
HAL Id: hal-02925942
https://hal.science/hal-02925942v2

Preprint submitted on 2 Sep 2020 (v2), last revised 13 Oct 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning any semantics for dynamical systems
represented by logic programs

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue

To cite this version:
Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue. Learning any semantics for dy-
namical systems represented by logic programs. 2020. �hal-02925942v2�

https://hal.science/hal-02925942v2
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Learning any semantics for dynamical systems
represented by logic programs

Tony Ribeiro · Maxime Folschette ·
Morgan Magnin · Katsumi Inoue

Received: date / Accepted: date

Abstract Learning from interpretation transition (LFIT) automatically con-
structs a model of the dynamics of a system from the observation of its state
transitions. So far the systems that LFIT handled were mainly restricted to
synchronous deterministic dynamics. However, other dynamics exist in the
field of logical modeling, in particular the asynchronous semantics which is
widely used to model biological systems. In this paper, we propose a model-
ing of discrete memory-less multi-valued dynamic systems as logic programs
in which a rule represents what can occur rather than what will occur. This
modeling allows us to represent non-determinism and to propose an extension
of LFIT to learn regardless of the update schemes. We also propose a second
algorithm which is able to learn a whole system dynamics, including its seman-
tics, in the form of a single propositional logic program with constraints. We
show through theoretical results the correctness of our approaches. Practical
evaluation is performed on benchmarks from biological literature.

Tony Ribeiro
Independant Researcher
Laboratoire des Sciences du Numérique de Nantes, 1 rue de la Noë, 44321 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: tony ribeiro@ls2n.fr,

Maxime Folschette
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Infor-
matique Signal et Automatique de Lille, F-59000 Lille, France

Morgan Magnin
Laboratoire des Sciences du Numérique de Nantes, 1 rue de la Noë, 44321 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Katsumi Inoue
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

2 Tony Ribeiro et al.

Keywords inductive logic programming · dynamic systems · logical
modeling · dynamic semantics

1 Introduction

Learning the dynamics of systems with many interactive components becomes
more and more important in many applications such as physics, cellular au-
tomata, biochemical systems as well as engineering and artificial intelligence
systems. In artificial intelligence systems, knowledge like action rules is em-
ployed by agents and robots for planning and scheduling. In biology, learning
the dynamics of biological systems corresponds to the identification of influence
of genes, signals, proteins and molecules that can help biologists to understand
their interactions and biological evolution.

In modeling of dynamical systems, the notion of concurrency is crucial.
When modeling a biological regulatory network, it is necessary to represent
the respective evolution of each component of the system. One of the most
debated issues with regard to semantics targets the choice of a proper update
mode of every component, that is, synchronous [20], asynchronous [42] or more
complex ones. The differences and common features of different semantics
w.r.t. properties of interest (attractors, oscillators, etc.) have thus resulted in
an area of research per itself [15,29,6]. But the biologists often have no idea
whether a model of their system of interest should intrinsically be synchronous,
asynchronous, generalized... It thus appears crucial to find ways to model
systems from raw data without burdening the modelers with an a priori choice
of the proper semantics.

State Transitions Model
of the Dynamics

Learning
Algorithm

LFIT

Time Series Data
Abstraction

Prediction

Query
Answering

Decision
Making

Planning

...

Fig. 1: Assuming a discretization of time series data of a system as state
transitions, we propose a method to automatically model the system dynamics.

So far, learning from interpretation transition (LFIT) [16] has been pro-
posed to automatically construct a model of the dynamics of a system from
the observation of its state transitions. Figure 1 shows this learning process.
Given some raw data, like time-series data of gene expression, a discretiza-
tion of those data in the form of state transitions is assumed. From those
state transitions, according to the semantics of the system dynamics, several
inference algorithms modeling the system as a logic program have been pro-
posed. The semantics of a system’s dynamics can indeed differ with regard
to the synchronism of its variables, the determinism of its evolution and the

Learning any semantics for dynamical systems represented by logic programs 3

influence of its history. The LFIT framework proposes several modeling and
learning algorithms to tackle those different semantics. To date, the following
systems have been tackled: memory-less deterministic systems [16], systems
with memory [38], probabilistic systems [28] and their multi-valued extensions
[39,27]. [40] proposes a method that allows to deal with continuous time series
data, the abstraction itself being learned by the algorithm. As a summary, the
systems that LFIT handles so far are restricted to synchronous deterministic
dynamics.

In this paper, we extend this framework to learn systems dynamics inde-
pendently of its update semantics. For this purpose, we propose a modeling of
discrete memory-less multi-valued systems as logic programs in which each rule
represents that a variable possibly takes some value at the next state, extending
the formalism introduced in [16,37]. Research in multi-valued logic program-
ming has proceeded along three different directions [21]: bilattice-based logics
[13,14], quantitative rule sets [43] and annotated logics [5,4]. Our representa-
tion is based on annotated logics. Here, to each variable corresponds a domain
of discrete values. In a rule, a literal is an atom annotated with one of these
values. It allows us to represent annotated atoms simply as classical atoms and
thus to remain at a propositional level. This modeling allows us to characterize
optimal programs independently of the update semantics, allowing to model
the dynamics of a wide range of discrete systems. To learn such semantic-free
optimal programs, we propose GULA: the General Usage LFIT Algorithm.
We show from theoretical results that this algorithm can learn under a wide
range of update semantics including synchronous (deterministic or not), asyn-
chronous and generalized semantics. Empirical evaluation is provided regard-
ing both scalability and prediction accuracy over the three aforementioned
semantics for Boolean network benchmarks from biological literature [23,9].
We also extend this modeling to propose the Synchronizer algorithm, that
is able to learn a whole system dynamics, including its semantics behavior,
in the form of a single propositional logic program with constraints. We show
through theoretical results that this second algorithm can learn a program able
to reproduce any given set of discrete state transitions and thus the behavior
of any discrete memory-less dynamical semantics.

The organization of the paper is as follows. Section 2 provides a formal-
ization of discrete memory-less dynamics system as multi-valued logic pro-
gram. Section 3 formalizes dynamical semantics under logic programs. Section
4 presents the first algorithm, GULA, which learns optimal programs regard-
less of the semantics. Section 5 provides extension of the formalization and a
second algorithm, the Synchronizer, to represent and learn the semantics be-
havior itself. Section 6 provides experimental evaluations. Section 7 discusses
related work and Section 8 concludes the paper. All proofs of theorems and
propositions are given in Appendix.

4 Tony Ribeiro et al.

2 Logical Modeling of Dynamic Systems

In this section, the concepts necessary to understand the learning algorithms
we propose are formalized. In Section 2.1, the basic notions of multi-valued
logic (MVL) are presented. Then, Section 2.2 presents a modeling of dynamics
systems using this formalism. In the following, we denote by N := {0, 1, 2, ...}
the set of natural numbers, and for all k, n ∈ N, Jk;nK := {i ∈ N | k ≤ i ≤ n}
is the set of natural numbers between k and n included. For any set S, the
cardinal of S is denoted |S| and the power set of S is denoted ℘(S).

2.1 Multi-valued Logic Program

Let V = {v1, . . . , vn} be a finite set of n ∈ N variables, Val the set in which
variables take their values and dom : V → ℘(Val) a function associating a
domain to each variable. The atoms ofMVL are of the form vval where v ∈ V
and val ∈ dom(v). The set of such atoms is denoted by AVdom = {vval ∈
V × Val | val ∈ dom(v)} for a given set of variables V and a given domain
function dom. In the following, we work on specific V and dom that we omit
to mention when the context makes no ambiguity, thus simply writing A for
AVdom.

Example 1 For a system of 3 variables, the typical set of variables is V =
{a, b, c}. In general, Val = N so that domains are sets of natural integers, for
instance: dom(a) = {0, 1}, dom(b) = {0, 1, 2} and dom(c) = {0, 1, 2, 3}. Thus,
the set of all atoms is: A = {a0, a1, b0, b1, b2, c0, c1, c2, c3}.

A MVL rule R is defined by:

R = vval0
0 ← vval1

1 ∧ · · · ∧ vvalm
m (1)

where ∀i ∈ J0;mK, vvali
i ∈ A are atoms in MVL so that every variable is

mentioned at most once in the right-hand part: ∀j, k ∈ J1;mK, j 6= k ⇒ vj 6=
vk. Intuitively, the rule R has the following meaning: the variable v0 can take
the value val0 in the next dynamical step if for each i ∈ J1;mK, variable vi has
value vali in the current dynamical step.

The atom on the left-hand side of the arrow is called the head of R and
is denoted h(R) := vval0

0 . The notation var(h(R)) := v0 denotes the vari-
able that occurs in h(R). The conjunction on the right-hand side of the ar-
row is called the body of R, written b(R) and can be assimilated to the set
{vval1

1 , . . . , vvalm
m }; we thus use set operations such as ∈ and ∩ on it. The no-

tation var(b(R)) := {v1, · · · , vm} denotes the set of variables that occurs in
b(R). More generally, for all set of atoms X ⊆ A, we denote var(X) := {v ∈
V | ∃val ∈ dom(v), vval ∈ X} the set of variables appearing in the atoms of
X. A multi-valued logic program (MVLP) is a set of MVL rules.

Definition 1 introduces a domination relation between rules that defines a
partial anti-symmetric ordering, as stated by Theorem 1. Rules with the most

Learning any semantics for dynamical systems represented by logic programs 5

a

b

c

Fig. 2: Example of interaction graph of a regulation network representing an
incoherent feed-forward loop [18] where a positively influences b and c, while
b (and thus, indirectly, a) negatively influences c.

general bodies dominate the other rules. In practice, these are the rules we are
interested in since they cover the most general cases.

Definition 1 (Rule Domination) Let R1, R2 be twoMVL rules. The rule
R1 dominates R2, written R2 ≤ R1 if h(R1) = h(R2) and b(R1) ⊆ b(R2).

Theorem 1 Let R1, R2 be two MVL rules. If R1 ≤ R2 and R2 ≤ R1 then
R1 = R2.

2.2 Dynamic Multi-valued Logic Program

We are interested in modeling non-deterministic (in a broad sense, which in-
cludes deterministic) discrete memory-less dynamical systems. In such a sys-
tem, the next state is decided according to dynamics that depend on the
current state of the system. From a modeling perspective, the variables of the
system at time step t can be seen as target variables and the same variables
at time step t− 1 as features variables. Furthermore, additional variables that
are external to the system, like stimuli or checkpoints for example, can ap-
pear only as feature or target variables. Such a system S can be represented
by a MVLP with some restrictions. First, the set of variables is divided into
two disjoint subsets: T (for targets) encoding system variables at time step t
plus optional external variables like checkpoints, and F (for features) encod-
ing system variables at t− 1 and optional external variables like stimuli. It is
thus possible that |F| 6= |T |. Second, rules only have a conclusion at t and
conditions at t − 1, i.e., only an atom of a variable of T can be a head and
only atoms of variables in F can appear in a body. In the following, we also
re-use the same notations as for the MVL of Section 2.1 such as h(R), b(R)
and var(h(R)).

Definition 2 (Dynamic MVLP) Let T ⊂ V and F ⊂ V such that F =
V \ T . A DMVLP P is a MVLP such that ∀R ∈ P, var(h(R)) ∈ T and
∀vval ∈ b(R), v ∈ F .

In the following, when there is no ambiguity, we suppose that F , T , V and
A are already defined and we omit to defined them again.

6 Tony Ribeiro et al.

Example 2 Figure 2 gives an example of regulation network with three ele-
ments a, b and c. The information of this network is not complete; notably,
the relative “force” of the components a and b on the component c is not ex-
plicit. Multiple dynamics are then possible on this network, among which four
possibilities are given below by Program 1 to 4, defined on T := {at, bt, ct},
F := {at−1, bt−1, ct−1} and ∀v ∈ T ∪ F , dom(v) := {0, 1}. Program 1 is a
direct translation of the relations of the regulation network. It only contains
rule producing atoms with value 1 which is equivalent to a set of Boolean
functions. In Program 2, a always takes value 1 while in Program 3 it always
takes value 0, a having no incoming influence in the regulation network this
can represent some kind of default behavior. In Program 3, the two red rules
introduce potential non-determinism in the dynamics since both conditions
can holds at the same time. In Program 4, the rule apply the conditions of the
regulation network but it also allows each variable to keep the value 1 at t if
it has it at t− 1 and no inhibition occurs. We insist on the fact that the index
notation t or t − 1 is part of the variable name, not its value. This allows to
distinguish variables from T (t) or F (t− 1).

Program 1
b1t ← a1t−1
c1t ← a1t−1 ∧ b0t−1

Program 2
a1t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1 ∧ b0t−1

Program 3
a0t ← ∅
b0t ← a0t−1
b1t ← a1t−1
c0t ← a0t−1
c0t ← b1t−1
c1t ← a1t−1

Program 4
a1t ← a1t−1
b1t ← b1t1
b1t ← a1t−1
c1t ← c1t−1 ∧ b0t−1
c1t ← a1t−1 ∧ b0t−1

The dynamical system we want to learn the rules of is represented by
a succession of states as formally given by Definition 3. We also define the
“compatibility” of a rule with a state in Definition 4 and with a transition in
Definition 5.

Definition 3 (Discrete state) A discrete state s on T (resp. F) of aDMVLP
is a function from T (resp. F) to N, i.e., it associates an integer value to each
variable in T (resp. F). It can be equivalently represented by the set of atoms
{vs(v) | v ∈ T (resp. F)} and thus we can use classical set operations on it.
We write ST (resp. SF) to denote the set of all discrete states of T (resp. F),
and a couple of states (s, s′) ∈ SF × ST is called a transition.

Example 3 The two sets of possible states of a program defined on the two
sets of variables T = {at, bt, ch} and F = {at−1, bt−1, st}, and the set of atoms
A = {a0t , a1t , b0t , b1t , ch0, ch1, a0t−1, a1t−1, b0t−1, b1t−1, c0, c1} are :
SF = {
{a0t−1, b0t−1, st0}, {a0t−1, b0t−1, st1},
{a0t−1, b1t−1, st0}, {a0t−1, b1t−1, st1},
{a1t−1, b0t−1, st0}, {a1t−1, b0t−1, st1},
{a1t−1, b1t−1, st0}, {a1t−1, b1t−1, st1}}

ST = {
{a0t , b0t , ch0}, {a0t , b0t , ch1},
{a0t , b1t , ch0}, {a0t , b1t , ch1},
{a1t , b0t , ch0}, {a1t , b0t , ch1},
{a1t , b1t , ch0}, {a1t , b1t , ch1}}

Here, a and b are regular variables of the system and thus appear in both
F and T encoded with time as label to make them different variables from a

Learning any semantics for dynamical systems represented by logic programs 7

MVL perspective, they appear in both kind of state SF ,ST . Variables st and
ch are respectively a stimuli and a checkpoint and thus only appear in F ,SF
or T ,ST . Depending on the number of stimuli and checkpoint, states of SF
can have a different size to state in ST (see Figure 3).

Definition 4 (Rule-state matching) Let s ∈ SF . TheMVL ruleR matches
s, written R u s, if b(R) ⊆ s.

We note that this definition of matching only concerns feature variables.
Target variables are never meant to be matched. The final program we want
to learn should both:

– match the observations in a complete (all transitions are learned) and cor-
rect (no spurious transition) way;

– represent only minimal necessary interactions (according to Occam’s razor:
no overly-complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5
we characterize the fact that a rule of a program is useful to describe the
dynamics of one variable in a transition; this notion is then extended to a
program and a set of transitions, under the condition that there exists such
a rule for each variable and each transition. A conflict (Definition 6) arises
when a rule describes a change that is not featured in the considered set of
transitions. Finally, Definition 8 and Definition 7 give the characteristics of
a complete (the whole dynamics is covered) and consistent (without conflict)
program.

Definition 5 (Rule and program realization) Let R be aMVL rule and

(s, s′) ∈ SF ×ST . The rule R realizes the transition (s, s′), written s
R−→ s′, if

R u s ∧ h(R) ∈ s′.
A DMVLP P realizes (s, s′) ∈ SF × ST , written s

P−→ s′, if ∀v ∈ T ,∃R ∈
P, var(h(R)) = v∧s R−→ s′. It realizes a set of transitions T ⊆ SF×ST , written
P
↪−→ T , if ∀(s, s′) ∈ T, s P−→ s′.

In the following, for all set of transitions T ⊆ SF × ST , we denote:
first(T) := {s ∈ SF | ∃(s1, s2) ∈ T, s1 = s} the set of all initial states of
these transitions. We note that first(T) = ∅ ⇐⇒ T = ∅.

Definition 6 (Conflict and Consistency) AMVL rule R conflicts with a
set of transitions T ⊆ SF×ST when ∃s ∈ first(T),

(
Rus∧∀(s, s′) ∈ T, h(R) /∈

s′
)
. R is said to be consistent with T when R does not conflict with T .

A rule is consistent if for all initial states of the transitions of T (first(T))
matched by the rule, there exists a transitions of T for which it verifies the
conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set
of transitions T if P does not contain any rule R conflicting with T .

8 Tony Ribeiro et al.

Definition 8 (Complete program) A DMVLP P is complete if ∀s ∈
SF ,∀v ∈ T ,∃R ∈ P,R u s ∧ var(h(R)) = v.

A complete DMVLP realizes at least one transition for each possible initial
state. Definition 9 groups all the properties that we want the learned program
to have: suitability and optimality, and Proposition 1 states that the optimal
program of a set of transitions is unique.

Definition 9 (Suitable and optimal program) Let T ⊆ SF × ST . A
DMVLP P is suitable for T when:

– P is consistent with T ,
– P realizes T ,
– P is complete
– for all MVL rules R not conflicting with T , there exists R′ ∈ P such that
R ≤ R′.

If in addition, for all R ∈ P , all the MVL rules R′ belonging to DMVLP
suitable for T are such that R ≤ R′ implies R′ ≤ R then P is called optimal.

Proposition 1 Let T ⊆ SF ×ST . The DMVLP optimal for T is unique and
denoted PO(T).

3 Dynamical semantics

The aim of this section is to formalize the general notion of dynamical seman-
tics as an update policy based on a program, and to give characterizations of
several widespread existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets
of variables F and T that represent conditions (features) and conclusions
(targets) of rules. Conclusion atoms allow to create one or several new state(s)
made of target variables, from conditions on the current state which is made
of feature atoms.

In Definition 10, we formalize the notion of dynamical semantics which is
a function that, to a program, associates a set of transitions where each state
has at least one outgoing transition. Such a set of transitions can also be seen
as a function that maps any state to a non-empty set of states, regarded as
possible dynamical branchings. We give examples of semantics afterwards.

Definition 10 (Dynamical Semantics) A dynamical semantics (on A) is a
function that associates, to each DMVLP P , a set of transitions T ⊆ SF×ST
so that: first(T) = SF . Equivalently, a dynamical semantics can be seen as a
function of

(
DMVLP → (SF → ℘(ST) \ {∅})

)
where DMVLP is the set of

DMVLPs.

We now aim at characterizing a set of semantics of interest for the current
work, as given in Theorem 2. Beforehand, Definition 11 allows to denote as
Ccl(s, P) the set of heads of rules, in a program P , matching a state s, and

Learning any semantics for dynamical systems represented by logic programs 9

Definition 12 introduces a notation BX to consider only atoms in a set B ⊆ A
that have their variable in a set X ⊆ V. These two notations will be used in the
next theorem and afterwards. In the following, we especially use the notation
of Definition 12 with A (denoted AX) and on Ccl (denoted CclX(s, P)).

Definition 11 (Program Conclusions) Let s in SF and P a MVLP. We
denote: Ccl(s, P) := {h(R) ∈ A | R ∈ P,R u s} the set of conclusion atoms in
state s for the program P .

Definition 12 (Restriction of a Set of Atoms) Let B ⊆ A be a set of
atoms, and X ⊆ V be a set of variables. We denote: BX = {vval ∈ B | v ∈ X}
the set of atoms of B that have their variables in X. If B is instead a function
that outputs a set of atoms, we note BX(params) instead of

(
B(params)

)
X

,
where params is the sequence of parameters of B.

With Theorem 2, we characterize semantics which for any DMVLP pro-
duce the same behavior using the corresponding optimal program, that is, any
semantics DS such that for any DMVLP P,DS(P) = DS(PO(DS(P))). Such
a semantics produces new states based only on the initial state s and the heads
of matching rules of the given program Ccl(s, P), as stated by point (2). More-
over, PO(DS(P)) being consistent with DS(P), each of those heads appears in
a state of DS(P)(s), thus the semantics should produce the same states being
given the atoms of all those next states as possibilities, as stated by point (1).
Those two conditions are sufficient to ensure that DS(PO(DS(P))) = DS(P)
and thus can be used to assert if the dynamics of a given semantics, for any
given original program P , can be reproduced using the corresponding optimal
program PO(DS(P)) with the same semantics.

Theorem 2 (Pseudo-idempotent Semantics and Optimal DMVLP)
Let DS be a dynamical semantics. For all P a DMVLP, if:

• ∃pick ∈ (SF × ℘(AT)→ ℘(ST) \ {∅}) so that
(1) ∀D ⊆ AT , pick(s,

⋃
s′∈pick(s,D)

s′) = pick(s,D) ∧

(2) ∀s ∈ SF ,
(
DS(P)

)
(s) = pick(s,Ccl(s, P)),

then: for all P a DMVLP, DS(PO(DS(P)))) = DS(P).

Up to this point, no link has been made between corresponding feature
(in F) and target (in T) variables or atoms. In other words, the formal link
between the two atoms vval

t and vval
t−1 has not been made yet. This link, called

projection, is established in Definition 13, under the only assumption that
dom(vt) = dom(vt−1). It has two purposes:

– When provided with a set of transitions, for instance by using a dynamical
semantics, one can describe dynamical paths, that is, successions of next
states, by using each next state to generate the equivalent initial state for
the next transition;

10 Tony Ribeiro et al.

– Some dynamical semantics (such as the asynchronous one, see Defini-
tion 15) make use of the current state to build the next state, and as
such need a way to convert target variables into feature variables.

However, such a projection cannot be defined on the whole sets of target
(T) and feature (F) variables, but only on two subsets F ⊆ F and T ⊆ T .
Note that we require the projection to be a bijection, thus: |F| = |T |. These
subsets T and F contain variables that we call afterwards regular variables:
they correspond to variables that have an equivalent in both the initial states
(at t− 1) and the next states (at t). Variables in F \ F can be considered as
stimuli variables: they can only be observed in the previous state but we do
not try to explain their next value in the current state; this is typically the
case of external stimuli (sun, stress, nutriment...) that are unpredictable when
observing only the studied system. Variables in T \ T can be considered as
checkpoint variables: they are only observed in the present state as the result
of the combination of other (regular and stimuli) variables; they can be of
use to assess the occurrence of a specific configuration in the previous state
but cannot be used to generate the next step. For the rest of this section,
we suppose that F and T are given and that there exists such projection
functions, as given by Definition 13. Figure 3 gives a representation of these
sets of variables.

It is noteworthy that projections on states are not bijective, because of
stimuli variables that have no equivalent in target variables, and checkpoint
variables that have no equivalent in feature variables (see Figure 3). Therefore,
the focus is often made on regular variables (in F and T). Especially, for any
pair of states (s, s′) ∈ SF ×ST , having spT→F (s′) ⊆ s, which is equivalent to
spF→T (s) ⊆ s′, means that the regular variables in s and their projection in
s′ (or conversely) hold the same value, modulo the projection.

Definition 13 (Projections) A projection on variables is a bijective func-
tion vpT→F : T → F so that T ⊆ T , F ⊆ F , and: ∀v ∈ T , dom(vpT→F (v)) =
dom(v). The projection on atoms (based on vpT→F) is the bijective function:

apT→F : AT → AF
vval 7→

(
vpT→F (v)

)val
.

The inverse function of vpT→F is denoted vpF→T and the inverse function of
apT→F is denoted apF→T .

The projections on states (based on apT→F and apF→T) are the functions:

spT→F : ST → SF

s′ 7→ {apT→F (vval) ∈ A | vval ∈ s′ ∧ v ∈ T }

spF→T : SF → ST

s 7→ {apF→T (vval) ∈ A | vval ∈ s ∧ v ∈ F} .

Learning any semantics for dynamical systems represented by logic programs 11

s1 . . . sm (v1)t−1 . . . (vn)t−1

F \ F (Stimuli) F (Regular variables)

F (Feature variables)

(v1)t . . . (vn)t c1 . . . ck

T (Regular variables) T \ T (Checkpoints)

(Target variables) T

Projections

Fig. 3: Representation of a state transition of a dynamic system over n vari-
ables, m stimuli and k checkpoints, i.e., |F| = n+m, |T | = n+ k.

3.1 Synchronous, Asynchronous and General Semantics

In the following, we present a formal definition and a characterization of three
particular semantics that are widespread in the field of complex dynami-
cal systems: synchronous, asynchronous and general, and we also treat the
particular case of the deterministic synchronous semantics. Note that some
points in these definitions are arbitrary and could be discussed depending
on the modeling paradigm. For instance, the policy about rules R so that
∃s ∈ SF , R u s ∧ apT→F (h(R)) ∈ s, which model stability in the dynamics,
could be to include them (such as in the synchronous and general semantics)
or exclude them (such as in the asynchronous semantics) from the possible dy-
namics. The modeling method presented so far in this paper is independent to
the considered semantics as long as it respects Definition 10 and the capacity
of the optimal program to reproduce the observed behavior is ensured as long
as the semantics respects Theorem 2.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

Fig. 4: A Boolean network with two variables inhibiting each other (top) and its
synchronous, asynchronous and general state transitions diagrams (bottom).

Definition 14 introduces the synchronous semantics, consisting in updating
all variables at once in each step in order to compute the next state. The
value of each variable in the next state is taken amongst a “pool” of atoms
containing all conclusions of rules that match the current state (using Ccl) and
atoms produced by a “default function” d that is explained below. However,
this is taken in a loose sense: as stated above, atoms that make a variable

12 Tony Ribeiro et al.

change its value are not prioritized over atoms that don’t. Furthermore, if
several atoms on the same variable are provided in the pool (as conclusions
of different rules or provided by the default function), then several transitions
are possible, depending on which one is chosen. Thus, for a self-transition
(s, s′) ∈ SF × ST with spT→F (s′) ⊆ s to occur, there needs to be, for each
atom vval ∈ s′ so that v ∈ T , either a rule that matches s and whose head is
vval or that the default function gives the value vval. Note however that such
a loop is not necessarily a point attractor; it is only the case if all atoms in
the pool are also in spT→F (s).

As explained above, for a given state s and a given set of variables W , the
function d provides a set of “default atoms” added to the pool of atoms used
to build the next state, along with rules conclusions. This function d, however,
is not explicitly given: the only constraints are that:

– d produces atoms at least for a provided set of variables W , specifically, the
set of variables having no conclusion in a given state, which is necessary in
the case of an incomplete program,

– d(s, ∅) is a subset of d(s,W) for all W , as it intuitively represents a set of
default atoms that are always available.

Note that d(s, ∅) = ∅ is always valid. In the case of a complete program, that
is, a program providing conclusions for every variables in every state, d is
always called with W = ∅ and the other cases can thus be ignored. Another
typical use for d is the case of a system with Boolean variables (i.e., such that
∀v ∈ V, dom(v) = {0, 1}) where a program P is built by importing only the
positive rules of the system, that is, only rules with atoms v1

t as heads. This
may happen when importing a model from another formalism featuring only
Boolean formulas, such as Boolean networks. In this case, d can be used to
provide a default atom w0

t for all variables w that do not appear in Ccl(s, P),
thus reproducing the dynamics of the original system.

Definition 14 (Synchronous semantics) Let d ∈ (SF × ℘(T)→ ℘(AT)),
so that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W)) ∧ d(s, ∅) ⊆ d(s,W). The syn-
chronous semantics Tsyn is defined by:

Tsyn : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \ var(Ccl(s, P)))} .

In Definition 15, we formalize the asynchronous semantics that imposes
that no more than one regular variable can change its value in each transition.
The checkpoint variables are not counted since they have no equivalent in fea-
ture variables to be compared to. As for the previous synchronous semantics,
we use here a “pool” of atoms, made of rules conclusions and default atoms,
that may be used to build the next states. The default function d used here
is inspired from the previous synchronous semantics, with an additional con-
straint: its result always contains the atoms of the initial state. Constrains are
also added on the next state to limit to at most one regular variable change.
Moreover, contrary to the synchronous semantics, the asynchronous seman-
tics prioritizes the changes. Thus, for a self-transition (s, s′) ∈ SF × ST with

Learning any semantics for dynamical systems represented by logic programs 13

spT→F (s′) ⊆ s to occur, it is required that all atoms of regular variables in the
pool are in spF→T (s), i.e., this only happens when (s, s′) is a point attractor,
in the sense that all regular variables cannot change their value.

Definition 15 (Asynchronous semantics) Let d ∈ (SF×℘(T)→ ℘(AT)),
so that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W)) ∧ spF→T (s) ⊆ d(s, ∅) ⊆ d(s,W).
The asynchronous semantics Tasyn is defined by:

Tasyn : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \ var(Ccl(s, P))) ∧(
|spF→T (s) \ s′| = 1 ∨
CclT (s, P) ∪ dT (s, T \ var(Ccl(s, P))) = spF→T (s)

)
}

where the notations AT , CclT and dT come from Definition 12.

A typical mapping for d is: d : (s,W) 7→ spF→T (s), thus conserving the
previous values and ignoring the second argument.

In Definition 16, we formalize the general semantics as a more permissive
version of the synchronous one: any subset of the variables can change their
value in a transition. This semantics uses the same “pool” of atoms than the
synchronous semantics containing rules conclusions of P and default atoms
provided by d, and no constraint. However, as for the asynchronous semantics,
the atoms of the initial state must always be featured as default atoms. Thus,
a self-transition (s, s′) ∈ SF × ST with spF→T (s) ⊆ s′ occurs for each state
s because, intuitively, the empty set of variables can always be selected for
update. However, as for the synchronous semantics, such a self-transition is
a point attractor only if all atoms of regular variables in the “pool” are in
spF→T (s). Finally, we note that the general semantics contains the dynam-
ics of both the synchronous and the asynchronous semantics, but also other
dynamics not featured in these two other semantics.

Definition 16 (General semantics) Let d ∈ (SF × ℘(T) → ℘(AT)), so
that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W)) ∧ spF→T (s) ⊆ d(s, ∅) ⊆ d(s,W).
The general semantics Tgen is defined by:

Tgen : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \ var(Ccl(s, P)))}.

Finally, with Theorem 3, we state that the definitions and method devel-
oped in the previous section are independent of the chosen semantics as long
as it respect Theorem 2.

Theorem 3 (Semantics-free correctness) Let P be a DMVLP.

– Tsyn(P) = Tsyn(PO(Tsyn(P))),
– Tasyn(P) = Tasyn(PO(Tasyn(P))),
– Tgen(P) = Tgen(PO(Tgen(P))).

14 Tony Ribeiro et al.

4 GULA

Until now, the LF1T algorithm [16,37,39] only tackled the learning of syn-
chronous deterministic programs. Using the formalism introduced in the pre-
vious sections, it can now be revised to learn systems from transitions pro-
duced from any semantics respecting Theorem 2 like the three semantics de-
fined above. Furthermore, both deterministic and non-deterministic systems
can now be learned.

4.1 Learning operations

This section focuses on the manipulation of programs for the learning pro-
cess. Definition 17 and Definition 18 formalize the main atomic operations
performed on a rule or a program by the learning algorithm, whose objective
is to make minimal modifications to a given DMVLP in order to be consistent
with a new set of transitions.

Definition 17 (Rule least specialization) Let R be a MVL rule and s ∈
SF such that R u s. The least specialization of R by s according to F and A
is:

Lspe(R, s,A,F) := {h(R)← b(R) ∪ {vval} |

v ∈ F ∧ vval ∈ A ∧ vval 6∈ s ∧ ∀val′ ∈ N, vval′ 6∈ b(R)}.

The least specialization Lspe(R, s,A,F) produces a set of rule which matches
all states that R matches except s. Thus Lspe(R, s,A,F) realizes all tran-
sitions that R realizes except the ones starting from s. Note that ∀R ∈
P,R u s ∧ |b(R)| = |F| =⇒ Lspe(R, s,A,F) = ∅, i.e., a rule R matching
s cannot be modified to make it not match s if its body already contains all
feature variables, because nothing can be added in its body.

Definition 18 (Program least revision) Let P be a DMVLP, s ∈ SF and
T ⊆ SF×ST such that first(T) = {s}. LetRP := {R ∈ P | R conflicts with T}.
The least revision of P by T according to A and F is Lrev(P, T,A,F) :=
(P \RP) ∪

⋃
R∈RP

Lspe(R, s,A,F).

Note that according to Definition 18, first(T) = {s} implies that all tran-
sitions for T have s as initial state. Theorem 4 states properties on the least
revision, in order to prove it suitable to be used in the learning algorithm.

Theorem 4 (Properties of least revision) Let R be a MVL rule and
s ∈ SF such that R u s. Let SR := {s′ ∈ SF | R u s′} and Sspe := {s′ ∈ SF |
∃R′ ∈ Lspe(R, s,A,F), R′ u s′}.

Let P be a DMVLP and T, T ′ ⊆ SF × ST such that |first(T)| = 1 ∧
first(T) ∩ first(T ′) = ∅. The following results hold:

1. Sspe = SR \ {s},

Learning any semantics for dynamical systems represented by logic programs 15

2. Lrev(P, T,A,F) is consistent with T ,

3.
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−→ T ′,

4.
P
↪−→ T =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−→ T ,

5. P is complete =⇒ Lrev(P, T,A,F) is complete.

The next properties are directly used in the learning algorithm. Proposi-
tion 2 gives an explicit definition of the optimal program for an empty set of
transitions, which is the starting point of the algorithm. Proposition 3 gives a
method to obtain the optimal program from any suitable program by simply
removing the dominated rules; this means that the DMVLP optimal for a set
of transitions can be obtained from any DMVLP suitable for the same set of
transitions by removing all the dominated rules. Finally, in association with
these two results, Theorem 5 gives a method to iteratively compute PO(T) for
any T ⊆ SF × ST , starting from PO(∅).

Proposition 2 PO(∅) = {vval ← ∅ | v ∈ T ∧ vval ∈ AT }.

Proposition 3 Let T ⊆ SF × ST . If P is a DMVLP suitable for T , then
PO(T) = {R ∈ P | ∀R′ ∈ P,R ≤ R′ =⇒ R′ ≤ R}

Theorem 5 (Least revision and suitability) Let s ∈ SF and T, T ′ ⊆
SF×ST such that |first(T ′)| = 1∧first(T)∩first(T ′) = ∅. Lrev(PO(T), T ′,A,F)
is a DMVLP suitable for T ∪ T ′.

4.2 Algorithm

In this section we present GULA: the General Usage LFIT Algorithm, a revi-
sion of the LF1T algorithm [16,37] to capture a set of multi-valued dynamics
that especially encompass the classical synchronous, asynchronous and gen-
eral semantics dynamics. For this learning algorithm to operate, there is no
restriction on the semantics. GULA learns the optimal program that, under
the same semantics, is able to exactly reproduce a complete set of observa-
tions, if the semantics respect Theorem 2. Section 5 will be devoted to also
learning the behaviors of the semantics itself, if it is unknown.

GULA learns a logic program from the observations of its state transitions.
Given as input a set of transitions T ⊆ SF×ST , GULA iteratively constructs
a DMVLP that models the dynamics of the observed system by applying the
method formalized in the previous section as shown in Algorithm 1. From the
set of transitions T , GULA learns the conditions under which each vval ∈
A′ ⊆ A, v ∈ T ′ ⊆ T may appear in the next state. The algorithm starts by
computing the set of all negative examples of the appearance of vval in next
state: all states such that v never takes the value val in the next state of a
transition of T . Those negative examples are then used during the following
learning phase to iteratively learn the set of rules PO(T). The learning phase
starts by initializing a set of rules Pvval to {R ∈ PO(∅) | h(R) = vval} =
{vval ← ∅}. Pvval is iteratively revised against each negative example neg in

16 Tony Ribeiro et al.

Algorithm 1 GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ × ST ′ , two sets
of variables F ′ and T ′.

– For each atom vval ∈ A′ of each variable v ∈ T ′:
– Extract all states from which no transition to vval exist:
Negvval := {s | @(s, s′) ∈ T, vval ∈ s′}.

– Initialize Pvval := {vval ← ∅}.
– For each state s ∈ Negvval :
• Extract and remove the rules of Pvval that match s:
Mvval := {R ∈ P | b(R) ⊆ s} and Pvval := Pvval \Mvval .

• LS := ∅
• For each rule R ∈Mvval :
· Compute its least specialization P ′ = Lspe(R, s,A′,F ′).
· Remove all the rules in P ′ dominated by a rule in Pvval .
· Remove all the rules in P ′ dominated by a rule in LS.
· Remove all the rules in LS dominated by a rule in P ′.
· LS := LS ∪ P ′.

• Add all remaining rules of LS to Pvval : Pvval := Pvval ∪ LS.
– P := P ∪ Pvval

– OUTPUT: PO(T) := P .

Negvval . All rules Rm of Pvval that match neg have to be revised. In order
for Pvval to remain optimal, the revision of each Rm must not match neg
but still matches every other state that Rm matches. To ensure that, the least
specialization (see Definition 17) is used to revise each conflicting rule Rm. For
each variable of F ′ so that b(Rm) has no condition over it, a condition over
another value than the one observed in state neg can be added. None of those
revision match neg and all states matched by Rm are still matched by at least
one of its revisions. Each revised rule can be dominated by a rule in Pvval or
another revised rules and thus dominance must be checked from both. The non-
dominated revised rules are then added to Pvval . Once Pvval has been revised
against all negatives example of Negvval , Pvval = {R ∈ PO(T) | h(R) = vval}.
Finally, Pvval is added to P and the loop restarts with another atom. Once
all values of each variable have been treated, the algorithm outputs P which
is then equal to PO(T). More discussion of the implementation and detailed
pseudocode are given in appendix. The source code of the algorithm is available
at https://github.com/Tony-sama/pylfit under GPL-3.0 License.

Theorem 6 gives the properties of the algorithm: GULA terminates and
GULA is sounds, complete and optimal w.r.t. its input, i.e., all and only non-
dominated consistent rules appear in its output program which is the optimal
program of its input. Finally, Theorem 7 characterizes the algorithm time and
memory complexities.

Theorem 6 (GULA Termination, soundness, completeness, optimal-
ity) Let T ⊆ SF × ST .

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T,F , T) = PO(T),

https://github.com/Tony-sama/pylfit

Learning any semantics for dynamical systems represented by logic programs 17

(3) ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′}.

From Theorem 6: for any dynamical semantics DS and any DMVLP P ,
GULA(A, DS(P),F , T) = PO(DS(P)). If DS is as in Theorem 2, then
DS(GULA(A, DS(P),F , T)) = DS(PO(DS(P))) = DS(P). From Theo-
rem 3, the following holds:

– Tsyn(GULA(A, Tsyn(P),F , T)) = Tsyn(PO(Tsyn(P))) = Tsyn(P)
– Tasyn(GULA(A, Tasyn(P),F , T)) = Tasyn(PO(Tasyn(P))) = Tasyn(P)
– Tgen(GULA(A, Tgen(P),F , T)) = Tgen(PO(Tgen(P))) = Tgen(P)

Thus the algorithm can be used to learn from transitions produced from both
synchronous, asynchronous and general semantics.

Theorem 7 (GULA Complexity) Let T ⊆ SF×ST be a set of transitions,
Let n := max(|F|, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪T }. The worst-
case time complexity of GULA when learning from T belongs to O(|T |2+|T |×
(2n4d2n+2 + 2n3dn+1)) and its worst-case memory use belongs to O(d2n +
2ndn+1 + ndn+2).

5 Learning From Any Dynamical Semantics

Any non-deterministic (and thus deterministic) discrete memory-less dynam-
ical system S can be represented by a MVLP with some restrictions and a
dedicated dynamical semantics. For this, programs must contain two types of
rules: possibility rules which have conditions on variables at t− 1 and conclu-
sion on one variable at t, same as for DMVLP; and constraint rules which
have conditions on both t and t − 1 but no conclusion. In the following, we
also re-use the same notations as for the MVL of Section 2.1 such as h(R),
b(R) and var(h(R)).

5.1 Constraints DMVLP

Definition 19 (Constrainted DMVLP) Let P ′ be a DMVLP on AF∪Tdom ,
F and T two sets of variables, and ε a special variable with dom(ε) = {0, 1} so
that ε /∈ T ∪F . A CDMVLP P is aMVLP such that P = P ′ ∪ {R ∈MVL |
h(R) = ε1 ∧ ∀vval ∈ b(R), v ∈ F ∪ T }. A MVL rule R such that h(R) = ε1

and ∀vval ∈ b(R), v ∈ F ∪ T is called a MVL constraint.

Moreover, in the following we denote V = F ∪ T ∪ {ε}. This V is different
than the one of P ′ (which is F ∪T , without the special variable ε). From now,
a constraint C is denoted: ← b(C).

Example 4 ← a0t ∧a0t−1 is a constraint that can prevent a to take the value 0 in
two successive states.← b1t ∧d2t ∧ c2t−1 is a constraint that can prevent to have
both b1 and d2 in the next state if c2 appears in the initial state. ← a0t ∧ b0t is
a constraint with only conditions in T , it prevents a and b to take value 0 at

18 Tony Ribeiro et al.

same time.← a0t−1∧ b0t−1 is a constraint with only conditions in F , it prevents
any transitions from a state where a and b have value 0, thus creating final
states.

Definition 20 (Constraint-transition matching) Let (s, s′) ∈ SF × ST .
The constraint C matches (s, s′), written C u (s, s′), iff b(C) ⊆ s ∪ s′.

Using the notion of rule and constraint matching we can use a CDMVLP to
compute the next possible states. Definition 21 provides such a method based
on synchronous semantic and constraints. Given a state, the set of possible
next states is the Cartesian product of the conclusion of all matching rules
and default atoms. Constraints rules are then used to discard states that would
generate non-valid transitions.

Definition 21 (Synchronous constrained Semantics) The synchronous
constrained semantics Tsyn−c is defined by:

Tsyn−c : P 7→ {(s, s′) ∈ SF×ST | s′ ⊆ Ccl(s, P)∧@C ∈ P, h(C) = ε1∧Cu(s, s′)}

00

01 10

11

00

01 10

11

00

01 10

11

Fig. 5: States transitions diagrams corresponding to three semantics that do
not respect Theorem 2 (in black) applied on the Boolean network of Figure 4.
Using the synchronous semantics on the optimal program of the black transi-
tions will produce in addition the red ones.

Figure 5 shows the dynamics of the Boolean network of Figure 4 under
three semantics which dynamics cannot be reproduced using synchronous,
asynchronous or general semantics on a program learned using GULA. In the
first example (left), either all Boolean functions are applied simultaneously or
nothing occurs (self-transition using projection). In the second example (cen-
ter), the Boolean functions are applied synchronously but their is also always
a possibility for any variable to take value 0 in the next state. In the third
example (right), either the Boolean functions are applied synchronously, or
each variable value is reversed (0 into 1 and 1 into 0). The original transitions
of each dynamics are in black and the additional non-valid transitions in red.
Using the original black transitions as input, GULA learns programs which,
under the synchronous semantics (Definition 14), would realize the original
black transitions plus the non-valid red ones. The idea is to learn constraints
that would prevent those non-valid transitions to occur so that the observed
dynamics is exactly reproduced using the synchronous constrained semantics
of Definition 21.

Learning any semantics for dynamical systems represented by logic programs 19

Definition 22 (Conflict and Consistency of constraints) The constraint
C conflicts with a set of transitions T ⊆ SF ×ST when ∃(s, s′) ∈ T,Cu(s, s′).
C is said to be consistent with T when C does not conflict with T .

Therefore, a constraint is consistent if it does not match any transitions of
T .

Definition 23 (Complete set of constraints) A set of constraints SC is
complete with a set of transitions T if ∀(s, s′) ∈ (SF × ST), (s, s′) 6∈ T =⇒
∃C ∈ SC,C u (s, s′).

Definition 24 groups all the properties that we want the learned set of
constraints to have: suitability and optimality, and Proposition 4 states that
the optimal set of constraints of a set of transitions is unique.

Definition 24 (Suitable and optimal constraints) Let T ⊆ SF × ST . A
set of MVL constraints SC is suitable for T when:

– SC is consistent with T ,
– SC is complete with T ,
– for all constraints C not conflicting with T , there exists C ′ ∈ P such that
C ≤ C ′.

If in addition, for all C ∈ SC, all the constraint rules C ′ belonging to a set of
constraints suitable for T are such that C ≤ C ′ implies C ′ ≤ C, then SC is
called optimal.

Proposition 4 Let T ⊆ SF × ST . The optimal set of constraints for T is
unique and denoted CO(T).

The subset of constraints of CO(T) that prevent transitions permitted by
PO(T) but not observed in T from happening, or, in other terms, constraints
that match transitions in Tsyn−c(PO(T))) \ T , is denoted C ′O(T) and given
in Definition 25. All constraints of CO(T) that are not in this set can never
match a transition produced by PO(T) with Tsyn−c and can thus be consid-
ered useless. Finally, Theorem 8 shows that any set of transitions T can be
reproduced, using synchronous constrained semantics of Definition 21 on the
CDMVLP PO(T) ∪ C ′O(T).

Definition 25 Let T ⊆ SF × ST .

C ′O(T) := {C ∈ CO(T) | ∀vval ∈ b(C), v ∈ T ,∃R ∈ PO(T), h(R) =

vval ∧
(
∀w ∈ F ,∀val′, val′′ ∈ dom(w),wval′ ∈ b(R)∧wval′′ ∈ b(C) =⇒ val′ =

val′′
)
}).

Theorem 8 (Optimal DMVLP and constraints correctness under syn-
chronous constrainted semantics) Let T ⊆ SF × ST , it holds that T =
Tsyn−c(PO(T) ∪ C ′O(T)).

20 Tony Ribeiro et al.

5.2 Algorithm

In previous sections we presented a modified version of GULA: the General
Usage LFIT Algorithm from [35], which takes as arguments a different set of
variables for conditions and conclusions of rules. This modification allows to
use this modified algorithm to learn constraints and thus CDMVLP.

Algorithm 2 show the Synchronizer algorithm, which given a set of transi-
tions T ⊆ SF×ST will output PO(T)∪C ′O(T) using GULA and the properties
introduced in the previous section. With the new version of GULA it is possi-
ble to encode meaning in the transitions we give as input to the algorithm. The
constraints we want to learn are technically rules whose head is ε1 with condi-
tions on both F and T . It is sufficient to make the union of the two states of a
transition and feed it to GULA to make it learn such rules. Constraints should
match when an impossible transition is generated by the rules of the optimal
program of T . GULA learns from negative examples and negative examples
of impossible transitions are just the possible transitions, thus the transitions
observed in T . Using the set of transitions T ′ := {(s∪s′, {ε0}) | (s, s′) ∈ T} we
can use GULA to learn such constraints with GULA(A∪{ε1}, T ′,F ∪T , {ε}).
Note that ε, from the algorithmic viewpoint, is just a dummy variable used
to make every transition of T ′ a negative example of ε1 which will be the
only head of the rule we will learn here. The program produced will contain
a set of rules that match none of the initial states of T ′ and thus none of
the transitions of T but matches all other possible transitions according to
GULA properties. Their head being ε1, those rules are actually constraints
over T . Since all and only such minimal rules are output by this second call to
GULA, it correspond to CO(T), which prevent every transitions that are not
in T to be produced using the constraint synchronous semantics. Finally, the
non-essential constraints can be discarded following Definition 25 and finally
PO(T) ∪ C ′O(T) is output. The source code of the algorithm is available at
https://github.com/Tony-sama/pylfit under GPL-3.0 License.

Algorithm 2 Synchronizer

– INPUT: a set of atoms A, a set of transitions T ⊆ SF × ST , two sets of
variables F and T .

– // 1) Learn what is possible locally in a transition using GULA
– P := GULA(A, T,F , T)
– // 2) Encode negative examples of constraints, i.e., observed transitions
– Let ε be a special variable not in the system: ε 6∈ F ∪ T
– T ′ := {(s ∪ s′, {ε0}) | (s, s′) ∈ T}
– // 3) Learn what is impossible in form of constraint using GULA
– P ′ := GULA(AF∪T ∪{ε1}, T ′,F ∪ T , {ε})
– P ′′ := {C ∈ P ′ | ∀vval ∈ b(C), v ∈ T ,∃R ∈ P, h(R) = vval ∧

(
∀w ∈

F ,∀val′, val′′ ∈ dom(w),wval′ ∈ b(R) ∧ wval′′ ∈ b(C) =⇒ val′ = val′′
)
})

– OUTPUT: PO(T) ∪ C ′O(T) := P ∪ P ′′.

https://github.com/Tony-sama/pylfit

Learning any semantics for dynamical systems represented by logic programs 21

Theorem 9 (Synchronizer correctness) Given any set of transitions T ,
Synchronizer(A, T , F , T) outputs PO(T) ∪ C ′O(T).

From Theorem 8 and Theorem 9, given a set of transitions T ⊆ SF × ST ,
it holds that Tsyn−c(Synchronizer(A, T,F , T)) = T , i.e., the algorithm can
be used to learn a CDMVLP that reproduce exactly the input transitions
whatever the semantics that produced them.

Theorem 10 (Synchronizer Complexity) Let T ⊆ SF × ST be a set of
transitions, Let n := max(|F|, |T |) and d := max({|dom(v)| ∈ N | v ∈ F ∪T })
and m := |F| + |T |. The worst-case time complexity of Synchronizer when
learning from T belongs to O((|T |2 + |T | × (2n4d2n+2 + 2n3dn+1)) + (|T |2 +
|T | × (2m4d2m+2 + 2m3dm+1))) and its worst-case memory use belongs to
O((d2n + 2ndn+1 + ndn+2) + (d2m + 2mdm+1 +mdm+2)).

6 Evaluation

In this section, both the scalability and the accuracy of GULA are evalu-
ated using Boolean network benchmarks from the biological literature. The
scalability of Synchronizer is also evaluated (details are given in appendix).
All experiments1 were conducted on one core of an AMD Ryzen 7 (2700X,
3.7 GHz) with 64 Gb of RAM.

6.1 GULA Scalability

Benchmark size synchronous asynchronous general
arellano rootstem 9 2s/1.8s/0.9s/0.3s/512 2.4s/1.4s/1.1s/0.2s/1,940 1.1s/0.5s/0.3s/0.3s/11K
davidich yeast 10 16s/10s/4s/0.6s/1,024 12s/6s/4s/0.5s/4,364 3s/1.5s/1s/0.9s/39K
faure cellcycle 10 15s/10s/4s/0.8s/1,024 12s/5.6s/4.7s/0.6s/4,273 4s/1.2s/0.9s/0.9s/31K
fission yeast 10 16s/10s/4.8s/0.8s/1,024 12s/5.8s/4.6s/0.4s/4,157 3.6s/1.2s/1s/0.8s/34K
mammalian 10 14.8s/11s/4.8s/0.8s/1,024 12s/5.7s/3.4s/0.6s/4,273 3.4s/1.4s/1s/0.9s/31K
budding yeast 12 564s/194s/61s/3.7s/4,096 216s/107s/85s/2.6s/20K 51s/14s/5.9s/4.1s/260K
n12c5 12 468s/200s/64s/2.8s/4,096 213s/103s/144s/1.3s/30K 4.7s/6s/8.6s/11s/1,122K
tournier apoptosis 12 369s/164s/54s/2.7s/4,096 199s/98s/94s/2s/22K 26s/6.7s/4.6s/4.6s/358K
dinwoodie stomatal 13 -/748s/221s/6.1s/8,192 -/548s/628s/4s/53K 70s/18s/15s/18s/1.5M
multivalued 13 -/-/406s/6s/8,192 -/565s/765s/4.9s/49K 61s/18s/13s/13s/1M
saadatpour guardcell 13 -/757s/219s/6s/8,192 -/575s/638s/4.2s/53K 68s/17s/15s/18s/1.5M
arabidopsis 15 -/-/-/53s/32K -/-/-/50s/213K -/352s/123s/103s/7M
dinwoodie life 15 -/-/-/37s/32K -/-/-/30s/245K -/352s/240s/256s/20M
randomnet n15k3 15 -/-/-/51s/32K -/-/-/31s/262K 731s/219s/226s/280s/22M
irons yeast 18 -/-/-/653s/262K -/-/-/324s/2M memory out

Table 1: Run time of GULA for 9 to 18 nodes Boolean networks of [9,23]
for the three semantics: run time in seconds for 25%/50%/75%/100% of the
transitions as input, and total number of transitions (K for thousands and M
for millions).

Table 1 shows the run time of GULA when learning from the transitions
of Boolean networks from Boolenet [9] and PyBoolnet [23]. Boolean networks

1 Available at: https://github.com/Tony-sama/pylfit. Using command “python3
src/evaluations/mlj2020/mlj2020 all.py” from the repository’s root folder, results will
be in the /tmp folder.

https://github.com/Tony-sama/pylfit

22 Tony Ribeiro et al.

are converted to DMVLP where ∀v ∈ V, dom(v) = {0, 1}. For each variable,
Boolean functions are given in disjonctive normal form (DNF), a disjonction
of conjonction clauses that can be considered as a set of Boolean atoms of the
form v or ¬v. Each clause c of the DNF of a variable v is directly converted into
a rule R such that, h(R) = v1 and v′1 ∈ b(R) ⇐⇒ v′ ∈ c and v′0 ∈ b(R) ⇐⇒
¬v′ ∈ c. For each such DMVLP the set T of all transitions are generated for
the three considered semantics (see Section 3). For each generation, to simulate
the cases where Boolean functions are false, each semantics uses a default
function that gives v0,∀v ∈ T when no rule R, v(h(R)) = v matches a state.
Learning is performed on several random subsets of 25%/50%/75%/100% of
the whole set of transitions. The run time needed by the algorithm to learn
PO(T) is reported for each case.

We observe that for each benchmark we get a better run time if we are
given more input transitions. More transitions possibly implies more special-
ization of non-optimal rules, increasing the chance for them to be dominated
by another rule, thus reducing the number of rules to compare. The same
reasoning applies between the semantics. It is important to note that those
systems are deterministic with the synchronous semantics and thus the num-
ber of transitions in the synchronous case is much lower than for the two other
semantics. The rules are simpler for the two other semantics since rules of the
form vval

t ← vval
t−1 are always consistent and quickly obtained. Such simple

rules have great dominance power, reducing the quantity of rules stored and
thus checked for domination at each step.

GULA succeeds in learning the benchmarks with less than 12 variables for
all semantics before the time-out (“-” in Table 1) of 1,000 seconds for all sub-
sets of transitions. Run times of smaller benchmarks from the same sources
(3 to 7 variables) are omitted in the table since they are lower than one sec-
ond in all cases. Benchmarks from 13 variables need a substantial amount of
input transitions to prevent the explosion of consistent rules and thus reach-
ing the time out. The 18 variables benchmark could be learned for both the
synchronous and asynchronous semantics. For the general semantics, however,
the number of transitions generated (about 80 millions) is too large for our
naive usage of the memory. The current implementation of the algorithm is
rather naive and better performances are expected from future optimizations.
In particular, the algorithm can be parallelized into as many threads as the
number of different rule heads (one thread per target variable value). We are
also developing2 an approximated version of GULA that outputs a subset
of PO(T) sufficient to realize T [36]. The complexity of this new algorithm
is polynomial, greatly improving the scalability of our approach. Because of
space limitations we could not incorporate this algorithm and its evaluation
in this paper.

Learning constraints is obviously more costly than learning regular rules
since both feature and target variables can appear in the body, i.e., the num-

2 The polynomial approximation of GULA, currently named PRIDE is also available
at: https://github.com/Tony-sama/pylfit

https://github.com/Tony-sama/pylfit

Learning any semantics for dynamical systems represented by logic programs 23

ber of features becomes |F|+ |T |. Under the same experimental settings, the
Synchronizer reached the time-out of 1,000 seconds on the benchmarks of
9 nodes. The contribution regarding CDMVLP being focused on theoretical
results, we provided the detailed evaluation of the Synchronizer in appendix
to save space.

6.2 GULA Predictive power

In this experiment, we evaluate the quality of the models learned by GULA in
their ability to correctly predict possible values for each variable from unseen
initial states. Regarding our modeling, it consists in learning an approximation
of PO(T) and check both consistency and realization of T . For each Boolean
network benchmark, the set T of all possible transitions are generated as in
the previous experiment. First the transitions are grouped by initial state and
10% to 90% are chosen randomly to form a training set and the rest for a test
set so that first(training)∩first(test) = ∅ and training∪ test = T (except for
for 100% where training = T = test). The training set is given as input to
GULA and its output program is used to predict the possible values appearing
in the next states from the initial states of the test set. Figure 6 (left) shows
the accuracy of the predicted possible values w.r.t. the ratio of training data
going from 10% to 100% with the synchronous semantics.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle (10)

fission_yeast (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle (10)

fission_yeast (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

Fig. 6: Accuracy of the models learned by GULA when predicting possible
target variable values from unseen states with different amounts of training
data in the synchronous semantics in two different settings: (left) experiment
1, with a complete set of input transitions from a partial number of initial
states; and (right) experiment 2, with a potentially incomplete set of input
transitions from an incomplete set of initial states.

In this first experiment, the input of GULA is complete for the initial
states observed, i.e., every transitions from all s ∈ first(training) are given.
For the second experiment, the algorithm is provided an incomplete input, i.e.,
for some s ∈ first(training), ∃(s, s′) ∈ T, (s, s′) 6∈ training. Thus in the second
case, having missing transitions from some initial state is a form of noise. The
test set must remain complete to ensure a correct evaluation. Thus, as in the

24 Tony Ribeiro et al.

first experiment, transitions are grouped by initial states. Here, 20% of the
initial states are randomly chosen to form a complete test set with all their
outgoing transitions. From the remaining 80% of initial states of T , 10% to
100% of the transitions with such initial states are randomly chosen as training
set and used as input by GULA. Figure 6 (right) shows the accuracy of the
predicted possible values w.r.t. the ratio of input data with the synchronous
semantics.

In order to predict from unseen states, for each target atom we need rules
that assert possibility and rules that assert impossibility. The first kind of
rules can be learned from a regular call to GULA on the training transitions
and form a first DMVLP P . To obtain impossibility rules we just have to
reverse the computation of negative example in the algorithm so that: ∀vval ∈
AT , Negvval := {s | ∃(s, s′) ∈ T, vval ∈ s′}. Rules learned using least revision
from this Negvval will match when vval is not possible in the next state and
form a second DMVLP P . Both types of rules are then weighted by counting
the number of initial state they match in the training set: let R be a rule, then
weight(R, T) := |{s | ∃(s, s′) ∈ T,R u s, h(R) ∈ s′}|. To forecast how likely
each atom is to appear in a transition from an unseen state s, we take the
matching rules of P and P with the maximal weight, as follows. Let s ∈ SF ,
then forecast(vval, s, P, P , T) = 0.5 + p−np

2(p+np) be the forecast probabilities of

vval being in some next state of s according to P, P and T with p := max({0}∪
{weight(R, T) | R ∈ P, h(R) = vval, b(R) ⊆ s}) and let np := max({0} ∪
{weight(R, T) | R ∈ P , h(R) = vval, b(R) ⊆ s}). The forecast probabilities
are compared to the observed values of the test set. Let actual(vval, s, T) ={

1, if ∃(s, s′) ∈ T, vval ∈ s′

0, otherwise
. Given T, T ′ ∈ SF × ST , P, P ∈ DMVLP, the

accuracy of prediction from P, P according to T over T ′ is:

accuracy(P, P , T, T ′) = 1−
1

|first(T ′)|
∑

s∈first(T ′)

error(P, P , T, T ′, s) , with

error(P, P , T, T ′, s) =
1

|T |
∑

vval∈T

abs(actual(vval, s, T ′)− forecast(vval, s, P, P , T))

abs(actual(vval, s, T ′))

The evolution of accuracy(P, P , training, test) is shown in Figure 6 for exper-
iments 1 (left) and 2 (right). For both experiments, we observe poor results for
the smallest benchmarks of 3 to 5 variables unless most transitions are given.
In those cases, the number of training samples are too low for the weighting
heuristic to help choices between possibility and impossibility rules. Starting
from 7 variables, we observe much better results. From 10 variables, 80% ac-
curacy can be achieved with no more than 10% of the possible transitions as
training examples. Performance is quite similar in both experiments, showing
that our method can handle some noise caused by missing observations. We
observed similar results with asynchronous and general semantics and thus did
not presented it here because of the lack of space.

If one is only interested by the prediction, it is certainly easier to achieve
better results using other methods like neural networks or random forest since
prediction here is basically a binary classification for each target variables

Learning any semantics for dynamical systems represented by logic programs 25

values. In the case where explainability is of interest, the rules used for the
predictions and their weights may be quite simple human readable candidates
for explanations. Furthermore, when good prediction model can be built from
training data, it can replace our learned model to forecast next state but it
can also be used to improve the output of GULA. Indeed, one can use such
models to produce artificial transitions from both observed and unseen states
that can be given as input to GULA in place of the raw observations. It can
help to deal with noisy data and improve the diversity of initial state that
can speed up and improve the quality of the rules of GULA and thus also its
approximated version [36]. Actually, as long as feature and target variables are
discrete (or can be properly discretized), GULA (or its approximated version
for big systems) could be used to generate rules that could explain in a more
human readable fashion the behavior of other less explainable models. Such a
combination study is out of the scope of this paper but will be an interesting
application part of our future works.

7 Related Work

7.1 Modeling Dynamics

In modeling of dynamical systems, the notion of concurrency is crucial. His-
torically, two main dynamical semantics have been used in the field of sys-
tems biology: synchronous (Boolean networks of Stuart Kauffman [20]) and
asynchronous (René Thomas’ networks [42]), although other semantics are
sometimes proposed or used [12].

The choice of a given semantics has a major impact on the dynamical fea-
tures of a model: attractors, trap domains, bifurcations, oscillators, etc. The
links between modeling frameworks and their update semantics constitute the
scope of an increasing number of papers. In [15], the author exhibited the
translation from Boolean networks into logic programs and discussed the point
attractors in both synchronous and asynchronous semantics. In [30], the au-
thors studied the synchronism-sensitivity of Boolean automata networks with
regard to their dynamical behavior (more specifically their asymptotic dynam-
ics). They demonstrate how synchronism impacts the asymptotic behavior by
either modifying transient behaviors, making attractors grow or destroying
complex attractors. Meanwhile, the respective merits of existing synchronous,
asynchronous and generalized semantics for the study of dynamic behaviors
has been discussed by Chatain and Paulevé in a series of recent papers. In [7],
they introduced a new semantics for Petri nets with read arcs, called the inter-
val semantics. Then they adapted this semantics in the context of Boolean net-
works [8], and showed in [6] how the interval semantics can capture additional
behaviors with regard to the already existing semantics. Their most recent
work demonstrates how the most common synchronous and asynchronous se-
mantics in Boolean networks have three major drawbacks that are to be costly
for any analysis, to miss some behaviors and to predict spurious behaviors. To

26 Tony Ribeiro et al.

overcome these limits, they introduce a new paradigm, called Most Permissive
Boolean Network which offers the guarantee that no realizable behavior by a
qualitative model will be missed [33].

The choice of a relevant semantics appears clearly not only in the recent
theoretical works bridging the different frameworks, but also in the features
of the software provided to the persons involved in Systems Biology modeling
(e.g., the GinSIM tool offers two updating modes, that are fully synchronous
and fully asynchronous [29]). Analysis tools offer the modelers the choice of
the most appropriate semantics with regard to their own problem.

7.2 Learning Dynamics

In this paper, we proposed new algorithms to learn the dynamics of a system
independently of its update semantics, and apply it to learn Boolean net-
works from the observation of their states transitions. Learning the dynamics
of Boolean networks has been considered in bioinformatics in several works
[26,1,31,24,12]. In [12], Fages discussed the differential semantics, stochas-
tic semantics, Boolean semantics, hybrid (discrete and continuous) semantics,
Petri net semantics, logic programming semantics and some learning tech-
niques. Rather than focusing on particular semantics, our learning methods
are complete algorithms that learn transition rules for any memory-less dis-
crete dynamical systems independently of the update semantics. As in [31],
we can also deal with partial transitions, but will not need to identify or
enumerate all possible complete transitions. [32] learns a model as a proba-
bility distribution for the next state given the previous state and an action.
Here, exactly one dynamic rule fires every time-step, which corresponds to
the asynchronous semantics of Definition 15. In [41], action rules are learned
using inductive logic programming but require as input background knowl-
edge. In [3], the authors use logic program as a meta-interpreter to explain
the behaviour of a system as stepwise transitions in Petri nets. They produce
new possible traces of execution, while our output is an interaction model of
the system that aims to explain the observed behavior. In [22], Klarner et
al. provide an optimization-based method for computing model reduction by
exploiting the prime implicant graph of the Boolean network. This graph is
similar to the rules of PO(T) that can be learned by GULA. But while [22]
requires an existing model to work, we are able to learn this model from ob-
servations. In [24], Lähdesmäki et al. propose algorithms to infer the truth
table of Boolean functions of gene regulatory network from gene expression
data. Each positive (resp. negative) example represents a variable configu-
ration that makes a Boolean function true (resp. false). The logic programs
learned by GULA are a generalization of those truth tables. [10,11] propose
the Apperception Engine, a system able to learn programs from a sequence of
state transitions. The first difference is that our approach is limited to propo-
sitional atoms while first order logic is considered in this approach. But our
input can represent transitions from multiple trajectories, while they consider

Learning any semantics for dynamical systems represented by logic programs 27

a single trajectory and thus our setting can be considered as a generalized
apperception task. Another major difference is that they only consider deter-
ministic inputs while we also capture non-deterministic behaviors. Given the
same kind of single trajectory and a DMVLP (or CDMVLP), it should be
possible to produce candidates past states or to try to fill in missing values.
But in practice that would suppose to have many other transitions to build
such DMVLP using GULA while the Aperception Engine can perform the
task with only the given single trajectory. This system can also produce a set
of constraints as well as rules. The constraints of CDMVLP can prevent some
combinations of atoms to appear, but only in next states, while in [10,11],
constraints can prevent some states to exist anywhere in the sequence, and
ensure the conservation of atoms. From Theorem 8, the conservation can also
be reproduced by CDMVLP by the right combination of optimal rules and
constraints. In [25] the authors propose a general framework named ILASP for
learning answer set programs. ILASP is able to learn choice rules, constraints
and preferences over answer sets. Our problem settings is related to what
is called “context-dependant” tasks in ILASP. Our input can be straightfor-
wardly represented using ILASP when variables are Boolean, but the learned
program does not respect our notion of optimality, and thus our learning goals
differ, i.e., we guarantee to miss no potential dynamical influence. [19] proposes
an incremental method to learn and revise event-based knowledge in the form
of Event Calculus programs using XHAIL [34], a system that jointly abduce
ground atoms and induce first-order normal logic programs. XHAIL needs to
be provided with a set of mode declarations to limit the search space of pos-
sible induced rules, while our method do not require background knowledge.
Still it is possible to exploit background knowledge with GULA: for example
one could add heuristic inside the algorithm to discard rules with “too many”
conditions; influences among variables, if known, could also be exploited to re-
duce possible bodies. Finally, XHAIL does not model constraints, thus is not
able to prevent some combinations of atoms to appear in transitions, which
can be achieve using our Synchronizer.

8 Conclusions

While modeling a dynamical system, the choice of a proper semantics is critical
for the relevance of the subsequent analysis of the dynamics. The works pre-
sented in this paper aim to widen the possibilities offered to a system designer
in the learning phase. Until now, the systems that the LFIT framework handles
were restricted to synchronous deterministic dynamics. However, many other
dynamics exist in the field of logical modeling, in particular the asynchronous
and generalized semantics which are of deep interest to model biological sys-
tems. In this paper, we proposed a modeling of memory-less multi-valued dy-
namic systems in the form of annotated logic programs and a first algorithm,
GULA, that learns optimal programs for a wide range of semantics (see The-
orem 2) including notably the asynchronous and generalized semantics. But

28 Tony Ribeiro et al.

the semantics need to be assumed to use the learned model, in order to pro-
duce predictions for example. Our second proposition is a new approach that
makes a decisive step in the full automation of logical learning of models di-
rectly from time series, e.g., gene expression measurements along time (whose
intrinsic semantics is unknown or even changeable). The Synchronizer algo-
rithm that we proposed is able to learn a whole system dynamics, including
its semantics, in the form of a single propositional logic program. This logic
program explains the behavior of the system in the form of human readable
propositional logic rules, as well as, be able to reproduce the behavior of the
observed system without the need of knowing its semantics. Furthermore, the
semantics can be explained, without any previous assumption, in the form of
human readable rules inside the logic program.

After having exhibited the benefits of our approach on several benchmarks,
further work will consist in a practical use of our method on open problems
coming from systems biology. An approximate version of the method is a
necessity to tackle large systems and is under development [36]. In addition,
lack of observations and noise handling is also an issue when working with
biological data. Data science methodologies and deep learning techniques can
then be good candidate to tackle this challenge. The combination of such
techniques to improve our method may be of prime interest to tackle real
data.

References

1. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of genetic networks by
strategic gene disruptions and gene overexpressions under a boolean model. Theoretical
Computer Science 298(1), 235–251 (2003)

2. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. Foun-
dations of deductive databases and logic programming p. 89 (1988)

3. Bain, M., Srinivasan, A.: Identification of biological transition systems using meta-
interpreted logic programs. Machine Learning 107(7), 1171–1206 (2018)

4. Blair, H.A., Subrahmanian, V.: Paraconsistent foundations for logic programming. Jour-
nal of non-classical logic 5(2), 45–73 (1988)

5. Blair, H.A., Subrahmanian, V.: Paraconsistent logic programming. Theoreti-
cal Computer Science 68(2), 135 – 154 (1989). DOI http://dx.doi.org/10.1016/
0304-3975(89)90126-6. URL http://www.sciencedirect.com/science/article/pii/

0304397589901266

6. Chatain, T., Haar, S., Kolčák, J., Paulevé, L., Thakkar, A.: Concurrency in boolean
networks. Natural Computing 19(1), 91–109 (2020)

7. Chatain, T., Haar, S., Koutny, M., Schwoon, S.: Non-atomic transition firing in contex-
tual nets. In: International Conference on Applications and Theory of Petri Nets and
Concurrency, pp. 117–136. Springer (2015)

8. Chatain, T., Haar, S., Paulevé, L.: Boolean networks: Beyond generalized asynchronic-
ity. In: AUTOMATA 2018. Springer (2018)

9. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous
boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinfor-
matics (TCBB) 8(5), 1393–1399 (2011)

10. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Making sense of sensory
input. arXiv preprint 1910.02227 (2019)

11. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Evaluating the apper-
ception engine. arXiv preprint 2007.05367 (2020)

http://www.sciencedirect.com/science/article/pii/0304397589901266
http://www.sciencedirect.com/science/article/pii/0304397589901266

Learning any semantics for dynamical systems represented by logic programs 29

12. Fages, F.: Artificial intelligence in biological modelling. In: A Guided Tour of Artificial
Intelligence Research, pp. 265–302. Springer (2020)

13. Fitting, M.: Bilattices and the semantics of logic programming. The Journal
of Logic Programming 11(2), 91 – 116 (1991). DOI http://dx.doi.org/10.1016/
0743-1066(91)90014-G. URL http://www.sciencedirect.com/science/article/pii/

074310669190014G

14. Ginsberg, M.L.: Multivalued logics: A uniform approach to reasoning in artificial intel-
ligence. Computational intelligence 4(3), 265–316 (1988)

15. Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-
Second International Joint Conference on Artificial Intelligence, IJCAI’11, vol. 2, p.
924–930. AAAI Press (2011)

16. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine
Learning 94(1), 51–79 (2014)

17. Inoue, K., Sakama, C.: Oscillating behavior of logic programs. In: Correct Reasoning,
pp. 345–362. Springer (2012)

18. Kaplan, S., Bren, A., Dekel, E., Alon, U.: The incoherent feed-forward loop can generate
non-monotonic input functions for genes. Molecular systems biology 4(1), 203 (2008)

19. Katzouris, N., Artikis, A., Paliouras, G.: Incremental learning of event definitions with
inductive logic programming. Machine Learning 100(2-3), 555–585 (2015)

20. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic
nets. Journal of theoretical biology 22(3), 437–467 (1969)

21. Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and
its applications. Journal of Logic Programming 12(4), 335–367 (1992)

22. Klarner, H., Bockmayr, A., Siebert, H.: Computing symbolic steady states of boolean
networks. In: Cellular Automata, pp. 561–570. Springer (2014)

23. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the gener-
ation, analysis and visualization of boolean networks. Bioinformatics 33(5), 770–
772 (2016). DOI 10.1093/bioinformatics/btw682. URL https://doi.org/10.1093/

bioinformatics/btw682

24. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory networks
under the boolean network model. Machine Learning 52(1-2), 147–167 (2003)

25. Law, M., Russo, A., Broda, K.: Iterative learning of answer set programs from context
dependent examples. Theory and Practice of Logic Programming 16(5-6), 834–848
(2016). DOI 10.1017/S1471068416000351

26. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for
inference of genetic network architectures. In: Proceedings of the 3rd Pacific Symposium
on Biocomputing, pp. 18–29 (1998)

27. Martınez, D., Alenya, G., Torras, C., Ribeiro, T., Inoue, K.: Learning relational dy-
namics of stochastic domains for planning. In: Proceedings of the 26th International
Conference on Automated Planning and Scheduling (2016)

28. Mart́ınez Mart́ınez, D., Ribeiro, T., Inoue, K., Alenyà Ribas, G., Torras, C.: Learn-
ing probabilistic action models from interpretation transitions. In: Proceedings of the
Technical Communications of the 31st International Conference on Logic Programming
(ICLP 2015), pp. 1–14 (2015)

29. Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P.T., Chaouiya, C., Thieffry, D.:
Logical modeling and analysis of cellular regulatory networks with ginsim 3.0. Frontiers
in physiology 9, 646 (2018)

30. Noual, M., Sené, S.: Synchronism versus asynchronism in monotonic boolean automata
networks. Natural Computing 17(2), 393–402 (2018)

31. Pal, R., Ivanov, I., Datta, A., Bittner, M.L., Dougherty, E.R.: Generating boolean net-
works with a prescribed attractor structure. Bioinformatics 21(21), 4021–4025 (2005)

32. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.P.: Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research 29, 309–352 (2007)

33. Paulevé, L., Kolčák, J., Chatain, T., Haar, S.: Reconciling qualitative, abstract, and
scalable modeling of biological networks. bioRxiv (2020)

34. Ray, O.: Nonmonotonic abductive inductive learning. Journal of Applied Logic 7(3),
329–340 (2009)

http://www.sciencedirect.com/science/article/pii/074310669190014G
http://www.sciencedirect.com/science/article/pii/074310669190014G
https://doi.org/10.1093/bioinformatics/btw682
https://doi.org/10.1093/bioinformatics/btw682

30 Tony Ribeiro et al.

35. Ribeiro, T., Folschette, M., Magnin, M., Roux, O., Inoue, K.: Learning dynamics with
synchronous, asynchronous and general semantics. In: International Conference on In-
ductive Logic Programming, pp. 118–140. Springer (2018)

36. Ribeiro, T., Folschette, M., Trilling, L., Glade, N., Inoue, K., Magnin, M., Roux, O.:
Les enjeux de l’inférence de modèles dynamiques des systèmes biologiques à partir de
séries temporelles. In: C. Lhoussaine, E. Remy (eds.) Approches symboliques de la
modélisation et de l’analyse des systèmes biologiques. ISTE Editions (2020). In edition.

37. Ribeiro, T., Inoue, K.: Learning prime implicant conditions from interpretation transi-
tion. In: Inductive Logic Programming, pp. 108–125. Springer (2015)

38. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of biological
systems. Frontiers in Bioengineering and Biotechnology 2, 81 (2015)

39. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning multi-valued biological models
with delayed influence from time-series observations. In: 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), pp. 25–31 (2015). DOI
10.1109/ICMLA.2015.19

40. Ribeiro, T., Tourret, S., Folschette, M., Magnin, M., Borzacchiello, D., Chinesta, F.,
Roux, O., Inoue, K.: Inductive learning from state transitions over continuous domains.
In: N. Lachiche, C. Vrain (eds.) Inductive Logic Programming, pp. 124–139. Springer
International Publishing, Cham (2018)

41. Schüller, P., Benz, M.: Best-effort inductive logic programming via fine-grained cost-
based hypothesis generation. Machine Learning 107(7), 1141–1169 (2018)

42. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description.
Journal of Theoretical Biology 153(1), 1–23 (1991)

43. Van Emden, M.H.: Quantitative deduction and its fixpoint theory. The Journal of Logic
Programming 3(1), 37–53 (1986)

44. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. Journal of the ACM (JACM) 23(4), 733–742 (1976)

Learning any semantics for dynamical systems represented by logic programs 31

A Appendix: proofs of Section 2.2

Theorem 11 (Theorem 1: double domination is equality) Let R1, R2 be two MVL
rules. If R1 ≤ R2 and R2 ≤ R1 then R1 = R2.

Proof. Let R1, R2 be twoMVL rules such that R1 ≤ R2 and R2 ≤ R1. Then h(R1) = h(R2)
and b(R1) ⊆ b(R2) and b(R2) ⊆ b(R1), hence b(R1) ⊆ b(R2) ⊆ b(R1) thus b(R1) = b(R2)
and R1 = R2. ut

Proposition 5 (Proposition 1: uniqueness of optimal program) Let T ⊆ SF ×ST .
The MVLP optimal for T is unique and denoted PO(T).

Proof. Let T ⊆ SF × ST . Assume the existence of two distinct MVLPs optimal for T ,
denoted by PO1

(T) and PO2
(T) respectively. Then w.l.o.g. we consider that there exists

a MVL rule R such that R ∈ PO1
(T) and R 6∈ PO2

(T). By the definition of a suitable
program, R is not conflicting with T and there exists a MVL rule R2 ∈ PO2

(T), such that
R ≤ R2. Using the same definition, there exists R1 ∈ PO1

(T) such that R2 ≤ R1 since R2 is
not conflicting with T . Thus R ≤ R1 and by the definition of an optimal program R1 ≤ R.
By Theorem 1, R1 = R and thus R ≤ R2 ≤ R hence R2 = R, a contradiction. ut

B Appendix: proofs of Section 3

Theorem 12 (Theorem 2: Pseudo-idempotent Semantics and Optimal DMVLP)
Let DS be a dynamical semantics. For all P a DMVLP, if:

• ∃pick ∈ (SF × ℘(AT)→ ℘(ST) \ {∅}) so that
(1) ∀D ⊆ AT , pick(s,

⋃
s′∈pick(s,D)

s′) = pick(s,D) ∧

(2) ∀s ∈ SF ,
(
DS(P)

)
(s) = pick(s,Ccl(s, P)),

then: for all P a DMVLP, DS(PO(DS(P)))) = DS(P).

Proof.
Let DS be a dynamical semantics, P a DMVLP, pick a function from SF × ℘(AT) to

℘(ST) \ {∅} with the properties described in (1) and (2).
In this proof, we use the following equivalent notations, for all (s, s′) ∈ SF × ST :

(s, s′) ∈ DS(P) ⇐⇒ s′ ∈
(
DS(P)

)
(s).

By Definition 10, first(DS(P)) = SF (∗).
By Definition 9, PO(DS(P)) realizes DS(P). Therefore, according to Definition 5, for

all (s, s′) in DS(P) and vval in s′, because v ∈ T , there exists R in PO(DS(P)) so that
var(h(R)) = v ∧ R u s ∧ h(R) ∈ s′. Because of Definition 3, a discrete state cannot contain
two different atoms on the same variable: from var(h(R)) = v ∧ vval ∈ s′ ∧ h(R) ∈ s′,
it comes: h(R) = vval. Moreover, by definition of Ccl, because R ∈ P ∧ R u s, we have:
vval ∈ Ccl(s, PO(DS(P))). By generalizing on all vval, it comes: s′ ⊆ Ccl(s, PO(DS(P))).
By generalizing on all s′, it comes: ∀s ∈ SF ,

⋃
s′∈(DS(P))(s)

s′ ⊆ Ccl(s, PO(DS(P))) (†).

By Definition 9, PO(DS(P)) is also consistent with DS(P). Therefore, according to
Definition 7: ∀R ∈ PO(DS(P)), ∀s ∈ first(DS(P)), Ru s =⇒ ∃s′ ∈

(
DS(P)

)
(s), h(R) ∈ s′.

From (∗), first(DS(P)) = SF , thus ∀s ∈ SF , ∀vval ∈ Ccl(s, PO(DS(P))), ∃s′ ∈ DS(P)(s), vval ∈
s′. Thus: ∀s ∈ SF ,Ccl(s, PO(DS(P))) ⊆

⋃
s′∈(DS(P))(s)

s′ (§).

From (†) and (§): ∀s ∈ SF ,Ccl(s, PO(DS(P))) =
⋃

s′∈(DS(P))(s)

s′ (?).

From (?) and (2): ∀s ∈ SF ,Ccl(s, PO(DS(P))) =
⋃

s′∈pick(s,Ccl(s,P))

s′ (♦).

Let s in SF .

– From (2):
(
DS(PO(DS(P)))

)
(s) = pick(s,Ccl(s, PO(DS(P)))).

32 Tony Ribeiro et al.

– From (♦):
(
DS(PO(DS(P)))

)
(s) = pick(s,

⋃
s′∈pick(s,Ccl(s,P))

s′

– From (1):
(
DS(PO(DS(P)))

)
(s) = pick(s,Ccl(s, P))

– From (2):
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s).

Thus: ∀s ∈ SF ,
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s), QED. ut

Theorem 13 (Theorem 3 Semantics-free correctness) Let P be a DMVLP.

– Tsyn(P) = Tsyn(PO(Tsyn(P))),
– Tasyn(P) = Tasyn(PO(Tasyn(P))),
– Tgen(P) = Tgen(PO(Tgen(P))).

Proof. Let d ∈ (SF × ℘(T) → ℘(AT)), so that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W)) ∧
d(s, ∅) ⊆ d(s,W).

Let p be a function from SF×℘(AT) to ℘(ST)\{∅} so that ∀s ∈ SF ,∀D ⊆ AT , p(s,D) =
{s′ ∈ ST | s′ ⊆ D ∪ d(s, T \ var(D))}. Since T \ var(D) ⊆ var(d(s,W)), ∅ 6∈ p(s,D). Thus
from Definition 14, ∀s ∈ SF , Tsyn(P)(s) = p(s,Ccl(s, P)) (property 1).

Since ∀W ⊆ T , d(s, ∅) ⊆ d(s,W), ∀D ⊆ AT , d(s, ∅) ⊆ D ∪ d(s, T \ var(D)), thus
d(s, ∅) ⊆

⋃
s′∈p(s,D)

s′ (property 2).

Moreover, ∀D ⊆ AT , let D′ :=
⋃

s′∈p(s,D)

s′. Straightforwardly: D′ = D ∪ d(s, T \ var(D))

because we can always create a state with any atom in D ∪ d(s, T \ var(D)), thus all atoms
of this set are in D′, and conversely (property 3). p(s,D′) = {s′ ∈ ST | s′ ⊆ D′ ∪ d(s, T \
var(D′))} by definition of p. p(s,D′) = {s′ ∈ ST | s′ ⊆ D′ ∪ d(s, ∅)} since var(D′) = T
by definition of D′ and p. p(s,D′) = {s′ ∈ ST | s′ ⊆ D′} from property 2. p(s,D′) =
{s′ ∈ ST | s′ ∈ D ∪ d(s, T \ var(D))} = p(s,D) from property 3. Therefore p respects (1).
Since Tsyn(P) = p(s,Ccl(s, P)), p also respects (2). Thus, Tsyn(P) = Tsyn(PO(Tsyn(P)))
according to Theorem 2.

By definition of Tgen: ∀s ∈ SF , (Tgen(P))(s) = {s′ ∈ ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \
var(Ccl(s, P)))} with spF→T (s) ⊆ d(s, ∅). Thus, the same proof gives Tgen(P) = Tgen(PO(Tgen(P)))
according to Theorem 2.

[Let us show that: Tasyn(P) = Tasyn(PO(Tasyn(P))).] Let p be a function from SF ×
℘(AT) to ℘(ST) \ {∅} so that ∀s ∈ SF , ∀D ⊆ AT :

p(s,D) = {s′ ∈ ST | s′ ⊆ D ∪ d(s, T \ var(D)) ∧(
|s′ \ spF→T (s)| − |T \ T | = 1 ∨ (D ∪ d(s, T \ var(D)))T = spF→T (s))}

where AT and DT are restriction notations from Definition 12. From Definition 15, we have:
TasynP = p(s,Ccl(s, P)).

[Let us show that: ∀D ⊆ AT , p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).] Let D in AT .

– If (D ∪ d(s, T \ var(D)))T = spF→T (s), then
⋃

s′∈p(s,D)

s′ = D and thus p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).

– If there exists vval ∈ AT so that var(D ∪ d(s, T \ var(D)) \ spF→T (s))∩T = {v}, then
for all state s′ ∈ p(s,D), s′ differs from s on the regular variable v and on variables

in T \ T . Thus,
⋃

s′∈p(s,D)

s′ = (D ∪ d(s, T \ var(D))) \ {vval′ | vval′ ∈ s}. By construction

of p, it comes: p(s,
⋃

s′∈p(s,D)

s′) = p(s,D) because vval′ ∈ s′ would contradict the condition

|s′ \ spF→T (s)| − |T \ T | = 1.

– Otherwise, |var(D ∪ d(s, T \ var(D)) \ spF→T (s)) ∩ T | > 1 then there exists two states
s′1, s

′
2 ∈ p(s,D), so that they differ from s on a different regular variable each. Especially,

by construction of p, spF→T (s) ⊆ s′1 ∪ s′2 ⊆ D ∪ d(s, T \ var(D)). Therefore,
⋃

s′∈p(s,D)

s′ ⊆

D∪d(s, T \var(D)). Finally, and by definition of p, D∪d(s, T \var(D)) ⊆
⋃

s′∈p(s,D)

s′ because

Learning any semantics for dynamical systems represented by logic programs 33

for each atom in D ∪ d(s, T \ var(D)), it is possible to build a state s′ containing it:
either as the projection of the initial state s or as the only variable changing its value
in s′ compared to spF→T (s). In conclusion: D ∪ d(s, T \ var(D)) =

⋃
s′∈p(s,D)

s′, which gives:

p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).

Thus, Tasyn(P) = Tasyn(PO(Tasyn(P))), according to Theorem 2. ut

C Appendix: proofs of Section 4

Theorem 14 (Theorem 4: properties of the least revision) Let R be a MVL rule
and s ∈ SF such that R u s. Let SR := {s′ ∈ SF | R u s′} and Sspe := {s′ ∈ SF | ∃R′ ∈
Lspe(R, s,A,F), R′ u s′}.

Let P be a DMVLP and T, T ′ ⊆ SF×ST such that |first(T)| = 1∧first(T)∩first(T ′) =
∅. The following results hold:

1. Sspe = SR \ {s},
2. Lrev(P, T,A,F) is consistent with T ,

3.
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ′,

4.
P
↪−→ T =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ,

5. P is complete =⇒ Lrev(P, T,A,F) is complete.

Proof.

1. First, let us suppose that ∃s′′ 6∈ SR \ {s} such that ∃R′ ∈ Lspe(R, s,A,F), R′ u s′′. By
definition of matching R′ u s′′ =⇒ b(R′) ⊆ s′′. By definition of least specialization,

b(R′) = b(R) ∪ {vval}, vval′ ∈ s, vval′′ 6∈ b(R), val 6= val′. Let us suppose that s′′ = s,
then b(R′) 6⊆ s′′ since vval ∈ b(R′) and vval 6∈ s, this is a contradiction. Let us suppose
that s′′ 6= s then ¬(R u s′′), thus b(R) 6⊆ s′′ and b(R′) 6⊆ s′′, this is a contradiction.
Second, let us assume that ∃s′′ ∈ SR \ {s} such that ∀R′ ∈ Lspe(R, s,A,F),¬(R′ u s′′).
By definition of SR, R u s′′. By definition of matching ¬(R′ u s′′) =⇒ b(R′) 6⊆ s′′.

By definition of least specialization, b(R′) = b(R) ∪ {vval}, vval′ ∈ s, val 6= val′. By
definition of matching R u s′′ =⇒ b(R) ⊆ s′′ =⇒ s′′ = b(R) ∪ I, b(R) ∩ I = ∅
and thus b(R′) 6⊆ s′′ =⇒ vval 6∈ I. The assumption implies that ∀vval′ ∈ I, ∀R′ ∈
Lspe(R, s,A,F), vval ∈ b(R′), val 6= val′. By definition of least specialization, it implies

that vval′ ∈ s and thus I = s \ b(R) making s′′ = s, which is a contradiction.
Conclusion: Sspe = SR \ {s}

2. By definition of a consistent program, if two sets ofMVL rules SR1, SR2 are consistent
with T then SR1 ∪ SR2 is consistent with T . Let RP = {R ∈ P | R u s,∀(s, s′) ∈
T, h(R) 6∈ s′} be the set of rules of P that conflict with T . By definition of least revision
Lrev(P, T,A,F) = (P \RP)∪

⋃
R∈RP

Lspe(R, s,A,F). The first part of the expression P \RP

is consistent with T since @R′ ∈ P \RP such that R′ conflicts with T . The second part of
the expression

⋃
R∈RP

Lspe(R, s,A,F) is also consistent with T : @R′ ∈ Lspe(R, s,A,F), R′us

thus @R′ ∈ Lspe(R, s,A,F) that conflict with T and
⋃

R∈RP

Lspe(R, s,A,F) is consistent with

T . Conclusion: Lrev(P, T,A,F) is consistent with T .
3. Let (s1, s2) ∈ T ′ thus s1 6= s. From definition of realization, vval ∈ s2 =⇒ ∃R ∈

P, h(R) = vval, Ru s1. If ¬Ru s then R ∈ Lrev(P, T,A,F) and
Lrev(P,T,A,F)
↪−−−−−−−−−−→ (s1, s2).

If R u s, from the first point ∃R′ ∈ Lspe(R, s,A,F), R′ u s1 and since h(R′) = h(R) =

vval,
Lrev(P,T,A,F)
↪−−−−−−−−−−→ (s1, s2). Applying this reasoning on all elements of T ′ implies that

P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ′.

34 Tony Ribeiro et al.

4. Let (s1, s2) ∈ T , since
P
↪−→ T by definition of realization ∀vval ∈ s2, ∃R ∈ P,R u

s1, h(R) = vval. By definition of conflict, R is not in conflict with T thus R ∈ Lrev(P, T,A,F)

and
Lrev(P,T,A,F)
↪−−−−−−−−−−→ T .

5. Let (s1, s2) ∈ SF × ST , if P is complete, then by definition of a complete program
∀v ∈ V, ∃R ∈ P,R u s1, var(h(R)) = v. If ¬(R u s) then R ∈ Lrev(P, T,A,F). If R u s,
from the first point ∃R′ ∈ Lspe(R, s,A,F), R′ u s1 and thus R′ ∈ Lrev(P, T,A,F) and
since var(h(R′)) = var(h(R)) = v, Lrev(P, T,A,F) is complete.

ut

Proposition 6 (Proposition 2: optimal program of empty set) PO(∅) = {vval ←
∅ | vval ∈ AT }.

Proof. Let P = {vval ← ∅ | vval ∈ AT }. The MVLP P is consistent and complete by

construction. Like allMVLPs,
P
↪−→ ∅ and there is no transition in ∅ to match with the rules

in P . In addition, by construction, the rules of P dominate all MVL rules. ut

Theorem 15 (Theorem 5: least revision is suitable) Let s ∈ SF and T, T ′ ⊆ SF×ST
such that |first(T ′)| = 1 ∧ first(T) ∩ first(T ′) = ∅. Lrev(PO(T), T ′,A,F) is a DMVLP
suitable for T ∪ T ′.

Proof. Let P = Lrev(PO(T), T ′). Since PO(T) is consistent with T , by Theorem 4, P is also
consistent with T and thus consistent with T ′ ∪ T . Since PO(T) realizes T by Theorem 4,
P
↪−→ T . Since s 6∈ first(T), a MVL rule R such that b(R) = s does not conflict with T . By

definition of suitable program ∃R′ ∈ PO(T), R ≤ R′, thus
PO(T)
↪−−−−→ T ′. Since

PO(T)
↪−−−−→ T ′

by Theorem 4
P
↪−→ T ′ and thus

P
↪−→ T ∪ T ′. Since PO(T) is complete, by Theorem 4, P is

also complete. To prove that P verifies the last point of the definition of a suitableMVLP,
let R be a MVL rule not conflicting with T ∪ T ′. Since R is also not conflicting with T ,
there exists R′ ∈ PO(T) such that R ≤ R′. If R′ is not conflicting with T ′, then R′ will
not be revised and R′ ∈ P , thus R is dominated by a rule of P . Otherwise, R′ is in conflict
with T ′, thus R′ u s and ∀(s, s′) ∈ T ′, h(R′) 6∈ s′. Since R is not in conflict with T ′ and
h(R) = h(R′), since R ≤ R′ then b(R) = b(R′)∪ I, ∃vval ∈ I, vval 6∈ s. By definition of least
revision and least specialization, there is a rule R′′ ∈ Lspe(R′, s) such that vval ∈ b(R′′)
and since R′′ = h(R′)← b(R′)∪vval thus R ≤ R′′. Thus R is dominated by a rule of P . ut

Theorem 16 (Theorem 6: GULA Termination, soundness, completeness, opti-
mality) Let T ⊆ SF × ST .

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T,F , T) = PO(T),
(3) ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′}.

Proof. (1) The algorithm of GULA iterates on finite sets, and thus terminates.
(3) Let T ⊆ SF × ST . The algorithm iterates over each atom vval ∈ A′, A′ ⊆ AT

iteratively to extract all states s such that (s, s′) ∈ T =⇒ vval 6∈ s′. This is equivalent to
group the transitions by initial state: generate the set TT = {T ′s ⊆ T | s ∈ SF , first(T ′s) =
{s} ∧ ∀s′ ∈ ST , (s, s′) ∈ T =⇒ (s, s′) ∈ T ′s}.

To prove that ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′} and
thus GULA(A, T,F , T) = PO(T), it suffices to prove that the main loop (Algorithm 3,
lines 19–46) preserves the invariant P val

v = {R ∈ PO(Ti) | h(R) = vval ∈ A′} after the ith

iteration where Ti is the union of all set of transitions of TT already selected line 19 after
the ith iteration for all i from 0 to |TT |.

Line 18 initializes Pvval to {vval ← ∅}. Thus by Proposition 2, after line 18, Pvval =
{R ∈ PO(∅) | h(R) = vval}.

Let us assume that before the (i+1)th iteration of the main loop, Pvval = {R ∈ PO(Ti) |
h(R) = vval}. Through the loop of lines 21–24, P ′ = {R ∈ PO(Ti) | R does not conflict with Ti+1∧
h(R) = vval} is computed. Then the set P ′′ =

⋃
R∈PO(Ti)\P ′∧h(R)=vval Lspe(R, s,A,F)

Learning any semantics for dynamical systems represented by logic programs 35

is iteratively build through the calls to least specialization at line 27 and the domi-
nated rules are pruned as they are detected by the loop of lines 28–45. Each revised
rule can be dominated by a rule in {R ∈ PO(Ti)\P ′} or another revised rule and thus
dominance must be checked from both. But only a revised rule (R ∈ P ′′) can be dom-
inated by a revised rule: if a rule in {R ∈ PO(Ti)\P ′} is dominated by a revised rule,
then it was dominated by its original rule in {R ∈ PO(Ti)} which is impossible since
Pvval = {R ∈ PO(Ti) | h(R) = vval}. Thus it is safe to only check domination of
the revised rules by previous rules (PO(Ti) \ P ′) or by other revised rules (P ′′). Thus
by Theorem 5 and Proposition 3, Pvval = {R ∈ PO(Ti+1) | h(R) = vval} after the
(i + 1)th iteration of the main loop. By induction, at the end of all the loop lines 19–
46, Pvval = {R ∈ PO(

⋃
T ′∈TT T ′) | h(R) = vval} = {R ∈ PO(T) | h(R) = vval} since

it has iterated on all elements of TT . Since the same operation holds for each vval ∈ A′,
P =

⋃
vval∈A′ Pvval = {R ∈ PO(T) | h(R) = vval∧vval ∈ A′} after all iterations of the loop

of line line 6. Finally: ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′}.
(2) Thus GULA(A, T,F , T) = GULA(AF ∪ AT , T,F , T) = {R ∈ PO(T) | h(R) ∈

AT } = PO(T). ut

Theorem 17 (Theorem 7: GULA Complexity) Let T ⊆ SF × ST be a set of transi-
tions, Let n := max(|F|, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. The worst-case
time complexity of GULA when learning from T belongs to O(|T |2 + |T | × (2n4d2n+2 +
2n3dn+1)) and its worst-case memory use belongs to O(d2n + 2ndn+1 + ndn+2). Proof.
Let df := max({|dom(v)| ∈ N | v ∈ F}) (resp. dt := max({|dom(v)| ∈ N | v ∈ T })) be the
maximal number of values of features (resp. target) variables. The algorithm takes as input

a set of transition T ⊆ SF × ST bounding the memory use to O(d
|F|
f) × d

|T |
t) = O(d2n).

The learning is performed iteratively for each possible rule head vval ∈ A′ ⊆ AT . The
extraction of negative example requires to compare each transition of T one to one and
thus has a complexity of op1 = O(|T |2). Those transitions are stored in Negvval which size

is at most |SF | extending the memory use to O(d
|F|
f × d

|T |
t + d

|F|
f) which is bounded by

O(d2n + dn).
The learning phase revises a set of rule Pvval where each rule has the same head vval.

There are at most d
|F|
f ≤ dn possible rule bodies and thus |Pvval | ≤ d

|F|
t ≤ dn, the memory

use of |Pvval | is then O(d
|F|
t) extending the memory bound to O(d

|F|
f ×d

|T |
t +d

|F|
f)+d

|F|
f) =

O(d
|F|
f × d

|T |
t + 2d

|F|
f)), which is bound by O(d2n + 2dn).

For each state s of Negvval , each rule of Pvval that matches s are extracted into a set

of rules Rm. This operation has a complexity of op2 = O(d
|F|
f × |F|) bound by O(ndn).

Each rule of Rm are then revised using least specialization, this operation has a complexity

of O(|F|2) bound by O(n2). |Rm| ≤ d
|F|
f ≤ dn thus the revision of all matching rules is

op3 = O(d
|F|
f ×n2) bounded by O(dn ×n2). All revisions are stored in LS and there are at

most df ×|F| ≤ dn revisions for each rule, thus |LS| ≤ d
|F|
f ×df |F| ≤ dn×dn extending the

memory bound to O(d
|F|
f ×d

|T |
t +2d

|F|
f)+df |F|×d

|F|
f) bounded by O(d2n +2dn +ndn+1).

Learning is performed for each vval ∈ A′ ⊆ T , thus the memory usage of GULA is

therefore O(d
|F|
f ×d

|T |
t +|A′|(2d|F|f +df |F|×d

|F|
f)), bounded by O(d

|F|
f ×d

|T |
t +tdt(2d

|F|
f)+

df |F|× d
|F|
f)) wich is bounded by O(d2n + dn(2dn +ndn+1)) = O(d2n + 2ndn+1 +ndn+2).

The worst-case memory use of GULA is thus O(d2n + 2ndn+1 + ndn+2).
All rules of LS are compared to the rule of Pvval for domination check, this operation

has a complexity of op4 = O(2× |LS| × |Pvval | × |F|2) = O(2× d
|F|
f × df |F| × dn × n2) =

O(2× |F|3 × d
2|F|+1
f) which is bounded by O(2× n3 × d2n+1).

Learning is performed for each vval ∈ A′ ⊆ T , |A′| ≤ |T |dt, thus the complexity is

bound by O(op1 + |T |× |T |×dt(op2 +op3 +op4)) = O(|T |2 + |T | times|T |×dt(d
|F|
f ×|F|+

d
|F|
f ×n

2+2×|F|3×d2|F|+1
f)) which is bounded by O(|T |2+|T |×nd(dn×n2+dn×n2+2×n3×

d2n+1)) = O(|T |2 + |T |×nd(2n3d2n+1 + 2n2dn)) = O(|T |2 + |T |× (2n4d2n+2 + 2n3dn+1)).

36 Tony Ribeiro et al.

The computational complexity of GULA is thus O(|T |2 + |T |×(2n4d2n+2 +2n3dn+1)).

ut

D Appendix: proofs of Section 5

Theorem 18 (Theorem 8: Optimal DMVLP and constraints correctness under
synchronous constrainted semantics) Let T ⊆ SF×ST , it holds that T = Tsyn−c(PO(T)∪
C′O(T)).

Proof. From Definition 9, ∀(s, s′) ∈ T, s′ ⊆ Ccl(s, PO(T)) thus according to Definition 21,
s′ ∈ Tsyn−c(PO(T))(s), thus T ⊆ Tsyn−c(PO(T)) (property 1).

By Definition 24, ∀(s, s′) ∈ T, @C ∈ CO(T), Cu(s, s′), thus since C′O(T) ⊆ CO(T), @C ∈
C′O(T), C u (s, s′) and then T ⊆ Tsyn−c(PO(T) ∪ C′O(T)) (property 2).

Let us suppose ∃(s, s′) ∈ Tsyn−c(PO(T) ∪ C′O(T)), (s, s′) /∈ T . From Definition 21,

∀vval ∈ s′,∃R ∈ PO(T), b(R)us, h(R) = vval. From Definition 24, ∃C′ ∈ CO(T), C′u(s, s′)
since (s, s′) /∈ T . But since ∃(s, s′) ∈ Tsyn−c(PO(T) ∪ C′O(T)), thus C′ /∈ C′O(T). From

Definition 25, it implies that ∃vval ∈ s′, @R ∈ PO(T), h(R) = vval, ∀w ∈ F ,∀val′, val′′ ∈
dom(w),wval′ ∈ b(R) ∧ wval′′ ∈ b(C) =⇒ val′ = val′′. Since b(C′) ⊆ (s ∪ s′), @R ∈
PO(T), h(R) = vval, b(R) ⊆ s, thus s′ 6⊆ Ccl(s, PO(T)) and by Definition 21, (s, s′) 6∈
Tsyn−c(PO(T) ∪ C′O(T)), contradiction, thus Tsyn−c(PO(T) ∪ C′O(T)) ⊆ T (property 3).

From property 2 and 3: Tsyn−c(PO(T) ∪ C′O(T)) = T . ut

Theorem 19 (Theorem 9: Synchronizer correctness) Given any set of transitions T ,
Synchronizer(A, T , F , T) outputs PO(T) ∪ C′O(T).

Proof. Let G1 = GULA(A, T,F , T) and G2 = GULA(AF∪T ∪{ε1}, T ′,F ∪ T , {ε}). From

Theorem 6, P = G1 = PO(T) (property 1).

Let P ′ = G2. By definition of T ′: ∀(s, s′) ∈ T ′, s′ = {ε0}. Thus ∀R ∈ P ′, R is consistent
with T ′ by Theorem 6, thus @(s, s′) ∈ T ′, R u s, since h(R) = ε1 because ∀(s, s′) ∈ T ′, s′ =
{ε0} (property 2).

From Theorem 6, P ′ = {R ∈ PO(T ′) | h(R) = ε1}. From Definition 9, PO(T ′) is
complete thus ∀(s, s′) ∈ SF × ST , ss′ := s ∪ s′, ss′ /∈ first(T ′), ∃R ∈ P ′, R u ss′ (property
3).

From definition of T ′, (s, s′) ∈ T =⇒ (s∪s′, {ε0}) ∈ T ′, thus ∀C ∈ P ′, C is a constraint
(property 4).

– From property 2 and 4: (s, s′) ∈ T =⇒ (s∪ s′, {ε0}) ∈ T ′ =⇒ @C ∈ P ′, C u (s, s′), P ′

consistent with T .

– From property 3 and 4: (s, s′) 6∈ T =⇒ (s ∪ s′) 6∈ first(T ′) =⇒ ∃R ∈ P ′, R u (s, s′),
P ′ is complete with T .

– If there exists a constraint consistent with T that is not dominated by a constraint in
P ′ it implies that a rule consistent with T ′ whose head is ε1 is not dominated by a
rule in G2 wich is in contradiction with Theorem 6. All constraint consistent with T are
dominated by a constraint in P ′.

– From Theorem 6, the rules of G2 do not dominate eachover, thus the same hold for the
constraint of P ′.

– From Definition 24, P ′ = CO(T) (property 5).

Let P ′′ := {C ∈ P ′ | ∀vval ∈ b(C), v ∈ T ,∃R ∈ P, h(R) = vval ∧
(
∀w ∈ F , ∀val′, val′′ ∈

dom(w),wval′ ∈ b(R) ∧ wval′′ ∈ b(C) =⇒ val′ = val′′
)
}). Since P = PO(T) and P ′ =

CO(T), thus P ′′ = C′O(T), from Definition 25 (property 6).

Therefore, from property 1 and 6, Synchronizer(A, T,F , T) = PO(T) ∪ C′O(T).

ut

Learning any semantics for dynamical systems represented by logic programs 37

E Appendix: detailed pseudo-code of Section 4

Algorithms 3 and 4 provide the detailed pseudocode of GULA. Algorithm 3 learns from a
set of transitions T the conditions under which each value val of each variable v may appear
in the next state. Here, learning is performed iteratively for each value of variable to keep
the pseudo-code simple. But the process can easily be parallelized by running each loop
in an independent thread, bounding the run time to the variable for which the learning is
the longest. In the case where we are not interested about the dynamics of some variables,
the parameter A′ and T ′ can be reduced accordingly. The algorithm starts by the pre-
processing of the input transitions. Lines 7–16 of Algorithm 3 correspond to the extraction
of Negvval , the set of all negative examples of the appearance of vval in next state: all states
such that v never takes the value val in the next state of a transition of T . For efficiency
purpose, it is important that the negatives examples are ordered in a way that reduce the
difference between nearby elements, for example lexicographically. Indeed, it increase the
proportion of revised rules (produced to satisfy a previous example) still consistent with the
following examples, reducing the average number of rules stored and thus checked in the
following processes. Those negative examples are then used during the following learning
phase (lines 17–46) to iteratively learn the set of rules PO(T). The learning phase starts
by initializing a set of rules Pvval to {R ∈ PO(∅) | h(R) = vval} = {vval ← ∅} (see
Proposition 2).

Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm

of Pvval that match neg have to be revised. In order for Pvval to remain optimal, the revision
of each Rm must not match neg but still matches every other state that Rm matches. To
ensure that, the least specialization (see Definition 17) is used to revise each conflicting rule
Rm. Algorithm 4 shows the pseudo code of this operation. For each variable of F ′ so that
b(Rm) has no condition over it, a condition over another value than the one observed in
state neg can be added (lines 3–8). None of those revision match neg and all states matched
by Rm are still matched by at least one of its revisions.

Each revised rule can be dominated by a rule in Pvval or another revised rules and thus
dominance must be checked from both. But only revised rule can be dominated by a revised
rule: if a rule in Pvval is dominated by a revised rule, then it was dominated by its original
rule and thus could not be part of Pvval since it would have been discard in a previous step.
Thus we can safely only check the revised rules to discard the ones dominated by the new
current revised rule. The non-dominated revised rules are then added to Pvval .

Once Pvval has been revised against all negatives example of Negvval , Pvval = {R ∈
PO(T) | h(R) = vval}, that is, Pvval is the subset of rules of the final optimal program
having vval as head. Finally, Pvval is added to P and the loop restarts with another atom.
Once all values of each variable have been treated, the algorithm outputs P which is then
equal to PO(T).

38 Tony Ribeiro et al.

Algorithm 3 GULA(A′,T ,F ′,T ′)

1: INPUT: A set of atoms A′, a set of transitions T ⊆ SF
′
× ST

′
, two sets of variables F′ and T ′

2: OUTPUT: PO(T)

3: T := {(s1, {s2 | (s1, s2) ∈ T}) | s1 ∈ first(T)} // Group transitions by initial state
4: T := sort(T) // Sort the transitions in Lexicographical order over initial state
5: P := ∅
6: for each vval ∈ A′ such that v ∈ T ′ do
7: // 1) Extraction of negative examples, (states where no successor contains vval)
8: Neg

vval := ∅
9: for each (s1, S) ∈ T do
10: negative example := true
11: for each s2 ∈ S do

12: if vval ∈ s2 then
13: negative example := false
14: break
15: if negative example == true then
16: Neg

vval := Neg
vval ∪ {s1}

17: // 2) Revision of the rules of vval to avoid matching of negative examples

18: P
vval := {vval ← ∅}

19: for each neg ∈ Neg
vval do

20: M := ∅ // Set of rules of P
vval that are in conflict

21: for each R ∈ P
vval do // Extract all rules that conflict and remove them from P

22: if b(R) ⊆ neg then
23: M := M ∪ {R}
24: Pval

v := Pval
v \ {R}

25: LS := ∅
26: for each Rm ∈ M do // Revise each conflicting rule
27: P ′ := least specialization(Rm, neg,A′,F′)

28: for each Rls ∈ P ′ do
29: dominated := false
30: for each Rp ∈ P

vval do // Check if the revision is dominated by P
vval

31: if b(Rp) ⊆ b(Rls) then

32: dominated := true
33: break
34: if dominated == true then
35: continue

36: for each Rp ∈ LS do // Check if the revision is dominated LS

37: if b(Rp) ⊆ b(Rls) then

38: dominated := true
39: break
40: if dominated == true then
41: continue

42: for each Rp ∈ LS do// Remove previous specialization that are now dominated

43: if b(Rls) ⊆ b(Rp) then

44: LS := LS \ {Rp}

45: LS := LS ∪ {Rls} // Add the revision

46: P
vval := P

vval ∪ LS // Add non-dominated revisions

47: P := P ∪ P
vval

48: return P

Learning any semantics for dynamical systems represented by logic programs 39

Algorithm 4 least specialization(R, s, A′, F ′) : specialize R to avoid matching of s

1: INPUT: a rule R, a state s, a set of atoms A′ and a set of variables F′
2: OUTPUT: a set of rules LS which is the least specialization of R by s according to F′ and A′.

3: LS := ∅
// Revise the rules by least specialization

4: for each vval ∈ s do
5: if v /∈ var(b(R)) then // Add condition for all values not appearing in s

6: for each vval′ ∈ A′, v ∈ F′, val′ 6= val do

7: R′ := h(R)← (b(R) ∪ {vval′})
8: LS := LS ∪ {R′}
9: return LS

40 Tony Ribeiro et al.

F Synchronizer Scalability

Benchmark size synchronous asynchronous general
n6s1c2 6 0.2s/0.3s/0.2s/0.1s/64 2.5s/4.4s/3.6s/1s/230 9s/6s/2.9s/0.5s/1, 039
n7s3 7 1.6s/3.1s/2.5s/0.3s/128 32s/35s/26s/5s/451 139s/68s/21s/6s/2, 243
randomnet n7k3 7 5.9s/16s/19s/6.6s/128 25s/47s/32s/5.4s/394 133s/93s/45s/9.9s/1, 580
xiao wnt5a 7 0.96s/1.4s/1s/0.2s/128 11s/21s/12s/3s/324 25s/14s/7s/1.1s/972
arellano rootstem 9 86s/83s/40s/2.6s/512 -/-/-/145s/1, 940 -/-/-/41s/11, 472
davidich yeast 10 -/796s/363s/28s/1, 024 -/-/-/622s/4, 364 -/-/-/-/38, 720
faure cellcycle 10 -/-/558s/31s/1, 024 -/-/-/865s/4, 273 -/-/-/-/30, 971
fission yeast 10 -/-/478s/36s/1, 024 -/-/-/662s/4, 157 -/-/-/-/33, 727
mammalian 10 -/-/598s/33s/1, 024 -/-/-/841s/4, 273 -/-/-/-/30, 971

Table 2: Run time of Synchronizer for Boolean network benchmarks from 9 to
23 nodes for the three semantics: run time in seconds for 25%/50%/75%/100%
of the transitions as input / total number of transitions with the semantics.

Table 2 shows the run time of Synchronizer when learning from transitions of Boolean
networks from Boolenet [9] and PyBoolnet [23] with same settings as in the experiements of
Table 1. For the synchronous and general semantics, its only when we are given a subset of all
possible transitions that the algorithm output constraints. Those constraint at least prevent
transitions from unseen states and also some combination of atoms that are missing in next
states but that are observed individually. Even when it outputs an empty set of constraint,
the learning process needs to produce and revises constraint until its no more possible, so
run time of full set of transitions is also considered. In the asynchronous case, given a set of
transitions T , it needs to learn the constraints ensuring at most one change per transitions,

i.e., {← ait, b
j
t , a

i′
t−1, b

j′

t−1 | a, b ∈ AT , i 6= i′ ∧ j 6= j′} and the ones preventing the projection

when only one variable can be updated: {C | {ait, ait−1} ∈ b(C), a ∈ AT , @(s, s′) ∈ T, b(C) ⊆
s∪s′}. Those second kind of constraint will be specific to the few states this limitation occurs
and show the limits of propositional representation for the explanation of the dynamics.

Learning constraints is obviously more costly than learning regular rules since both
features and targets variables can appear in the body, i.e., number of features becomes
|F|+ |T |. The algorithm reached the time out of 1, 000 seconds with benchmarks of 9 nodes.
Scalability of the algorithm can be greatly improved by using the approximated version of
GULA for learning both rules and constraints. If learning rules can be done in polynomial
time, learning constraint remains exponential. Since we do not present this approximated
algorithm in this paper we will not go into the details. In short, this approximated version
needs positives examples and thus require to generate the Cartesian product of all applicable
rules heads for each initial state observed which is exponential. Scalability, readability and
applicability could be improved by considering first order generalization of both rule and
constraints but those generalization are application dependant and thus remains as future
work. Such generalization is required to perform proper prediction from unseen states, thus
application of the synchronizer output for prediction from unseen states are out of the scope
of this paper.

Learning any semantics for dynamical systems represented by logic programs 41

G Information About this Paper

G.1 History of the paper

This paper is a substantial extension of [35] where a first version of GULA was introduced.
In [35], there was no distinction between feature and target variables, i.e., variables at time
step t and t+1. From this consideration, interesting properties arise and allow to character-
ize the kind of semantics compatible with the learning process of the algorithm (Theorem 2).
It also allows to represent constraints and to propose an algorithm (Synchronizer, Section
5) to learn programs whose dynamics can mimic any given set of transitions with optimal
properties on both rules and constraints. It also allows to use GULA to learn human read-
able explanations in form of rules on static classification problems (as long as all variables
are discrete), which will be one of the focus of our future works.

G.2 Main contributions of the paper

The main contributions of this paper are:

– A modeling of discrete memory-less dynamics system as multi-valued propositional logic.
This modeling is independent of the dynamical semantics the system relies on, as long
as it respects some given properties we provided in this paper. The main contributions
of this formalism is the characterization of optimality and the study of which semantics
are compatible with this formalism (which includes notably synchronous, asynchronous
and general semantics).

– A first algorithm named GULA, to learn such optimal programs.
– The formalism is also extended to represent and use constraints. This allows to reproduce

any discrete memory-less dynamical semantics behaviors inside the logic program when
the original semantics is unknown.

– A second algorithm named Synchronizer, that exploits GULA to learn a logic pro-
gram with constraints that can reproduce any given set of state transitions. The method
we proposed is able to learn a whole system dynamics, including its semantics, in the
form of a single propositional logic program. This logic program not only explains the
behavior of the system in the form of human readable propositional logic rules but also
is able to reproduce the behavior of the observed system without the need of knowing
its semantics. Furthermore, the semantics can be explained, without any previous as-
sumption, in the form of human readable rules inside the logic program. In other words,
the approach allows to learn all the previously cited semantics, as well as new ones.

G.3 What evidence is provided

We show through theoretical results the correctness of our approach for both modeling
and algorithms (see above contribution for details). Empirical evaluation is performed on
benchmarks coming from biological literature. It shows the capacity of GULA to produce
correct models when all transitions are available. Also, we observe that learned models
generalize to unseen data when given a partial input in those experiments.

G.4 Related work

The paper refers to relevant related work. As we discussed in the related work section, our
approach is quite related to Bain and Srinivasan [3], Evans et al. [10,11], Katzouris et al.
[19], Fages [12].

The techniques we propose in this paper are a continuation of the works on the LFIT
framework from [16,37,35].

42 Tony Ribeiro et al.

In [15,17], state transitions systems are represented with logic programs, in which the
state of the world is represented by an Herbrand interpretation and the dynamics that rule
the environment changes are represented by a logic program P . The rules in P specify
the next state of the world as an Herbrand interpretation through the immediate conse-
quence operator (also called the TP operator) [44,2] which mostly corresponds to the syn-
chronous semantics we present in Section 3. In this paper, we extend upon this formalism
to model multi-valued variables and any memory-less discrete dynamic semantics including
synchronous, asynchronous and general semantics.

[16] proposed the LFIT framework to learn logic programs from traces of interpretation
transitions. The learning setting of this framework is as follows. We are given a set of pairs
of Herbrand interpretations (I, J) as positive examples such that J = TP (I), and the goal
is to induce a normal logic program (NLP) P that realizes the given transition relations.
As far as we know, this concept of learning from interpretation transition (LFIT) has never
been considered in the ILP literature before [16]. In this paper, we propose two algorithms
that extend upon this previous work: GULA to learn the minimal rules of the dynamics
from any semantics states transitions that respect Theorem 2 and Synchronizer that can
capture the dynamics of any memory-less discrete dynamic semantics.

H Declarations

H.1 Funding

This work was supported by JSPS KAKENHI Grant Number JP17H00763 and by the ”Pays
de la Loire” Region through RFI Atlanstic 2020.

H.2 Conflicts of interest/Competing interests

None

H.3 Availability of data and material

Experiments data and sources code is available at https://github.com/Tony-sama/pylfit

under GPL-3.0 License.

H.4 Code availability

Algorithms and experiments sources code is available at https://github.com/Tony-sama/

pylfit under GPL-3.0 License.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit

	Introduction
	Logical Modeling of Dynamic Systems
	Dynamical semantics
	GULA
	Learning From Any Dynamical Semantics
	Evaluation
	Related Work
	Conclusions
	Appendix: proofs of Section 2.2
	Appendix: proofs of Section 3
	Appendix: proofs of Section 4
	Appendix: proofs of Section 5
	Appendix: detailed pseudo-code of Section 4
	Synchronizer Scalability
	Information About this Paper
	Declarations

