0t−1

// f(b) := not a

b0t ← a1
t−1

b1t ← a0
t−1

// f(a) := not b

a0
t ← b1t−1

a1
t ← b0t−1

// f(b) := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Default rules

a0
t ← a0

t−1

a1
t ← a1

t−1

b0t ← b0t−1

b1t ← b1t−1

// f(a) := not b

a0
t ← b1t−1

a1
t ← b0t−1

// f(b) := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Default rules

a0
t ← a0

t−1

a1
t ← a1

t−1

b0t ← b0t−1

b1t ← b1t−1

Fig. 5: A Boolean network with two variables inhibiting each other (top). The
corresponding synchronous, asynchronous and general dynamics are given as
state-transition diagrams (middle). In these state-transition diagrams, each
box with a label “xy” represents both the feature state {axt−1, b

y
t−1} and the

target state {axt , b
y
t }, and each arrow represents a possible transitions between

states. The corresponding optimal DMVLP (bottom) contain comments (in
grey) that explain sub-parts of the programs.

change its value are not prioritized over atoms that don’t. Furthermore, if
several atoms on the same variable are provided in the pool (as conclusions
of different rules or provided by the default function), then several transitions
are possible, depending on which one is chosen. Thus, for a self-transition
(s, s′) ∈ SF × ST with spT→F (s′) ⊆ s to occur, there needs to be, for each
atom vval ∈ s′ so that v ∈ T , either a rule that matches s and whose head is
vval or that the default function gives the value vval. Note however that such
a loop is not necessarily a point attractor (that is, a state for which the only
possible transition is the self-transition); it is only the case if all atoms in the
pool are also in spT→F (s).

As explained above, for a given state s and a given set of variables W , the
function d provides a set of “default atoms” added to the pool of atoms used
to build the next state, along with rules conclusions. This function d, however,
is not explicitly given: the only constraints are that:

– d produces atoms at least for a provided set of variables W , specifically, the
set of variables having no conclusion in a given state, which is necessary in
the case of an incomplete program,

– d(s, ∅) is a subset of d(s,W ) for all W , as it intuitively represents a set of
default atoms that are always available.



Title Suppressed Due to Excessive Length 19

Note that d(s, ∅) = ∅ always respects these constraints and is thus always a
possible value. In the case of a complete program, that is, a program providing
conclusions for every variables in every state, d is always called with W = ∅
and the other cases can thus be ignored. Another typical use for d is the case
of a system with Boolean variables (i.e., such that ∀v ∈ V, dom(v) = {0, 1})
where a program P is built by importing only the positive rules of the system,
that is, only rules with atoms v1

t as heads. This may happen when importing
a model from another formalism featuring only Boolean formulas, such as
Boolean networks. In this case, d can be used to provide a default atom w0

t

for all variables w that do not appear in Conclusions(s, P ), thus reproducing
the dynamics of the original system.

Definition 14 (Synchronous semantics) Let d ∈ (SF ×℘(T )→ ℘(A|T )),
so that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W )) ∧ d(s, ∅) ⊆ d(s,W ). The syn-
chronous semantics Tsyn is defined by:

Tsyn : P 7→{(s, s′) ∈ SF × ST | s′ ⊆ Conclusions(s, P )∪
d(s, T \ var(Conclusions(s, P )))}

Example 14 It is possible to reproduce classical Boolean network dynamics
using the synchronous semantics (Tsyn) with a well-chosen default function.
Indeed, Boolean models are classically defined as a set of Boolean function
providing conditions in which each variable becomes active, thus implying
that all the other cases make them inactive. A straightforward translation
of a Boolean model into a program is thus to encode the active state of a
variable with state 1 and the inactive state with 0. If the Boolean functions
are represented as disjunctive normal forms, the clauses can be considered as
a set of Boolean atoms of the form v or ¬v. Each clause c of the DNF of a
variable v can directly be converted into a rule R such that, head(R) = v1

t and
∀v′t−1 ∈ F , v′1t−1 ∈ body(R) ⇐⇒ v′ ∈ c and v′0t−1 ∈ body(R) ⇐⇒ (¬v′) ∈ c.
Finally, the following default function allows to force the variables back to 0
when the original Boolean function should not be true:

d : SF × ℘(T )→ ℘(A|T )

(s, Z) 7→ {v0t | vt ∈ Z}

In Definition 15, we formalize the asynchronous semantics that imposes
that no more than one regular variable can change its value in each transition.
The observation variables are not counted since they have no equivalent in fea-
ture variables to be compared to. As for the previous synchronous semantics,
we use here a “pool” of atoms, made of rules conclusions and default atoms,
that may be used to build the next states. The default function d used here
is inspired from the previous synchronous semantics, with an additional con-
straint: its result always contains the atoms of the initial state. Constrains are
also added on the next state to limit to at most one regular variable change.
Moreover, contrary to the synchronous semantics, the asynchronous seman-
tics prioritizes the changes. Thus, for a self-transition (s, s′) ∈ SF × ST with



20 Tony Ribeiro et al.

spT→F (s′) ⊆ s to occur, it is required that all atoms of regular variables in the
pool are in spF→T (s), i.e., this only happens when (s, s′) is a point attractor,
in the sense that all regular variables cannot change their value.

Definition 15 (Asynchronous semantics) Let d ∈ (SF×℘(T )→ ℘(A|T )),
so that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W )) ∧ spF→T (s) ⊆ d(s, ∅) ⊆ d(s,W ).
The asynchronous semantics Tasyn is defined by:

Tasyn : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Conclusions(s, P )∪
d(s, T \ var(Conclusions(s, P ))) ∧(
|spF→T (s) \ s′| = 1 ∨ Conclusions|T (s, P )∪
dT (s, T \ var(Conclusions(s, P ))) = spF→T (s)

)
}

where the notations A|T , Conclusions|T and d|T come from Definition 12.

A typical mapping for d is: d : (s,W ) 7→ spF→T (s) ∪ O, where O is a set
of atoms on observation variables with arbitrary values, thus conserving the
previous values for regular variables and ignoring the second argument.

In Definition 16, we formalize the general semantics as a more permissive
version of the synchronous one: any subset of the variables can change their
value in a transition. This semantics uses the same “pool” of atoms than the
synchronous semantics containing rules conclusions of P and default atoms
provided by d, and no constraint. However, as for the asynchronous semantics,
the atoms of the initial state must always be featured as default atoms. Thus,
a self-transition (s, s′) ∈ SF × ST with spF→T (s) ⊆ s′ occurs for each state
s because, intuitively, the empty set of variables can always be selected for
update. However, as for the synchronous semantics, such a self-transition is
a point attractor only if all atoms of regular variables in the “pool” are in
spF→T (s). Finally, we note that the general semantics contains the dynam-
ics of both the synchronous and the asynchronous semantics, but also other
dynamics not featured in these two other semantics.

Definition 16 (General semantics) Let d ∈ (SF × ℘(T ) → ℘(A|T )), so
that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W )) ∧ spF→T (s) ⊆ d(s, ∅) ⊆ d(s,W ).
The general semantics Tgen is defined by:

Tgen : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Conclusions(s, P )∪
d(s, T \ var(Conclusions(s, P )))}.

Figure 5 gives an example of the transitions corresponding to these three
semantics on a simple Boolean network of two variables inhibiting each other.
The corresponding optimal DMVLP is given below each transition graph. In
this example, the three programs share the rules corresponding to the inhibi-
tions: a0t ← b1t−1 and a1t ← b0t−1 model the inhibition of a by b, while b0t ← a1t−1
and b1t ← a0t−1 model the inhibition of b by a. However, generally speaking,
there may not always exist such shared rules, for instance if the interactions
they represent are somehow ignored by the semantics behavior.



Title Suppressed Due to Excessive Length 21

Furthermore, in this example, we observe additional rules (w.r.t. the syn-
chronous case) that appear in both the asynchronous and general semantics
cases. Those rules capture the default behavior of both semantics, that is, the
projection of the feature state as possible target atoms. Again, such rules may
not appear generally speaking, because the dynamics of the system might com-
bine with the dynamics semantics, thus possibly merging multiple rules into
more general ones (for example, conservation rules becoming rules with an
empty body).

Example 15 As for the synchronous semantics, it is possible to reproduce clas-
sical Boolean network dynamics using the asynchronous (Tasyn) and general
semantics (Tgen) with the same encoding of rules, and a similar default func-
tion where the projection of the current state is added:

d : SF × ℘(T )→ ℘(A|T )

(s, Z) 7→ {v0t | vt ∈ Z} ∪ spF→T (s)

Finally, with Theorem 2, we state that the definitions and method devel-
oped in the previous section are independent of the chosen semantics as long
as it respect Theorem 1.

Theorem 2 (Semantics-Free Correctness) Let P be a DMVLP.

– Tsyn(P ) = Tsyn(PO(Tsyn(P ))),
– Tasyn(P ) = Tasyn(PO(Tasyn(P ))),
– Tgen(P ) = Tgen(PO(Tgen(P ))).

The next section focuses on methods and algorithm to learn the optimal
program.

4 GULA

In Algorithm 1 we presented a trivial algorithm to obtain the optimal program.
In this section we present a more efficient algorithm based on inductive logic
programming.

Until now, the LF1T algorithm [20,45,47] only tackled the learning of
synchronous deterministic programs. Using the formalism introduced in the
previous sections, it can now be revised to learn systems from transitions
produced from any semantics respecting Theorem 1 like the three semantics
defined above. Furthermore, both deterministic and non-deterministic systems
can now be learned.

4.1 Learning operations

This section focuses on the manipulation of programs for the learning pro-
cess. Definition 17 and Definition 18 formalize the main atomic operations



22 Tony Ribeiro et al.

performed on a rule or a program by the learning algorithm, whose objective
is to make minimal modifications to a given DMVLP in order to be consistent
with a new set of transitions.

Definition 17 (Rule least specialization) Let R be a MVL rule and s ∈
SF such that R u s. The least specialization of R by s according to F and A
is:

Lspe(R, s,A,F) := {head(R)← body(R) ∪ {vval} |

v ∈ F ∧ vval ∈ A ∧ vval 6∈ s ∧ ∀val′ ∈ N, vval′ 6∈ body(R)}.

The least specialization Lspe(R, s,A,F) produces a set of rule which matches
all states that R matches except s. Thus Lspe(R, s,A,F) realizes all tran-
sitions that R realizes except the ones starting from s. Note that ∀R ∈
P,R u s ∧ | body(R)| = |F| =⇒ Lspe(R, s,A,F) = ∅, i.e., a rule R matching
s cannot be modified to make it not match s if its body already contains all
feature variables, because nothing can be added in its body.

Example 16 Let F := {at−1, bt−1, ct−1} and dom(at−1) := {0, 1}, dom(bt−1) :=
{0, 1, 2}, dom(ct−1) := {0, 1, 2, 3}. We give below three examples of least spe-
cialization on different initial rules and states. These situations could very well
happen in the learning of a same set of transitions, at different steps of the
process. The added conditions are highlighted in bold.
Lspe(a0

t ← ∅,
{a0

t−1, b
1
t−1, c

2
t−1},A,F) = {

a0
t ← a1

t−1,

a0
t ← b0

t−1,

a0
t ← b2

t−1,

a0
t ← c0t−1,

a0
t ← c1t−1,

a0
t ← c3t−1 }

Lspe(b0t ← b1t−1,

{a0
t−1, b

1
t−1, c

2
t−1},A,F) = {

b0t ← a1
t−1 ∧ b1t−1,

b0t ← b1t−1 ∧ c0t−1,

b0t ← b1t−1 ∧ c1t−1,

b0t ← b1t−1 ∧ c3t−1 }

Lspe(c0t ← a0
t−1 ∧ c2t−1,

{a0
t−1, b

1
t−1, c

2
t−1},A,F) = {

c0t ← a0
t−1 ∧ b0

t−1 ∧ c2t−1,

c0t ← a0
t−1 ∧ b2

t−1 ∧ c2t−1 }

For a0t ← ∅, the rule having an empty body, all possible variable val-
ues (given by dom) not appearing in the given state are candidate for a new
condition. For b2t ← b1t−1, there is a condition on b in the body, therefore
only conditions on a and c can be added. For c3t ← a1t−1 ∧ c3t−1, only con-
ditions on b can be added. Finally we can consider a case like Lspe(a

1
t ←

a0t−1 ∧ b1t−1 ∧ c2t−1, {a0t−1, b1t−1, c2t−1},A,F) = ∅ where a condition already ex-
ists for each variable and thus no minimal specialization of the body can be
produced, thus resulting in an empty set of rules.

Definition 18 (Program least revision) Let P be a DMVLP, s ∈ SF and
T ⊆ SF×ST such that first(T ) = {s}. LetRP := {R ∈ P | R conflicts with T}.
The least revision of P by T according to A and F is Lrev(P, T,A,F) :=
(P \RP ) ∪

⋃
R∈RP

Lspe(R, s,A,F).

Note that according to Definition 18, first(T ) = {s} implies that all tran-
sitions for T have s as initial state.



Title Suppressed Due to Excessive Length 23

Example 17 Let F := {at−1, bt−1, ct−1} and dom(at−1) := {0, 1}, dom(bt−1) :=
{0, 1, 2}, dom(ct−1) := {0, 1, 2, 3}. Let T be as set of transitions and P a
DMVLP as follows.
T := {
({a0

t−1, b
1
t−1, c

2
t−1}, {a

1
t , b

1
t , c

2
t}),

({a0
t−1, b

1
t−1, c

2
t−1}, {a

0
t , b

2
t , c

2
t}),

({a0
t−1, b

1
t−1, c

2
t−1}, {a

0
t , b

1
t , c

1
t}),

({a0
t−1, b

1
t−1, c

2
t−1}, {a

0
t , b

1
t , c

3
t}),

}

P := {
a0
t ← ∅,

a1
t ← ∅,

b0
t ← b1

t−1,

b1t ← ∅,
c0t ← a0

t−1 ∧ b1
t−1 ∧ c2t−1,

c0t ← c2t−1,

c1t ← a0
t−1,

c2t ← a1
t−1,

c2t ← b1t−1,

c3t ← c2t−1 }

Lrev(P, T,A,F) := {
a0
t ← ∅,

a1
t ← ∅,

b0t ← a1
t−1 ∧ b1t−1,

b0t ← b1t−1 ∧ c0t−1,

b0t ← b1t−1 ∧ c1t−1,

b0t ← b1t−1 ∧ c2t−1,

b1t ← ∅,
c0t ← a1

t−1 ∧ c2t−1,

c0t ← b0
t−1 ∧ c2t−1,

c0t ← b2
t−1 ∧ c2t−1,

c1t ← a0
t−1,

c2t ← a1
t−1,

c2t ← b1t−1,

c3t ← c2t−1 }

Here, we have first(T ) = {{a0t−1, b1t−1, c2t−1}} and thus the least revision
of Definition 18 can be applied on P . Moreover, RP = {b0t ← b1t−1, c

0
t ←

a0t−1∧b1t−1∧c2t−1, c0t ← c2t−1}; these rules are highlighted in bold in P . The least
revision of P by T over A and F , Lrev(P, T,A,F), is obtained by removing the
rules of RP from P and adding their least specialization, added conditions are
in bold in Lrev(P, T,A,F) and are detailed in Example 16, except for a0t ← ∅
which does not need to be revised because it is consistent with T since a0t is
observed in some target states.

Theorem 3 states properties on the least revision, in order to prove it
suitable to be used in the learning algorithm.

Theorem 3 (Properties of Least Revision) Let R be a MVL rule and
s ∈ SF such that R u s. Let SR := {s′ ∈ SF | R u s′} and Sspe := {s′ ∈ SF |
∃R′ ∈ Lspe(R, s,A,F), R′ u s′}.

Let P be a DMVLP and T, T ′ ⊆ SF × ST such that |first(T )| = 1 ∧
first(T ) ∩ first(T ′) = ∅. The following results hold:

1. Sspe = SR \ {s},
2. Lrev(P, T,A,F) is consistent with T ,

3.
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−→ T ′,

4.
P
↪−→ T =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−→ T ,

5. P is complete =⇒ Lrev(P, T,A,F) is complete.

The next properties are directly used in the learning algorithm. Proposi-
tion 2 gives an explicit definition of the optimal program for an empty set of
transitions, which is the starting point of the algorithm. Proposition 3 gives a
method to obtain the optimal program from any suitable program by simply
removing the dominated rules; this means that the DMVLP optimal for a set
of transitions can be obtained from any DMVLP suitable for the same set of
transitions by removing all the dominated rules. Finally, in association with
these two results, Theorem 4 gives a method to iteratively compute PO(T ) for
any T ⊆ SF × ST , starting from PO(∅).



24 Tony Ribeiro et al.

00 01

00 10

00 11

10 1000 00

Positive
examples

Negative
examples

a=0

00

11 01

11 10

11 00

01

10

11

Observations

01 01 11 11

00 01

00 10

00 11

10 1000 00

Positive
examples

Negative
examples

a=1

00

11 01

11 10

11 00

10

01

11

Observations

01 01 11 11

Fig. 6: Preprocessing of the general semantics state transitions of Figure 5
(right) into positive/negative example of the occurence of each value of variable
a in next state. In blue (resp. red) are positives (resp. negatives) examples of
the occurence of a0t (left) and a1t (right) in next state.

Proposition 2 (Optimal Program of Empty Set) PO(∅) = {vval ← ∅ |
v ∈ T ∧ vval ∈ A|T }.

Proposition 3 (From Suitable to Optimal) Let T ⊆ SF × ST . If P is a
DMVLP suitable for T , then PO(T ) = {R ∈ P | ∀R′ ∈ P,R′ ≥ R =⇒ R′ =
R}.

Theorem 4 (Least Revision and Suitability) Let s ∈ SF and T, T ′ ⊆
SF×ST such that |first(T ′)| = 1∧first(T )∩first(T ′) = ∅. Lrev(PO(T ), T ′,A,F)
is a DMVLP suitable for T ∪ T ′.

4.2 Algorithm

In this section we present GULA: the General Usage LFIT Algorithm, a revi-
sion of the LF1T algorithm [20,45] to capture a set of multi-valued dynamics
that especially encompass the classical synchronous, asynchronous and gen-
eral semantics dynamics. For this learning algorithm to operate, there is no
restriction on the semantics. GULA learns the optimal program that, under
the same semantics, is able to exactly reproduce a complete set of observa-
tions, if the semantics respect Theorem 1. Section 5 will be devoted to also
learning the behaviors of the semantics itself, if it is unknown.

GULA learns a logic program from the observations of its state transitions.
Given as input a set of transitions T ⊆ SF×ST , GULA iteratively constructs
a DMVLP that models the dynamics of the observed system by applying
the method formalized in the previous section as shown in Algorithm 2. The
algorithm can be used for both learning possibility or impossibility depending
of its parameter learning mode. When learning possibility (learning mode =
“possibility”), the algorithm will learn the optimal logic program PO(T ) and
this is what will be discussed in this section. The second mode is used in a
heuristical approach to obtain predictive model from partial observation and
will be discussed in later sections.



Title Suppressed Due to Excessive Length 25

Algorithm 2 GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ ×
ST ′ , two sets of variables F ′ and T ′, a string learning mode ∈
{“possibility”, “impossibility”}.

– For each atom vval ∈ A′ of each variable v ∈ T ′:
– if learning mode = “possibility”:
• Extract all states from which transition to vval does not exist:
Negvval := {s | @(s, s′) ∈ T, vval ∈ s′}.

– if learning mode = “impossibility”:
• Extract all states from which transition to vval do exist:
Negvval := {s | ∃(s, s′) ∈ T, vval ∈ s′}.

– Initialize Pvval := {vval ← ∅}.
– For each state s ∈ Negvval :
• Extract and remove the rules of Pvval that match s:
Mvval := {R ∈ P | body(R) ⊆ s} and Pvval := Pvval \Mvval .

• LS := ∅
• For each rule R ∈Mvval :
· Compute its least specialization P ′ = Lspe(R, s,A′,F ′).
· Remove all the rules in P ′ dominated by a rule in Pvval .
· Remove all the rules in P ′ dominated by a rule in LS.
· Remove all the rules in LS dominated by a rule in P ′.
· LS := LS ∪ P ′.

• Add all remaining rules of LS to Pvval : Pvval := Pvval ∪ LS.
– P := P ∪ Pvval

– OUTPUT: P (P is PO(T ) if learning mode = “possibility”).

From the set of transitions T , GULA learns the conditions under which
each vval ∈ A′ ⊆ A, v ∈ T ′ ⊆ T may appear in the next state. The algorithm
starts by computing the set of all negative examples of the appearance of vval

in next state: all states such that v never takes the value val in the next state of
a transition of T . Those negative examples are then used during the following
learning phase to iteratively learn the set of rules PO(T ). The learning phase
starts by initializing a set of rules Pvval to {R ∈ PO(∅) | head(R) = vval} =
{vval ← ∅}. Pvval is iteratively revised against each negative example neg in
Negvval . All rules Rm of Pvval that match neg have to be revised. In order
for Pvval to remain optimal, the revision of each Rm must not match neg but
still matches every other state that Rm matches. To ensure that, the least
specialization (see Definition 17) is used to revise each conflicting rule Rm.
For each variable of F ′ so that body(Rm) has no condition over it, a condition
over another value than the one observed in state neg can be added. None
of those revision match neg and all states matched by Rm are still matched
by at least one of its revisions. Each revised rule can be dominated by a
rule in Pvval or another revised rules and thus dominance must be checked
from both. The non-dominated revised rules are then added to Pvval . Once
Pvval has been revised against all negatives example of Negvval , Pvval = {R ∈
PO(T ) | head(R) = vval}. Finally, Pvval is added to P and the loop restarts



26 Tony Ribeiro et al.

with another atom. Once all values of each variable have been treated, the
algorithm outputs P which is then equal to PO(T ). More discussion of the
implementation and detailed pseudocode are given in appendix. The source
code of the algorithm is available at https://github.com/Tony-sama/pylfit
under GPL-3.0 License.

Example 18 Execution of GULA(A, T,F , T ) on the synchronous state tran-
sitions of Figure 5 (left):

– F = {at−1, bt−1},
– T = {at, bt},
– A = {a0t−1, b0t−1, a1t−1, b1t−1, a0t , b0t , a1t , b1t}
– T = { ({a0t−1, b0t−1}, {a1t , b1t}), ({a0t−1, b1t−1}, {a0t , b1t}), ({a1t−1, b0t−1}, {a1t , b0t}),

({a1t−1, b1t−1}, {a0t , b0t}) }

Table 1 provides each Negvval (first column) and shows the iterative evolu-
tion of Pvval (last column) over each neg ∈ Negvval during the execution of
GULA(A, T,F , T ). Rules in red in Pvval of previous step match the cur-
rent negative example neg and must be revised, while rules in blue in the
last column dominate rules in blue produced by the least specialization (third
column).

Table 1: Iterative evolution of Pvval over each element of Negvval for each
vval ∈ A|T during the execution of GULA(A, T,F , T ) over the transitions of
Figure 5 (left).

• Nega0
t

= {{a0
t−1, b

0
t−1}, {a1

t−1, b
0
t−1}}, Pa0

t
= {a0

t ← ∅}
neg ∈ Nega0

t
M Least specializations Pa0

t

(a0
t−1, b

0
t−1) {a0

t ← ∅} {a0
t ← a1

t−1, a
0
t ← b1t−1} {a0

t ← a1
t−1, a

0
t ← b1t−1}

(a1
t−1, b

0
t−1) {a0

t ← a1
t−1} {a0

t ← a1
t−1 ∧ b1t−1.} {a0

t ← b1t−1}
• Nega1

t
= {{a0

t−1, b
1
t−1}, {a1

t−1, b
1
t−1}}, Pa1

t
= {a1

t ← ∅}
neg ∈ Nega1

t
M Least specializations Pa1

t

(a0
t−1, b

1
t−1) {a1

t ← ∅} {a1
t ← a1

t−1, a
1
t ← b0t−1} {a1

t ← a1
t−1, a

1
t ← b0t−1}

(a1
t−1, b

1
t−1) {a1

t ← a1
t−1} {a1

t ← a1
t−1 ∧ b0t−1} {a1

t ← b0t−1}
• Negb0t

= {{a0
t−1, b

1
t−1}, {a0

t−1, b
0
t−1}}, Pb0t

= {b0t ← ∅}
neg ∈ Negb0t

M Least specializations Pb0t
(a0

t−1, b
1
t−1) {b0t ← ∅} {b0t ← a1

t−1, b
0
t ← b0t−1} {b0t ← a1

t−1, b
0
t ← b0t−1}

(a0
t−1, b

0
t−1) {b0t ← b0t−1} {b0t ← a1

t−1 ∧ b0t−1} {b0t ← a1
t−1}

• Negb1t
= {{a1

t−1, b
0
t−1}, {a1

t−1, b
1
t−1}}, Pb1t

= {b1t ← ∅}
neg ∈ Negb1t

M Least specializations Pb1t
(a1

t−1, b
0
t−1) {b1t ← ∅} {b1t ← a0

t−1, b
1
t ← b1t−1} {b1t ← a0

t−1, b
1
t ← b1t−1}

(a1
t−1, b

1
t−1) {b1t ← b1t−1} {b1t ← a0

t−1 ∧ b1t−1} {b0t ← a1
t−1}

Example 19 Execution of GULA(A, T,F , T ) on the asynchronous state tran-
sitions of Figure 5 (middle):

– F = {at−1, bt−1},
– T = {at, bt},

https://github.com/Tony-sama/pylfit


Title Suppressed Due to Excessive Length 27

– A = {a0t−1, b0t−1, a1t−1, b1t−1, a0t , b0t , a1t , b1t}
– T = { ({a0t−1, b0t−1}, {a0t , b1t}), ({a0t−1, b0t−1}, {a1t , b0t}), ({a0t−1, b1t−1}, {a0t , b1t}),

({a1t−1, b0t−1}, {a1t , b0t}), ({a1t−1, b1t−1}, {a0t , b0t}) ({a1t−1, b1t−1}, {a1t , b1t}) }

Table 2 provides each Negvval (first column) and shows the iterative evolu-
tion of Pvval (last column) over each neg ∈ Negvval during the execution of
GULA(A, T,F , T ). Rules in red in the last column (Pvval) match the cur-
rent negative example neg and must be revised, while rules in blue in the last
column dominate rules in blue produced by the least specialization (third col-
umn, next line). For the general semantics transitions of Figure 5 (right), the
additional transitions that are observed compared to the asynchronous case
do not alter any Negvval , thus the learning process is the same as in Table 2
resulting in the same output program.

Table 2: Example of the execution of GULA(A, T,F , T ) over the transitions
of Figure 5 (right) and, equivalently, the transitions of Figure 5 (right). For
each vval ∈ A|T is given the iterative evolution over each element of Negvval

(1st col.) of the set of matching rules M ⊆ Pvval (2nd col.), their least special-
izations (3rd col.) and Pvval final state.

• Nega0
t

= {{a1
t−1, b

0
t−1}}, Pa0

t
= {a0

t ← ∅}
neg ∈ Nega0

t
M Least specializations Pa0

t

(a1
t−1, b

0
t−1) {a0

t ← ∅} {a0
t ← a0

t−1, a
0
t ← b1t−1} {a0

t ← a0
t−1, a

0
t ← b1t−1}

• Nega1
t

= {{a0
t−1, b

1
t−1}}, Pa1

t
= {a1

t ← ∅}
neg ∈ Nega1

t
M Least specializations Pa1

t

(a0
t−1, b

1
t−1) {a1

t ← ∅} {a1
t ← a1

t−1, a
1
t ← b0t−1} {a1

t ← a1
t−1, a

1
t ← b0t−1}

• Negb0t
= {{a0

t−1, b
1
t−1}}, Pb0t

= {b0t ← ∅}
neg ∈ Negb0t

M Least specializations Pb0t
(a0

t−1, b
1
t−1) {b0t ← ∅} {b0t ← a1

t−1, b
0
t ← b0t−1} {b0t ← a1

t−1, b
0
t ← b0t−1}

• Negb1t
= {{a1

t−1, b
0
t−1}}, Pb1t

= {b1t ← ∅}
neg ∈ Negb1t

M Least specializations Pb1t
(a1

t−1, b
0
t−1) {b1t ← ∅} {b1t ← a0

t−1, b
1
t ← b1t−1} {b1t ← a1

t−1, b
1
t ← b1t−1}

Theorem 5 gives the properties of the algorithm: GULA terminates and
GULA is sounds, complete and optimal w.r.t. its input, i.e., all and only non-
dominated consistent rules appear in its output program which is the optimal
program of its input. Finally, Theorem 6 characterizes the algorithm time and
memory complexities.

Theorem 5 (GULA Termination, Soundness, Completeness, Opti-
mality) Let T ⊆ SF × ST .

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T,F , T ) = PO(T ),
(3) ∀A′ ⊆ A|T ,GULA(AF ∪ A′, T,F , T ) = {R ∈ PO(T ) | head(R) ∈ A′}.



28 Tony Ribeiro et al.

Lemma 2 (Gula can learn from any pseudo-idempotent semantics)
Let DS be a pseudo-idempotent semantics, then from Theorem 1

DS(GULA(A, DS(P ),F , T )) = DS(PO(DS(P ))) = DS(P ).

Lemma 2 is trivially provent from Theorem 5 since for any dynamical semantics
DS and any DMVLP P , GULA(A, DS(P ),F , T ) = PO(DS(P )).

Lemma 3 (Gula can learn from synchronous, asynchronous and gen-
eral semantics)

– Tsyn(GULA(A, Tsyn(P ),F , T )) = Tsyn(PO(Tsyn(P ))) = Tsyn(P )
– Tasyn(GULA(A, Tasyn(P ),F , T )) = Tasyn(PO(Tasyn(P ))) = Tasyn(P )
– Tgen(GULA(A, Tgen(P ),F , T )) = Tgen(PO(Tgen(P ))) = Tgen(P )

Lemma 3 is trivially proven from Theorem 2. Thus the algorithm can be
used to learn from transitions produced from both synchronous, asynchronous
and general semantics.

Theorem 6 (GULA Complexity) Let T ⊆ SF×ST be a set of transitions,
Let n := max(|F|, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪T }. The worst-
case time complexity of GULA when learning from T belongs to O(|T |2+|T |×
(2n4d2n+2 + 2n3dn+1)) and its worst-case memory use belongs to O(d2n +
2ndn+1 + ndn+2).

The worst case complexity of GULA is higher than the brute force algo-
rithm of Algorithm 1. The brute force complexity is bound by the operation of
removing the dominated rules (O(nd2n+2)), that also appear in GULA. This
operation is done once in the brute force with all consistent rules and multiple
time (for each negative example) in GULA, also GULA can generate several
time the same rule. But, in practice, GULA is expected to manage much less
rules than the whole set of possibility at each step since it remove dominated
rules of previous step, thus globally dealing with less rules than all possibil-
ity and ending being more efficient in practice. Its scalability is evaluated in
Section 7 with the brute force algorithm as baseline.

To use GULA for outputting predictions, we have to assume a semantics
for the model. In the next section, we will exhibit an approach to avoid such
a preliminary assumption and learn a whole system dynamics, including its
semantics, in the form of a single propositional logic program.

5 Learning From Any Dynamical Semantics using Constraints

Any non-deterministic (and thus deterministic) discrete memory-less dynam-
ical system can be represented by a MVLP with some restrictions and a
dedicated dynamical semantics. For this, programs must contain two types of
rules: possibility rules which have conditions on variables at t− 1 and conclu-
sion on one variable at t, same as for DMVLP; and constraint rules which
have conditions on both t and t − 1 but no conclusion. In the following, we
also re-use the same notations as for theMVL of Section 2.1 such as head(R),
body(R) and var(head(R)).



Title Suppressed Due to Excessive Length 29

5.1 Constraints DMVLP

Definition 19 (Constrained DMVLP) Let P ′ be a DMVLP on AF∪Tdom , F
and T two sets of variables, and ε a special variable with dom(ε) = {0, 1} so
that ε /∈ T ∪F . A CDMVLP P is aMVLP such that P = P ′ ∪ {R ∈MVL |
head(R) = ε1 ∧ ∀vval ∈ body(R), v ∈ F ∪ T }. A MVL rule R such that
head(R) = ε1 and ∀vval ∈ body(R), v ∈ F ∪ T is called a MVL constraint.

Moreover, in the following we denote V = F ∪ T ∪ {ε}. This V is different
than the one of P ′ (which is F ∪T , without the special variable ε). From now,

a constraint C is denoted:
⊥←− body(C).

Example 20
⊥←− a0t ∧ a0t−1 is a constraint that can prevent a to take the value

0 in two successive states.
⊥←− b1t ∧ d2t ∧ c2t−1 is a constraint that can prevent

to have both b1 and d2 in the next state if c2 appears in the initial state.
⊥←− a0t ∧ b0t is a constraint with only conditions in T , it prevents a and b to

take value 0 at same time.
⊥←− a0t−1 ∧ b0t−1 is a constraint with only conditions

in F , it prevents any transitions from a state where a and b have value 0, thus
creating final states.

Definition 20 (Constraint-transition matching) Let (s, s′) ∈ SF × ST .
The constraint C matches (s, s′), written C u (s, s′), iff body(C) ⊆ s ∪ s′.

Using the notion of rule and constraint matching we can use a CDMVLP to
compute the next possible states. Definition 21 provides such a method based
on synchronous semantic and constraints. Given a state, the set of possible
next states is the Cartesian product of the conclusion of all matching rules
and default atoms. Constraints rules are then used to discard states that would
generate non-valid transitions.

Definition 21 (Synchronous constrained Semantics) The synchronous
constrained semantics Tsyn−c is defined by:

Tsyn−c : P 7→{(s, s′) ∈ SF × ST | s′ ⊆ Conclusions(s, P ) ∧
@C ∈ P,head(C) = ε1 ∧ C u (s, s′)}

Figure 7 shows the dynamics of the Boolean network of Figure 5 under
three semantics which dynamics cannot be reproduced using synchronous,
asynchronous or general semantics on a program learned using GULA. In the
first example (left), either all Boolean functions are applied simultaneously or
nothing occurs (self-transition using projection). In the second example (cen-
ter), the Boolean functions are applied synchronously but their is also always
a possibility for any variable to take value 0 in the next state. In the third
example (right), either the Boolean functions are applied synchronously, or
each variable value is reversed (0 into 1 and 1 into 0). The original transitions
of each dynamics are in black and the additional non-valid transitions in red.



30 Tony Ribeiro et al.

00

01 10

11

00

01 10

11

00

01 10

11

// a := not b

a0
t ← b1t−1

a1
t ← b0t−1

// b := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Stability rules

a0
t ← a0

t−1

a1
t ← a1

t−1

b0t ← b0t−1

b1t ← b1t−1

// Constraints
⊥←− a0

t , b
1
t , b

0
t−1

⊥←− a1
t , b

0
t , a

0
t−1

⊥←− a1
t , b

0
t , b

1
t−1

⊥←− a0
t , b

1
t , a

1
t−1

// a := not b

a0
t ← b1t−1

a1
t ← b0t−1

// b := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Stability rules

a1
t ← a1

t−1

b1t ← b1t−1

// Degradation

a0
t ← a1

t−1

b0t ← b1t−1

// Constraints
⊥←− a1

t , b
1
t , a

1
t−1

⊥←− a1
t , b

1
t , b

1
t−1

// a := not b

a0
t ← b1t−1

a1
t ← b0t−1

// b := not a

b0t ← a1
t−1

b1t ← a0
t−1

// Inverse value

a0
t ← a1

t−1

a1
t ← a0

t−1

b0t ← b1t−1

b1t ← b0t−1

// Constraints
⊥←− a1

t , b
1
t , a

1
t−1

⊥←− a0
t , b

0
t , a

0
t−1

⊥←− a1
t , b

1
t , b

1
t−1

⊥←− a0
t , b

0
t , b

0
t−1

Fig. 7: States transitions diagrams corresponding to three semantics that do
not respect Theorem 1 (in black) applied on the Boolean network of Figure 5.
Using the synchronous semantics on the optimal program of the black transi-
tions will produce in addition the red ones. Below each diagram, a CDMVLP
that can reproduce the same behavior using synchronous constrained seman-
tics.

Using the original black transitions as input, GULA learns programs which,
under the synchronous semantics (Definition 14), would realize the original
black transitions plus the non-valid red ones. The idea is to learn constraints
that would prevent those non-valid transitions to occur so that the observed
dynamics is exactly reproduced using the synchronous constrained semantics
of Definition 21. The CDMVLP shown below each dynamics realize all original
black transitions thanks to there rules and none of the red transitions thanks
to their constraints.

Definition 22 (Conflict and Consistency of constraints) The constraint
C conflicts with a set of transitions T ⊆ SF ×ST when ∃(s, s′) ∈ T,Cu(s, s′).
C is said to be consistent with T when C does not conflict with T .

Therefore, a constraint is consistent if it does not match any transitions of
T .

Definition 23 (Complete set of constraints) A set of constraints SC is
complete with a set of transitions T if ∀(s, s′) ∈ SF × ST , (s, s′) 6∈ T =⇒
∃C ∈ SC,C u (s, s′).



Title Suppressed Due to Excessive Length 31

Definition 24 groups all the properties that we want the learned set of
constraints to have: suitability and optimality, and Proposition 4 states that
the optimal set of constraints of a set of transitions is unique.

Definition 24 (Suitable and optimal constraints) Let T ⊆ SF × ST . A
set of MVL constraints SC is suitable for T when:

– SC is consistent with T ,
– SC is complete with T ,
– for all constraints C not conflicting with T , there exists C ′ ∈ P such that
C ′ ≥ C.

If in addition, for all C ∈ SC, all the constraint rules C ′ belonging to a set of
constraints suitable for T are such that C ′ ≥ C implies C ≥ C ′, then SC is
called optimal.

Proposition 4 Let T ⊆ SF × ST . The optimal set of constraints for T is
unique and denoted CO(T ).

The subset of constraints of CO(T ) that prevent transitions permitted by
PO(T ) but not observed in T from happening, or, in other terms, constraints
that match transitions in Tsyn−c(PO(T ))) \ T , is denoted C ′O(T ) and given
in Definition 25. All constraints of CO(T ) that are not in this set can never
match a transition produced by PO(T ) with Tsyn−c and can thus be consid-
ered useless. Finally, Theorem 7 shows that any set of transitions T can be
reproduced, using synchronous constrained semantics of Definition 21 on the
CDMVLP PO(T ) ∪ C ′O(T ).

Definition 25 (Useful Constraints) Let T ⊆ SF × ST .

C ′O(T ) := {C ∈ CO(T ) | ∃(s, s′) ∈ SF × ST , C u (s, s′) ∧ s PO(T )−−−−→ s′}.

Theorem 7 (Optimal DMVLP and Constraints Correctness Under
Synchronous Constrained Semantics) Let T ⊆ SF × ST , it holds that
T = Tsyn−c(PO(T ) ∪ C ′O(T )).

5.2 Algorithm

In previous sections we presented a modified version of GULA: the General
Usage LFIT Algorithm from [43], which takes as arguments a different set of
variables for conditions and conclusions of rules. This modification allows to
use this modified algorithm to learn constraints and thus CDMVLP.

Algorithm 3 show the Synchronizer algorithm, which given a set of transi-
tions T ⊆ SF×ST will output PO(T )∪C ′O(T ) using GULA and the properties
introduced in the previous section. With the new version of GULA it is possi-
ble to encode meaning in the transitions we give as input to the algorithm. The
constraints we want to learn are technically rules whose head is ε1 with condi-
tions on both F and T . It is sufficient to make the union of the two states of a



32 Tony Ribeiro et al.

transition and feed it to GULA to make it learn such rules. Constraints should
match when an impossible transition is generated by the rules of the optimal
program of T . GULA learns from negative examples and negative examples
of impossible transitions are just the possible transitions, thus the transitions
observed in T . Using the set of transitions T ′ := {(s∪s′, {ε0}) | (s, s′) ∈ T} we
can use GULA to learn such constraints with GULA(A∪{ε1}, T ′,F∪T , {ε}).
Note that ε, from the algorithmic viewpoint, is just a dummy variable used
to make every transition of T ′ a negative example of ε1 which will be the
only head of the rule we will learn here. The program produced will contain
a set of rules that match none of the initial states of T ′ and thus none of
the transitions of T but matches all other possible transitions according to
GULA properties. Their head being ε1, those rules are actually constraints
over T . Since all and only such minimal rules are output by this second call to
GULA, it correspond to CO(T ), which prevent every transitions that are not
in T to be produced using the constraint synchronous semantics. Finally, the
non-essential constraints can be discarded following Definition 25 and finally
PO(T ) ∪ C ′O(T ) is output. The source code of the algorithm is available at
https://github.com/Tony-sama/pylfit under GPL-3.0 License.

Algorithm 3 Synchronizer

– INPUT: a set of atoms A, a set of transitions T ⊆ SF × ST , two sets of
variables F and T .
// 1) Learn what is possible locally in a transition using GULA

– P := GULA(A, T,F , T )
// 2) Encode negative examples of constraints, i.e., observed transitions

– Let ε be a special variable not in the system: ε 6∈ F ∪ T
– T ′ := {(s ∪ s′, {ε0}) | (s, s′) ∈ T}

// 3) Learn what is impossible state-wise in form of constraint using GULA
– P ′ := GULA(A|F∪T ∪{ε1}, T ′,F ∪ T , {ε})

// 4) Keep only applicable constraints
– P ′′ := ∅
– For each C ∈ P ′

// 4.1) Extract compatible rules
– Ctargets := {v ∈ T | ∃val ∈ dom(v), vval ∈ body(C)}
– ∀v ∈ Ctargets, Crules(v) := {R ∈ P | var(head(R)) = v ∧ head(R) ∈

body(C) ∧ ∀w ∈ F ,∀val, val′ ∈ dom(w),
(
wval ∈ body(R) ∧ wval′ ∈

body(C)
)

=⇒ val = val′}
// 4.2) Search for a combination of rules with no conflicting conditions

– For each combi ∈×v∈Ctargets
(Crules(v))

• If ∀v ∈ F , |{vval ∈ body(R) | val ∈ dom(v) ∧R ∈ combi}| ≤ 1
· P ′′ := P ′′ ∪ {C}
· break

– OUTPUT: PO(T ) ∪ C ′O(T ) := P ∪ P ′′.

https://github.com/Tony-sama/pylfit


Title Suppressed Due to Excessive Length 33

Negative examples

Constraints

0011 0101

1010

Observations

1100

11 1100 00 0000 1111

01 01 11 00

00 11 10 10

Fig. 8: Preprocessing of the state transitions of Figure 7 (left) into negative
examples of the application of constraints.

Theorem 8 (Synchronizer Correctness) Given any set of transitions T ,
Synchronizer(A, T , F , T ) outputs PO(T ) ∪ C ′O(T ).

From Theorem 7 and Theorem 8, given a set of transitions T ⊆ SF × ST ,
it holds that Tsyn−c(Synchronizer(A, T,F , T )) = T , i.e., the algorithm can
be used to learn a CDMVLP that reproduce exactly the input transitions
whatever the semantics that produced them.

The complexity of the Synchronizer is basically a regular call to GULA
plus a special one to learn constraints and the search for a compatible set of
rules in the optimal program which could be blocked by the constraint. Since
constraint can have both features and target variables in their body, the com-
plexity of learning constraints with GULA is like considering |F|+|T | features
but only one target value ε1. The detailed complexity of the Synchronizer is
given in Theorem 9.

Theorem 9 (Synchronizer Complexity) Let T ⊆ SF × ST be a set of
transitions, let n := max(|F|, |T |) and d := max({|dom(v)| ∈ N | v ∈ F ∪ T })
and m := |F|+ |T |.

The worst-case time complexity of Synchronizer when learning from T
belongs to O((d2n+2ndn+1+ndn+2)+(|T |2+ |T |×(2m4d2m+2+2m3dm+1))+
(dn

n

)) and its worst-case memory use belongs to O((d2n + 2ndn+1 +ndn+2) +
(d2m + 2mdm+1 +mdm+2) + (ndn)).

The Synchronizer algorithm does not need any assumption about the
semantics of the underlying model but require the full set of observations.
However, when dealing with real data, we may only get access to partial ob-
servations. That is why we propose in next section a heuristic method to use
GULA in such practical cases.

6 Predictions From Partial Observations with Weighted DMVLPs

In this section, we present a heuristic method allowing to use GULA to learn
from partial observations and predict from unobserved feature states. Pre-
vious sections were focusing on theoretical aspects of our method. The two



34 Tony Ribeiro et al.

algorithms presented in Sections 4 and 5 are sound regarding the observations
they have been provided as input. Rules of an optimal program provide mini-
mal explanations and can reproduce what is possible over observed transitions.
If observation are incomplete, the optimal program will realize a transition to
every possible target state from unobserved feature state, i.e. all target atoms
are always possible for unobserved feature state. In practice, when observations
are partial, to get predictions and explanations from our model on unobserved
feature states, we also need to model impossibilities.

Definition 26 (Rule of Impossibility) An rule of impossibility of T ⊆
SF×ST is aMVL rule R such that Rus ∈ SF , (s, s′) ∈ T =⇒ head(R) 6∈ s′.

A rule of impossibility always conflicts with T (Definition 7) but all con-
flicting rules are not necessarily rules of impossibility. Indeed, considering all
feature states matching a rule R, a conflicting rule has at least one feature
state that never leads to a target state containing its conclusion; for a rule of
impossibility, it is the case of all these matching feature states. The conclusion
of a rule of impossibility is never observed in any transition from a feature
state it matches, i.e., its body is a condition so that its head is not possible.

Definition 27 (Optimal Program of Impossibility) Let T ⊆ SF × ST .
A DMVLP P is impossibility-suitable for T when:

– All rules in P are rules of impossibility of T .
– for all rules of impossibility R of T , there exists R′ ∈ P such that R′ ≥ R.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to DMVLP
impossibility-suitable for T are such that R′ ≥ R implies R ≥ R′ then P is
called impossibility-optimal and denoted PO(T ).

Rules of possibility and impossibility can be weighted according to the
observations to form a WDMVLP as given in Definition 28.

Proposition 5 (Uniqueness of Impossibility-Optimal Program) Let
T ⊆ SF×ST . The DMVLP impossibility-optimal for T is unique and denoted
PO(T ).

Definition 28 (Weighted DMVLP) A weighted program is a set of weighted
rules: {(w,R) | w ∈ N ∧ R is a DMVLP rule}. A WDMVLP is a pair of
weighted programs (P, P ′) on the same set of atoms A, and the same feature
and target variables F and T .

Example 21 Let WP = (P, P ′) be a WDMVLP, as follows.
P = {
(3, a0t ← b1t−1)
(15, a1t ← b0t−1)
. . . }

P ′ = {
(30, a0t ← c1t−1)
(5, a1t ← c0t−1)
. . . }

Let s := {a0t−1, b1t−1, c1t−1}. The rule of possibility a0t ← b1t−1 matches s, and
the rule of impossibility a0t ← c1t−1 also matches s. The weight of the rule of



Title Suppressed Due to Excessive Length 35

impossibility (30) being greater than that of the rule of possibility (3), we can
consider that a0t is not likely to appear in a transition from s according to
WP .

Using GULA, we can learn both rules of possibility (by using parameter
learning mode = ”possibility”) and rules of impossibility (with parameter
learning mode = ”impossibility”) from T . In Algorithm 4, GULA is used
to learn two distinct DMVLPs: a program of possibility and a program of
impossibility. The rules of both programs are then weighted by the number of
feature states they match to form a weighted DMVLP. This WDMVLP can
then be used to make predictions from unseen feature states by confronting
the learned rules of possibility and impossibility according to their weights.

Algorithm 4 Learning WDMVLP with GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ × ST ′ , two sets
of variables F ′ and T ′

– P := GULA(A′, T,F ′, T ′, “possible”)
– P ′ := GULA(A′, T,F ′, T ′, “impossible”)
– WP := {(|{s ∈ S | (s, s′) ∈ T ∧R u s}|, R) ∈ N× P}
– WP ′ := {(|{s ∈ S | (s, s′) ∈ T ∧R u s}|, R) ∈ N× P ′}
– OUTPUT: (WP,WP ′).

Given a feature state s we can predict and explain the likelihood of each
target atom by confronting the rules of possibility and impossibility that match
s. Here we simply take the rules with the biggest weight from each weighted
program. The likelihoods are computed as given in Definition 29.

Definition 29 Let P be a weighted program, s ∈ SF and vval ∈ A with
v ∈ T . Let best score(P, s, vval) := (wmax,M) where wmax := max({w ∈ N |
(w,R) ∈ P} ∪ {0}) and M := {R | (wmax, R) ∈ P ∧ head(R) = vval, R u s}.

Let WP = (P, P ′) be a WDMVLP, s ∈ SF and vval ∈ A with v ∈ T . Let
best possible(WP, s, vval) := best score(P, s, vval) and best impossible(WP, s,
vval) := best score(P ′, s, vval).

Let predict(WP, s, vval) := 1
2×
(

1 + w−w′
max({1,w+w′})

)
, with best possible(WP,

s, vval) = (w,M) and best impossible(WP, s, vval) = (w′,M ′).
Let predict and explain(WP, s, vval) := (vval, predict(WP, s, vval), (w,R),

(w′, R′)) where (w,R) := arb(best possible(WP, s, vval)) and (w′, R′) := arb(
best impossible(WP, s, vval))) with arb((w′′,M)) = (w′′, R′′) where R′′ is
taken arbitrarily in M if M 6= ∅, or R′′ := ∅ if M = ∅.

Intuitively, predict(WP, s, vval) gives a normalized score between 0 and 1
of the likeliness to observe vval after state s, where 0.5 means that we are
left inconclusive. In predict and explain(WP, s, vval), one of the best rules of
possibility and rules of impossibility with their respective weights are given as



36 Tony Ribeiro et al.

explanation to the prediction or a weight of 0 and no rule when no rules of
possibility (resp. impossibility) match s. The capacity of this heuristic method
to predict and explain from unobserved feature states is evaluated in Section
7.

7 Evaluation

In this section, both the scalability, accuracy and explainability of GULA
are evaluated using Boolean network benchmarks from the biological litera-
ture. The scalability of Synchronizer is also evaluated (details are given in
appendix). All experiments 1 were conducted on one core of an Intel Core i3
(6157U, 2.4 GHz) with 4 Gb of RAM.

In our experiments we use Boolean networks2 from Boolenet [11] and Py-
boolnet [27]. Benchmarks are performed on a wide range of networks. Some of
them are small toy examples, while the biggest ones come from biological case
study papers like the Boolean model for the control of the mammalian cell
cycle [15] or fission yeast [10]. Boolean networks are converted to DMVLP
where ∀v ∈ V, dom(v) = {0, 1}. In [11,27] file formats, for each variable,
Boolean functions are given in disjunctive normal form (DNF), a disjunction
of conjunction clauses that can be considered as a set of Boolean atoms of the
form v or ¬v. Each clause c of the DNF of a variable v is directly converted
into a rule R such that, head(R) = v1

t and v′1t−1 ∈ body(R) ⇐⇒ v′ ∈ c
and v′0t−1 ∈ body(R) ⇐⇒ ¬v′ ∈ c. For each such DMVLP the set T of
all transitions are generated for the three considered semantics (see Section
3). For each generation, to simulate the cases where Boolean functions are
false, each semantics uses a default function that gives v0,∀v ∈ T when no
rule R, v(head(R)) = v matches a state. Table 3 provides the number of vari-
ables of each benchmark used in our experiments together with the number of
transitions under synchronous, asynchronous and general semantics.

7.1 GULA Scalability

Figure 9 shows the run time (log scale) of GULA (Algorithm 2) and brute
force (Algorithm 1) when learning aWDMVLP from Boolean networks (grouped
by number of variables) transitions of Table 3. Since we learn WDMVLP the
run time corresponds to the sum of two calls to GULA (resp. brute force)
(possibility and impossibility mode) and the computation of each rule weight
(see Algorithm 4). For each benchmark, learning is performed on 10 random

1 Available at: https://github.com/Tony-sama/pylfit. Using command “python3
evaluations/mlj2020/mlj2020 all.py” from the repository’s tests folder, results will be
in the tests/tmp folder. All experiements were run with the release version 0.2.2 https:

//github.com/Tony-sama/pylfit/releases/tag/v0.2.2.
2 Original Boolenet Boolean network files: https://people.kth.se/~dubrova/boolenet.

html. Original PyBoolNet Boolean network files: https://github.com/hklarner/

PyBoolNet/tree/master/PyBoolNet/Repository.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://github.com/Tony-sama/pylfit/releases/tag/v0.2.2
https://people.kth.se/~dubrova/boolenet.html
https://people.kth.se/~dubrova/boolenet.html
https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository
https://github.com/hklarner/PyBoolNet/tree/master/PyBoolNet/Repository


Title Suppressed Due to Excessive Length 37

Benchmark name Variables
Transitions

synchronous asynchronous general
n3s1c1a 3 8 14 29
n3s1c1b 3 8 14 31
raf 3 8 13 29
n5s3 5 32 73 213
n6s1c2 6 64 230 1, 039
n7s3 7 128 451 2, 243
randomnet n7k3 7 128 394 1, 580
xiao wnt5a 7 128 324 972
arellano rootstem 9 512 1,940 11, 472
davidich yeast 10 1,024 4,364 38, 720
faure cellcycle 10 1,024 4,273 30, 971
fission yeast 10 1,024 4,157 33, 727
budding yeast 12 4,096 19, 975 260, 557
n12c5 12 4,096 30, 006 1,122, 079
tournier apoptosis 12 4,096 22, 530 358, 694
dinwoodie stomatal 13 8,192 53, 249 1, 521, 099
multivalued 13 8,192 49, 156 1, 049, 760
saadatpour guardcell 13 8,192 53, 249 1, 521, 099

Table 3: Number of variables and total number of transitions under the three
semantics of the Boolean networks from Boolenet [11] and PyBoolNet[27] used
as benchmark in this experimental section.

subsets of 1%, 5%, 10%, 25%, 50%, 75%, 100% of the whole set of transitions
with a time out of 1, 000 seconds.

For all benchmarks, we clearly see that GULA is more efficient than the
trivial brute force enumeration, the difference exponentially increasing whith
the number of variables: about 10 times faster with 6 variables and 100 times
faster with 9 variables. The brute force method reaches the time out for 10
variables benchmarks and beyond.

For a given number of variables, we observe that for each benchmark the
run time increases with the number of transitions until some ratio (for example
50% for 7 variables) at which point more transition can actually speed up the
process. More transitions reduce the probability for a rule to be consistent,
thus both methods have less rules to check for domination. This tendency is
observed on the three semantics. It is important to note that the systems are
deterministic with the synchronous semantics and thus the number of transi-
tions in the synchronous case is much lower than for the two other semantics
and one may expect better run time. But the quantity of transitions has little
impact in fact and most of the run time goes into rule domination check (see
Theorem 6). Actually, more input transitions can even imply less learning time
for GULA. Having more diverse initial states can also allow the sorting of the
negatives example to reduce the quantity of specialization made at each step,
a freshly revised rule being revised again will not have much non-dominated
candidates to generate. For example, for the benchmarks with 13 variables,
for some variable values, given 25% of the transitions, the number of stored
rules reached several thousands. On the other hand, when given 100% of the



38 Tony Ribeiro et al.

3 5 6 7 9 10 12 13
Number of variables

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

Ru
n 

tim
e 

in
 se

co
nd

s

synchronous semantics
Brute force: input transitions

1%
5%
10%
25%
50%
75%
100%

GULA: input transitions
1%
5%
10%
25%
50%
75%
100%

3 5 6 7 9 10 12 13
Number of variables

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

Ru
n 

tim
e 

in
 se

co
nd

s

asynchronous semantics
Brute force: input transitions

1%
5%
10%
25%
50%
75%
100%

GULA: input transitions
1%
5%
10%
25%
50%
75%
100%

3 5 6 7 9 10 12 13
Number of variables

0.001

0.010

0.100

1.000

10.000

100.000

1000.000

Ru
n 

tim
e 

in
 se

co
nd

s

general semantics
Brute force: input transitions

1%
5%
10%
25%
50%
75%
100%

GULA: input transitions
1%
5%
10%
25%
50%
75%
100%

Fig. 9: Run time in seconds (log scale) of two calls to GULA (in blue) and
brute force (in red) when learning a WDMVLP from a random set of 1%,
5%, 10%, 25%, 50%, 75%, 100% of the transitions of a Boolean network from
Boolenet and PyBoolNet with size varying from 3 to 13 variables. Time out
is set at 1, 000 seconds and 10 runs where performed for each setting.

transitions, it rarely exceeds hundreds stored rules. Same logic can apply to
the faster run time of general semantics with “low” subset of transitions: the
total number of transitions being higher, more diversity appears in its subset
thus higher chance for the sorting to have effect on reducing the need for least
specialization. The rules are simpler for the two other semantics since rules of
the form vval

t ← vval
t−1 are always consistent and quickly obtained. Such simple

rules have great dominance power, reducing the quantity of stored rules and
thus checked for domination at each step.

GULA succeeds in learning a WDMVLP from the benchmarks with up
to 10 variables for all semantics before the time-out of 1,000 seconds for all
considered sub-sets of transitions. Benchmarks from 12 variables need a sub-
stantial amount of input transitions to prevent the explosion of consistent rules
and thus reaching the time out. For both semantics, the 12 variables bench-
marks reached the time out several times when given less than 100% of the
transitions. Even if this may seem small compared to the intrinsic complexity
of biological systems, ten components are sufficient to capture the dynamic
behavior of critical, yet significant, mechanisms like the cell cycle [17].

Compared to our previous algorithm LF1T [45], GULA is slower in the
synchronous deterministic Boolean case (even when learning only PO(T )).



Title Suppressed Due to Excessive Length 39

This was expected since it is not specifically dedicated to learning such net-
works: GULA learns both values (0 and 1) of each variable and pre-processes
the transitions before learning rules to handle non-determinism. On the other
hand, LF1T is optimized to only learn rules that make a variable take the
value 1 in the next state and assume only one transition from each initial state.
furthermore, LF1T only handles Boolean values and deterministic transitions
while GULA can deal with multi-valued variable and any pseudo-idempotent
(Theorem 1) semantics transitions.

The current implementation of the algorithm is rather naive and better
performances are expected from future optimizations. In particular, the al-
gorithm can be parallelized into as many threads as the number of different
rule heads (one thread per target variable value). We are also developing3

an approximated version of GULA that outputs a subset of PO(T ) (resp.
PO(T )) sufficient to explain T [44]. The complexity of this new algorithm is
polynomial, greatly improving the scalability of our approach but to the sac-
rifice of completeness. Because of space limitations and the ongoing state of
this method we could not incorporate this algorithm and its evaluation in this
paper.

Learning constraints is obviously more costly than learning regular rules
since both feature and target variables can appear in the body, i.e., the num-
ber of features becomes |F|+ |T |. Thus by running the Synchronizer on the
Boolean network benchmark it implies a call to GULA with double the num-
ber of variables to learn constraints. Under the same experimental settings, the
Synchronizer reached the time-out of 1,000 seconds on the benchmarks of 7
variables. The contribution regarding CDMVLP being focused on theoretical
results, we provided the detailed evaluation of the Synchronizer in appendix
to save space.

7.2 GULA Predictive Power

When addressing biological systems, a major challenge arises: even if the
amount of produced data is increasing through the development of high-
throughput RNA sequencing, it is still low with regard to all the theoretical
contexts.

In this experiment, we thus evaluate the quality of the models learned by
GULA in their ability to correctly predict possible values for each variable
from unseen feature states, i.e., the capacity of the learned model to generalize
to unobserved cases. Practically speaking, this ensures the resulting models can
provide relevant information about biological experiments that were (or could)
not be performed.

For each Boolean network benchmark, we first generate the set of all pos-
sible feature states. Those states are then randomly split into two sets: at
least 20% will be test feature states and the remaining 80% will be potential

3 The polynomial approximation of GULA, currently named PRIDE is also available
at: https://github.com/Tony-sama/pylfit

https://github.com/Tony-sama/pylfit


40 Tony Ribeiro et al.

training feature states. According to the Boolean formula of the network and a
given semantics, all transitions from test feature states are generated to make
the test set. All transitions are also computed from the training feature states,
but only x% of the transitions are randomly chosen to form the training set
with x ∈ {1, 5, 10, 20, 30, ..., 100}. Figure 10 illustrates the construct of both
training and test sets for a Boolean network of 3 variables.

000 001 010 100 011 101 111

000 001010100011 101111
Test

Feature States
Training

Feature States
Shuffle

and Split

Generate All Features States

Generate All 
Training Transitions

001 110

001 011

000 000

010 111

100 001

011 000

011 011

Shuffle and
keep x%

001 110

001 011

000 000

010 111

100 001

011 000

011 011 Training Set
T'

Generate All Test 
Transitions

101 111

101 010

111 001

111 000

111 010

Test Set
T''

Fig. 10: Experiments settings: data generation, train/test split.

The training set is used as input to learn a WDMVLP using GULA. The
learned WDMVLP WP is then used to predict from each feature state s of the
test set, the possibility of occurrence of each target atoms vval according to
Proposition 29, i.e., predict(WP, s, vval). The forecast probabilities are com-
pared to the observed values of the test set. Let T be the set of all transitions,
T ′ the training set of transitions and T ′′ the test set of transitions. For all
vval ∈ A|T and s ∈ first(T ′′), we define:

actual(vval, s, T ′′) =

{
1, if ∃(s, s′) ∈ T ′′, vval ∈ s′

0, otherwise
.

To evaluate the accuracy of prediction from the learned WDMVLP, WP ,
over the test set T ′′ we consider a ratio of precision given by the complement
to one of the mean absolute error between its prediction and the actual value:

accuracy(WP,T ′′) =
∑

s∈first(T ′′)

∑
vval∈A|T

1− |actual(vval, s, T ′′)− predict(WP, s, vval)|
|A|T | × |first(T ′′)|



Title Suppressed Due to Excessive Length 41

Formally, if T is the whole set of transitions of the Boolean network, this
experiment consists in learning an approximation of the pair (PO(T ), PO(T ))
from the training set T ′ ⊂ T and checking both the consistency and realization
of the test set T ′′ ⊂ T , with first(T ′)∩first(T ′′) = ∅, having |T ′| ≈ x×0.8×|T |
and |T ′′| ≈ 0.2× |T |, where x ∈ {0.01, 0.05, 0.1, 0.2, 0.3, ..., 1.0}.

Example 22 Let T ′′ be the test set of Figure 10 and WP be the WDMVLP
of Example 21. Let s := (a1t−1, b

1
t−1, c

1
t−1) (111).

– Expected prediction from s according to T ′′:
{(vval, actual(vval, s, T ′′))} = {(a0t , 1), (a1t , 0), (b0t , 1), (b1t , 1), (c0t , 1), (c1t , 1)}

– Predictions from s according to WP :
{(vval, predict(WP, s, vval))} = {(a0t , 0.9), (a1t , 0.2), (b0t , 0.8), (b1t , 0.6), (c0t , 1.0),
(c1t , 0.0)}

– Accuracy (unique state): 1− |1−0.9|+|0−0.2|+|1−0.8|+|1−0.6|+|1−1.0|+|1−0.0|
|A|T |=6

= 0.58

On state s, the model prediction mean absolute error w.r.t. T ′′ is 0.42, thus
giving an accuracy of 0.58, meaning that in average, 58% of the predictions
are correct.

Figures 11a, 11b and 11c show the accuracy of the predicted possible val-
ues w.r.t. the ratio of training data going from 1% to 100% with the three
considered semantics.

Here, we also consider four trivial baselines that are random predictions
and always predicting 0, 0.5 or 1.0, i.e., ∀s ∈ SF ,∀vval ∈ A|T :

– baseline random(s, vval) = rand(0.0, 1.0)
– baseline always 0.0(s, vval) = 0.0
– baseline always 0.5(s, vval) = 0.5
– baseline always 1.0(s, vval) = 1.0

Accuracy score for the random baseline is expected to be around 0.5 for every
semantics since the problem is equivalent to a binary classification, i.e., each
atom can appear or not. Accuracy score of the three fixed baselines is exactly
0.5 in synchronous case since transitions are deterministic here: only one atom
vval is possible (either v0 or v1) for each target variable v for each feature
state of the test set, i.e., always one of the two must be predicted to 0.0 and
the other one to 1.0. For asynchronous and general semantics the transitions
are non-deterministic, thus always predicting 0.0 or 1.0 for each target atoms
will lead to different accuracy score. Both semantics using previous value as
default, it is more likely for each atom to appear in a target state, thus always
predicting 1.0 is expected to perform better than 0.5 and always predicting
0.0 is expected to perform worst. That explain why, in Figures 11b and 11c
we can observe an accuracy score of 0.6 to 0.8 for always predicting 1.0 and
0.2 to 0.4 for always predicting 0.0.

With synchronous semantics transitions, when given only 5% of the possi-
ble transitions, GULA starts to clearly outperform the baseline on the test
set for all benchmarks size. It reaches more than 80% accuracy when given
at least 40% of the transitions for benchmarks with 6 variables and only 5%



42 Tony Ribeiro et al.

Fig. 11: Accuracy of the WDMVLP learned by GULA and trivial base-
lines when predicting possible target atoms from unseen states with different
amounts of training data of transitions from Boolean network benchmarks
with synchronous, asynchronous and general semantics.

(a) Synchronous semantics.

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

synchronous 5 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

synchronous 6 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

synchronous 7 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

synchronous 9 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

(b) Asynchronous semantics.

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

asynchronous 5 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

asynchronous 6 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

asynchronous 7 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

asynchronous 9 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0



Title Suppressed Due to Excessive Length 43

(c) General semantics.

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

general 5 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

general 6 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

 sc
or

e

general 7 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
 sc

or
e

general 9 variables

Method
gula
baseline_random
baseline_always_0.0
baseline_always_0.5
baseline_always_1.0

of input transitions is enough to obtain same performance with 9 variables.
These results show that the models learned by GULA effectively generalise
some meaningful behavior from training data over test data in a deterministic
context.

For the non-deterministic case of asynchronous and general semantics the
performance of GULA are similar but the differences with the baselines that
always predict 1.0 is smaller. As stated before, since both semantics use previ-
ous value as default, it is more likely for each atom to appear in a target state,
thus predicting that all atoms are always possible is less risky. Furthermore,
the transition being non-deterministic, the way we select the training set (see
Figure 10) may lead to have missing transitions from some feature state in
the training set, generating false negative example for GULA equivalent to
noisy data. Still, GULA start to outperforms the baseline that always pre-
dict 1.0 (and all others) for the two semantics when given more than 50% of
the possible transitions as input. The performances of GULA also increase
when considering more variables, with 9 variables benchmarks 20% of transi-
tion is enough to obtain 80% accuracy over unseen test data for asynchronous
case and about 2% for general case. Performances are globally similar for the
three semantics, showing that our method can handle a bit of noise caused by
missing observations.



44 Tony Ribeiro et al.

If one is only interested by prediction accuracy, it is certainly easier to
achieve better results using statistical machine learning methods like neural
networks or random forest since prediction here is basically a binary classi-
fication for each target variables values. In the cases where explainability is
of interest, the rules used for the predictions and their weights may be quite
simple human readable candidates for explanations (i.e., exhibit dynamic rela-
tions between biological interacting components). We consider the evaluation
of explanation in following experiment.

7.3 GULA Explainability power

In this experiment, we evaluate the quality of the models learned by GULA in
their ability to correctly explain their predictions. Benchmarks and train/test
sets generation is the same as in previous experiment (see Figure 10). The
learned model must predict correctly the possibility for each target atom as
previously, and also provide a rule that can explain the prediction. When a
target atom is possible (resp. impossible), we expect a rule of the optimal
program (resp. optimal program of impossibility) to be given as explanation.
By computing the Hamming distance between the rules used in the model
learned from incomplete observations (PO(T ′), PO(T ′)), and the optimal rules
from the full observations (PO(T ), PO(T )), we can have an idea of how close we
are from the theoretically optimal explanations. For that, for each experiment,
we compute the optimal program and the optimal program of impossibility
from the set of all transitions (T ) before splitting it into train/test sets.

A WDMVLP is then learned using GULA from the training set (T ′)
as in previous experiment. The learned WDMVLP is then used to predict
from each feature state of the test set (T ′′), the possibility of occurrence of
each target atom according to Proposition 29 as well as a rule to explain this
prediction. The forecast probabilities and explanations are compared to the
observed values of the test set and the rules of the optimal programs. For all
vval ∈ A|T and s ∈ first(T ′′), we define:

actual(vval, s, T ′′) =
{

(1, {R ∈ PO(T ) | head(R) = vval ∧ R u s}), if ∃(s, s′) ∈ T ′′, vval ∈ s′

(0, {R ∈ PO(T ) | head(R) = vval ∧ R u s}), otherwise
.

To compare the forecast rules and the ideal rules, we consider the Hamming
distance over their bodies:

distance(R,R′) = |(body(R) ∪ body(R′)) \ (body(R) ∩ body(R′))| .

We expect both correct forecast of possibility and explanation, in the sense that
an incorrect prediction yields the highest error (1.0) while a good prediction
yields an error depending on the quality of the explanation (0.0 when an ideal
rule is used). This is summed up in the following error function:

error((forecast proba, forecast rule),
(actual proba, actual rules)) =


1.0 if forecast rule = ∅
1.0 if forecast proba = 0.5

1.0 if forecast proba > 0.5 ∧ actual proba = 0

1.0 if forecast proba < 0.5 ∧ actual proba = 1
min({distance(forecast rule,R)|R∈actual rules})

|F| otherwise



Title Suppressed Due to Excessive Length 45

This allows to compute an explanation score, combining both accuracy and
explanation quality from the learned WDMVLP, WP , over the test set T ′′:

explanation score(WP,T ′′) =

∑
s∈first(T ′′)

∑
vval∈A|T

1− |error(predict and explain(WP, s, vval), actual(vval, s, T ′′))|
|A|T | × |first(T ′′)|

Example 23 Let F = {at−1, bt−1, ct−1}, T = {at, bt, ct}, a complete set of
transitions T ⊆ SF × ST , a train set of transitions T ′ ⊆ T and a test set of
transitions T ′′ ⊆ T with T ′ ∩ T ′′ = ∅ such that:

– PO(T ) = {a1t ← a1t−1, a
1
t ← b1t−1 ∧ c1t−1, a1t ← b0t−1 ∧ c0t−1, a0t ← c0t−1, ...}

– PO(T ) = {a1t ← a0t−1, a
1
t ← b0t−1, a

1
t ← c0t−1, a

0
t ← c1t−1, ...}

– Let us suppose that from the test feature state s := {a1t−1, b1t−1, c1t−1}, the
target atom a1t is observed in some transitions from s in T ′′ thus we expect
a probability of 1.0 and a rule from PO(T ) that matches s and produce a1t
(any of the blue rules) as explanation:
– actual(a1t , s, T

′′) = (a1t , 1.0, {a1t ← a1t−1, a
1
t ← b1t−1, c

1
t−1})

– Let WP be a WDMVLP learned from T ′ and we suppose that:
– predict and explain(WP, s, a1t ) = (a1t , 1.0, a

1
t ← b1t−1)

– The predicted possibility is correct, thus the explanation score will depend
on the explanation.

– The explanation a1t ← b1t−1 has a Hamming distance of 2 with a1t ← a1t−1
(the conditions on at−1 and bt−1 are wrong, the condition on ct−1 is cor-
rect), thus the error will be 2

|F| = 2
3 .

– The Hamming distance is only of 1 with rule a1t ← b1t−1, c
1
t−1 (the conditions

on at−1 and bt−1 are correct, the condition on ct−1 is wrong), thus the error
will be 1

|F| = 1
3 .

– The final score for target a1t is 1−min({ 23 ,
1
3}) ≈ 0.66

The prediction is correct for target a1t from s, but the explanation a1t ←
a1t−1 is not perfect. Still, 66% of its conditions correspond to an optimal rule
(a1t ← b1t−1, c

1
t−1) that can explain this prediction.

– Now let us suppose that from the test feature state s := {a0t−1, b1t−1, c0t−1},
the target atom a1t is never observed in any transition from s in T ′′. Thus,
we expect a predicted probability of 0.0 and, as an explanation, a rule from
PO(T ) that matches s and has a1t as conclusion (any of the red rules):
– actual(a1t , s, T

′′) = (a1t , 0.0, {a1t ← a0t−1, a
1
t ← c0t−1})

– Let WP be a WDMVLP and suppose that:
– predict and explain(WP, s, a1t ) = (a1t , 0.0, a

1
t ← ∅)

– The explanation a1t ← ∅ has an Hamming distance of 1 when compared
with a1t ← a0t−1 (the condition on at−1 is wrong, the conditions on bt−1
and ct−1 are correct), thus the error will be 1

|F| = 1
3 .



46 Tony Ribeiro et al.

– We obtain the same Hamming distance of 1 when compared with a1t ←
c0t−1.

– The final score for target a1t from s is 1−min({ 13 ,
1
3}) ≈ 0.66.

The prediction is correct for target a1t from s, but the explanation a1t ← ∅
is not perfect. Still, 66% of its conditions correspond to an optimal rules of
impossibility (a1t ← a0t−1 and a1t ← c0t−1) that can explain this prediction.

Figures 12a, 12b and 12c show the results of the evolution of the explana-
tion score when learning a WDMVLP using GULA from approximately 1%
to 80% of the transitions of a Boolean network. We also use 4 trivial methods
as baselines, each having a perfect value prediction, thus their score is only in-
fluenced by their explanation. The baselines explanations are trivial and take
the form of a random rule, no rules, the most specific rule, the most general
rule, i.e., ∀s ∈ firstT ′′,∀vval ∈ A|T , perfect prediction = actual(vval, s, T ′′):

– baseline random rules(s, vval) = (perfect prediction, vval ← body ⊆ s)
– baseline no rules(s, vval) = (perfect prediction,∅)
– baseline most general rules(s, vval) = (perfect prediction, vval ← ∅)
– baseline most specific rules(s, vval) = (perfect prediction, vval ← s)

The random baseline is expected to score around 0.5, while the no rule baseline
will always have a score of 0.0. The most specific rule baseline will have all
conditions of each expected rule, but also unnecessary ones. The most general
rules will miss all specific conditions but avoid all unnecessary ones. Since
optimal rules rarely use more than half of the total number of variable as
conditions (at least for these Benchmarks), the most general rule is expected
to have a better score in average compared to most specific. That’s why we
observe random rule score around 0.4 to 0.5, most specific score around 0.1 to
0.4 and most general score around 0.6 to 0.8 for all semantics considered.

With synchronous semantics transitions, when given only 50% of the possi-
ble transitions, GULA start to clearly outperform the baselines on the test set
for all benchmarks size. It reaches more than 80% accuracy when given at least
25% of the transitions for benchmarks with 6 variables and only 10% of input
transitions is enough to obtain same performance with 9 variables. These re-
sults show that GULA, in a deterministic context, effectively learns rules that
are close to the optimal ones even with a partial set of observations, showing
its capacity in practice to generalize to unseen data. Such results will help to
validate, using the data, models that were previously built and designed by the
sole expert knowledge of the biological experts. Meanwhile we cannot rely only
on deterministic semantics, as well-known models from the literature (e.g., the
switch between the lytic and lysogenic cycles of the lambda phage [51], which
is composed of four components in interaction) require non-determinism to be
captured efficiently.

For the non-deterministic case of asynchronous and general semantics the
performance of GULA are similar but more observation are needed to obtain
same performances. Like for previous experiments, in those cases we can have
missing transitions for some of the observed feature states, leading to false



Title Suppressed Due to Excessive Length 47

negative examples extraction in GULA. This is more likely to happen with
asynchronous semantics, since only one transition will show the change of a
specific variable value from a given state while the general semantics will have
several subset of change combined in a transitions. It also makes transitions
less valuable in quantity of information in the asynchronous case, i.e., only one
variable changes its value, starting from the second transition from the same
state, all transitions only provide one positive example for the only variable
that is changing its value. Still, GULA starts to outperform the most general
rule baseline (and all others) for the two semantics when given more than 50%
of the possible transitions as input. This shows again that our method can
handle a bit of noise caused by missing observations also at the explanation
level. The performances of GULA are similar when considering more vari-
ables here, the gain observed in value precision compensating the additional
possibility for explanation error introduced by new variables.

It is important to recall that the baselines used here have perfect value
prediction while our method also need to predict proper value to have it’s
explanation evaluated. As stated before, it is certainly easier to achieve better
prediction results using statistical machine learning methods. Furthermore,
when good prediction model can be built from training data, it can replace
our learned model to forecast the value but could be used to improve the
output of GULA. Indeed, one can use such models to directly generate pos-
itive/negative examples of each atom from observed and unseen states that
can be given as input to GULA in place of the raw observations. It can help
to deal with noisy data and improve the diversity of initial state that can
speed up and improve the quality of the rules of GULA and thus also its
approximated version [44]. Actually, as long as feature and target variables
are discrete (or can be properly discretized), GULA (or its approximated
version for big systems) could be used to generate rules that could explain
in a more human readable way the behavior of other less explainable models.
Such a combination of predictive statistical model and WDMVLP learning
study is out of the scope of this paper but will be an interesting application
part of our future works. This would not only allow to output relevant predic-
tions w.r.t. dynamical trajectories of biological systems but also help to get a
precise understanding of the underlying key interactions between components.
Such an approach can also be considered for a broader range of applications.
In [38], the authors investigate the promises conveys to provide declarative
explanations in classical machine learning by neural networks in the context
of automatic recruitment algorithms.

8 Related Work

8.1 Modeling Dynamics

In modeling of dynamical systems, the notion of concurrency is crucial. His-
torically, two main dynamical semantics have been used in the field of sys-



48 Tony Ribeiro et al.

Fig. 12: Explainability score of the WDMVLP learned by GULA and triv-
ial baselines when predicting possible target atoms from unseen states with
different amounts of training data of the transitions from Boolean network
benchmarks with synchronous, asynchronous and general semantics.

(a) Synchronous semantics.

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

synchronous 5 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

synchronous 6 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

synchronous 7 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

synchronous 9 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

(b) Asynchronous semantics.

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

asynchronous 5 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

asynchronous 6 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

asynchronous 7 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

asynchronous 9 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules



Title Suppressed Due to Excessive Length 49

(c) General semantics.

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

general 5 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

general 6 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0

Ex
pl

an
at

io
n 

sc
or

e

general 7 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

1% 2% 4% 8% 16% 24% 32% 40% 48% 56% 64% 72% 80%
Percent of training data

0.0

0.2

0.4

0.6

0.8

1.0
Ex

pl
an

at
io

n 
sc

or
e

general 9 variables

Method
gula
baseline_perfect_predictions_random_rules
baseline_perfect_predictions_no_rules
baseline_perfect_predictions_most_general_rules
baseline_perfect_predictions_most_specific_rules

tems biology: synchronous (Boolean networks of Stuart Kauffman [24]) and
asynchronous (René Thomas’ networks [52]), although other semantics are
sometimes proposed or used [14].

The choice of a given semantics has a major impact on the dynamical fea-
tures of a model: attractors, trap domains, bifurcations, oscillators, etc. The
links between modeling frameworks and their update semantics constitute the
scope of an increasing number of papers. In [19], the author exhibited the
translation from Boolean networks into logic programs and discussed the point
attractors in both synchronous and asynchronous semantics. In [37], the au-
thors studied the synchronism-sensitivity of Boolean automata networks with
regard to their dynamical behavior (more specifically their asymptotic dynam-
ics). They demonstrate how synchronism impacts the asymptotic behavior by
either modifying transient behaviors, making attractors grow or destroying
complex attractors. Meanwhile, the respective merits of existing synchronous,
asynchronous and generalized semantics for the study of dynamic behaviors
has been discussed by Chatain and Paulevé in a series of recent papers. In [7],
they introduced a new semantics for Petri nets with read arcs, called the inter-
val semantics. Then they adapted this semantics in the context of Boolean net-
works [8], and showed in [6] how the interval semantics can capture additional
behaviors with regard to the already existing semantics. Their most recent
work demonstrates how the most common synchronous and asynchronous se-



50 Tony Ribeiro et al.

mantics in Boolean networks have three major drawbacks that are to be costly
for any analysis, to miss some behaviors and to predict spurious behaviors. To
overcome these limits, they introduce a new paradigm, called Most Permissive
Boolean Network which offers the guarantee that no realizable behavior by a
qualitative model will be missed [41].

The choice of a relevant semantics appears clearly not only in the recent
theoretical works bridging the different frameworks, but also in the features
of the software provided to the persons involved in Systems Biology modeling
(e.g., the GinSIM tool offers two updating modes, that are fully synchronous
and fully asynchronous [36]). Analysis tools offer the modelers the choice of
the most appropriate semantics with regard to their own problem.

8.2 Learning Dynamics

In this paper, we proposed new algorithms to learn the dynamics of a system
independently of its update semantics, and apply it to learn Boolean networks
from the observation of their states transitions. Learning the dynamics of
Boolean networks has been considered in bioinformatics in several works [30,
1,39,28,14]. In biological systems, the notion of concurrency is central. When
modeling a biological regulatory network, it is necessary to represent the re-
spective evolution of each component of the system. One of the most debated
issues with regard to semantics targets the choice of a proper update mode of
every component, that is, synchronous (Boolean networks of Stuart Kauffman
[24]), or asynchronous (René Thomas’ networks [52]), or more complex ones.
The differences and common features of different semantics w.r.t. properties of
interest (attractors, oscillators, etc.) have thus resulted in an area of research
per itself, especially in the field of Boolean networks [37,8,6].

In [14], Fages discussed the differential semantics, stochastic semantics,
Boolean semantics, hybrid (discrete and continuous) semantics, Petri net se-
mantics, logic programming semantics and some learning techniques. Rather
than focusing on particular semantics, our learning methods are complete al-
gorithms that learn transition rules for any memory-less discrete dynamical
systems independently of the update semantics.

As in [39], we can also deal with partial transitions, but will not need to
identify or enumerate all possible complete transitions. [40] learns a model as
a probability distribution for the next state given the previous state and an
action. Here, exactly one dynamic rule fires every time-step, which corresponds
to the asynchronous semantics of Definition 15.

In [49], action rules are learned using inductive logic programming but re-
quire as input background knowledge. In [3], the authors use logic program as
a meta-interpreter to explain the behaviour of a system as stepwise transitions
in Petri nets. They produce new possible traces of execution, while our output
is an interaction model of the system that aims to explain the observed behav-
ior. In practice, our learned programs can also be used to predict unobserved
behavior using some heuristics as shown in the experiments of Section 7.



Title Suppressed Due to Excessive Length 51

In [26], Klarner et al. provide an optimization-based method for comput-
ing model reduction by exploiting the prime implicant graph of the Boolean
network. This graph is similar to the rules of PO(T ) that can be learned by
GULA. But while [26] requires an existing model to work, we are able to
learn this model from observations.

In [28], Lähdesmäki et al. propose algorithms to infer the truth table
of Boolean functions of gene regulatory network from gene expression data.
Each positive (resp. negative) example represents a variable configuration that
makes a Boolean function true (resp. false). The logic programs learned by
GULA are a generalization of those truth tables.

8.3 Inductive Logic Programming

From the inductive logic programming point of view, GULA performs a gen-
eral to specific search, also called top-down approach. Algorithmically, GULA
shares similarities with Progol [33,34] or Aleph [50], two state-of-the-art ILP
top-down approaches. Progol combines inverse entailment with general-to-
specific search through a refinement graph. GULA is limited to propositional
logic while those two methods handle first order predicates. Learning the equiv-
alent of DMVLP rules should be possible using Progol or Aleph assuming
some proper encoding. But both methods would only learn enough rules to
explain the positive examples, whereas GULA outputs all optimal rules that
can explain these examples. The completeness of the output program is critical
when learning constraint of a CDMVLP to guarantee the exact reproduction
of the observed transitions. Thus, nor Progol or Aleph can replace GULA in
the Synchronizer algorithm to learn the optimal CDMVLP. But the complete-
ness of the search of GULA comes with a higher complexity cost w.r.t. Progol
and Aleph. The search of Progol and Aleph is guided by positives examples. In-
deed, given a positive example, Progol performs an admissible A*-like search,
guided by compression, over clauses which subsume the most specific clause
(corresponding to the example). The search of GULA is guided by negative
examples. It can also be seen as an A*-like search but for all minimal clauses
that subsume none of the most specific clauses corresponding to the negative
examples.

[12,13] propose the Apperception Engine, a system able to learn programs
from a sequence of state transitions. The first difference is that our approach
is limited to propositional atoms while first order logic is considered in this
approach. Furthermore, the Aperception Engine can predict the future, retro-
dict the past, and impute missing intermediate values, while we only consider
rules to explain what can happen in a next state. But our input can represent
transitions from multiple trajectories, while they consider a single trajectory
and thus our setting can be considered as a generalized apperception task in
the propositional case. Another major difference is that they only consider
deterministic inputs while we also capture non-deterministic behaviors. Given
the same kind of single trajectory and a DMVLP (or CDMVLP), it should



52 Tony Ribeiro et al.

be possible to produce candidates past states or to try to fill in missing values.
But in practice that would suppose to have many other transitions to build
such DMVLP using GULA while the Aperception Engine can perform the
task with only the given single trajectory. This system can also produce a set
of constraints as well as rules. The constraints perform double duty: on the
one hand, they restrict the sets of atoms that can be true at same time; on the
other hand, they ensure what they call the frame axiom: each atom remains
true at the next time-step unless it is overridden by a new fact which is incom-
patible with it. The constraints of CDMVLP can prevent some combinations
of atoms to appear, but only in next states, while in [12,13], constraints can
prevent some states to exist anywhere in the sequence, and ensure the conser-
vation of atoms. From Theorem 7, the conservation can also be reproduced by
CDMVLP by the right combination of optimal rules and constraints.

In [29] the authors propose a general framework named ILASP for learn-
ing answer set programs. ILASP is able to learn choice rules, constraints and
preferences over answer sets. Our problem settings is related to what is called
“context-dependant” tasks in ILASP. Our input can be straightforwardly rep-
resented using ILASP when variables are Boolean, but the learned program
does not respect our notion of optimality, and thus our learning goals differ,
i.e., we guarantee to miss no potential dynamical influence. Indeed, ILASP
minimizes a program as a whole, i.e., the sum of the length of all rules and
constraints; in contrast, we aim to minimize each rule and constraint individ-
ually and expect to find as many of them in practice and all of them in theory
to ensure good properties regarding dynamical semantics.

[23] proposes an incremental method to learn and revise event-based knowl-
edge in the form of Event Calculus programs using XHAIL [42], a system that
jointly abduce ground atoms and induce first-order normal logic programs.
XHAIL needs to be provided with a set of mode declarations to limit the
search space of possible induced rules, while our method do not require back-
ground knowledge. Still it is possible to exploit background knowledge with
GULA: for example one could add heuristic inside the algorithm to discard
rules with “too many” conditions; influences among variables, if known, could
also be exploited to reduce possible bodies. Finally, XHAIL does not model
constraints, thus is not able to prevent some combinations of atoms to appear
in transitions, which can be achieve using our Synchronizer.

9 Conclusions

While modeling a dynamical system, the choice of a proper semantics is critical
for the relevance of the subsequent analysis of the dynamics. The works pre-
sented in this paper aim to widen the possibilities offered to a system designer
in the learning phase. Until now, the systems that the LFIT framework handles
were restricted to synchronous deterministic dynamics. However, many other
dynamics exist in the field of logical modeling, in particular the asynchronous
and generalized semantics which are of deep interest to model biological sys-



Title Suppressed Due to Excessive Length 53

tems. In this paper, we proposed a modeling of memory-less multi-valued dy-
namic systems in the form of annotated logic programs and a first algorithm,
GULA, that learns optimal programs for a wide range of semantics (see The-
orem 1) including notably the asynchronous and generalized semantics. But
the semantics need to be assumed to use the learned model, in order to pro-
duce predictions for example. Our second proposition is a new approach that
makes a decisive step in the full automation of logical learning of models di-
rectly from time series, e.g., gene expression measurements along time (whose
intrinsic semantics is unknown or even changeable). The Synchronizer algo-
rithm that we proposed is able to learn a whole system dynamics, including
its semantics, in the form of a single propositional logic program. This logic
program explains the behavior of the system in the form of human readable
propositional logic rules, as well as, be able to reproduce the behavior of the
observed system without the need of knowing its semantics. Furthermore, the
semantics can be explained, without any previous assumption, in the form of
human readable rules inside the logic program.

This provides a precious output when dealing with real-life data coming
from, e.g., biology. Typically, time series data capturing protein (i.e., gene)
expressions come without any assumption on the most appropriate semantics
to capture the relevant dynamical behaviors of the system. The methods intro-
duced in this paper generate a readable view of the relationships between the
different biological components at stake. GULA can be used when biological
collaborators provide partial observations (as shown by our experiments), for
example when addressing gene regulatory networks. Meanwhile the Synchro-
nizer algorithm is of interest for systems with the full set of observations, e.g.,
when refining a model that was manually built by experts.

We took care to show the benefits of our approach on several benchmarks.
While systems with ten components are able to capture the behavior of com-
plex biological systems, we exhibit that our implementation is scalable to sys-
tems up to 10 components on a computer as simple as a single-core computer
with a 1000 seconds time-out. Further work will consist in a practical use of
our method on open problems coming from systems biology.

An approximate version of the method is a necessity to tackle large sys-
tems and is under development [44]. In addition, lack of observations and
noise handling is also an issue when working with biological data. Data sci-
ence methodologies and deep learning techniques can then be good candidates
to tackle this challenge. The combination of such techniques to improve our
method may be of prime interest to tackle real data.

References

1. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of genetic networks by
strategic gene disruptions and gene overexpressions under a boolean model. Theoretical
Computer Science 298(1), 235–251 (2003)

2. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. Foun-
dations of deductive databases and logic programming p. 89 (1988)



54 Tony Ribeiro et al.

3. Bain, M., Srinivasan, A.: Identification of biological transition systems using meta-
interpreted logic programs. Machine Learning 107(7), 1171–1206 (2018)

4. Blair, H.A., Subrahmanian, V.: Paraconsistent foundations for logic programming. Jour-
nal of non-classical logic 5(2), 45–73 (1988)

5. Blair, H.A., Subrahmanian, V.: Paraconsistent logic programming. Theoreti-
cal Computer Science 68(2), 135 – 154 (1989). DOI http://dx.doi.org/10.1016/
0304-3975(89)90126-6. URL http://www.sciencedirect.com/science/article/pii/

0304397589901266

6. Chatain, T., Haar, S., Kolčák, J., Paulevé, L., Thakkar, A.: Concurrency in boolean
networks. Natural Computing 19(1), 91–109 (2020)

7. Chatain, T., Haar, S., Koutny, M., Schwoon, S.: Non-atomic transition firing in contex-
tual nets. In: International Conference on Applications and Theory of Petri Nets and
Concurrency, pp. 117–136. Springer (2015)

8. Chatain, T., Haar, S., Paulevé, L.: Boolean networks: Beyond generalized asynchronic-
ity. In: AUTOMATA 2018. Springer (2018)

9. Cropper, A., Dumančić, S., Muggleton, S.H.: Turning 30: New ideas in inductive logic
programming. In: C. Bessiere (ed.) Proceedings of the Twenty-Ninth International
Joint Conference on Artificial Intelligence, IJCAI-20, pp. 4833–4839. International Joint
Conferences on Artificial Intelligence Organization (2020). DOI 10.24963/ijcai.2020/
673. URL https://doi.org/10.24963/ijcai.2020/673. Survey track

10. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of
fission yeast. PloS one 3(2), e1672 (2008)

11. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous
boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB) 8(5), 1393–1399 (2011)

12. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Making sense of sensory
input. arXiv preprint 1910.02227 (2019)

13. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Evaluating the apper-
ception engine. arXiv preprint 2007.05367 (2020)

14. Fages, F.: Artificial intelligence in biological modelling. In: A Guided Tour of Artificial
Intelligence Research, pp. 265–302. Springer (2020)

15. Fauré, A., Naldi, A., Chaouiya, C., Thieffry, D.: Dynamical analysis of a generic boolean
model for the control of the mammalian cell cycle. Bioinformatics 22(14), e124–e131
(2006)

16. Fitting, M.: Bilattices and the semantics of logic programming. The Journal
of Logic Programming 11(2), 91 – 116 (1991). DOI http://dx.doi.org/10.1016/
0743-1066(91)90014-G. URL http://www.sciencedirect.com/science/article/pii/

074310669190014G

17. Gibart., L., Bernot., G., Collavizza., H., Comet., J.: Totembionet enrichment method-
ology: Application to the qualitative regulatory network of the cell metabolism. In:
Proceedings of the 14th International Joint Conference on Biomedical Engineering Sys-
tems and Technologies - BIOINFORMATICS,, pp. 85–92. INSTICC, SciTePress (2021).
DOI 10.5220/0010186200850092

18. Ginsberg, M.L.: Multivalued logics: A uniform approach to reasoning in artificial intel-
ligence. Computational intelligence 4(3), 265–316 (1988)

19. Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 2, p.
924–930. AAAI Press (2011)

20. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine
Learning 94(1), 51–79 (2014)

21. Inoue, K., Sakama, C.: Oscillating behavior of logic programs. In: Correct Reasoning,
pp. 345–362. Springer (2012)

22. Kaplan, S., Bren, A., Dekel, E., Alon, U.: The incoherent feed-forward loop can generate
non-monotonic input functions for genes. Molecular systems biology 4(1), 203 (2008)

23. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with
inductive logic programming. Machine Learning 100(2-3), 555–585 (2015)

24. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of theoretical biology 22(3), 437–467 (1969)

http://www.sciencedirect.com/science/article/pii/0304397589901266
http://www.sciencedirect.com/science/article/pii/0304397589901266
https://doi.org/10.24963/ijcai.2020/673
http://www.sciencedirect.com/science/article/pii/074310669190014G
http://www.sciencedirect.com/science/article/pii/074310669190014G


Title Suppressed Due to Excessive Length 55

25. Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and
its applications. Journal of Logic Programming 12(4), 335–367 (1992)

26. Klarner, H., Bockmayr, A., Siebert, H.: Computing symbolic steady states of boolean
networks. In: Cellular Automata, pp. 561–570. Springer (2014)

27. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the gener-
ation, analysis and visualization of boolean networks. Bioinformatics 33(5), 770–
772 (2016). DOI 10.1093/bioinformatics/btw682. URL https://doi.org/10.1093/

bioinformatics/btw682

28. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory networks
under the boolean network model. Machine Learning 52(1-2), 147–167 (2003)

29. Law, M., Russo, A., Broda, K.: Iterative learning of answer set programs from context
dependent examples. Theory and Practice of Logic Programming 16(5-6), 834–848
(2016). DOI 10.1017/S1471068416000351

30. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for
inference of genetic network architectures. In: Proceedings of the 3rd Pacific Symposium
on Biocomputing, pp. 18–29 (1998)

31. Martınez, D., Alenya, G., Torras, C., Ribeiro, T., Inoue, K.: Learning relational dy-
namics of stochastic domains for planning. In: Proceedings of the 26th International
Conference on Automated Planning and Scheduling (2016)

32. Mart́ınez Mart́ınez, D., Ribeiro, T., Inoue, K., Alenyà Ribas, G., Torras, C.: Learn-
ing probabilistic action models from interpretation transitions. In: Proceedings of the
Technical Communications of the 31st International Conference on Logic Programming
(ICLP 2015), pp. 1–14 (2015)

33. Muggleton, S.: Inverse entailment and progol. New generation computing 13(3-4), 245–
286 (1995)

34. Muggleton, S.: Learning from positive data. In: International Conference on Inductive
Logic Programming, pp. 358–376. Springer (1996)

35. Muggleton, S., De Raedt, L., Poole, D., Bratko, I., Flach, P., Inoue, K., Srinivasan, A.:
Ilp turns 20. Machine learning 86(1), 3–23 (2012)

36. Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P.T., Chaouiya, C., Thieffry, D.:
Logical modeling and analysis of cellular regulatory networks with ginsim 3.0. Frontiers
in physiology 9, 646 (2018)

37. Noual, M., Sené, S.: Synchronism versus asynchronism in monotonic boolean automata
networks. Natural Computing 17(2), 393–402 (2018)

38. Ortega, A., Fierrez, J., Morales, A., Wang, Z., Ribeiro, T.: Symbolic ai for xai: Evalu-
ating lfit inductive programming for fair and explainable automatic recruitment. target
1(v1), 1 (2020)

39. Pal, R., Ivanov, I., Datta, A., Bittner, M.L., Dougherty, E.R.: Generating boolean net-
works with a prescribed attractor structure. Bioinformatics 21(21), 4021–4025 (2005)

40. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.P.: Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research 29, 309–352 (2007)

41. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract, and
scalable modeling of biological networks. bioRxiv (2020)

42. Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic 7(3),
329–340 (2009)

43. Ribeiro, T., Folschette, M., Magnin, M., Roux, O., Inoue, K.: Learning dynamics with
synchronous, asynchronous and general semantics. In: International Conference on In-
ductive Logic Programming, pp. 118–140. Springer (2018)

44. Ribeiro, T., Folschette, M., Trilling, L., Glade, N., Inoue, K., Magnin, M., Roux, O.:
Les enjeux de l’inférence de modèles dynamiques des systèmes biologiques à partir de
séries temporelles. In: C. Lhoussaine, E. Remy (eds.) Approches symboliques de la
modélisation et de l’analyse des systèmes biologiques. ISTE Editions (2020). In edition.

45. Ribeiro, T., Inoue, K.: Learning prime implicant conditions from interpretation transi-
tion. In: Inductive Logic Programming, pp. 108–125. Springer (2015)

46. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of biological
systems. Frontiers in Bioengineering and Biotechnology 2, 81 (2015)

47. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning multi-valued biological models
with delayed influence from time-series observations. In: 2015 IEEE 14th International

https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1093/bioinformatics/btw682


56 Tony Ribeiro et al.

Conference on Machine Learning and Applications (ICMLA), pp. 25–31 (2015). DOI
10.1109/ICMLA.2015.19

48. Ribeiro, T., Tourret, S., Folschette, M., Magnin, M., Borzacchiello, D., Chinesta, F.,
Roux, O., Inoue, K.: Inductive learning from state transitions over continuous domains.
In: N. Lachiche, C. Vrain (eds.) Inductive Logic Programming, pp. 124–139. Springer
International Publishing, Cham (2018)

49. Schüller, P., Benz, M.: Best-effort inductive logic programming via fine-grained cost-
based hypothesis generation. Machine Learning 107(7), 1141–1169 (2018)

50. Srinivasan, A.: The aleph manual (2001)
51. Thieffry, D., Thomas, R.: Dynamical behaviour of biological regulatory networks—ii.

immunity control in bacteriophage lambda. Bulletin of mathematical biology 57(2),
277–297 (1995)

52. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description.
Journal of Theoretical Biology 153(1), 1–23 (1991)

53. Van Emden, M.H.: Quantitative deduction and its fixpoint theory. The Journal of Logic
Programming 3(1), 37–53 (1986)

54. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. Journal of the ACM (JACM) 23(4), 733–742 (1976)



Title Suppressed Due to Excessive Length 57

A Appendix: Proofs of Section 2

Lemma 1: Double Domination Is Equality Let R1, R2 be two MVL rules. If R2 ≥ R1

and R1 ≥ R2 then R1 = R2.
Proof. Let R1, R2 be twoMVL rules such that R2 ≥ R1 and R1 ≥ R2. Then head(R1) =
head(R2) and body(R1) ⊆ body(R2) and body(R2) ⊆ body(R1), hence body(R1) ⊆
body(R2) ⊆ body(R1) thus body(R1) = body(R2) and R1 = R2. ut

Proposition 1: Uniqueness of Optimal Program Let T ⊆ SF × ST . The MVLP
optimal for T is unique and denoted PO(T ).
Proof. Let T ⊆ SF × ST . Assume the existence of two distinct MVLPs optimal for T ,
denoted by PO1 (T ) and PO2 (T ) respectively. Then w.l.o.g. we consider that there exists
a MVL rule R such that R ∈ PO1

(T ) and R 6∈ PO2
(T ). By the definition of a suitable

program, R is not conflicting with T and there exists a MVL rule R2 ∈ PO2 (T ), such that
R2 ≥ R. Using the same definition, there exists R1 ∈ PO1

(T ) such that R1 ≥ R2 since R2 is
not conflicting with T . Thus R1 ≥ R and by the definition of an optimal program R ≥ R1.
By Lemma 1, R1 = R, thus R2 ≥ R and R ≥ R2 hence R2 = R, a contradiction. ut

B Appendix: Proofs of Section 3

Theorem 1: Pseudo-idempotent Semantics and Optimal DMVLP Let DS be a
dynamical semantics.
If, for all P a DMVLP, there exists pick ∈ (SF × ℘(A|T )→ ℘(ST ) \ {∅}) so that:

(1) ∀D ⊆ A|T , pick(s,
⋃

s′∈pick(s,D)

s′) = pick(s,D), and

(2) ∀s ∈ SF ,
(
DS(P )

)
(s) = pick(s,Conclusions(s, P )),

then, for all P a DMVLP, DS(PO(DS(P )))) = DS(P ).
Proof. Let DS be a dynamical semantics, P a DMVLP, pick a function from SF ×℘(AT )
to ℘(ST ) \ {∅} with the properties described in (1) and (2).

In this proof, we use the following equivalent notations, for all (s, s′) ∈ SF × ST :
(s, s′) ∈ DS(P ) ⇐⇒ s′ ∈

(
DS(P )

)
(s).

By Definition 10, first(DS(P )) = SF (∗).
By Definition 9, PO(DS(P )) realizes DS(P ). Therefore, according to Definition 5, for

all (s, s′) in DS(P ) and vval in s′, because v ∈ T , there exists R in PO(DS(P )) so that
var(head(R)) = v ∧ R u s ∧ head(R) ∈ s′. Because of Definition 3, a discrete state cannot
contain two different atoms on the same variable: from var(head(R)) = v ∧ vval ∈ s′ ∧
head(R) ∈ s′, it comes: head(R) = vval. Moreover, by definition of Conclusions, because
R ∈ P ∧ R u s, we have: vval ∈ Conclusions(s, PO(DS(P ))). By generalizing on all vval, it
comes: s′ ⊆ Conclusions(s, PO(DS(P ))). By generalizing on all s′, it comes: ∀s ∈ SF ,

⋃
s′∈(DS(P ))(s)

s′ ⊆

Conclusions(s, PO(DS(P ))) (†).
By Definition 9, PO(DS(P )) is also consistent with DS(P ). Therefore, according to

Definition 7: ∀R ∈ PO(DS(P )),∀s ∈ first(DS(P )), Rus =⇒ ∃s′ ∈
(
DS(P )

)
(s), head(R) ∈

s′. From (∗), first(DS(P )) = SF , thus ∀s ∈ SF , ∀vval ∈ Conclusions(s, PO(DS(P ))), ∃s′ ∈
DS(P )(s), vval ∈ s′. Thus: ∀s ∈ SF ,Conclusions(s, PO(DS(P ))) ⊆

⋃
s′∈(DS(P ))(s)

s′ (§).

From (†) and (§): ∀s ∈ SF ,Conclusions(s, PO(DS(P ))) =
⋃

s′∈(DS(P ))(s)

s′ (?).

From (?) and (2): ∀s ∈ SF ,Conclusions(s, PO(DS(P ))) =
⋃

s′∈pick(s,Conclusions(s,P ))

s′ (♦).

Let s in SF .

– From (2):
(
DS(PO(DS(P )))

)
(s) = pick(s,Conclusions(s, PO(DS(P )))).



58 Tony Ribeiro et al.

– From (♦):
(
DS(PO(DS(P )))

)
(s) = pick(s,

⋃
s′∈pick(s,Conclusions(s,P ))

s′)

– From (1):
(
DS(PO(DS(P )))

)
(s) = pick(s,Conclusions(s, P ))

– From (2):
(
DS(PO(DS(P )))

)
(s) =

(
DS(P )

)
(s).

Thus: ∀s ∈ SF ,
(
DS(PO(DS(P )))

)
(s) =

(
DS(P )

)
(s), QED. ut

Theorem 2 Semantics-Free Correctness Let P be a DMVLP.

– Tsyn(P ) = Tsyn(PO(Tsyn(P ))),
– Tasyn(P ) = Tasyn(PO(Tasyn(P ))),
– Tgen(P ) = Tgen(PO(Tgen(P ))).

Proof. Let d ∈ (SF × ℘(T ) → ℘(AT )), so that ∀s ∈ SF , ∀W ⊆ T ,W ⊆ var(d(s,W )) ∧
d(s, ∅) ⊆ d(s,W ).

Let p be a function from SF×℘(AT ) to ℘(ST )\{∅} so that ∀s ∈ SF ,∀D ⊆ AT , p(s,D) =
{s′ ∈ ST | s′ ⊆ D ∪ d(s, T \ var(D))}. Since T \ var(D) ⊆ var(d(s,W )), ∅ 6∈ p(s,D). Thus
from Definition 14, ∀s ∈ SF , Tsyn(P )(s) = p(s,Conclusions(s, P )) (property 1).

Since ∀W ⊆ T , d(s, ∅) ⊆ d(s,W ), ∀D ⊆ AT , d(s, ∅) ⊆ D ∪ d(s, T \ var(D)), thus
d(s, ∅) ⊆

⋃
s′∈p(s,D)

s′ (property 2).

Moreover, ∀D ⊆ AT , let D′ :=
⋃

s′∈p(s,D)

s′. Straightforwardly: D′ = D∪d(s, T \var(D)) because

we can always create a state with any atom in D ∪ d(s, T \ var(D)), thus all atoms of this
set are in D′, and conversely (property 3). p(s,D′) = {s′ ∈ ST | s′ ⊆ D′∪d(s, T \var(D′))}
by definition of p. p(s,D′) = {s′ ∈ ST | s′ ⊆ D′ ∪ d(s, ∅)} since var(D′) = T by definition
of D′ and p. p(s,D′) = {s′ ∈ ST | s′ ⊆ D′} from property 2. p(s,D′) = {s′ ∈ ST |
s′ ∈ D ∪ d(s, T \ var(D))} = p(s,D) from property 3. Therefore p respects (1). Since
Tsyn(P ) = p(s,Conclusions(s, P )), p also respects (2). Thus, Tsyn(P ) = Tsyn(PO(Tsyn(P )))
according to Theorem 1.

By definition of Tgen: ∀s ∈ SF , (Tgen(P ))(s) = {s′ ∈ ST | s′ ⊆ Conclusions(s, P ) ∪
d(s, T\var(Conclusions(s, P )))} with spF→T (s) ⊆ d(s, ∅). Thus, the same proof gives Tgen(P ) =
Tgen(PO(Tgen(P ))) according to Theorem 1.

[Let us show that: Tasyn(P ) = Tasyn(PO(Tasyn(P ))).] Let p be a function from SF ×
℘(AT ) to ℘(ST ) \ {∅} so that ∀s ∈ SF , ∀D ⊆ AT :

p(s,D) = {s′ ∈ ST | s′ ⊆ D ∪ d(s, T \ var(D)) ∧(
|s′ \ spF→T (s)| − |T \ T | = 1 ∨ (D ∪ d(s, T \ var(D)))T = spF→T (s))}

where AT and DT are restriction notations from Definition 12. From Definition 15, we have:
TasynP = p(s,Conclusions(s, P )).

[Let us show that: ∀D ⊆ AT , p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).] Let D in AT .

– If (D ∪ d(s, T \ var(D)))T = spF→T (s), then
⋃

s′∈p(s,D)

s′ = D and thus p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).

– If there exists vval ∈ AT so that var(D ∪ d(s, T \ var(D)) \ spF→T (s))∩T = {v}, then
for all state s′ ∈ p(s,D), s′ differs from s on the regular variable v and on variables

in T \ T . Thus,
⋃

s′∈p(s,D)

s′ = (D ∪ d(s, T \ var(D))) \ {vval′ | vval′ ∈ s}. By construction

of p, it comes: p(s,
⋃

s′∈p(s,D)

s′) = p(s,D) because vval′ ∈ s′ would contradict the condition

|s′ \ spF→T (s)| − |T \ T | = 1.

– Otherwise, |var(D ∪ d(s, T \ var(D)) \ spF→T (s)) ∩ T | > 1 then there exists two states
s′1, s

′
2 ∈ p(s,D), so that they differ from s on a different regular variable each. Especially,

by construction of p, spF→T (s) ⊆ s′1 ∪ s′2 ⊆ D ∪ d(s, T \ var(D)). Therefore,
⋃

s′∈p(s,D)

s′ ⊆

D∪d(s, T \var(D)). Finally, and by definition of p, D∪d(s, T \var(D)) ⊆
⋃

s′∈p(s,D)

s′ because

for each atom in D ∪ d(s, T \ var(D)), it is possible to build a state s′ containing it:



Title Suppressed Due to Excessive Length 59

either as the projection of the initial state s or as the only variable changing its value
in s′ compared to spF→T (s). In conclusion: D ∪ d(s, T \ var(D)) =

⋃
s′∈p(s,D)

s′, which gives:

p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).

Thus, Tasyn(P ) = Tasyn(PO(Tasyn(P ))), according to Theorem 1. ut

C Appendix: Proofs of Section 4

Theorem 3: Properties of Least Revision Let R be a MVL rule and s ∈ SF such that
Ru s. Let SR := {s′ ∈ SF | Ru s′} and Sspe := {s′ ∈ SF | ∃R′ ∈ Lspe(R, s,A,F), R′ u s′}.

Let P be a DMVLP and T, T ′ ⊆ SF×ST such that |first(T )| = 1∧first(T )∩first(T ′) =
∅. The following results hold:

1. Sspe = SR \ {s},
2. Lrev(P, T,A,F) is consistent with T ,

3.
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ′,

4.
P
↪−→ T =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ,

5. P is complete =⇒ Lrev(P, T,A,F) is complete.

Proof.

1. First, let us suppose that ∃s′′ 6∈ SR \ {s} such that ∃R′ ∈ Lspe(R, s,A,F), R′ u s′′. By
definition of matching R′us′′ =⇒ body(R′) ⊆ s′′. By definition of least specialization,

body(R′) = body(R)∪{vval}, vval′ ∈ s, vval 6∈ body(R), val 6= val′. Let us suppose that
s′′ = s, then body(R′) 6⊆ s′′ since vval ∈ body(R′) and vval 6∈ s, this is a contradiction.
Let us suppose that s′′ 6= s then ¬(R u s′′), thus body(R) 6⊆ s′′ and body(R′) 6⊆ s′′,
this is a contradiction.
Second, let us assume that ∃s′′ ∈ SR \ {s} such that ∀R′ ∈ Lspe(R, s,A,F),¬(R′ u s′′).
By definition of SR, Rus′′. By definition of matching ¬(R′us′′) =⇒ body(R′) 6⊆ s′′. By

definition of least specialization, body(R′) = body(R)∪{vval}, vval′ ∈ s, val 6= val′. By
definition of matching Rus′′ =⇒ body(R) ⊆ s′′ =⇒ s′′ = body(R)∪I, body(R)∩I =

∅ and thus body(R′) 6⊆ s′′ =⇒ vval 6∈ I. The assumption implies that ∀vval′ ∈ I, ∀R′ ∈
Lspe(R, s,A,F), vval ∈ body(R′), val 6= val′. By definition of least specialization, it

implies that vval′ ∈ s and thus I = s\body(R) making s′′ = s, which is a contradiction.
Conclusion: Sspe = SR \ {s}

2. By definition of a consistent program, if two sets ofMVL rules SR1, SR2 are consistent
with T then SR1 ∪ SR2 is consistent with T . Let RP = {R ∈ P | R u s,∀(s, s′) ∈
T,head(R) 6∈ s′} be the set of rules of P that conflict with T . By definition of least
revision Lrev(P, T,A,F) = (P \ RP ) ∪

⋃
R∈RP

Lspe(R, s,A,F). The first part of the ex-

pression P \ RP is consistent with T since @R′ ∈ P \ RP such that R′ conflicts
with T . The second part of the expression

⋃
R∈RP

Lspe(R, s,A,F) is also consistent with

T : @R′ ∈ Lspe(R, s,A,F), R′ u s thus @R′ ∈ Lspe(R, s,A,F) that conflict with T and⋃
R∈RP

Lspe(R, s,A,F) is consistent with T . Conclusion: Lrev(P, T,A,F) is consistent with

T .
3. Let (s1, s2) ∈ T ′ thus s1 6= s. From definition of realization, vval ∈ s2 =⇒ ∃R ∈

P,head(R) = vval, R u s1. If ¬R u s then R ∈ Lrev(P, T,A,F) and
Lrev(P,T,A,F)
↪−−−−−−−−−−→

(s1, s2). If Rus, from the first point ∃R′ ∈ Lspe(R, s,A,F), R′us1 and since head(R′) =

head(R) = vval,
Lrev(P,T,A,F)
↪−−−−−−−−−−→ (s1, s2). Applying this reasoning on all elements of T ′

implies that
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ′.



60 Tony Ribeiro et al.

4. Let (s1, s2) ∈ T , since
P
↪−→ T by definition of realization ∀vval ∈ s2, ∃R ∈ P,R u

s1, head(R) = vval. By definition of conflict, R is not in conflict with T thus R ∈

Lrev(P, T,A,F) and
Lrev(P,T,A,F)
↪−−−−−−−−−−→ T .

5. Let (s1, s2) ∈ SF × ST , if P is complete, then by definition of a complete program
∀v ∈ V, ∃R ∈ P,R u s1, var(head(R)) = v. If ¬(R u s) then R ∈ Lrev(P, T,A,F). If
Rus, from the first point ∃R′ ∈ Lspe(R, s,A,F), R′us1 and thus R′ ∈ Lrev(P, T,A,F)
and since var(head(R′)) = var(head(R)) = v, Lrev(P, T,A,F) is complete.

ut

Proposition 2: Optimal Program of Empty Set PO(∅) = {vval ← ∅ | vval ∈ AT }.
Proof. Let P = {vval ← ∅ | vval ∈ AT }. The MVLP P is consistent and complete by

construction. Like allMVLPs,
P
↪−→ ∅ and there is no transition in ∅ to match with the rules

in P . In addition, by construction, the rules of P dominate all MVL rules. ut

Proposition 3: From Suitable to Optimal Let T ⊆ SF × ST . If P is a DMVLP
suitable for T , then PO(T ) = {R ∈ P | ∀R′ ∈ P,R′ ≥ R =⇒ R ≥ R′}.
Proof. Since any possible MVL rule consistent with T is dominated, all the rules of the
optimal program are dominated. Since the only rules dominating a rule of the optimal
program is the rule itself, the optimal program is a subset of any suitable program. If we
remove the dominated rules, only remains the optimal program. ut

Theorem 4: Least Revision and Suitability Let s ∈ SF and T, T ′ ⊆ SF × ST such
that |first(T ′)| = 1 ∧ first(T ) ∩ first(T ′) = ∅. Lrev(PO(T ), T ′,A,F) is a DMVLP suitable
for T ∪ T ′.
Proof. Let P = Lrev(PO(T ), T ′). Since PO(T ) is consistent with T , by Theorem 3, P is also
consistent with T and thus consistent with T ′ ∪ T . Since PO(T ) realizes T by Theorem 3,
P
↪−→ T . Since s 6∈ first(T ), a MVL rule R such that body(R) = s does not conflict with T .

By definition of suitable program ∃R′ ∈ PO(T ), R′ ≥ R, thus
PO(T )
↪−−−−→ T ′. Since

PO(T )
↪−−−−→ T ′

by Theorem 3
P
↪−→ T ′ and thus

P
↪−→ T ∪ T ′. Since PO(T ) is complete, by Theorem 3, P is

also complete. To prove that P verifies the last point of the definition of a suitableMVLP,
let R be a MVL rule not conflicting with T ∪ T ′. Since R is also not conflicting with T ,
there exists R′ ∈ PO(T ) such that R′ ≥ R. If R′ is not conflicting with T ′, then R′ will
not be revised and R′ ∈ P , thus R is dominated by a rule of P . Otherwise, R′ is in conflict
with T ′, thus R′ u s and ∀(s, s′) ∈ T ′,head(R′) 6∈ s′. Since R is not in conflict with T ′ and
head(R) = head(R′), since R′ ≥ R then body(R) = body(R′) ∪ I, ∃vval ∈ I, vval 6∈ s. By
definition of least revision and least specialization, there is a rule R′′ ∈ Lspe(R′, s) such that
vval ∈ body(R′′) and since R′′ = head(R′) ← body(R′) ∪ vval thus R′′ ≥ R. Thus R is
dominated by a rule of P . ut

Theorem 5: GULA Termination, Soundness, Completeness, Optimality Let T ⊆
SF × ST .

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T,F , T ) = PO(T ),
(3) ∀A′ ⊆ A|T ,GULA(AF ∪ A′, T,F , T ) = {R ∈ PO(T ) | head(R) ∈ A′}.

Proof. In this proof we refer to the detailed pseudo-code of GULA given in Appendix in
Algorithm 5 and Algorithm 6.

(1) The algorithm of GULA iterates on finite sets, and thus terminates.
(3) Let T ⊆ SF × ST . The algorithm iterates over each atom vval ∈ A′, A′ ⊆ AT

iteratively to extract all states s such that (s, s′) ∈ T =⇒ vval 6∈ s′. This is equivalent to
group the transitions by initial state: generate the set TT = {T ′s ⊆ T | s ∈ SF , first(T ′s) =
{s} ∧ ∀s′ ∈ ST , (s, s′) ∈ T =⇒ (s, s′) ∈ T ′s}.

To prove that ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T ) = {R ∈ PO(T ) | head(R) ∈ A′}
and thus GULA(A, T,F , T ) = PO(T ), it suffices to prove that the main loop (Algorithm 5,
lines 23–50) preserves the invariant P val

v = {R ∈ PO(Ti) | head(R) = vval ∈ A′} after the



Title Suppressed Due to Excessive Length 61

ith iteration where Ti is the union of all set of transitions of TT already selected line 23
after the ith iteration for all i from 0 to |TT |.

Line 22 initializes Pvval to {vval ← ∅}. Thus by Proposition 2, after line 22, Pvval =
{R ∈ PO(∅) | head(R) = vval}.

Let us assume that before the (i+1)th iteration of the main loop, Pvval = {R ∈ PO(Ti) |
head(R) = vval}. Through the loop of lines 25–28, P ′ = {R ∈ PO(Ti) | R does not conflict with
Ti+1∧head(R) = vval} is computed. Then the set P ′′ =

⋃
R∈PO(Ti)\P ′∧head(R)=vval Lspe(R, s,A,F)

is iteratively build through the calls to least specialization (Algorithm 6) at line 31 and
the dominated rules are pruned as they are detected by the loop of lines 32–49. Each re-
vised rule can be dominated by a rule in {R ∈ PO(Ti)\P ′} or another revised rule and
thus dominance must be checked from both. But only a revised rule (R ∈ P ′′) can be
dominated by a revised rule: if a rule in {R ∈ PO(Ti)\P ′} is dominated by a revised
rule, then it was dominated by its original rule in {R ∈ PO(Ti)} which is impossible since
Pvval = {R ∈ PO(Ti) | head(R) = vval}. Thus it is safe to only check domination of
the revised rules by previous rules (PO(Ti) \ P ′) or by other revised rules (P ′′). Thus
by Theorem 4 and Proposition 3, Pvval = {R ∈ PO(Ti+1) | head(R) = vval} after the
(i + 1)th iteration of the main loop. By induction, at the end of all the loop lines 23–50,
Pvval = {R ∈ PO(

⋃
T ′∈TT T ′) | head(R) = vval} = {R ∈ PO(T ) | head(R) = vval} since

it has iterated on all elements of TT . Since the same operation holds for each vval ∈ A′,
P =

⋃
vval∈A′ Pvval = {R ∈ PO(T ) | head(R) = vval ∧ vval ∈ A′} after all iterations

of the loop of line line 6. Finally: ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T ) = {R ∈ PO(T ) |
head(R) ∈ A′}.

(2) Thus GULA(A, T,F , T ) = GULA(AF ∪AT , T,F , T ) = {R ∈ PO(T ) | head(R) ∈
AT } = PO(T ). ut

Theorem 6: GULA Complexity Let T ⊆ SF × ST be a set of transitions, Let n :=
max(|F|, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. The worst-case time complexity
of GULA when learning from T belongs to O(|T |2 + |T | × (2n4d2n+2 + 2n3dn+1)) and its
worst-case memory use belongs to O(d2n + 2ndn+1 + ndn+2).
Proof. Let df := max({|dom(v)| ∈ N | v ∈ F}) (resp. dt := max({|dom(v)| ∈ N | v ∈ T }))
be the maximal number of values of features (resp. target) variables. The algorithm takes as

input a set of transition T ⊆ SF×ST bounding the memory use to O(d
|F|
f )×d|T |t ) = O(d2n).

The learning is performed iteratively for each possible rule head vval ∈ A′ ⊆ AT . The
extraction of negative example requires to compare each transition of T one to one and
thus has a complexity of op1 = O(|T |2). Those transitions are stored in Negvval which size

is at most |SF | extending the memory use to O(d
|F|
f × d

|T |
t + d

|F|
f ) which is bounded by

O(d2n + dn).
The learning phase revises a set of rule Pvval where each rule has the same head vval.

There are at most d
|F|
f ≤ dn possible rule bodies and thus |Pvval | ≤ d

|F|
t ≤ dn, the memory

use of |Pvval | is then O(d
|F|
t ) extending the memory bound to O(d

|F|
f ×d

|T |
t +d

|F|
f )+d

|F|
f ) =

O(d
|F|
f × d

|T |
t + 2d

|F|
f )), which is bound by O(d2n + 2dn).

For each state s of Negvval , each rule of Pvval that matches s are extracted into a set

of rules Rm. This operation has a complexity of op2 = O(d
|F|
f × |F|) bound by O(ndn).

Each rule of Rm are then revised using least specialization, this operation has a complexity

of O(|F|2) bound by O(n2). |Rm| ≤ d
|F|
f ≤ dn thus the revision of all matching rules is

op3 = O(d
|F|
f ×n2) bounded by O(dn ×n2). All revisions are stored in LS and there are at

most df ×|F| ≤ dn revisions for each rule, thus |LS| ≤ d
|F|
f ×df |F| ≤ dn×dn extending the

memory bound to O(d
|F|
f ×d

|T |
t +2d

|F|
f )+df |F|×d

|F|
f ) bounded by O(d2n +2dn +ndn+1).

Learning is performed for each vval ∈ A′ ⊆ T , thus the memory usage of GULA is

therefore O(d
|F|
f ×d

|T |
t +|A′|(2d|F|f +df |F|×d

|F|
f )), bounded by O(d

|F|
f ×d

|T |
t +tdt(2d

|F|
f )+

df |F|× d
|F|
f )) wich is bounded by O(d2n + dn(2dn +ndn+1)) = O(d2n + 2ndn+1 +ndn+2).

The worst-case memory use of GULA is thus O(d2n + 2ndn+1 + ndn+2).



62 Tony Ribeiro et al.

All rules of LS are compared to the rule of Pvval for domination check, this operation

has a complexity of op4 = O(2× |LS| × |Pvval | × |F|2) = O(2× d
|F|
f × df |F| × dn × n2) =

O(2× |F|3 × d
2|F|+1
f ) which is bounded by O(2× n3 × d2n+1).

Learning is performed for each vval ∈ A′ ⊆ T , |A′| ≤ |T |dt, thus the complexity is

bound by O(op1 + |T |× |T |×dt(op2 +op3 +op4)) = O(|T |2 + |T | times|T |×dt(d
|F|
f ×|F|+

d
|F|
f ×n

2+2×|F|3×d2|F|+1
f )) which is bounded by O(|T |2+|T |×nd(dn×n2+dn×n2+2×n3×

d2n+1)) = O(|T |2 + |T |×nd(2n3d2n+1 + 2n2dn)) = O(|T |2 + |T |× (2n4d2n+2 + 2n3dn+1)).
The computational complexity of GULA is thus O(|T |2 + |T |×(2n4d2n+2 +2n3dn+1)).

ut

D Appendix: Proofs of Section 5

Theorem 7: Optimal DMVLP and Constraints Correctness Under Synchronous
Constrained Semantics Let T ⊆ SF × ST , it holds that T = Tsyn−c(PO(T ) ∪ C′O(T )).
Proof. From Definition 9, ∀(s, s′) ∈ T, s′ ⊆ Conclusions(s, PO(T )) thus according to Defi-
nition 21, s′ ∈ Tsyn−c(PO(T ))(s), thus T ⊆ Tsyn−c(PO(T )) (property 1).

By Definition 24, ∀(s, s′) ∈ T, @C ∈ CO(T ), Cu(s, s′), thus since C′O(T ) ⊆ CO(T ), @C ∈
C′O(T ), C u (s, s′) and then T ⊆ Tsyn−c(PO(T ) ∪ C′O(T )) (property 2).

Let us suppose ∃(s, s′) ∈ Tsyn−c(PO(T ) ∪ C′O(T )), (s, s′) /∈ T . From Definition 21,

∀vval ∈ s′, ∃R ∈ PO(T ),body(R)us,head(R) = vval. From Definition 24, ∃C′ ∈ CO(T ), C′u
(s, s′) since (s, s′) /∈ T . But since ∃(s, s′) ∈ Tsyn−c(PO(T )∪C′O(T )), thus C′ /∈ C′O(T ). From

Definition 25, it implies that ∃vval ∈ s′, @R ∈ PO(T ),head(R) = vval, ∀w ∈ F ,∀val′, val′′ ∈
dom(w),wval′ ∈ body(R) ∧ wval′′ ∈ body(C) =⇒ val′ = val′′. Since body(C′) ⊆ (s ∪ s′),
@R ∈ PO(T ), head(R) = vval,body(R) ⊆ s, thus s′ 6⊆ Conclusions(s, PO(T )) and by Defini-
tion 21, (s, s′) 6∈ Tsyn−c(PO(T )∪C′O(T )), contradiction, thus Tsyn−c(PO(T )∪C′O(T )) ⊆ T
(property 3).

From property 2 and 3: Tsyn−c(PO(T ) ∪ C′O(T )) = T . ut

Theorem 8: Synchronizer Correctness Given any set of transitions T ,
Synchronizer(A, T , F , T ) outputs PO(T ) ∪ C′O(T ).
Proof. Let G1 = GULA(A, T,F , T ) and G2 = GULA(AF∪T ∪{ε1}, T ′,F ∪ T , {ε}). From

Theorem 5, P = G1 = PO(T ) (property 1).
Let P ′ = G2. By definition of T ′: ∀(s, s′) ∈ T ′, s′ = {ε0}. Thus ∀R ∈ P ′, R is consistent

with T ′ by Theorem 5, thus @(s, s′) ∈ T ′, R u s, since head(R) = ε1 because ∀(s, s′) ∈
T ′, s′ = {ε0} (property 2).

From Theorem 5, P ′ = {R ∈ PO(T ′) | head(R) = ε1}. From Definition 9, PO(T ′) is
complete thus ∀(s, s′) ∈ SF × ST , ss′ := s ∪ s′, ss′ /∈ first(T ′), ∃R ∈ P ′, R u ss′ (property
3).

From definition of T ′, (s, s′) ∈ T =⇒ (s∪s′, {ε0}) ∈ T ′, thus ∀C ∈ P ′, C is a constraint
(property 4).

– From property 2 and 4: (s, s′) ∈ T =⇒ (s∪ s′, {ε0}) ∈ T ′ =⇒ @C ∈ P ′, C u (s, s′), P ′

consistent with T .
– From property 3 and 4: (s, s′) 6∈ T =⇒ (s ∪ s′) 6∈ first(T ′) =⇒ ∃R ∈ P ′, R u (s, s′),

P ′ is complete with T .
– If there exists a constraint consistent with T that is not dominated by a constraint in

P ′ it implies that a rule consistent with T ′ whose head is ε1 is not dominated by a
rule in G2 wich is in contradiction with Theorem 5. All constraint consistent with T are
dominated by a constraint in P ′.

– From Theorem 5, the rules of G2 do not dominate eachover, thus the same hold for the
constraint of P ′.

– From Definition 24, P ′ = CO(T ) (property 5).



Title Suppressed Due to Excessive Length 63

Now let us prove that P ′′ = C′O(T ). Let us suppose that P ′′ 6= C′O(T ). Since P ′′ ⊆
CO(T ), according to Definition 25, therefore P ′′ is missing a useful optimal constraint
(C′O(T ) \ P ′′ 6= ∅), or contains a useless optimal constraint (P ′′ \ C′O(T ) 6= ∅).

1) Suppose that C /∈ P ′′ but C ∈ C′O(T ), meaning that P ′′ misses a useful constraint

C. Since C ∈ C′O(T ), ∃(s, s′)s PO(T )−−−−−→ s′, C u (s, s′). Since s
PO(T )−−−−−→ s′, according to

Definition 5 ∃S ⊆ PO(T ), s′ = {head(R) | R ∈ S} ∧ ∀R ∈ S,R u s. By Definition 20,
C ⊆ s∪ s′ thus body(C)∩AF ⊆ s and body(C)∩AT ⊆ s′. By definition of Crules, ∀vval ∈
body(C) ∩ AT ,∀R ∈ S,

(
var(head(R)) = v ∧ head(R) ∈ body(C) =⇒ R ∈ Crules(v)

)
and since s

PO(T )−−−−−→ s′, ∀v ∈ Ctargets, Crules(v) 6= ∅. Thus there exists a combi such that
∀v ∈ F , |{vval ∈ body(R) | val ∈ dom(v) ∧R ∈ combi}| ≤ 1, contradiction.

2) Suppose that C /∈ C′O(T ) but C ∈ P ′′, meaning that P ′′ contains a useless constraint

C. Thus, {(s, s′) ∈ SF ×ST | s PO(T )−−−−−→ s′ ∧C u (s, s′)} = ∅. Since C ∈ P ′′ there is a combi
such that |{vval ∈ body(R) | val ∈ dom(v) ∧ R ∈ combi}| ≤ 1, thus ∃s ∈ SF , body(C) ∩

AT ⊆ s ∧ ∀R ∈ combi,R u s. Let S := {s′ ∈ ST | s PO(T )−−−−−→ s′}. Because PO(T ) is
complete, S 6= ∅. Since ∀R ∈ combi,R ∈ PO(T ),∃s′ ∈ S,∀R ∈ combi, head(R) ∈ s′. Since
body(C) ∩ AT = {head(R) | R ∈ combi} ⊆ s′, C u (s, s′).

Thus P ′′ = C′O(T ) (property 6).

From property 1 and 6, Synchronizer(A, T,F , T ) = PO(T ) ∪ C′O(T ).

ut

Theorem 8: Synchronizer Complexity Let T ⊆ SF × ST be a set of transitions, let
n := max(|F|, |T |) and d := max({|dom(v)| ∈ N | v ∈ F ∪ T }) and m := |F|+ |T |.

The worst-case time complexity of Synchronizer when learning from T belongs to
O((d2n +2ndn+1 +ndn+2)+(|T |2 + |T |× (2m4d2m+2 +2m3dm+1))+(dn

n
)) and its worst-

case memory use belongs to O((d2n+2ndn+1+ndn+2)+(d2m+2mdm+1+mdm+2)+(ndn)).

Proof. Let df := max({|dom(v)| ∈ N | v ∈ F}) (resp. dt := max({|dom(v)| ∈ N | v ∈ T }))
be the maximal number of values of features (resp. target) variables. Let n := max(|F|, |T |)
and d := max({|dom(v)| ∈ N | v ∈ F ∪ T }) and m := |F| + |T |. The first call to GULA
has complexity of O(|T |2 + |T | × (2n4d2n+2 + 2n3dn+1)) and the memory is bound by
O(d2n + 2ndn+1 + ndn+2) according to Theorem 6.

Computing T ′ := {(s∪s′, {ε0}) | (s, s′) ∈ T} has a linear complexity of O(|T |). The call
GULA(AF∪T ∪{ε1}, T ′,F ∪ T , {ε}) considers target variables as features variables to learn
constraints, i.e., the body of constraints can have m conditions. Thus the complexity of this
call to GULA is bound by O(|T ′|2 + |T ′| × (2m4d2m+2 + 2m3dm+1)) = O(|T |2 + |T | ×
(2m4d2m+2 +2m3dm+1)) since |T ′| = |T | and the memory is bound by O(d2m +2mdm+1 +
mdm+2) according to Theorem 6.

To discard useless constraints, Algorithm 3 searches for a set of rules that can be applied
at the same time as the constraint: first it extract the constraint target variables Ctargets :=
{v ∈ T | ∃val ∈ dom(v), vval ∈ body(C)} and search for compatible rules with the constraint
∀v ∈ Ctargets, Crules(v) := {R ∈ P | var(head(R)) = v ∧ head(R) ∈ body(C) ∧ ∀w ∈
F , ∀val, val′ ∈ dom(w),

(
wval ∈ body(R) ∧ wval′ ∈ body(C)

)
=⇒ val = val′}. The

constraint contains at most |T | target conditions. For each target variable, there is at most

d
|F |
f rules in P . Thus, computing the Cartesian product of rules grouped by head variables

has a time complexity of O(d
|F ||T |
f ) which is bound by O(dn

n
) and a memory complexity

of O(|P |) which is bound by O(ndn).

The computational complexity of Synchronizer is thus O((d2n + 2ndn+1 + ndn+2) +
(|T |2 + |T | × (2m4d2m+2 + 2m3dm+1)) + (dn

n
)) and its memory is bound by O((d2n +

2ndn+1 + ndn+2) + (d2m + 2mdm+1 + mdm+2) + (ndn)). ut



64 Tony Ribeiro et al.

E Appendix: Proofs of Section 6

Proposition 5: Uniqueness of Impossibility-Optimal Program Let T ⊆ SF × ST .
The DMVLP impossibility-optimal for T is unique and denoted PO(T ).
Proof. Same proof than for Proposition 1 by replacing “suitable” by “impossibility-
suitable”. ut
F Appendix: detailed pseudo-code of Section 4

Algorithms 5 and 6 provide the detailed pseudocode of GULA. Algorithm 5 learns from a
set of transitions T the conditions under which each value val of each variable v may appear
in the next state. Here, learning is performed iteratively for each value of variable to keep
the pseudo-code simple. But the process can easily be parallelized by running each loop
in an independent thread, bounding the run time to the variable for which the learning is
the longest. In the case where we are not interested about the dynamics of some variables,
the parameter A′ and T ′ can be reduced accordingly. The algorithm starts by the pre-
processing of the input transitions. Lines 7–18 of Algorithm 5 correspond to the extraction
of Negvval , the set of all negative examples of the appearance of vval in next state: all states
such that v never takes the value val in the next state of a transition of T . For efficiency
purpose, it is important that the negatives examples are ordered in a way that reduce the
difference between nearby elements, for example lexicographically. Indeed, it increase the
proportion of revised rules (produced to satisfy a previous example) still consistent with the
following examples, reducing the average number of rules stored and thus checked in the
following processes. Those negative examples are then used during the following learning
phase (lines 21–50) to iteratively learn the set of rules PO(T ). The learning phase starts
by initializing a set of rules Pvval to {R ∈ PO(∅) | head(R) = vval} = {vval ← ∅} (see
Proposition 2).

Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm

of Pvval that match neg have to be revised. In order for Pvval to remain optimal, the revision
of each Rm must not match neg but still matches every other state that Rm matches. To
ensure that, the least specialization (see Definition 17) is used to revise each conflicting rule
Rm. Algorithm 6 shows the pseudo code of this operation. For each variable of F ′ so that
body(Rm) has no condition over it, a condition over another value than the one observed in
state neg can be added (lines 3–8). None of those revision match neg and all states matched
by Rm are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in Pvval or another revised rules and thus
dominance must be checked from both. But only revised rule can be dominated by a revised
rule: if a rule in Pvval is dominated by a revised rule, then it was dominated by its original
rule and thus could not be part of Pvval since it would have been discard in a previous step.
Thus we can safely only check the revised rules to discard the ones dominated by the new
current revised rule. The non-dominated revised rules are then added to Pvval .

Once Pvval has been revised against all negatives example of Negvval , Pvval = {R ∈
PO(T ) | head(R) = vval}, that is, Pvval is the subset of rules of the final optimal program
having vval as head. Finally, Pvval is added to P and the loop restarts with another atom.
Once all values of each variable have been treated, the algorithm outputs P which is then
equal to PO(T ).



Title Suppressed Due to Excessive Length 65

Algorithm 5 GULA(A′,T ,F ′,T ′, learning mode)

1: INPUT: A set of atoms A′, a set of transitions T ⊆ SF
′
× ST

′
, two sets of variables F′ and T ′, a

string learning mode ∈ {“possibility”, “impossibility”}.
2: OUTPUT: PO(T ) if learning mode = “possibility” or PO(T ) if learning mode = “impossibility”.

3: T := {(s1, {s2 | (s1, s2) ∈ T}) | s1 ∈ first(T )} // Group transitions by initial state
4: T := sort(T ) // Sort the transitions in Lexicographical order over feature states
5: P := ∅
6: for each vval ∈ A′ such that v ∈ T ′ do
7: // 1) Extraction of positives and negative examples of possibility
8: Pos

vval := ∅
9: Neg

vval := ∅
10: for each (s1, S) ∈ T do
11: negative example := true
12: for each s2 ∈ S do

13: if vval ∈ s2 then
14: negative example := false
15: Pos

vval := Pos
vval ∪ {s1}

16: break
17: if negative example == true then
18: Neg

vval := Neg
vval ∪ {s1}

19: if learning mode == “impossibility” then
20: Neg

vval = Pos
vval // Positive examples of possibility are negatives examples of impossibility.

21: // 2) Revision of the rules of vval to avoid matching of negative examples

22: P
vval := {vval ← ∅}

23: for each neg ∈ Neg
vval do

24: M := ∅ // Set of rules of P
vval that are in conflict

25: for each R ∈ P
vval do // Extract all rules that conflict and remove them from P

26: if body(R) ⊆ neg then
27: M := M ∪ {R}
28: Pval

v := Pval
v \ {R}

29: LS := ∅
30: for each Rm ∈ M do // Revise each conflicting rule
31: P ′ := least specialization(Rm, neg,A′,F′)

32: for each Rls ∈ P ′ do
33: dominated := false
34: for each Rp ∈ P

vval do // Check if the revision is dominated by P
vval

35: if body(Rp) ⊆ body(Rls) then

36: dominated := true
37: break
38: if dominated == true then
39: continue

40: for each Rp ∈ LS do // Check if the revision is dominated by LS

41: if body(Rp) ⊆ body(Rls) then

42: dominated := true
43: break
44: if dominated == true then
45: continue

46: for each Rp ∈ LS do// Remove previous specialization that are now dominated

47: if body(Rls) ⊆ body(Rp) then

48: LS := LS \ {Rp}

49: LS := LS ∪ {Rls} // Add the revision

50: P
vval := P

vval ∪ LS // Add non-dominated revisions

51: P := P ∪ P
vval

52: return P



66 Tony Ribeiro et al.

Algorithm 6 least specialization(R, s, A′, F ′) : specialize R to avoid matching of s

1: INPUT: a rule R, a state s, a set of atoms A′ and a set of variables F′
2: OUTPUT: a set of rules LS which is the least specialization of R by s according to F′ and A′.

3: LS := ∅
// Revise the rules by least specialization

4: for each vval ∈ s do
5: if v /∈ var(body(R)) then // Add condition for all values not appearing in s

6: for each vval′ ∈ A′, v ∈ F′, val′ 6= val do

7: R′ := head(R)← (body(R) ∪ {vval′})
8: LS := LS ∪ {R′}
9: return LS



Title Suppressed Due to Excessive Length 67

3 5 6 7 9 10
Number of variables

0

0

0

1

10

100

1000

Ru
n 

Ti
m

e 
(in

 se
co

nd
s)

synchronous semantics

Synchronizer: input transitions
1%
5%
10%
25%
50%
75%
100%

3 5 6 7 9
Number of variables

0

0

0

1

10

100

1000

Ru
n 

Ti
m

e 
(in

 se
co

nd
s)

asynchronous semantics

Synchronizer: input transitions
1%
5%
10%
25%
50%
75%
100%

3 5 6 7 9
Number of variables

0

0

0

1

10

100

1000

Ru
n 

Ti
m

e 
(in

 se
co

nd
s)

general semantics

Synchronizer: input transitions
1%
5%
10%
25%
50%
75%
100%

Fig. 13: Run time of Synchronizer from a random set of
1%, 5%, 10%, 25%, 50%, 75%, 100% of the transitions of a Boolean net-
work from Boolenet and PyBoolNet with size varying from 3 to 10 variables.
Time out is set at 1, 000 seconds and 10 runs where performed for each
setting.

G Synchronizer Scalability

Figure 13 shows the run time of Synchronizer when learning from transitions of Boolean
networks from Boolenet [11] and PyBoolnet [27] with same settings as in the experiements of
Table 3. For the synchronous and general semantics, it is only when we are given a subset of
all possible transitions that the algorithm output constraints, since all combination of heads
of matching rules are allowed for those two semantics. Those constraint at least prevent
transitions from unseen states and also some combination of atoms that are missing in next
states but that are observed individually. Even when it outputs an empty set of constraint,
the learning process needs to produce and revises constraint until its no more possible,
so run time of full set of transitions is also considered. In the asynchronous case, given
a set of transitions T , it needs to learn the constraints ensuring at most one change per

transitions, i.e., { ⊥←− ait, b
j
t , a

i′
t−1, b

j′

t−1 | a, b ∈ AT , i 6= i′ ∧ j 6= j′} and the ones preventing

the projection when only one variable can be updated: {C | {ait, ait−1} ∈ body(C), a ∈
AT , @(s, s′) ∈ T,body(C) ⊆ s ∪ s′}. Those second kind of constraint will be specific to the
few states this limitation occurs and show the limits of propositional representation for the
explanation of the dynamics.

Learning constraints is obviously more costly than learning regular rules since both
features and targets variables can appear in the body, i.e., number of features becomes
|F|+ |T |. The algorithm reached the time out of 1, 000 seconds with benchmarks of 10 nodes
for synchronous semantics and 7 nodes for asynchronous and general semantics. Scalability
of the algorithm can be greatly improved by using the approximated version of GULA for



68 Tony Ribeiro et al.

learning both rules and constraints. If learning rules can be done in polynomial time, learning
constraints remains exponential. Since we do not present this approximated algorithm in
this paper we will not go into the details. In short, this approximated version needs positives
examples and thus require to generate the Cartesian product of all applicable rules heads
for each initial state observed which is exponential. Scalability, readability and applicability
could be improved by considering first order generalization of both rule and constraints
but those generalization are application dependant and thus remains as future work. Such
generalization is required to perform proper prediction from unseen states, thus application
of the synchronizer output for prediction from unseen states are out of the scope of this
paper.



Title Suppressed Due to Excessive Length 69

H Information About this Paper

H.1 History of the paper

This paper is a substantial extension of [43] where a first version of GULA was introduced.
In [43], there was no distinction between feature and target variables, i.e., variables at time
step t and t+1. From this consideration, interesting properties arise and allow to character-
ize the kind of semantics compatible with the learning process of the algorithm (Theorem 1).
It also allows to represent constraints and to propose an algorithm (Synchronizer, Section
5) to learn programs whose dynamics can mimic any given set of transitions with optimal
properties on both rules and constraints. It also allows to use GULA to learn human read-
able explanations in form of rules on static classification problems (as long as all variables
are discrete), which will be one of the focus of our future works.

H.2 Main contributions of the paper

The main contributions of this paper are:

– A modeling of discrete memory-less dynamics system as multi-valued propositional logic.
This modeling is independent of the dynamical semantics the system relies on, as long
as it respects some given properties we provided in this paper. The main contributions
of this formalism is the characterization of optimality and the study of which semantics
are compatible with this formalism (which includes notably synchronous, asynchronous
and general semantics).

– A first algorithm named GULA, to learn such optimal programs.

– The formalism is also extended to represent and use constraints. This allows to reproduce
any discrete memory-less dynamical semantics behaviors inside the logic program when
the original semantics is unknown.

– A second algorithm named Synchronizer, that exploits GULA to learn a logic pro-
gram with constraints that can reproduce any given set of state transitions. The method
we proposed is able to learn a whole system dynamics, including its semantics, in the
form of a single propositional logic program. This logic program not only explains the
behavior of the system in the form of human readable propositional logic rules but also
is able to reproduce the behavior of the observed system without the need of knowing
its semantics. Furthermore, the semantics can be explained, without any previous as-
sumption, in the form of human readable rules inside the logic program. In other words,
the approach allows to learn all the previously cited semantics, as well as new ones.

– A heuristic method allowing to use GULA to learn a model able to predict from unseen
case.

– Evaluation of these methods on benchmarks from biological litterature regarding scala-
bility, prediction accuracy and explanation quality.

H.3 What evidence is provided

We show through theoretical results the correctness of our approach for both modeling
and algorithms (see above contribution for details). Empirical evaluation is performed on
benchmarks coming from biological literature. It shows the capacity of GULA to produce
correct models when all transitions are available. Also, we observe that learned models
generalize to unseen data when given a partial input in those experiments.



70 Tony Ribeiro et al.

H.4 Related work

The paper refers to relevant related work. As we discussed in the related work section, our
approach is quite related to Bain and Srinivasan [3], Evans et al. [12,13], Katzouris et al.
[23], Fages [14].

The techniques we propose in this paper are a continuation of the works on the LFIT
framework from [20,45,43].

In [19,21], state transitions systems are represented with logic programs, in which the
state of the world is represented by an Herbrand interpretation and the dynamics that rule
the environment changes are represented by a logic program P . The rules in P specify
the next state of the world as an Herbrand interpretation through the immediate conse-
quence operator (also called the TP operator) [54,2] which mostly corresponds to the syn-
chronous semantics we present in Section 3. In this paper, we extend upon this formalism
to model multi-valued variables and any memory-less discrete dynamic semantics including
synchronous, asynchronous and general semantics.

[20] proposed the LFIT framework to learn logic programs from traces of interpretation
transitions. The learning setting of this framework is as follows. We are given a set of pairs
of Herbrand interpretations (I, J) as positive examples such that J = TP (I), and the goal
is to induce a normal logic program (NLP) P that realizes the given transition relations.
As far as we know, this concept of learning from interpretation transition (LFIT) has never
been considered in the ILP literature before [20]. In this paper, we propose two algorithms
that extend upon this previous work: GULA to learn the minimal rules of the dynamics
from any semantics states transitions that respect Theorem 1 and Synchronizer that can
capture the dynamics of any memory-less discrete dynamic semantics.

I Declarations

I.1 Funding

This work was supported by JSPS KAKENHI Grant Number JP17H00763 and by the ”Pays
de la Loire” Region through RFI Atlanstic 2020.

I.2 Conflicts of interest/Competing interests

None

I.3 Availability of data and material

Experiments data and sources code is available at https://github.com/Tony-sama/pylfit

under GPL-3.0 License.

I.4 Code availability

Algorithms and experiments sources code is available at https://github.com/Tony-sama/

pylfit under GPL-3.0 License.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit


Title Suppressed Due to Excessive Length 71

J Response to Reviewers

We thank the reviewers for their care in providing feedback and suggestions to improve
the paper. We apologize for the increased number of pages in the paper, but the fix and
modifications needed by the reviewers’ requests required these additions.

Summary of updates:

– Majors

– Insertion of examples for every definition
– Section 6 links theory and evaluation parts by providing formally how to use GULA

to learn from partial observations
– Explainability experiements (Section 7.3)
– Trivials baselines for all experiments
– Updated synchronizer algorithm and proofs (cleaning of useless constraint)

– Minors

– Methodological comparison with Progol/Aleph (Section 8)
– Clarified notations
– Experiments results tables replaced by boxplots graphs

In the following, we provide comments on how every remark from the panel of reviewers
has been taken into account.

J.1 Reviewer 1

Thank you for your comments, we fixed the typos you found and addressed your claims as
follows.

Section 3.1 (semantics): I found this section less well written, a bit verbose and with
non optimal notations. I don’t have specific suggestions to improve it however.

We tried to clarify the readibility of this section by adding examples and figures.

p13l29: point attractors are not necessarily known by the reader.

We added a sentence to define the term informally when it first appears (Section 3.1).

p14l8 At this point I was puzzled by the absence of reference to ILP. Probably such a
reference should be done beforehand in the introduction.

We have added some sentences in the introduction section to make the positioning of our
approach explicit in the ILP community. In particular, we make the bridge with two survey
papers about ILP. The more detailed comparison with several ILP approaches appear in the
related works (Section 8).

p21l15 Please comment the extra complexity coming basically from |T |+ |F | instead of
max(|T |, |F |).

We added details about the extra complexity that arise when learning constraints. Since
a constraint body can also contain target atoms, their body size can be up to |T | + |F |
where a DMVLP rule body is bound by |F |. In the complexity we use n = max(|T |, |F |)
to simplify the formula, but as stated in the proof it is the possible size of rule bodies that
most influences the complexity, the proof of complexity given in appendix has more details.

Section 7.2 The different approaches should probably be mentioned in different para-
graphs (probability distribution, optimization, ILP, constraint solving, ASP, event calculus).
Furthermore, although that section is focused on the applicative side (e.g. ref [41] using ILP),
a succinct comparison from the algorithmic point of view (in terms of difference of compu-
tation or complexity when applied to the instances satisfying the same hypotheses) would
be interesting to know to better position the contribution from a methodological point of
view.

We dispatched the different approaches in different paragraphs as advised. We added an
algorithmic comparison with Progol and Aleph in the Related Works section (Section 8).



72 Tony Ribeiro et al.

J.2 Reviewer 2

Thank you for your comments, we fixed the typos you found and addressed your claims as
follows.

In fact, my main concern is the presentation, which suffers from heavy notation. Take as
examples Definitions 15 and 25. I do not see how one can understand them in a reasonable
amount of time, keeping in mind all the necessary notations and definitions like sp, Ccl,
dT̄ , etc. I have the impression that the concepts are actually quite simple. However, they
got blurred in the vast number of definitions and clumsy notation. For that reason, I would
like to ask the authors to make a serious attempt to simplify the notation, to reduce the
number of definitions, and to underpin both by many more examples. On a minor note,
there are many grammar mistakes, in particular singular vs. plural. The paper should be
revised carefully in that regard.

We clarified notations and added examples for every definitions.
Detailed comments:
- page 8, line 15: Do you mean for all MVL rules R from P?
It refers to any MVL rules, not only the one in P, we clarified it into “for any possible

MVL rule R”
- page 9: I could not understand Theorem 2. Should it be something like ”If, for all P,

... then, for all P”, rather than ”For all P, if ...”? Also, remove ∧ at the end of item (1).
The first and last P are not the same indeed, we corrected it and revised the presentation

of the theorem.
- page 9, line 42: I suppose val at t-1 and val at t are not necessarily the same? So

wouldn’t it be better to distinguish them?
They are indeed the same value, on different variables (vt and vt−1). We clarified in the

text.
- page 10, line 31: Definition 13 would really be easier to grasp by means of an example.
We added an example. Figure 4 also serves as an explanation for this definition.
- page 12, line 21: What do you mean by d(s, ∅) = ∅ is always valid? Shouldn’t this

occur in Definition 14 as well?
We mean that d(s, ∅) = ∅ is an admissible value for d in all cases. We clarified in the

text.
- page 17, Theorem 7: Could you please discuss the complexity wrt. a very naive algo-

rithm that just checks all possible logic programs that ”arise” from T (I guess there are only
finitely many candidate programs)?

The number of possible programs is all subsets of possible rules which would have
factorial complexity to generate, then rule consistency and minimality can be checked in
polynomial time regarding input transitions, but completeness requires to check that all
possible initial states are matched by a rule for each target variables, having exponential
cost. According to the definition of an optimal program, we can find it using a brute force
enumeration of all possible rules, check their individual consistency against the input transi-
tions and remove dominated rules. We added this trivial algorithm at the end of theDMVLP
section (Algorithm 1) and discuss its complexity against GULA (Section 4.2). We also use it
as a new baseline for the scalability experiments (Figure 9). GULA is of higher complexity
than the brute force but in practice GULA is much faster as shown by the experiments.

- page 17, line 44: Maybe there is a better notation for a constraint than ← b(C), as it
is very close to a rule.

We added a ⊥ sign on the arrow for the notation of a constraint to distinguish it from
other rules. However, a constraint is still a special case of a MVL rule.

- page 19: Please format Definition 25 in a readable way.
This definition has been fixed and rewritten.

J.3 Reviewer 3

Thank you for your comments, we fixed the typos you found and addressed your claims as
follows.



Title Suppressed Due to Excessive Length 73

- weak connection between the theoretical results and experimental evaluation

We added a section (Section 6) about learning from partial observation, i.e., realistic
data that makes the link between the theoretical parts and the experiments.

- lack of conclusive experimental results.

We added more details about accuracy experiments and added an explainability eval-
uation. Experiments are conclusive, GULA can learn a predictive models even from few
observations as shown in accuracy experiments. The program learned are also meaningful
as shown in explainability experiments, i.e., the rules learned are more and more similar to
the optimal ones when given more examples and even with a few observations, the program
learned is near-optimal.

- some issues with the presentation of the results which makes it difficult to judge the
significance of the results (e.g. on accuracy).

We replaced the table form of the results for boxplots, we hope it is more readable. We
also compare the results of GULA to several trivial baselines.

As mentioned above the main contributions of the paper appear to be 3 and 4 above as
1 and 2 were published before, though this paper also improves and extends previous results,
e.g. new accuracy experiments. These contributions are supported by the theoretical results
(propositions, theorems etc) and experimental evaluation. However, I think the connections
between the theory and evaluation is not very clear. Also, the experimental results should
be improved & clarified so that the paper is acceptable for MLJ publication.

Connection is now made with a new section on learning from partial data and experi-
ments improved and clarified.

For example, the significance of the accuracy results (Section 6.2 & Fig 6) are not very
clear, especially as there is no comparison with any baseline (default accuracy) or any other
approach. Also, the paper mentions that: ”If one is only interested by the prediction, it
is certainly easier to achieve better results using other methods like neural networks or
random forest since prediction here is basically a binary classification” and that ”In the case
where explainability is of interest, the rules used for the predictions and their weights may
be quite simple human readable candidates for explanations.” However, the paper doesn’t
include any example rule learned for any of the datasets. So, all of these make it difficult to
judge the significant of the experimental results.

We added baselines for all experiments and new experiments regarding explainability.

As mentioned above, there are some issues with the presentation & discussion of the
experimental results. The theoretical framework seems to be appropriate, however I haven’t
checked the correctness of all proofs in the paper (and there are more in the appendix). There
are some discussions on the previous version of this work and its limitations. However, the
limitation of the proposed approach in this paper should be also discussed in more details.
The experimental results and the connections with the theory should be also clarified.

We added more discussion about limitations in the evaluation section and related work.

I think the paper is heavy with maths notations and definitions and difficult to follow
due to the lack of examples, i.e there are 24 definitions, 19 theorems and 6 propositions, but
only 4 examples in the paper.

We added examples for all definitions.

The Tables & Figures representing he results could be improved. Table 1 & 2: the
numbers in the table are not clear and very difficult to compare, better to use a graph. The
run time graphs used in [35] seem to be much clear.

We replaced tables results by boxplots.

Section 6.2 & Fig 6: The significance of the accuracy results are not very clear, especially
as there is no comparison with the baseline (default accuracy) or any other approach.

We added several trivial baselines.

Also the single run approach could be extended to average curves. I.e. ”10% to 90% are
chosen randomly to form a training set and the rest for a test ..” I think it is better to repeat
the random selections, e.g 10 runs, and plotting the average curve with error bars instead
of single run with a randomly selected test and training set.

This is what was actually done, but it was not explained well enough: each of the 10
runs generate a different training and test set at random. We added an example with a figure
to clarify the experimental settings, and the table showing only the average of all runs has



74 Tony Ribeiro et al.

been replaced with boxplot graphs that show the distribution of the individual runs grouped
by settings.

In general, I think not a well organised experimental section, e.g some details of exper-
imental methods described after the results.

We reorganised the Experiments section and moved some of its content to other sections
that were more relevant.

I think the current title is a bit misleading: Learning ”any semantic” for dynamic systems
sounds like a strong claim, while in fact the paper is proposing a formalism that could
potentially be used for modelling synchronous, asynchronous and ”general semantics” as
defined in the paper. The results don’t support the ”any semantic” claim, or at least ”any
semantic” should be defined (is this the same as ”general semantics” ?)

We clarified the title. What we consider “any semantics” is actually the set of discrete
memoryless semantics, that are all captured by the Synchronizer algorithm (see Theorem 7).
Any pseudo-idempotent dynamical semantics is still handled by GULA (see Theorem 1). The
general semantics (see Definition 16) is just a semantics among others pseudo-idempotent se-
mantics, which can be seen as more general than the classical synchronous and asynchronous
ones.

Please include more examples to clarify the definitions & theorems in the theoretical
framework (there are 24 definitions, 19 theorems and 6 propositions, but only 4 examples
in the paper). Please also include examples of learned rules in the evaluation section (sec
6.2) to exemplify the claim that ”In the case where explainability is of interest, the rules
used for the predictions and their weights may be quite simple human readable candidates
for explanations.”.

We added examples for all definitions. The new section about WDMVLP contains ex-
amples of explanations predictions, evaluated in new explainability experiments in evaluation
section.

Section 6.2 & Fig 6: Please clarify the significance of the accuracy results, i.e. there is
no comparison with the baseline (default accuracy) or any other approach.

We added more details and baselines comparisons.
Table 1 & 2: the numbers in the table are not clear and very difficult to compare. Better

to use a graph, please consider adopting a similar approach to the timing graphs in [35].
We replaced them by boxplots.
Please re-organise the experimental section, e.g details of experimental methods should

be described before the results.
We re-organised the experimental sections accordingly and moved some content to more

relevant sections.
The significance results and the limitation of the proposed approach in this paper should

be discussed in more details.
We added more discussion on this matter in evaluation part, related work and conclu-

sions.
Please consider alternative title or clarify ”any semantic” in the title. Is this the same

as ”general semantics” ?
We clarified the title into ”any memory-less discrete semantics”. This is not the same

as general semantics, please see above for details.
Please clarify (at the beginning) the main contributions of this paper wrt the conference

paper [35] and the (practical) significance of the results. Also, please try to clarify the
connections between the theoretical and the experimental results.

We highlighted in the introduction the major improvements w.r.t. the previous confer-
ence paper where GULA was introduced for the first time. We also added some information
about the significance from a practical point of view. We clarified the connection between
theoretical and experimental results by adding a new section on learning from partial data
and new experiments regarding explanations.

Sec 6.2: ”10% to 90% are chosen randomly to form a training set and the rest for a test
..” It might be better to repeat the random selections, e.g 10 runs, and plotting the average
curve with error bars instead of single run with a randomly selected test and training set

we actually already do so but it needed clarifying, please see above.
Also, in Fig 6, the numbers on the X axis 0.1, 0.2, 0.3, ... appear to be proportion rather

than ”Percentage” as in the label (?)



Title Suppressed Due to Excessive Length 75

We corrected the figures legend accordingly.

J.4 Reviewer 4

Thank you for your comments, we fixed the typos you found and addressed your claims as
follows.

This paper presents 2 algorithms for learning propositional logic programs from state
transitions. The logic program models the dynamics of a system, for example a biological
system. There are various semantics and the authors focus on three: the synchronous, asyn-
chronous and general semantics. In general, the semantics of a logic program (as presented
in this paper) is a set of transitions between the current state (atoms that have specific
values) and a potential next state. In this way, logic programs can capture potential non-
determinism of the system. The objective of the two algorithms presented in this paper is
to induce a logic program that explain a set of observations (state transitions) under one of
the three semantics.

To clarify, the first algorithm GULA can handle the three semantics and many others
as stated in Theorem 1. The second algorithm, the Synchronizer, can handle any discrete
memory-less dynamics semantics as stated in Theorem 7. So both algorithm do not only
cover the three aforementioned semantics.

Even though I find that the paper presents an interesting approach, I think that the
paper lacks the clarity to be published as-is in this journal.

We hope to have improved the clarity of the paper by making important changes to it:
new examples, better organization and new and more detailed experiments.

The paper is, in general, readable but in some section heavy on notation. Moreover,
in my opinion it lacks more examples to communicate some crucial concepts (see the de-
tailed comments). The complexity of notation increased substantially in comparison with
the similar definitions of [35]. As a result, it did not give me confidence that the theoretical
results can easily follow. Some of the proofs seems to be out of sync with the main text of
the paper. Overall, I think the paper needs more polishing and several changes to increase
readability (see my detailed comments below).

We clarified some notations into more readable ones like body(R) in place of just b(R),
etc. Moreover we added examples for all definitions.

The authors evaluate their approach in terms of scalability and quality of predictability.
They consider some examples from boolean networks and they achieve to learn a logic
program with 12 variables. However, the time complexity result states that is exponential
on d (the size of the domain) which, in those experiments is trivially d = |dom(0, 1)| = 2.

We added brute force experiments to compare with our algorithm GULA (see Section
7) and we can see it’s not trivial to obtain the optimal rules even for 12 Boolean variables.
Although our method can tackle multivalued models (with more than 2 discrete values for
variables), most biological models are Boolean (2 discrete values). Moreover, Boolean models
are already enough to observe the combinatorial explosion of possible rules even on small
models, as the complexity is at least (2 + 1)n for a model with n variables: each variable
can appear as 0, 1 or not appear in the body of a rule.

page 11, line 30: Figure 4 is not mentioned in the main text and I find it difficult to
interpret. The authors make an effort to give an intuition of the semantics but I think this
was done in a very abstract level. It would be helpful, to have an example based on Figure
4: what is the logic program of the boolean network and the state transitions given each
semantics. This is also crucial in order to understand Figure 5.

We added the corresponding programs, the transitions are given in the transitions dia-
grams, we clarified the way to read the diagrams.

page 14, line 27-29: It is not clear to me why the produced set of rules match all the
states of R except s. It is obvious why it will not match s since the atom vval 6∈ s is added
to the body of the rule but it is not obvious why {s′ | s′ ∈ SF ∧ R u s′ ∧ vval 6∈ s′} = {s}.
Later, on page 16, line 24 that property of Lspe is assumed.

This is formally shown in proof of the least revision Theorem 4 in appendix Section C.
Intuitively, for each variable not in s, we take a vval so that vval /∈ s and add it to R to form



76 Tony Ribeiro et al.

a new rule. Doing so for each variable and values creates a set of rules, each with exactly
one more atom in the body compared to R. Because s′ 6= s, there is (at least) an atom in s′

that is not in s nor in R. Thus, this atom has been added by one of the above steps to form
a new rule, which matches s′.

page 16, line 7: The definition of Negvval is strange. Is s range over SF ′? I think the
correct definition should be Negvval = {s | (s, s′) ∈ T ∧ vval 6∈ s′}.

Indeed, s ranges over SF ′ since (s, s′) ∈ T ∈ SF×ST . However, our definition of Negvval

is correct since there can be multiple transitions from the same feature state s (because of
non-determinism): an atom does need to appear in all target states to be considered possible,
thus a negative example is a feature state from which we never observe vval in next state
(not only in one state).

page 18, definition 21: I was expecting a default function ’d’ as in Definition 14. That
raises the question: If there are no constraints in P, will Tsync(P ) = Tsync−c(P ) because
the definitions are quite different.

This semantics is meant to exactly follow the optimal constrained logic program; since
this program is complete it does not need a default to produce complete target states.
Furthermore, a default could change the behavior given by the program which is not desirable
here. Thus, it is equivalent to the synchronous semantics with ∀D ⊆ V, default(s,D) = ∅
when using a complete program like the optimal program for example.

page 34, theorem 6: The proof is more of a sketch than a formal mathematical proof.
Moreover, it does not follow the definitions presented in Algorithm 1 and even mentions
things that are not defined like ”least specialization” probably remnants from previous ver-
sion of the paper. It refers to the detailed pseudo code of GULA given in the appendix, we
added reference to it, sorry for the confusion. These are not remnants of previous version of
the paper.

page 6, 2 last lines: I think the explanation of ”regular variables” confuses than clarify
things especially the phrase that appear in both T and F which seems at first sight contra-
dictory with Definition 2. Moreover, if I am not missing it, I think the concept of ”regular
variables” has not been introduced before that phrase.

We clarified the explanation.
page 10, line 27: I cannot understand the ”which is equivalent to” part.
Both are equivalent and mean that the regular variables have the same value. Because of

the bijection, and the fact that these functions ignore the stimuli and observation variables,
both formulations can be used.


	Introduction
	Logical Modeling of Dynamical Systems
	Dynamical semantics
	GULA
	Learning From Any Dynamical Semantics using Constraints
	Predictions From Partial Observations with Weighted DMVLPs
	Evaluation
	Related Work
	Conclusions
	Appendix: Proofs of Section 2
	Appendix: Proofs of Section 3
	Appendix: Proofs of Section 4
	Appendix: Proofs of Section 5
	Appendix: Proofs of Section 6
	Appendix: detailed pseudo-code of Section 4
	Synchronizer Scalability
	Information About this Paper
	Declarations
	Response to Reviewers

