N
N

N

HAL

open science

Learning any semantics for dynamical systems

represented by logic programs

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue

» To cite this version:

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue. Learning any semantics for dy-
namical systems represented by logic programs. 2021. hal-02925942v3

HAL Id: hal-02925942
https://hal.science/hal-02925942v3

Preprint submitted on 22 Jun 2021 (v3), last revised 13 Oct 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-02925942v3
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Learning any Markov semantics for discrete
dynamical systems represented by logic programs

Tony Ribeiro - Maxime Folschette -
Morgan Magnin - Katsumi Inoue

Received: date / Accepted: date

Abstract Learning from interpretation transition (LFIT) automatically con-
structs a model of the dynamics of a system from the observation of its state
transitions. So far the systems that LFIT handled were mainly restricted to
synchronous deterministic dynamics. However, other dynamics exist in the
field of logical modeling, in particular the asynchronous semantics which is
widely used to model biological systems. In this paper, we propose a model-
ing of discrete memory-less multi-valued dynamic systems as logic programs
in which a rule represents what can occur rather than what will occur. This
modeling allows us to represent non-determinism and to propose an exten-
sion of LFIT to learn regardless of the update schemes, allowing to capture a
large range of semantics. We also propose a second algorithm which is able to
learn a whole system dynamics, including its semantics, in the form of a single
propositional logic program with constraints. We show through theoretical re-
sults the correctness of our approaches. Practical evaluation is performed on
benchmarks from biological literature.

Tony Ribeiro

Independant Researcher

Université de Nantes, Centrale Nantes, CNRS, LS2N, F-44000 Nantes, France

National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: tony_ribeiro@ls2n.fr,

Maxime Folschette
Univ. Lille, CNRS, Centrale Lille, UMR 9189 CRIStAL, F-59000 Lille, France

Morgan Magnin
Centrale Nantes, Université de Nantes, CNRS, LS2N, F-44000 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Katsumi Inoue
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan



2 Tony Ribeiro et al.

Keywords inductive logic programming - dynamic systems - logical
modeling - dynamic semantics

1 Introduction

Learning the dynamics of systems with many interactive components becomes
more and more important in many applications such as physics, cellular au-
tomata, biochemical systems as well as engineering and artificial intelligence
systems. In artificial intelligence systems, knowledge like action rules is em-
ployed by agents and robots for planning and scheduling. In biology, learning
the dynamics of biological systems corresponds to the identification of influence
of genes, signals, proteins and molecules that can help biologists to understand
their interactions and biological evolution.

In modeling of dynamical systems, the notion of concurrency and non-
determinism is crucial. When modeling a biological regulatory network, it is
necessary to represent the respective evolution of each component of the sys-
tem. One of the most debated issues with regard to semantics targets the
choice of a proper update mode of every component, that is, synchronous [24],
asynchronous [52] or more complex ones. The differences and common features
of different semantics w.r.t. properties of interest (attractors, oscillators, etc.)
have thus resulted in an area of research per itself [19,36,6]. But the biologists
often have no idea whether a model of their system of interest should intrin-
sically be synchronous, asynchronous, generalized... It thus appears crucial to
find ways to model systems from raw data without burdening the modelers
with an a priori choice of the proper semantics.

Prediction

Abstraction Learning Model <-m

Time Series Data State Tr Algorithm 2| of the Dynamics

Decision
Making

~
\ Query

LFIT Answering

Fig. 1: Assuming a discretization of time series data of a system as state
transitions, we propose a method to automatically model the system dynamics.

For a decade, learning dynamics of systems has raised a growing interest
in the field of inductive logic programming (ILP) [35,9]. ILP is a form of
logic-based machine learning where the goal is to induce a hypothesis (a logic
program) that generalises given training examples and background knowledge.
Whereas most machine learning approaches learn functions, ILP frameworks
learn relations.

In the specific context of learning dynamical systems, previous works pro-
posed an ILP framework entitled learning from interpretation transition (LFIT)
[20] to automatically construct a model of the dynamics of a system from the



Title Suppressed Due to Excessive Length 3

observation of its state transitions. Figure 1 shows this learning process. Given
some raw data, like time-series data of gene expression, a discretization of
those data in the form of state transitions is assumed. From those state tran-
sitions, according to the semantics of the system dynamics, several inference
algorithms modeling the system as a logic program have been proposed. The
semantics of a system’s dynamics can indeed differ with regard to the syn-
chronism of its variables, the determinism of its evolution and the influence
of its history. The LFIT framework [20,45,43] proposed several modeling and
learning algorithms to tackle those different semantics.

In [19,21], state transitions systems are represented with logic programs,
in which the state of the world is represented by an Herbrand interpretation
and the dynamics that rule the environment changes are represented by a logic
program P. The rules in P specify the next state of the world as an Herbrand
interpretation through the immediate consequence operator (also called the
Tp operator) [54,2] which mostly corresponds to the synchronous semantics
we present in Section 3. In this paper, we extend upon this formalism to
model multi-valued variables and any memory-less discrete dynamic semantics
including synchronous, asynchronous and general semantics.

[20] proposed the LFIT framework to learn logic programs from traces of
interpretation transitions. The learning setting of this framework is as fol-
lows. We are given a set of pairs of Herbrand interpretations (I, J) as positive
examples such that J = Tp(I), and the goal is to induce a normal logic pro-
gram (NLP) P that realizes the given transition relations. As far as we know,
this concept of learning from interpretation transition (LFIT) has never been
considered in the ILP literature before [20].

To date, the following systems have been tackled: memory-less determin-
istic systems [20], systems with memory [46], probabilistic systems [32] and
their multi-valued extensions [47,31]. [48] proposes a method that allows to
deal with continuous time series data, the abstraction itself being learned by
the algorithm. As a summary, the systems that LFIT handled so far were
restricted to synchronous deterministic dynamics.

In this paper, we extend this framework to learn systems dynamics inde-
pendently of its update semantics. For this purpose, we propose a modeling of
discrete memory-less multi-valued systems as logic programs in which each rule
represents that a variable possibly takes some value at the next state, extend-
ing the formalism introduced in [20,45]. Research in multi-valued logic pro-
gramming has proceeded along three different directions [25]: bilattice-based
logics [16,18], quantitative rule sets [53] and annotated logics [5,4]. Our rep-
resentation is based on annotated logics. Here, to each variable corresponds a
domain of discrete values. In a rule, a literal is an atom annotated with one
of these values. It allows us to represent annotated atoms simply as classical
atoms and thus to remain at a propositional level. This modeling allows us to
characterize optimal programs independently of the update semantics, allow-
ing to model the dynamics of a wide range of discrete systems. To learn such
semantic-free optimal programs, we propose GULA: the General Usage LFIT
Algorithm. We show from theoretical results that this algorithm can learn un-



4 Tony Ribeiro et al.

der a wide range of update semantics including synchronous (deterministic or
not), asynchronous and generalized semantics.

[43] proposed a first version of GULA that we substantially extend in
this manuscript. In [43], there was no distinction between feature and tar-
get variables, i.e., variables at time step ¢t and ¢ + 1. From this consideration,
interesting properties arise and allow to characterize the kind of semantics
compatible with the learning process of the algorithm (Theorem 1). It also al-
lows to represent constraints and to propose a new algorithm (Synchronizer,
Section 5). We show through theoretical results that this second algorithm can
learn a program able to reproduce any given set of discrete state transitions
and thus the behavior of any discrete memory-less dynamical semantics.

Empirical evaluation provided in [43] was limited to scalability in complete
observability cases. With the goal to proceed real data, we introduce a heuristic
method allowing to use GULA to learn from partial observations and predict
from unobserved data. It allows us to apply the method on more realistic cases
by evaluating both scalability, prediction accuracy and explanation of predic-
tion on partial data. Evaluation is performed over the three aforementioned
semantics for Boolean network benchmarks from biological literature [27,11].
These experiments emphasize the practical usage of the approach: our imple-
mentation reveals to be tractable on systems up to a dozen components, which
is sufficient enough to capture a large variety of complex dynamic behaviors
in practice.

The organization of the paper is as follows. Section 2 provides a formal-
ization of discrete memory-less dynamics system as multi-valued logic pro-
gram. Section 3 formalizes dynamical semantics under logic programs. Section
4 presents the first algorithm, GULA, which learns optimal programs regard-
less of the semantics. Section 5 provides extension of the formalization and
a second algorithm, the Synchronizer, to represent and learn the semantics
behavior itself. In Section 6, we propose a heuristic method allowing to use
GULA to learn from partial observations and predict from unobserved data.
Section 7 provides experimental evaluations regarding scalability, prediction
accuracy and explanation of predictions. Section 8 discusses related work and
Section 9 concludes the paper. All proofs of theorems and propositions are
given in Appendix.

2 Logical Modeling of Dynamical Systems

In this section, the concepts necessary to understand the learning algorithms
we propose are formalized. In Section 2.1, the basic notions of multi-valued
logic (MVL) are presented. Then, Section 2.2 presents a modeling of dynamics
systems using this formalism. In the following, we denote by N := {0, 1,2, ...}
the set of natural numbers, and for all k,n € N, [k;n] :={i e N| k <i <n}
is the set of natural numbers between k£ and n included. For any set S, the
cardinality of S is denoted |S| and the power set of S is denoted p(S5).



Title Suppressed Due to Excessive Length 5

2.1 Multi-valued Logic Program

Let V = {vi,---,v,} be a finite set of n € N variables, Val the set in which
variables take their values and dom : V — p(Val) a function associating a
domain to each variable. The atoms of MVL are of the form v’* where v € V
and val € dom(v). The set of such atoms is denoted by AY. = {vvo €
V x Val | val € dom(v)} for a given set of variables V and a given domain
function dom. In the following, we work on specific V and dom that we omit
to mention when the context makes no ambiguity, thus simply writing A for
Alom-
Ezxample 1 For a system of 3 variables, the typical set of variables is V =
{a,b,c}. In general, Val = N so that domains are sets of natural integers, for
instance: dom(a) = {0,1}, dom(b) = {0,1,2} and dom(c) = {0,1,2,3}. Thus,
the set of all atoms is: A = {a®, a', %, b1, 0%, %, ct, 2, ).

A MVL rule R is defined by:

R = wviolo o yvalt oL p yoalm (1)

val

where Vi € [0;m],v]"* € A are atoms in MVL so that every variable is
mentioned at most once in the right-hand part: Vj, k € [1;m],j # k = v; #
vi. If m = 0, the rule is denoted: vi®° <« T. Intuitively, the rule R has
the following meaning: the variable vy can take the value walg in the next
dynamical step if for each i € [1;m], variable v; has value val; in the current
dynamical step.

The atom on the left-hand side of the arrow is called the head of R and
is denoted head(R) := vi*°. The notation var(head(R)) := vy denotes the
variable that occurs in head(R). The conjunction on the right-hand side of
the arrow is called the body of R, written body(R) and can be assimilated to

the set {V?fall7 -+, vvalm}. we thus use set operations such as € and N on it,
and we denote it @ if it is empty. The notation var(body(R)) := {vi, -+ , v}

denotes the set of variables that occurs in body(R). More generally, for all sets
of atoms X C A, we denote var(X) := {v € V | Jval € dom(v),v*¥ € X}
the set of variables appearing in the atoms of X. A multi-valued logic program
(MVLP) is a set of MVL rules.

Definition 1 introduces a domination relation between rules that defines
a partial anti-symmetric ordering. Intuitively, rules with more general bodies
dominate other rules. In our approach, we prefer a more general rule over a
more specific one.

Definition 1 (Rule Domination) Let R;, Ry be two MVL rules. The rule
Ry dominates Ro, written Ry > Rs if head(R;) = head(R2) and body(R;) C
body(R2).

FEzample 2 Let Ry := a' < b', Ry := a' < b' A ". R; dominates R, since
head(R;) = head(Ry) = a' and body(R;) C body(R>). Intuitively, R; is more



6 Tony Ribeiro et al.

general than Ry on ¢. Rs does not dominate Ry because body(R2) € body(Ry).
Let R3 := a' + a' AB, Ry (resp. Ry) does not dominate R3 (and vice versa),
since body(R;) € body(Rj3): the rules have a different condition over b. Let
R, :=a' + a', for the same reasons, R; (resp. Rs) does not dominate Ry4. Let
Rs :=a® < 0, Ry (resp. Ra, R3, Ry) does not dominate R5 (and vice versa)
since their head atoms are different (a' # a®).

The most general body for a rule is the empty set (also denoted T). A rule
with an empty body dominates all rules with the same head atom. Further-
more, the only way two rules dominate each over is that they are the same
rule, as stated by Lemma 1.

Lemma 1 (Double Domination Is Equality) Let Ry, R2 be two MVL
rules. If R1 > Ry and Ry > Ry then R; = Rs.

2.2 Dynamic Multi-valued Logic Program

We are interested in modeling non-deterministic (in a broad sense, which in-
cludes deterministic) discrete memory-less dynamical systems. In such a sys-
tem, the next state is decided according to dynamics that depend on the
current state of the system. From a modeling perspective, the variables of the
system at time step ¢ can be seen as target variables and the same variables at
time step t —1 as features variables. Furthermore, additional variables that are
external to the system, like stimuli or observation variables for example, can
appear only as feature or target variables. Such a system can be represented
by a MVLP with some restrictions. First, the set of variables V is divided into
two disjoint subsets: T (for targets) encoding system variables at time step ¢
plus optional external variables like observation variables, and F (for features)
encoding system variables at t — 1 and optional external variables like stimuli.
It is thus possible that |F| # |T|. Second, rules only have a conclusion at ¢
and conditions at ¢ — 1, i.e., only an atom of a variable of 7 can be a head
and only atoms of variables in F can appear in a body. In the following, we
also re-use the same notations as for the MVL of Section 2.1 such as head(R),
body(R) and var(head(R)).

Definition 2 (Dynamic MVLP) Let 7 C V and F C V such that F =
V\T. A DMVLP P is a MVLP such that VR € P,var(head(R)) € T and
Vvl € body(R),v € F.

In the following, when there is no ambiguity, we suppose that F, 7,V and
A are already defined and we omit to define them again.

Example 3 Figure 2 gives an example of regulation network with three ele-
ments a, b and c¢. The information of this network is not complete; notably,
the relative “force” of the components a and b on the component ¢ is not ex-
plicit. Multiple dynamics are then possible on this network, among which four
possibilities are given below by Program 1 to 4, defined on T := {ay, b, ¢t },



Title Suppressed Due to Excessive Length 7

®)

oL

Fig. 2: Example of interaction graph of a regulation network representing an
incoherent feed-forward loop [22] where a positively influences b and ¢, while
b (and thus, indirectly, a) negatively influences c.

F = Aa—1,b—1,¢4—1} and Vv € T U F,dom(v) := {0,1}. Program 1 is a
direct translation of the relations of the regulation network. It only contains
rules producing atoms with value 1 which is equivalent to a set of Boolean
functions. In Program 2, a always takes value 1 while in Program 3 it always
takes value 0, a having no incoming influence in the regulation network this
can represent some kind of default behavior. In Program 3, the two red rules
introduce potential non-determinism in the dynamics since both conditions
can hold at the same time. In Program 4, the rule apply the conditions of the
regulation network but it also allows each variable to keep the value 1 at ¢ if
it has it at ¢t — 1 and no inhibition occurs. We insist on the fact that the index
notation ¢ or t — 1 is part of the variable name, not its value. This allows to
distinguish variables from T (¢) or F (¢t — 1).

Program 1 Program 2 Program 3 Program 4
b} < a}_, at <0 ad <0 at < a}_,
et atl_1 A bg_l bg — ag_l b? — ag_l bti — btll_1
by < a;_4 by < a;_4 by < a;_4
c‘t) — a§L1 c‘t) — a§L1 c} — 0}71 A bgf1
0 1 0 1 1 1 0
c; < by c; by cp —ay_q Nby_y

ctat AW o al

The dynamical system we want to learn the rules of is represented by
a succession of states as formally given by Definition 3. We also define the
“compatibility” of a rule with a state in Definition 4 and with a transition in
Definition 5.

Definition 3 (Discrete state) A discrete state son T (resp. F) of a DMVLP
is a function from T (resp. F) to N, i.e., it associates an integer value to each
variable in 7 (resp. F). It can be equivalently represented by the set of atoms
{v*) | v € T (resp. F)} and thus we can use classical set operations on it.
We write S7 (resp. S7) to denote the set of all discrete states of T (resp. F),
and a couple of states (s,s") € S* x ST is called a transition.

When there is no possible ambiguity, we sometimes (Figure 3, Figure 5, ...)
denote a state only by the values of variables, without naming the variables. In
this case, the variables are given in alphabetical order (a, b, c...). For instance,

{a®,b'} is denoted , {a',b°} is denoted and {a®,b!, c?, d®} is denoted

[0103]



8 Tony Ribeiro et al.

Ezxample 4 Consider a dynamical system having two internal variables a and
b, an external stimilus st and an observation variable ch used to trace some
important events. The two sets of possible discrete states of a program defined
on the two sets of variables T = {a¢, by, ch} and F = {a;_1,bi—1, st}, and the
set of atoms A = {a?,a},b?,b}, b7, ch® cht,ad i, al_1,b)_|,bi_ 1, b7 1, st0 st}
are:

ST ={ and 87 = {
{a(t]—lv bg—la Sto}’ {a?—lv b(t)—lv Stl}a {CL?, b?v Cho}’ {a(t]a b?a Ch1}7
{ag—h b%—lv Sto}a {a(t)—l’ b%—lv Stl}a {a?7 b%? Cho}a {a’(t)a bt}v Chl}v
{a(t)fh bgfh Sto}v {a?,l, bffh Stl}, {a?7 b?7 Cho}v {a(t)7 bt27 Ch1}7
{a%717 bz(f)fl’ Sto}a {a%717 bgfl’ 5t1}7 {a'%v b(t)v Cho}a {a%7 bga Chl}v
{a%—lv b%—l’ Sto}a {a%—lv b%—l’ Stl}’ {CL%, b%? Cho}a {a%v b%a Ch1}7
{atl—hbf—l’StO}v{a%—lvb%—lvstl} } {ai}vbgvcho}a{a%’b%’Chl} }

Here, a;—1 and a; (resp. b;—1 and b;) are theoretically different variables
from a MVL perspective. But they actually encode the same variable at dif-
ferent time step and thus a (resp. b) is present in both F and 7 in its corre-
sponding timed form. On the other hand, variables st and ch are respectively
a stimuli and an observation variable and thus only appear in F,S” or 7,87 .
Depending on the number of stimuli and observation variables, states of S7
can have a different size than states in S7 (see Figure 4).

Definition 4 (Rule-state matching) Let s € S7. The MVL rule R matches
s, written R s, if body(R) C s.

We note that this definition of matching only concerns feature variables.
Target variables are never meant to be matched.

Example 5 Let F = {a;—1,bi—1, st}, T = {as, by, ch} and dom(as—1) = dom(st)
dom(at) = dom(ch) = {0,1},dom(bi—1) = dom(b;) = {0,1,2}. The rule
ch® < aj_; Ab}_; Ast! only matches the state {a;_;, b, st'}. The rule ch® «+
ad_, Ast* matches {a?_1,b0) |, st'}, {ad_|,bi_;,st'} and {a)_;,b7 ,,st'}. The
rule b7 « aj_; matches {a}_1,b_,st'}, {aj_1,09_1,st'}, {aj_1,b}_q, st}
{a}_1,b} 1, st'}, {a}_|,b? |, st°}, {a}_{,b? |, st'}. The rule a' < () matches
all states of S7.

The final program we want to learn should both:

— match the observations in a complete (all transitions are learned) and cor-
rect (no spurious transition) way;

— represent only minimal necessary interactions (according to Occam’s razor:
no overly-complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5
we characterize the fact that a rule of a program is useful to describe the
dynamics of one variable in a transition; this notion is then extended to a
program and a set of transitions, under the condition that there exists such
a rule for each variable and each transition. A conflict (Definition 6) arises
when a rule describes a change that is not featured in the considered set of
transitions. Finally, Definition 8 and Definition 7 give the characteristics of



Title Suppressed Due to Excessive Length 9

a complete (the whole dynamics is covered) and consistent (without conflict)
program.

Definition 5 (Rule and program realization) Let R be a MVL rule and

(5,8') € ST x ST. The rule R realizes the transition (s,s’), written s B o if
RMsAhead(R) € 5.

A DMVLP P realizes (s,s') € ST x ST, written s P, s, ifvweT,3R e
P,var(head(R)) = v A s Ly o/ Tt realizes a set of transitions T C SF x ST,
written < T,ifV(s,s") eT,s L

Ezample 6 Therule ¢} < aj_,Ab}_; realizes the transition t = ({a}_1,bi_1,¢}_ 1},
{a?,b}, ¢t }) since it matches the first state of ¢ and its conclusion is in the sec-
ond state. However, the rule cf < a}_; AbY_; does not realize ¢ since it does
not match the feature state of ¢.

Example 7 The transition ¢t = ({a}_,bf_1,¢ 1}, {a?,b},ct}) is realized by
Program 3 of Example 3, by using the rules ay < 0, b; < a}_; and ¢} «+
a}_,. However, Program 2 of the same Example does not realize t since the
only rule that could produce c}, that is, ¢} < a}_; A b)_;, does not match
{a}_1,b}_1,c2 }; moreover, no rule can produce a?. Programs 1 and 4 of the

same Example cannot produce a? either and thus do not realize t.

In the following, for all sets of tramsitions T C S7 x S7, we denote:
first(T) = {s € 8 | I(s1,52) € T,s1 = s} the set of all initial states of
these transitions. We note that first(7) =0 < T = 0.

Definition 6 (Conflict and Consistency) A MVL rule R conflicts with
a set of transitions T C 87 x 87 when 3s € first(T), (RM s A V(s,s') €
T,head(R) ¢ s'). R is said to be consistent with T when R does not conflict
with T'.

A rule is consistent if for all initial states of the transitions of T' (first(T))
matched by the rule, there exists a transitions of T for which it verifies the
conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set
of transitions T if P does not contain any rule R conflicting with T

Ezample 8 Let s1 = {aj_1,0Y 1, 1},82={a}_ 1,0 1,ct_1},83={al ,,00 . |}
and t1 = (s1,{a?, b}, ct}),
12 = (517 {a%7 b%) C?}))
13 = (527 {a?, btlv C‘(t)})a
t4 = (s2, {ag’ b?v C%}%
t5 = (s3,{at,b},cV}).
Let T = {t1,t2,t3,t4,t5}.
Program 1 of Example 3 is consistent with 7. The rule b} < a;_; matches
s1 and both sl and b} are observed in #2. The rule also matches s2 which is



10 Tony Ribeiro et al.

observed with b} in 3. The rule ¢f < a;_; AbY_; matches s1 (resp. s2), which
is observed with ¢} in t1 (resp. t3).

Program 2 is not consistent with 7" since a; < ) is not consistent with 7"
it matches s1, s2 and s3 but the transitions of 7' that include s2 (¢3, t4) do not
contain a}. Program 3 is not consistent with T since a? <+ () matches s1, s2,
s3 but the only transition that contains s3 (t5) does not contain af. Program
4 is not consistent with T" since a; < a}_; matches s2 but the transitions of
T that include s2 (3, t4) do not contain aj.

Definition 8 (Complete program) A DMVLP P is complete if Vs €
ST,¥v € T,3R € P,RM s Avar(head(R)) = v.

A complete DMVLP realizes at least one transition for each possible initial
state.

Ezample 9 Program 1 of Example 3 is not complete since it does not have
any rule over target variable a;, in fact it does not realize any transitions.
Program 2 of same example is complete:

— The rule a} + ) will realize a; from any feature state;

— For b; it has a first (resp. second) rule that matches all feature state where
ad_, (resp. aj_,) appears and the domain of a;_1 being {0, 1} all cases and
thus all feature states are covered by this two rules;

— For ¢, all combinations of values of a and b are covered by the three last
rules, Yval € dom(ci—1),

— {a? 1,09 1, ¢t} is matched by ¢ <+ a?_;

— {a?_1,b}_1, ¢t} is matched by ¢ < bf_; (and ¢ « b}_);

— {a}_1,0)_1, ¢t} is matched by 2 < af_; ABY_;;

— {a}_;,b}_;,cv%} is matched by c? < b} ;.
Program 3 is also complete, and it even realizes multiple values for ¢; when
both a}_; and b}_; are in a feature state: {a}_;,b}_;,cY_;} is matched by both
¢ < b}_; and ¢} < a}_;. Program 4 is not complete: no transition is realized
when a?_; is in a feature state since the only rule of a; is a} < a}_;.

Definition 9 groups all the properties that we want the learned program
to have: suitability and optimality, and Proposition 1 states that the optimal
program of a set of transitions is unique.

Definition 9 (Suitable and optimal program) Let T C S* x S7. A
DMVLP P is suitable for T when:

— P is consistent with T,

— P realizes T,

— P is complete,

for any possible MVL rule R consistent with T, there exists R’ € P such
that R > R.

If in addition, for all R € P, all the MVL rules R’ belonging to DMVLP
suitable for T are such that R’ > R implies R > R’ then P is called optimal.



Title Suppressed Due to Excessive Length 11

Note that Definition 9 ensures local minimality. In terms of biological mod-
els, it is more interesting to focus on local minimality, thus simple but numer-
ous rules, modeling local influences from which the complexity of the whole
system arises, than global minimality that would produce system-level rules
hiding the local correlations and influences. Definition 9 also guarantees that
we obtain all the minimal rules which guarantees to provide biological collab-
orators with the whole set of possible explanations of biological phenomena
involved in the system of interest.

Proposition 1 (Uniqueness of Optimal Program) Let T C S x S7.
The DMVLP optimal for T is unique and denoted Po(T).

Example 10

LetTZ{ {at 15 t 1act 1} {atﬂbwct

( )
({at 1 f 1th 1} {a’tvbfvcf )
({at l?bt 1th 1} {at’btvct )
({at 1 t 1th 1} {atvbtlvct})
({at 17bt 1th 1 {atvbtvct )
({at 1»bt 170t 1} {atvb%7ct})
({at 17bt 170t—1}a{atvbt17 })
( bi )

{at 1 Yt— lvct71}7{a%’bt7 }’ } :

Program 1 and 4 of Example 3 are not complete (see Example 9) and
thus not suitable for 7. Program 3 is complete but not consistent with T
(see Example 8). Program 2 is complete, consistent and realizes T' but is not
suitable for T: indeed, ¢; < a}_; is consistent with T and there is no rule in
Program 2 that dominates it.

Let us consider:

P:={ a} <0
bg — ag_l
b% — a%_l
& a? |
cg — btl_l

1 1
Cp < Qp_q

1 1 0

c —a;_{ Nbj_, } .

P is complete, consistent, realizes T and all rules consistent with T" are dom-
inated by a rule of P. Thus, P is suitable for 7. But P is not optimal since
ct < at_; ANV)_, is dominated by ¢} <+ ai_;. By removing ¢} < a}_; AbY_;
from P, we obtain the optimal program of T'.



12 Tony Ribeiro et al.

Algorithm 1 Brute Force Enumeration

— INPUT: a set of atoms A, two sets of variables F and 7 and a set of
transitions 7 C S7 x ST.

— Generate all possible rules over A, F,T.
— Pi={vvel [yl |yl e ANV e FY v e AAveT)

— Keep only the rules consistent with T'.
— P:={ReP|V(ss')eT,body(R) Cs = 3I(s,s") € T,head(R) €

S//}

— Remove rules dominated by another rule

~P:={ReP|PR ecP,R##RANR >R}

OUTPUT: P (P is Po(T)).

According to Definition 9, we can obtain the optimal program by a trivial
brute force enumeration: generate all rules consistent with 7" then remove the
dominated ones as shown in Algorithm 1.

The purpose of Section 4 is to propose a non-trivial approach that is more
efficient in practice to obtain the optimal program. This approach also respects
the optimality properties of Definition 9 and thus ensures independence from
the dynamical semantics, that are detailed in next Section.

3 Dynamical semantics

The aim of this section is to formalize the general notion of dynamical seman-
tics as an update policy based on a program, and to give characterizations of
several widespread existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets
of variables F and 7T that represent conditions (features) and conclusions
(targets) of rules. Conclusion atoms allow to create one or several new state(s)
made of target variables, from conditions on the current state which is made
of feature atoms.

In Definition 10, we formalize the notion of dynamical semantics which is
a function that, to a program, associates a set of transitions where each state
has at least one outgoing transition. Such a set of transitions can also be seen
as a function that maps any state to a non-empty set of states, regarded as
possible dynamical branchings. We give examples of semantics afterwards.

Definition 10 (Dynamical Semantics) A dynamical semantics (on A) is a
function that associates, to each DMVLP P, a set of transitions T C S7 x ST
so that: first(T) = S7. Equivalently, a dynamical semantics can be seen as a
function of (DMVLP — (§7 — o(S7)\ {0})) where DMVLP is the set of
DMVLPs.

A dynamical semantics has an infinity of possibility to produce transitions
from a DMVLP. Indeed, like DS;(P) of Example 11, a semantics can to-
tally ignore the DMVLP rules. It can also use the rule in an adversary way



Title Suppressed Due to Excessive Length 13

like DS;nperse that keeps only the transitions that are not permitted by the
program. Such semantics can produce transitions that are not consistent with
the input program, i.e., the rules which conclusions were not selected for the
transition will be in conflict with the set of transitions from this feature state.
The kind of semantics we are interested in are the ones that properly use the
rule of the DMVLP and ensure the properties of consistency introduced in
Definition 7.

In Example 11, the dynamical semantics DSsyn, DSasyn and DSge, are
example of such semantics. They are trivial forms of the synchronous, 