
HAL Id: hal-02925942
https://hal.science/hal-02925942v1

Preprint submitted on 31 Aug 2020 (v1), last revised 13 Oct 2021 (v5)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Learning any semantics for dynamical systems
represented by logic programs

Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue

To cite this version:
Tony Ribeiro, Maxime Folschette, Morgan Magnin, Katsumi Inoue. Learning any semantics for dy-
namical systems represented by logic programs. 2020. �hal-02925942v1�

https://hal.science/hal-02925942v1
https://hal.archives-ouvertes.fr

Noname manuscript No.
(will be inserted by the editor)

Learning any semantics for dynamical systems
represented by logic programs

Tony Ribeiro · Maxime Folschette ·
Morgan Magnin · Katsumi Inoue

Received: date / Accepted: date

Abstract Learning from interpretation transition (LFIT) automatically constructs a
model of the dynamics of a system from the observation of its state transitions. So far
the systems that LFIT handles were mainly restricted to synchronous deterministic
dynamics. However, other dynamics exist in the field of logical modeling, in partic-
ular the asynchronous semantics which is widely used to model biological systems.
In this paper, we focus on methods to model and learn the dynamics of the system
independently of its update semantics. For this purpose, we propose a modeling of
multi-valued systems as logic programs in which a rule represents what can occur
rather than what will occur. This modeling allows us to represent non-determinism
and to propose an extension of LFIT to learn from discrete multi-valued transitions,
regardless of their update schemes. We also propose a second algorithm which is able
to learn a whole system dynamics, including its semantics, in the form of a single
propositional logic program with constraints. We show through theoretical results the
correctness of our approaches. Practical evaluation is performed on benchmarks from
biological literature.

Keywords inductive logic programming · dynamic systems · logical modeling ·
dynamic semantics

1 Introduction

Learning the dynamics of systems with many interactive components becomes more
and more important due to many applications, e.g., multi-agent systems, robotics and
bioinformatics. Knowledge of a system dynamics can be used by agents and robots

Tony Ribeiro
Independant Researcher
Laboratoire des Sciences du Numérique de Nantes, 1 rue de la Noë, 44321 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan
E-mail: tony ribeiro@ls2n.fr,

Maxime Folschette
Univ. Lille, CNRS, Centrale Lille, UMR 9189 - CRIStAL - Centre de Recherche en Informatique
Signal et Automatique de Lille, F-59000 Lille, France

Morgan Magnin
Laboratoire des Sciences du Numérique de Nantes, 1 rue de la Noë, 44321 Nantes, France
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

Katsumi Inoue
National Institute of Informatics, 2-1-2 Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

2 Tony Ribeiro et al.

for planning and scheduling. In bioinformatics, learning the dynamics of biological
systems can correspond to the identification of the influence of genes and can help to
understand their interactions.

In biological systems, the notion of concurrence is central. When modeling a bio-
logical regulatory network, it is necessary to represent the respective evolution of each
component of the system. One of the most debated issues with regard to semantics
targets the choice of a proper update mode of every component, that is, synchronous
(Boolean networks of Stuart Kauffman [19]), or asynchronous (René Thomas’ net-
works [42]), or more complex ones. The differences and common features of different
semantics w.r.t. properties of interest (attractors, oscillators, etc.) have thus resulted
in an area of research per itself, especially in the field of Boolean networks. In [14],
the author exhibited the translation from Boolean networks into logic programs and
discussed the point attractors in both synchronous and asynchronous semantics. In
[32], the authors studied the synchronism-sensitivity of Boolean automata networks
with regard to their dynamical behavior (more specifically their asymptotic dynamics).
They demonstrate how synchronism impacts the asymptotic behavior by either mod-
ifying transient behaviors, making attractors grow or destroying complex attractors.
Meanwhile, the respective merits of existing synchronous, asynchronous and general-
ized semantics for the study of dynamic behaviors has been discussed by Chatain and
Paulevé in a series of recent papers. In [7], they introduced a new semantics for Petri
nets with read arcs, called the interval semantics. Then they adapted this semantics
in the context of Boolean networks [8], and showed in [6] how the interval semantics
can capture additional behaviors with regard to the already existing semantics.

The choice of a relevant semantics appears clearly not only in the recent theoret-
ical works bridging the different frameworks, but also in the features of the software
provided to the persons involved in Systems Biology modeling (e.g., the GinSIM tool
offers two updating modes, that are fully synchronous and fully asynchronous [31]).
Analysis tools offer the modelers the choice of the most appropriate semantics with
regard to their own problem. But the biologists often have no idea whether a model
of their system of interest should intrinsically be synchronous, asynchronous, gener-
alized... It thus appears crucial to find ways to model systems from raw data without
burdening the modelers with an a priori choice of the proper semantics.

State Transitions Model
of the Dynamics

Learning
Algorithm

LFIT

Time Series Data
Abstraction

Prediction

Query
Answering

Decision
Making

Planning

...
Fig. 1: Assuming a discretization of time series data of a system as state transitions, we propose
a method to automatically model the system dynamics.

So far, learning from interpretation transition (LFIT) [16] has been proposed to
automatically construct a model of the dynamics of a system from the observation
of its state transitions. Figure 1 shows this learning process. Given some raw data,
like time-series data of gene expression, a discretization of those data in the form of
state transitions is assumed. From those state transitions, according to the semantics
of the system dynamics, several inference algorithms modeling the system as a logic
program have been proposed. The semantics of a system’s dynamics can indeed dif-
fer with regard to the synchronism of its variables, the determinism of its evolution
and the influence of its history. The LFIT framework proposes several modeling and
learning algorithms to tackle those different semantics. To date, the following systems
have been tackled: memory-less deterministic systems [16], systems with memory [38],
probabilistic systems [30] and their multi-valued extensions [39,29]. [40] proposes a

Learning any semantics for dynamical systems represented by logic programs 3

method that allows to deal with continuous time series data, the abstraction itself
being learned by the algorithm. As a summary, the systems that LFIT handles so far
are restricted to synchronous deterministic dynamics.

In this paper, we extend this framework to learn systems dynamics independently
of its update semantics. For this purpose, we propose a modeling of discrete memory-
less multi-valued systems as logic programs in which each rule represents that a vari-
able possibly takes some value at the next state, extending the formalism introduced
in [16,37]. Research in multi-valued logic programming has proceeded along three
different directions [20]: bilattice-based logics [12,13], quantitative rule sets [43] and
annotated logics [5,4]. Our representation is based on annotated logics. Here, to each
variable corresponds a domain of discrete values. In a rule, a literal is an atom anno-
tated with one of these values. It allows us to represent annotated atoms simply as
classical atoms and thus to remain at a propositional level. This modeling allows us
to characterize optimal programs independently of the update semantics, allowing to
model the dynamics of a wide range of discrete systems. To learn such semantic-free
optimal programs, we propose GULA: the General Usage LFIT Algorithm. We show
from theoretical results that this algorithm can learn under a wide range of update
semantics including synchronous (deterministic or not), asynchronous and generalized
semantics. Empirical evaluation is provided regarding both scalability and prediction
accuracy over the three aforementioned semantics for Boolean network benchmarks
from biological literature [22,9]. We also extend this modeling to propose the Syn-
chronizer algorithm, that is able to learn a whole system dynamics, including its
semantics behavior, in the form of a single propositional logic program with con-
straints. We show through theoretical results that this second algorithm can learn a
program able to reproduce any given set of discrete state transitions and thus the
behavior of any discrete memory-less dynamical semantics.

The organization of the paper is as follows. Section 2 provides a formalization
of discrete memory-less dynamics system as multi-valued logic program. Section 3
formalizes dynamical semantics under logic programs. Section 4 presents the first
algorithm, GULA, which learns optimal programs regardless of the semantics. Section
5 provides extension of the formalization and a second algorithm, the Synchronizer,
to represent and learn the semantics behavior itself. Section 6 provides experimental
evaluations. Section 7 discusses related work and Section 8 concludes the paper. All
proofs of theorems and propositions are given in Appendix.

2 Logical Modeling of Dynamic Systems

In this section, the concepts necessary to understand the learning algorithms we pro-
pose are formalized. In Section 2.1, the basic notions of multi-valued logic (MVL)
are presented. Then, Section 2.2 presents a modeling of dynamics systems using this
formalism. In the following, we denote by N := {0, 1, 2, ...} the set of natural numbers,
and for all k, n ∈ N, Jk;nK := {i ∈ N | k ≤ i ≤ n} is the set of natural numbers
between k and n included. For any set S, the cardinal of S is denoted |S| and the
power set of S is denoted ℘(S).

2.1 Multi-valued Logic Program

Let V = {v1, . . . , vn} be a finite set of n ∈ N variables, Val the set in which variables
take their values and dom : V → ℘(Val) a function associating a domain to each

variable. The atoms of MVL are of the form vval where v ∈ V and val ∈ dom(v).

The set of such atoms is denoted by AVdom = {vval ∈ V × Val | val ∈ dom(v)} for a
given set of variables V and a given domain function dom. In the following, we work
on specific V and dom that we omit to mention when the context makes no ambiguity,
thus simply writing A for AVdom.

Example 1 For a system of 3 variables, the typical set of variables is V = {a, b, c}. In
general, Val = N so that domains are sets of natural integers, for instance: dom(a) =
{0, 1}, dom(b) = {0, 1, 2} and dom(c) = {0, 1, 2, 3}. Thus, the set of all atoms is:
A = {a0, a1, b0, b1, b2, c0, c1, c2, c3}.

4 Tony Ribeiro et al.

A MVL rule R is defined by:

R = vval0
0 ← vval1

1 ∧ · · · ∧ vvalm
m (1)

where ∀i ∈ J0;mK, vvali
i ∈ A are atoms in MVL so that every variable is mentioned

at most once in the right-hand part: ∀j, k ∈ J1;mK, j 6= k ⇒ vj 6= vk. Intuitively,
the rule R has the following meaning: the variable v0 can take the value val0 in the
next dynamical step if for each i ∈ J1;mK, variable vi has value vali in the current
dynamical step.

The atom on the left-hand side of the arrow is called the head of R and is denoted
h(R) := vval0

0 . The notation var(h(R)) := v0 denotes the variable that occurs in h(R).
The conjunction on the right-hand side of the arrow is called the body of R, written
b(R) and can be assimilated to the set {vval1

1 , . . . , vvalm
m }; we thus use set operations

such as ∈ and ∩ on it. The notation var(b(R)) := {v1, · · · , vm} denotes the set of
variables that occurs in b(R). More generally, for all set of atoms X ⊆ A, we denote

var(X) := {v ∈ V | ∃val ∈ dom(v), vval ∈ X} the set of variables appearing in the
atoms of X. A multi-valued logic program (MVLP) is a set of MVL rules.

Definition 1 introduces a domination relation between rules that defines a partial
anti-symmetric ordering, as stated by Theorem 1. Rules with the most general bodies
dominate the other rules. In practice, these are the rules we are interested in since
they cover the most general cases.

Definition 1 (Rule Domination) Let R1, R2 be two MVL rules. The rule R1

dominates R2, written R2 ≤ R1 if h(R1) = h(R2) and b(R1) ⊆ b(R2).

Theorem 1 Let R1, R2 be two MVL rules. If R1 ≤ R2 and R2 ≤ R1 then R1 = R2.

2.2 Dynamic Multi-valued Logic Program

We are interested in modeling non-deterministic (in a broad sense, which includes
deterministic) discrete memory-less dynamical systems. In such a system, the next
state is decided according to dynamics that depend on the current state of the system.
From a modeling perspective, the variables of the system at time step t can be seen
as target variables and the same variables at time step t − 1 as features variables.
Furthermore, additional variables that are external to the system, like stimuli or
checkpoints for example, can appear only as feature or target variables. Such a system
S can be represented by a MVLP with some restrictions. First, the set of variables
is divided into two disjoint subsets: T (for targets) encoding system variables at time
step t plus optional external variables like checkpoints, and F (for features) encoding
system variables at t−1 and optional external variables like stimuli. It is thus possible
that |F| 6= |T |. Second, rules only have a conclusion at t and conditions at t− 1, i.e.,
only an atom of a variable of T can be a head and only atoms of variables in F can
appear in a body. In the following, we also re-use the same notations as for theMVL
of Section 2.1 such as h(R), b(R) and var(h(R)).

Definition 2 (Dynamic MVLP) Let T ⊂ V and F ⊂ V such that F = V \ T . A

DMVLP P is a MVLP such that ∀R ∈ P, var(h(R)) ∈ T and ∀vval ∈ b(R), v ∈ F .

In the following, when there is no ambiguity, we suppose that F , T , V and A are
already defined and we omit to defined them again.

Example 2 Figure 2 gives an example of regulation network with three elements a, b
and c. The information of this network is not complete; notably, the relative “force” of
the components a and b on the component c is not explicit. Multiple dynamics are then
possible on this network, among which four possibilities are given below by Program
1 to 4, defined on T := {at, bt, ct}, F := {at−1, bt−1, ct−1} and ∀v ∈ T ∪F , dom(v) :=
{0, 1}. Program 1 is a direct translation of the relations of the regulation network. It
only contains rule producing atoms with value 1 which is equivalent to a set of Boolean

Learning any semantics for dynamical systems represented by logic programs 5

a

b

c

Fig. 2: Example of interaction graph of a regulation network representing an incoherent feed-
forward loop [18] where a positively influences b and c, while b (and thus, indirectly, a) negatively
influences c.

functions. In Program 2, a always takes value 1 while in Program 3 it always takes
value 0, a having no incoming influence in the regulation network this can represent
some kind of default behavior. In Program 3, the two red rules introduce potential
non-determinism in the dynamics since both conditions can holds at the same time. In
Program 4, the rule apply the conditions of the regulation network but it also allows
each variable to keep the value 1 at t if it has it at t− 1 and no inhibition occurs. We
insist on the fact that the index notation t or t − 1 is part of the variable name, not
its value. This allows to distinguish variables from T (t) or F (t− 1).

Program 1
b1
t ← a1

t−1

c1
t ← a1

t−1 ∧ b0
t−1

Program 2
a1
t ← ∅

b0
t ← a0

t−1

b1
t ← a1

t−1

c0
t ← a0

t−1

c0
t ← b1

t−1

c1
t ← a1

t−1 ∧ b0
t−1

Program 3
a0
t ← ∅

b0
t ← a0

t−1

b1
t ← a1

t−1

c0
t ← a0

t−1

c0
t ← b1

t−1

c1
t ← a1

t−1

Program 4
a1
t ← a1

t−1

b1
t ← b1

t1

b1
t ← a1

t−1

c1
t ← c1

t−1 ∧ b0
t−1

c1
t ← a1

t−1 ∧ b0
t−1

The dynamical system we want to learn the rules of is represented by a succession
of states as formally given by Definition 3. We also define the “compatibility” of a rule
with a state in Definition 20 and with a transition in Definition 5.

Definition 3 (Discrete state) A discrete state s on T (resp. F) of a DMVLP is
a function from T (resp. F) to N, i.e., it associates an integer value to each variable

in T (resp. F). It can be equivalently represented by the set of atoms {vs(v) | v ∈
T (resp. F)} and thus we can use classical set operations on it. We write ST (resp.

SF) to denote the set of all discrete states of T (resp. F), and a couple of states

(s, s′) ∈ SF × ST is called a transition.

Example 3 The two sets of possible states of a program defined on the two sets
of variables T = {at, bt, ch} and F = {at−1, bt−1, st}, and the set of atoms A =
{a0

t , a
1
t , b

0
t , b

1
t , ch

0, ch1, a0
t−1, a

1
t−1, b

0
t−1, b

1
t−1, c

0, c1} are :

SF = {
{a0

t−1, b
0
t−1, st

0}, {a0
t−1, b

0
t−1, st

1},
{a0

t−1, b
1
t−1, st

0}, {a0
t−1, b

1
t−1, st

1},
{a1

t−1, b
0
t−1, st

0}, {a1
t−1, b

0
t−1, st

1},
{a1

t−1, b
1
t−1, st

0}, {a1
t−1, b

1
t−1, st

1}}

ST = {
{a0

t , b
0
t , ch

0}, {a0
t , b

0
t , ch

1},
{a0

t , b
1
t , ch

0}, {a0
t , b

1
t , ch

1},
{a1

t , b
0
t , ch

0}, {a1
t , b

0
t , ch

1},
{a1

t , b
1
t , ch

0}, {a1
t , b

1
t , ch

1}}
Here, a and b are regular variables of the system and thus appear in both F and T

encoded with time as label to make them different variables from aMVL perspective,
they appear in both kind of state SF ,ST . Variables st and ch are respectively a stimuli
and a checkpoint and thus only appear in F ,SF or T ,ST . Depending on the number
of stimuli and checkpoint, states of SF can have a different size to state in ST (see
Figure 3).

Definition 4 (Rule-state matching) Let s ∈ SF . The MVL rule R matches s,
written R u s, if b(R) ⊆ s.

6 Tony Ribeiro et al.

We note that this definition of matching only concerns feature variables. Target
variables are never meant to be matched. The final program we want to learn should
both:

– match the observations in a complete (all transitions are learned) and correct (no
spurious transition) way;

– represent only minimal necessary interactions (according to Occam’s razor: no
overly-complex bodies of rules)

The following definitions formalize these desired properties. In Definition 5 we char-
acterize the fact that a rule of a program is useful to describe the dynamics of one
variable in a transition; this notion is then extended to a program and a set of tran-
sitions, under the condition that there exists such a rule for each variable and each
transition. A conflict (Definition 22) arises when a rule describes a change that is not
featured in the considered set of transitions. Finally, Definition 23 and Definition 7
give the characteristics of a complete (the whole dynamics is covered) and consistent
(without conflict) program.

Definition 5 (Rule and program realization) Let R be aMVL rule and (s, s′) ∈
SF×ST . The rule R realizes the transition (s, s′), written s

R−→ s′, if Rus∧h(R) ∈ s′.

A DMVLP P realizes (s, s′) ∈ SF × ST , written s
P−→ s′, if ∀v ∈ T ,∃R ∈

P, var(h(R)) = v∧s R−→ s′. It realizes a set of transitions T ⊆ SF ×ST , written
P
↪−→ T ,

if ∀(s, s′) ∈ T, s
P−→ s′.

In the following, for all set of transitions T ⊆ SF × ST , we denote: first(T) :=

{s ∈ SF | ∃(s1, s2) ∈ T, s1 = s} the set of all initial states of these transitions. We
note that first(T) = ∅ ⇐⇒ T = ∅.

Definition 6 (Conflict and Consistency) A MVL rule R conflicts with a set of

transitions T ⊆ SF × ST when ∃s ∈ first(T),
(
R u s ∧ ∀(s, s′) ∈ T, h(R) /∈ s′

)
. R is

said to be consistent with T when R does not conflict with T .

A rule is consistent if for all initial states of the transitions of T (first(T)) matched
by the rule, there exists a transitions of T for which it verifies the conclusion.

Definition 7 (Consistent program) A DMVLP P is consistent with a set of tran-
sitions T if P does not contain any rule R conflicting with T .

Definition 8 (Complete program) A DMVLP P is complete if ∀s ∈ SF , ∀v ∈
T ,∃R ∈ P,R u s ∧ var(h(R)) = v.

A complete DMVLP realizes at least one transition for each possible initial state.
Definition 9 groups all the properties that we want the learned program to have:
suitability and optimality, and Proposition 1 states that the optimal program of a set
of transitions is unique.

Definition 9 (Suitable and optimal program) Let T ⊆ SF × ST . A DMVLP
P is suitable for T when:

– P is consistent with T ,
– P realizes T ,
– P is complete
– for allMVL rules R not conflicting with T , there exists R′ ∈ P such that R ≤ R′.

If in addition, for all R ∈ P , all theMVL rules R′ belonging to DMVLP suitable for
T are such that R ≤ R′ implies R′ ≤ R then P is called optimal.

Proposition 1 Let T ⊆ SF×ST . The DMVLP optimal for T is unique and denoted
PO(T).

Learning any semantics for dynamical systems represented by logic programs 7

3 Dynamical semantics

The aim of this section is to formalize the general notion of dynamical semantics as an
update policy based on a program, and to give characterizations of several widespread
existing semantics used on discrete models.

In the previous section, we supposed the existence of two distinct sets of variables
F and T that represent conditions (features) and conclusions (targets) of rules. Con-
clusion atoms allow to create one or several new state(s) made of target variables,
from conditions on the current state which is made of feature atoms.

In Definition 10, we formalize the notion of dynamical semantics which is a function
that, to a program, associates a set of transitions where each state has at least one
outgoing transition. Such a set of transitions can also be seen as a function that maps
any state to a non-empty set of states, regarded as possible dynamical branchings. We
give examples of semantics afterwards.

Definition 10 (Dynamical Semantics) A dynamical semantics (on A) is a func-

tion that associates, to each DMVLP P , a set of transitions T ⊆ SF × ST so that:
first(T) = SF . Equivalently, a dynamical semantics can be seen as a function of(
DMVLP→ (SF → ℘(ST) \ {∅})

)
where DMVLP is the set of DMVLPs.

We now aim at characterizing a set of semantics of interest for the current work,
as given in Theorem 2. Beforehand, Definition 11 allows to denote as Ccl(s, P) the set
of heads of rules, in a program P , matching a state s, and Definition 12 introduces a
notation BX to consider only atoms in a set B ⊆ A that have their variable in a set
X ⊆ V. These two notations will be used in the next theorem and afterwards. In the
following, we especially use the notation of Definition 12 with A (denoted AX) and
on Ccl (denoted CclX(s, P)).

Definition 11 (Program Conclusions) Let s in SF and P a MVLP. We denote:
Ccl(s, P) := {h(R) ∈ A | R ∈ P,R u s} the set of conclusion atoms in state s for the
program P .

Definition 12 (Restriction of a Set of Atoms) Let B ⊆ A be a set of atoms,

and X ⊆ V be a set of variables. We denote: BX = {vval ∈ B | v ∈ X} the set of
atoms of B that have their variables in X. If B is instead a function that outputs a
set of atoms, we note BX(params) instead of

(
B(params)

)
X

, where params is the
sequence of parameters of B.

With Theorem 2, we characterize semantics which for any DMVLP produce the
same behavior using the corresponding optimal program, that is, any semantics DS
such that for any DMVLP P,DS(P) = DS(PO(DS(P))). Such a semantics produces
new states based only on the initial state s and the heads of matching rules of the given
program Ccl(s, P), as stated by point (2). Moreover, PO(DS(P)) being consistent
with DS(P), each of those heads appears in a state of DS(P)(s), thus the semantics
should produce the same states being given the atoms of all those next states as
possibilities, as stated by point (1). Those two conditions are sufficient to ensure
that DS(PO(DS(P))) = DS(P) and thus can be used to assert if the dynamics of
a given semantics, for any given original program P , can be reproduced using the
corresponding optimal program PO(DS(P)) with the same semantics.

Theorem 2 (Pseudo-idempotent Semantics and Optimal DMVLP) Let DS
be a dynamical semantics. For all P a DMVLP, if:

• ∃pick ∈ (SF × ℘(AT)→ ℘(ST) \ {∅}) so that
(1) ∀D ⊆ AT , pick(s,

⋃
s′∈pick(s,D)

s′) = pick(s,D) ∧

(2) ∀s ∈ SF ,
(
DS(P)

)
(s) = pick(s,Ccl(s, P)),

then: for all P a DMVLP, DS(PO(DS(P)))) = DS(P).

8 Tony Ribeiro et al.

Up to this point, no link has been made between corresponding feature (in F)
and target (in T) variables or atoms. In other words, the formal link between the two

atoms vval
t and vval

t−1 has not been made yet. This link, called projection, is established
in Definition 13, under the only assumption that dom(vt) = dom(vt−1). It has two
purposes:

– When provided with a set of transitions, for instance by using a dynamical seman-
tics, one can describe dynamical paths, that is, successions of next states, by using
each next state to generate the equivalent initial state for the next transition;

– Some dynamical semantics (such as the asynchronous one, see Definition 15) make
use of the current state to build the next state, and as such need a way to convert
target variables into feature variables.

However, such a projection cannot be defined on the whole sets of target (T) and

feature (F) variables, but only on two subsets F ⊆ F and T ⊆ T . Note that we

require the projection to be a bijection, thus: |F| = |T |. These subsets T and F contain
variables that we call afterwards regular variables: they correspond to variables that
have an equivalent in both the initial states (at t − 1) and the next states (at t).

Variables in F \ F can be considered as stimuli variables: they can only be observed
in the previous state but we do not try to explain their next value in the current
state; this is typically the case of external stimuli (sun, stress, nutriment...) that are

unpredictable when observing only the studied system. Variables in T \ T can be
considered as checkpoint variables: they are only observed in the present state as the
result of the combination of other (regular and stimuli) variables; they can be of use
to assess the occurrence of a specific configuration in the previous state but cannot
be used to generate the next step. For the rest of this section, we suppose that F and
T are given and that there exists such projection functions, as given by Definition 13.
Figure 3 gives a representation of these sets of variables.

It is noteworthy that projections on states are not bijective, because of stimuli
variables that have no equivalent in target variables, and checkpoint variables that
have no equivalent in feature variables (see Figure 3). Therefore, the focus is often

made on regular variables (in F and T). Especially, for any pair of states (s, s′) ∈
SF × ST , having spT→F (s′) ⊆ s, which is equivalent to spF→T (s) ⊆ s′, means that
the regular variables in s and their projection in s′ (or conversely) hold the same
value, modulo the projection.

Definition 13 (Projections) A projection on variables is a bijective function vpT→F :

T → F so that T ⊆ T , F ⊆ F , and: ∀v ∈ T , dom(vpT→F (v)) = dom(v). The projec-

tion on atoms (based on vpT→F) is the bijective function: apT→F : AT → AF , v
val 7→(

vpT→F (v)
)val

. The inverse function of vpT→F is denoted vpF→T and the inverse
function of apT→F is denoted apF→T . The projections on states (based on apT→F
and apF→T) are the functions: spT→F : ST → SF , s′ 7→ {apT→F (vval) ∈ A | vval ∈
s′ ∧ v ∈ T } and spF→T : SF → ST , s 7→ {apF→T (vval) ∈ A | vval ∈ s ∧ v ∈ F}.

3.1 Synchronous, Asynchronous and General Semantics

In the following, we present a formal definition and a characterization of three par-
ticular semantics that are widespread in the field of complex dynamical systems: syn-
chronous, asynchronous and general, and we also treat the particular case of the
deterministic synchronous semantics. Note that some points in these definitions are
arbitrary and could be discussed depending on the modeling paradigm. For instance,
the policy about rules R so that ∃s ∈ SF , R u s ∧ apT→F (h(R)) ∈ s, which model
stability in the dynamics, could be to include them (such as in the synchronous and
general semantics) or exclude them (such as in the asynchronous semantics) from the
possible dynamics. The modeling method presented so far in this paper is independent
to the considered semantics as long as it respects Definition 10 and the capacity of

Learning any semantics for dynamical systems represented by logic programs 9

s1 . . . sm (v1)t−1 . . . (vn)t−1

F \ F (Stimuli) F (Regular variables)

F (Feature variables)

(v1)t . . . (vn)t c1 . . . ck

T (Regular variables) T \ T (Checkpoints)

(Target variables) T

Projections

Fig. 3: Representation of a state transition of a dynamic system over n variables, m stimuli and
k checkpoints, i.e., |F| = n + m, |T | = n + k.

the optimal program to reproduce the observed behavior is ensured as long as the
semantics respects Theorem 2.

a b f(a) := not b.
f(b) := not a.

Asynchronous General

00

01 10

11

00

01 10

11

Synchronous

00

01 10

11

Fig. 4: A Boolean network with two variables inhibiting each other (top) and its synchronous,
asynchronous and general state transitions diagrams (bottom).

Definition 14 introduces the synchronous semantics, consisting in updating all
variables at once in each step in order to compute the next state. The value of each
variable in the next state is taken amongst a “pool” of atoms containing all conclusions
of rules that match the current state (using Ccl) and atoms produced by a “default
function” d that is explained below. However, this is taken in a loose sense: as stated
above, atoms that make a variable change its value are not prioritized over atoms that
don’t. Furthermore, if several atoms on the same variable are provided in the pool
(as conclusions of different rules or provided by the default function), then several
transitions are possible, depending on which one is chosen. Thus, for a self-transition
(s, s′) ∈ SF × ST with spT→F (s′) ⊆ s to occur, there needs to be, for each atom

vval ∈ s′ so that v ∈ T , either a rule that matches s and whose head is vval or
that the default function gives the value vval. Note however that such a loop is not
necessarily a point attractor; it is only the case if all atoms in the pool are also in
spT→F (s).

As explained above, for a given state s and a given set of variables W , the function
d provides a set of “default atoms” added to the pool of atoms used to build the next
state, along with rules conclusions. This function d, however, is not explicitly given:
the only constraints are that:

– d produces atoms at least for a provided set of variables W , specifically, the set of
variables having no conclusion in a given state, which is necessary in the case of
an incomplete program,

– d(s, ∅) is a subset of d(s,W) for all W , as it intuitively represents a set of default
atoms that are always available.

Note that d(s, ∅) = ∅ is always valid. In the case of a complete program, that is, a
program providing conclusions for every variables in every state, d is always called

10 Tony Ribeiro et al.

with W = ∅ and the other cases can thus be ignored. Another typical use for d is
the case of a system with Boolean variables (i.e., such that ∀v ∈ V, dom(v) = {0, 1})
where a program P is built by importing only the positive rules of the system, that
is, only rules with atoms v1

t as heads. This may happen when importing a model from
another formalism featuring only Boolean formulas, such as Boolean networks. In this
case, d can be used to provide a default atom w0

t for all variables w that do not appear
in Ccl(s, P), thus reproducing the dynamics of the original system.

Definition 14 (Synchronous semantics) Let d ∈ (SF × ℘(T)→ ℘(AT)), so that

∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W)) ∧ d(s, ∅) ⊆ d(s,W). The synchronous semantics
Tsyn is defined by:

Tsyn : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \ var(Ccl(s, P)))} .

In Definition 15, we formalize the asynchronous semantics that imposes that no
more than one regular variable can change its value in each transition. The checkpoint
variables are not counted since they have no equivalent in feature variables to be
compared to. As for the previous synchronous semantics, we use here a “pool” of
atoms, made of rules conclusions and default atoms, that may be used to build the
next states. The default function d used here is inspired from the previous synchronous
semantics, with an additional constraint: its result always contains the atoms of the
initial state. Constrains are also added on the next state to limit to at most one regular
variable change. Moreover, contrary to the synchronous semantics, the asynchronous
semantics prioritizes the changes. Thus, for a self-transition (s, s′) ∈ SF × ST with
spT→F (s′) ⊆ s to occur, it is required that all atoms of regular variables in the pool
are in spF→T (s), i.e., this only happens when (s, s′) is a point attractor, in the sense
that all regular variables cannot change their value.

Definition 15 (Asynchronous semantics) Let d ∈ (SF × ℘(T) → ℘(AT)), so

that ∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W)) ∧ spF→T (s) ⊆ d(s, ∅) ⊆ d(s,W). The
asynchronous semantics Tasyn is defined by:

Tasyn : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \ var(Ccl(s, P))) ∧(
|spF→T (s) \ s′| = 1 ∨
CclT (s, P) ∪ dT (s, T \ var(Ccl(s, P))) = spF→T (s)

)
}

where the notations AT , CclT and dT come from Definition 12.

A typical mapping for d is: d : (s,W) 7→ spF→T (s), thus conserving the previous
values and ignoring the second argument.

In Definition 16, we formalize the general semantics as a more permissive version
of the synchronous one: any subset of the variables can change their value in a tran-
sition. This semantics uses the same “pool” of atoms than the synchronous semantics
containing rules conclusions of P and default atoms provided by d, and no constraint.
However, as for the asynchronous semantics, the atoms of the initial state must al-
ways be featured as default atoms. Thus, a self-transition (s, s′) ∈ SF × ST with
spF→T (s) ⊆ s′ occurs for each state s because, intuitively, the empty set of variables
can always be selected for update. However, as for the synchronous semantics, such a
self-transition is a point attractor only if all atoms of regular variables in the “pool”
are in spF→T (s). Finally, we note that the general semantics contains the dynamics of
both the synchronous and the asynchronous semantics, but also other dynamics not
featured in these two other semantics.

Definition 16 (General semantics) Let d ∈ (SF × ℘(T) → ℘(AT)), so that

∀s ∈ SF ,∀W ⊆ T ,W ⊆ var(d(s,W)) ∧ spF→T (s) ⊆ d(s, ∅) ⊆ d(s,W). The gen-

Learning any semantics for dynamical systems represented by logic programs 11

eral semantics Tgen is defined by:

Tgen : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \ var(Ccl(s, P)))}.

Finally, with Theorem 3, we state that the definitions and method developed in
the previous section are independent of the chosen semantics as long as it respect
Theorem 2.

Theorem 3 (Semantics-free correctness) Let P be a DMVLP.

– Tsyn(P) = Tsyn(PO(Tsyn(P))),
– Tasyn(P) = Tasyn(PO(Tasyn(P))),
– Tgen(P) = Tgen(PO(Tgen(P))).

4 GULA

Until now, the LF1T algorithm [16,37,39] only tackled the learning of synchronous
deterministic programs. Using the formalism introduced in the previous sections, it
can now be revised to learn systems from transitions produced from any semantics
respecting Theorem 2 like the three semantics defined above. Furthermore, both de-
terministic and non-deterministic systems can now be learned.

4.1 Learning operations

This section focuses on the manipulation of programs for the learning process. Defi-
nition 17 and Definition 18 formalize the main atomic operations performed on a rule
or a program by the learning algorithm, whose objective is to make minimal modifi-
cations to a given DMVLP in order to be consistent with a new set of transitions.

Definition 17 (Rule least specialization) Let R be aMVL rule and s ∈ SF such
that R u s. The least specialization of R by s according to F and A is:

Lspe(R, s,A,F) := {h(R)← b(R)∪{vval} | v ∈ F∧vval ∈ A∧vval 6∈ s∧∀val′ ∈ N, vval′ 6∈ b(R)}.

The least specialization Lspe(R, s,A,F) produces a set of rule which matches all
states that R matches except s. Thus Lspe(R, s,A,F) realizes all transitions that R
realizes except the ones starting from s. Note that ∀R ∈ P,R u s ∧ |b(R)| = |F| =⇒
Lspe(R, s,A,F) = ∅, i.e., a rule R matching s cannot be modified to make it not match
s if its body already contains all feature variables, because nothing can be added in
its body.

Definition 18 (Program least revision) Let P be a DMVLP, s ∈ SF and T ⊆
SF × ST such that first(T) = {s}. Let RP := {R ∈ P | R conflicts with T}. The
least revision of P by T according to A and F is Lrev(P, T,A,F) := (P \ RP) ∪⋃

R∈RP

Lspe(R, s,A,F).

Note that according to Definition 18, first(T) = {s} implies that all transitions for
T have s as initial state. Theorem 4 states properties on the least revision, in order
to prove it suitable to be used in the learning algorithm.

Theorem 4 (Properties of least revision) Let R be a MVL rule and s ∈ SF
such that R u s. Let SR := {s′ ∈ SF | R u s′} and Sspe := {s′ ∈ SF | ∃R′ ∈
Lspe(R, s,A,F), R′ u s′}.

Let P be a DMVLP and T, T ′ ⊆ SF × ST such that |first(T)| = 1 ∧ first(T) ∩
first(T ′) = ∅. The following results hold:

1. Sspe = SR \ {s},
2. Lrev(P, T,A,F) is consistent with T ,

3.
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ′,

12 Tony Ribeiro et al.

4.
P
↪−→ T =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ,

5. P is complete =⇒ Lrev(P, T,A,F) is complete.

The next properties are directly used in the learning algorithm. Proposition 2 gives
an explicit definition of the optimal program for an empty set of transitions, which
is the starting point of the algorithm. Proposition 3 gives a method to obtain the
optimal program from any suitable program by simply removing the dominated rules;
this means that the DMVLP optimal for a set of transitions can be obtained from any
DMVLP suitable for the same set of transitions by removing all the dominated rules.
Finally, in association with these two results, Theorem 5 gives a method to iteratively
compute PO(T) for any T ⊆ SF × ST , starting from PO(∅).

Proposition 2 PO(∅) = {vval ← ∅ | v ∈ T ∧ vval ∈ AT }.

Proposition 3 Let T ⊆ SF × ST . If P is a DMVLP suitable for T , then PO(T) =
{R ∈ P | ∀R′ ∈ P,R ≤ R′ =⇒ R′ ≤ R}

Theorem 5 (Least revision and suitability) Let s ∈ SF and T, T ′ ⊆ SF × ST
such that |first(T ′)| = 1∧first(T)∩first(T ′) = ∅. Lrev(PO(T), T ′,A,F) is a DMVLP
suitable for T ∪ T ′.

4.2 Algorithm

In this section we present GULA: the General Usage LFIT Algorithm, a revision of
the LF1T algorithm [16,37] to capture a set of multi-valued dynamics that especially
encompass the classical synchronous, asynchronous and general semantics dynamics.
For this learning algorithm to operate, there is no restriction on the semantics. GULA
learns the optimal program that, under the same semantics, is able to exactly repro-
duce a complete set of observations, if the semantics respect Theorem 2. Section 5 will
be devoted to also learning the behaviors of the semantics itself, if it is unknown.

GULA learns a logic program from the observations of its state transitions. Given
as input a set of transitions T ⊆ SF × ST , GULA iteratively constructs a DMVLP
that models the dynamics of the observed system by applying the method formalized
in the previous section as shown in Algorithm 1. From the set of transitions T , GULA
learns the conditions under which each vval ∈ A′ ⊆ A, v ∈ T ′ ⊆ T may appear in the
next state. The algorithm starts by computing the set of all negative examples of the
appearance of vval in next state: all states such that v never takes the value val in
the next state of a transition of T . Those negative examples are then used during the
following learning phase to iteratively learn the set of rules PO(T). The learning phase

starts by initializing a set of rules Pvval to {R ∈ PO(∅) | h(R) = vval} = {vval ← ∅}.
Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm

of Pvval that match neg have to be revised. In order for Pvval to remain optimal, the
revision of each Rm must not match neg but still matches every other state that Rm

matches. To ensure that, the least specialization (see Definition 17) is used to revise
each conflicting rule Rm. For each variable of F ′ so that b(Rm) has no condition over
it, a condition over another value than the one observed in state neg can be added.
None of those revision match neg and all states matched by Rm are still matched by
at least one of its revisions. Each revised rule can be dominated by a rule in Pvval

or another revised rules and thus dominance must be checked from both. The non-
dominated revised rules are then added to Pvval . Once Pvval has been revised against
all negatives example of Negvval , Pvval = {R ∈ PO(T) | h(R) = vval}. Finally, Pvval is
added to P and the loop restarts with another atom. Once all values of each variable
have been treated, the algorithm outputs P which is then equal to PO(T). More
discussion of the implementation and detailed pseudocode are given in appendix. The
source code of the algorithm is available at https://github.com/Tony-sama/pylfit
under GPL-3.0 License.

Theorem 6 gives the properties of the algorithm: GULA terminates and GULA
is sounds, complete and optimal w.r.t. its input, i.e., all and only non-dominated

https://github.com/Tony-sama/pylfit

Learning any semantics for dynamical systems represented by logic programs 13

Algorithm 1 GULA

– INPUT: a set of atoms A′, a set of transitions T ⊆ SF ′ × ST ′ , two sets of
variables F ′ and T ′.

– For each atom vval ∈ A′ of each variable v ∈ T ′:
– Extract all states from which no transition to vval exist:

Negvval := {s | @(s, s′) ∈ T, vval ∈ s′}.
– Initialize Pvval := {vval ← ∅}.
– For each state s ∈ Negvval :
• Extract and remove the rules of Pvval that match s:

Mvval := {R ∈ P | b(R) ⊆ s} and Pvval := Pvval \Mvval .
• LS := ∅
• For each rule R ∈Mvval :
· Compute its least specialization P ′ = Lspe(R, s,A′,F ′).
· Remove all the rules in P ′ dominated by a rule in Pvval .
· Remove all the rules in P ′ dominated by a rule in LS.
· Remove all the rules in LS dominated by a rule in P ′.
· LS := LS ∪ P ′.

• Add all remaining rules of LS to Pvval : Pvval := Pvval ∪ LS.
– P := P ∪ Pvval

– OUTPUT: PO(T) := P .

consistent rules appear in its output program which is the optimal program of its
input. Finally, Theorem 7 characterizes the algorithm time and memory complexities.

Theorem 6 (GULA Termination, soundness, completeness, optimality) Let

T ⊆ SF × ST .
(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T,F , T) = PO(T),
(3) ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′}.

From Theorem 6: for any dynamical semantics DS and anyDMVLP P , GULA(A, DS(P),F , T) =
PO(DS(P)). If DS is as in Theorem 2, then DS(GULA(A, DS(P),F , T)) = DS(PO(DS(P))) =
DS(P). From Theorem 3, the following holds:

– Tsyn(GULA(A, Tsyn(P),F , T)) = Tsyn(PO(Tsyn(P))) = Tsyn(P)
– Tasyn(GULA(A, Tasyn(P),F , T)) = Tasyn(PO(Tasyn(P))) = Tasyn(P)
– Tgen(GULA(A, Tgen(P),F , T)) = Tgen(PO(Tgen(P))) = Tgen(P)

Thus the algorithm can be used to learn from transitions produced from both syn-
chronous, asynchronous and general semantics.

Theorem 7 (GULA Complexity) Let T ⊆ SF × ST be a set of transitions, Let
n := max(|F|, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. The worst-case time
complexity of GULA when learning from T belongs to O(|T |2 + |T | × (2n4d2n+2 +
2n3dn+1)) and its worst-case memory use belongs to O(d2n + 2ndn+1 + ndn+2).

5 Learning From Any Dynamical Semantics

Any non-deterministic (and thus deterministic) discrete memory-less dynamical sys-
tem S can be represented by aMVLP with some restrictions and a dedicated dynam-
ical semantics. For this, programs must contain two types of rules: possibility rules
which have conditions on variables at t− 1 and conclusion on one variable at t, same
as for DMVLP; and constraint rules which have conditions on both t and t − 1 but
no conclusion. In the following, we also re-use the same notations as for the MVL of
Section 2.1 such as h(R), b(R) and var(h(R)).

14 Tony Ribeiro et al.

5.1 Constraints DMVLP

Definition 19 (Constrainted DMVLP) Let P ′ be a DMVLP on AF∪Tdom , F and T
two sets of variables, and ε a special variable with dom(ε) = {0, 1} so that ε /∈ T ∪F .

A CDMVLP P is a MVLP such that P = P ′ ∪ {R ∈ MVL | h(R) = ε1 ∧ ∀vval ∈
b(R), v ∈ F ∪ T }. A MVL rule R such that h(R) = ε1 and ∀vval ∈ b(R), v ∈ F ∪ T
is called a MVL constraint.

Moreover, in the following we denote V = F ∪T ∪{ε}. This V is different than the
one of P ′ (which is F ∪ T , without the special variable ε). From now, a constraint C
is denoted: ← b(C).

Example 4 ← a0
t ∧ a0

t−1 is a constraint that can prevent a to take the value 0 in two

successive states.← b1
t ∧d2

t ∧c2
t−1 is a constraint that can prevent to have both b1 and

d2 in the next state if c2 appears in the initial state. ← a0
t ∧ b0

t is a constraint with
only conditions in T , it prevents a and b to take value 0 at same time.← a0

t−1∧b0
t−1 is

a constraint with only conditions in F , it prevents any transitions from a state where
a and b have value 0, thus creating final states.

Definition 20 (Constraint-transition matching) Let (s, s′) ∈ SF × ST . The
constraint C matches (s, s′), written C u (s, s′), iff b(C) ⊆ s ∪ s′.

Using the notion of rule and constraint matching we can use a CDMVLP to
compute the next possible states. Definition 21 provides such a method based on syn-
chronous semantic and constraints. Given a state, the set of possible next states is
the Cartesian product of the conclusion of all matching rules and default atoms. Con-
straints rules are then used to discard states that would generate non-valid transitions.

Definition 21 (Synchronous constrained Semantics) The synchronous constrained
semantics Tsyn−c is defined by:

Tsyn−c : P 7→ {(s, s′) ∈ SF × ST | s′ ⊆ Ccl(s, P) ∧ @C ∈ P, h(C) = ε1 ∧ C u (s, s′)}

00

01 10

11

00

01 10

11

00

01 10

11

Fig. 5: States transitions diagrams corresponding to three semantics that do not respect Theo-
rem 2 (in black) applied on the Boolean network of Figure 4. Using the synchronous semantics
on the optimal program of the black transitions will produce in addition the red ones.

Figure 5 shows the dynamics of the Boolean network of Figure 4 under three
semantics which dynamics cannot be reproduced using synchronous, asynchronous or
general semantics on a program learned using GULA. In the first example (left), either
all Boolean functions are applied simultaneously or nothing occurs (self-transition
using projection). In the second example (center), the Boolean functions are applied
synchronously but their is also always a possibility for any variable to take value 0 in
the next state. In the third example (right), either the Boolean functions are applied
synchronously, or each variable value is reversed (0 into 1 and 1 into 0). The original
transitions of each dynamics are in black and the additional non-valid transitions in
red. Using the original black transitions as input, GULA learns programs which,
under the synchronous semantics (Definition 14), would realize the original black
transitions plus the non-valid red ones. The idea is to learn constraints that would
prevent those non-valid transitions to occur so that the observed dynamics is exactly
reproduced using the synchronous constrained semantics of Definition 21.

Learning any semantics for dynamical systems represented by logic programs 15

Definition 22 (Conflict and Consistency of constraints) The constraint C con-

flicts with a set of transitions T ⊆ SF ×ST when ∃(s, s′) ∈ T,C u (s, s′). C is said to
be consistent with T when C does not conflict with T .

Therefore, a constraint is consistent if it does not match any transitions of T .

Definition 23 (Complete set of constraints) A set of constraints SC is complete

with a set of transitions T if ∀(s, s′) ∈ (SF×ST), (s, s′) 6∈ T =⇒ ∃C ∈ SC,Cu(s, s′).

Definition 24 groups all the properties that we want the learned set of constraints
to have: suitability and optimality, and Proposition 4 states that the optimal set of
constraints of a set of transitions is unique.

Definition 24 (Suitable and optimal constraints) Let T ⊆ SF × ST . A set of
MVL constraints SC is suitable for T when:

– SC is consistent with T ,
– SC is complete with T ,
– for all constraints C not conflicting with T , there exists C′ ∈ P such that C ≤ C′.

If in addition, for all C ∈ SC, all the constraint rules C′ belonging to a set of con-
straints suitable for T are such that C ≤ C′ implies C′ ≤ C, then SC is called
optimal.

Proposition 4 Let T ⊆ SF ×ST . The optimal set of constraints for T is unique and
denoted CO(T).

The subset of constraints of CO(T) that prevent transitions permitted by PO(T)
but not observed in T from happening, or, in other terms, constraints that match
transitions in Tsyn−c(PO(T))) \ T , is denoted C′O(T) and given in Definition 25. All
constraints of CO(T) that are not in this set can never match a transition produced by
PO(T) with Tsyn−c and can thus be considered useless. Finally, Theorem 8 shows that
any set of transitions T can be reproduced, using synchronous constrained semantics
of Definition 21 on the CDMVLP PO(T) ∪ C′O(T).

Definition 25 Let T ⊆ SF × ST .
C′O(T) := {C ∈ CO(T) | ∀vval ∈ b(C), v ∈ T , ∃R ∈ PO(T), h(R) = vval ∧

(
∀w ∈

F ,∀val′, val′′ ∈ dom(w),wval′ ∈ b(R) ∧ wval′′ ∈ b(C) =⇒ val′ = val′′
)
}).

Theorem 8 (Optimal DMVLP and constraints correctness under synchronous

constrainted semantics) Let T ⊆ SF × ST , it holds that T = Tsyn−c(PO(T) ∪
C′O(T)).

5.2 Algorithm

In previous sections we presented a modified version of GULA: the General Usage
LFIT Algorithm from [35], which takes as arguments a different set of variables for
conditions and conclusions of rules. This modification allows to use this modified
algorithm to learn constraints and thus CDMVLP.

Algorithm 2 show the Synchronizer algorithm, which given a set of transitions
T ⊆ SF×ST will output PO(T)∪C′O(T) using GULA and the properties introduced
in the previous section. With the new version of GULA it is possible to encode meaning
in the transitions we give as input to the algorithm. The constraint we want to learn
has conditions on the current and next values of the variables of the system. It is
sufficient to make the union of the two states of a transition and feed it to GULA to
make it learn such rules. The constraints we want to learn are rules that should match
when an impossible transition is generated by the rules of the program. GULA learns
from negative examples and negative examples of impossible transitions are just the
possible transitions, thus the transitions observed in T . Using the set of transitions

16 Tony Ribeiro et al.

T ′ := {(s ∪ s′, {ε0}) | (s, s′) ∈ T} we can use GULA to learn such constraints with
GULA(A∪ {ε1}, T ′,F ∪ T , {ε}). Note that ε, from the algorithmic viewpoint, is just
a dummy variable used to make every transition of T ′ a negative example of ε1 which
will be the only head of the rule we will learn here. The program produced will
contain a set of rules that match none of the transitions of T ′ and thus none of
T but matches all other possible transitions according to GULA properties. Their
head being ε1, those rules are actually constraints over T . Since all and only such
minimal rules are output by this second call to GULA, it correspond to CO(T),
which prevent every transitions that are not in T to be produced using the constraint
synchronous semantics. Finally, the non-essential constraint can be discarded following
Definition 25 and finally PO(T) ∪C′O(T) is output. The source code of the algorithm
is available at https://github.com/Tony-sama/pylfit under GPL-3.0 License.

Algorithm 2 Synchronizer

– INPUT: a set of atoms A, a set of transitions T ⊆ SF × ST , two sets of
variables F and T .

– 1) Learn what is possible locally in a transition using GULA
– P := GULA(A, T,F , T)
– 2) Encode negative examples of constraints, i.e., observed transitions
– Let ε be a special variable not in the system: ε 6∈ F ∪ T
– T ′ := {(s ∪ s′, {ε0}) | (s, s′) ∈ T}
– 3) Learn what is impossible in form of constraint using GULA
– P ′ := GULA(AF∪T ∪{ε1}, T ′,F ∪ T , {ε})
– P ′′ := {C ∈ P ′ | ∀vval ∈ b(C), v ∈ T ,∃R ∈ P, h(R) = vval ∧

(
∀w ∈

F ,∀val′, val′′ ∈ dom(w),wval′ ∈ b(R) ∧ wval′′ ∈ b(C) =⇒ val′ = val′′
)
})

– OUTPUT: PO(T) ∪ C ′O(T) := P ∪ P ′′.

Theorem 9 (Synchronizer correctness) Given any set of transitions T ,
Synchronizer(A, T , F , T) outputs PO(T) ∪ C′O(T).

From Theorem 8 and Theorem 9, given a set of transitions T ⊆ SF ×ST , it holds
that Tsyn−c(Synchronizer(A, T,F , T)) = T , i.e., the algorithm can be used to learn
a CDMVLP that reproduce exactly the input transitions whatever the semantics that
produced them.

Theorem 10 (Synchronizer Complexity) Let T ⊆ SF × ST be a set of transi-
tions, Let n := max(|F|, |T |) and d := max({|dom(v)| ∈ N | v ∈ F ∪ T }) and m :=
|F|+ |T |. The worst-case time complexity of Synchronizer when learning from T be-
longs to O((|T |2+|T |×(2n4d2n+2+2n3dn+1))+(|T |2+|T |×(2m4d2m+2+2m3dm+1)))
and its worst-case memory use belongs to O((d2n+2ndn+1+ndn+2)+(d2m+2mdm+1+
mdm+2)).

6 Evaluation

In this section, both the scalability and the accuracy of GULA are evaluated using
Boolean network benchmarks from the biological literature. The scalability of Syn-
chronizer is also evaluated. All experiments1 were conducted on one core of an AMD
Ryzen 7 (2700X, 3.7 GHz) with 64 Gb of RAM.

https://github.com/Tony-sama/pylfit

Learning any semantics for dynamical systems represented by logic programs 17

Benchmark size synchronous asynchronous general
arellano rootstem 9 2s/1.8s/0.9s/0.3s/512 2.4s/1.4s/1.1s/0.2s/1,940 1.1s/0.5s/0.3s/0.3s/11K
davidich yeast 10 16s/10s/4s/0.6s/1,024 12s/6s/4s/0.5s/4,364 3s/1.5s/1s/0.9s/39K
faure cellcycle 10 15s/10s/4s/0.8s/1,024 12s/5.6s/4.7s/0.6s/4,273 4s/1.2s/0.9s/0.9s/31K
fission yeast 10 16s/10s/4.8s/0.8s/1,024 12s/5.8s/4.6s/0.4s/4,157 3.6s/1.2s/1s/0.8s/34K
mammalian 10 14.8s/11s/4.8s/0.8s/1,024 12s/5.7s/3.4s/0.6s/4,273 3.4s/1.4s/1s/0.9s/31K
budding yeast 12 564s/194s/61s/3.7s/4,096 216s/107s/85s/2.6s/20K 51s/14s/5.9s/4.1s/260K
n12c5 12 468s/200s/64s/2.8s/4,096 213s/103s/144s/1.3s/30K 4.7s/6s/8.6s/11s/1,122K
tournier apoptosis 12 369s/164s/54s/2.7s/4,096 199s/98s/94s/2s/22K 26s/6.7s/4.6s/4.6s/358K
dinwoodie stomatal 13 -/748s/221s/6.1s/8,192 -/548s/628s/4s/53K 70s/18s/15s/18s/1.5M
multivalued 13 -/-/406s/6s/8,192 -/565s/765s/4.9s/49K 61s/18s/13s/13s/1M
saadatpour guardcell 13 -/757s/219s/6s/8,192 -/575s/638s/4.2s/53K 68s/17s/15s/18s/1.5M
arabidopsis 15 -/-/-/53s/32K -/-/-/50s/213K -/352s/123s/103s/7M
dinwoodie life 15 -/-/-/37s/32K -/-/-/30s/245K -/352s/240s/256s/20M
randomnet n15k3 15 -/-/-/51s/32K -/-/-/31s/262K 731s/219s/226s/280s/22M
irons yeast 18 -/-/-/653s/262K -/-/-/324s/2M memory out

Table 1: Run time of GULA for 9 to 18 nodes Boolean networks of [9,22] for the three semantics:
run time in seconds for 25%/50%/75%/100% of the transitions as input, and total number of
transitions (K for thousands and M for millions).

6.1 GULA Scalability

Table 1 shows the run time of GULA when learning from the transitions of Boolean
networks from Boolenet [9] and PyBoolnet [22]. Boolean networks are converted to
DMVLP where ∀v ∈ V, dom(v) = {0, 1}. For each variable, Boolean functions are
given in disjonctive normal form (DNF), a disjonction of conjonction clauses that can
be considered as a set of Boolean atoms of the form v or ¬v. Each clause c of the
DNF of a variable v is directly converted into a rule R such that, h(R) = v1 and
v′1 ∈ b(R) ⇐⇒ v′ ∈ c and v′0 ∈ b(R) ⇐⇒ ¬v′ ∈ c. For each such DMVLP
the set T of all transitions are generated for the three considered semantics. For each
generation, to simulate the cases where Boolean functions are false, each semantics
uses a default function that gives v0, ∀v ∈ T when no rule R, v(h(R)) = v matches
a state. Learning is performed on several random subsets of 25%/50%/75%/100% of
the whole set of transitions. The run time needed by the algorithm to learn PO(T) is
reported for each case.

We observe that for each benchmark we get a better run time if we are given more
input transitions. More transitions possibly implies more specialization of non-optimal
rules, increasing the chance for them to be dominated by another rule, thus reducing
the number of rules to compare. The same reasoning applies between the semantics.
It is important to note that those systems are deterministic with the synchronous
semantics and thus the number of transitions in the synchronous case is much lower
than for the two other semantics. The rules are simpler for the two other semantics
since rules of the form vval

t ← vval
t−1 are always consistent and quickly obtained. Such

simple rules have great dominance power, reducing the quantity of rules stored and
thus checked for domination at each step.

GULA succeeds in learning the benchmarks with less than 12 variables for all
semantics before the time-out (“-” in Table 1) of 1,000 seconds for all sub-sets of
transitions. Run times of smaller benchmarks from the same sources (3 to 7 variables)
are omitted in the table since they are lower than one second in all cases. Benchmarks
from 13 variables need a substantial amount of input transitions to prevent the explo-
sion of consistent rules and thus reaching the time out. The 18 variables benchmark
could be learned for both the synchronous and asynchronous semantics. For the gen-
eral semantics, however, the number of transitions generated (about 80 millions) is too
large for our naive usage of the memory. The current implementation of the algorithm
is rather naive and better performances are expected from future optimizations. In
particular, the algorithm can be parallelized into as many threads as the number of
different rule heads (one thread per target variable value). We are also developing2 an
approximated version of GULA that outputs a subset of PO(T) sufficient to realize

1 Available at: https://github.com/Tony-sama/pylfit/tree/master/src/evaluations/

mlj2020
2 The polynomial approximation of GULA, currently named PRIDE is also available at:

https://github.com/Tony-sama/pylfit

https://github.com/Tony-sama/pylfit/tree/master/src/evaluations/mlj2020
https://github.com/Tony-sama/pylfit/tree/master/src/evaluations/mlj2020
https://github.com/Tony-sama/pylfit

18 Tony Ribeiro et al.

T [36]. The complexity of this new algorithm is polynomial, greatly improving the
scalability of our approach. Because of space limitations we could not incorporate this
algorithm and its evaluation in this paper.

Learning constraints is obviously more costly than learning regular rules since both
feature and target variables can appear in the body, i.e., the number of features be-
comes |F|+|T |. Under the same experimental settings, the Synchronizer reached the
time-out of 1,000 seconds on the benchmarks of 9 nodes. The contribution regarding
CDMVLP being focused on theoretical results, we provided the detailed evaluation
of the Synchronizer in appendix to save space.

6.2 GULA Predictive power

In this experiment, we evaluate the quality of the models learned by GULA in their
ability to correctly predict possible values for each variable from unseen initial states.
Regarding our modeling, it consists in learning an approximation of PO(T) and check
both consistency and realization of T . For each Boolean network benchmark, the set
T of all possible transitions are generated as in the previous experiment. First the
transitions are grouped by initial state and 10% to 90% are chosen randomly to form
a training set and the rest for a test set so that first(training) ∩ first(test) = ∅ and
training ∪ test = T (except for for 100% where training = T = test). The training
set is given as input to GULA and its output program is used to predict the possible
values appearing in the next states from the initial states of the test set. Figure 6
(left) shows the accuracy of the predicted possible values w.r.t. the ratio of training
data going from 10% to 100% with the synchronous semantics.

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle (10)

fission_yeast (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

0

0.2

0.4

0.6

0.8

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

A
cc

ur
a

cy

Percentage of training data

n3s1c1a (3)

n3s1c1b (3)

raf (3)

n5s3 (5)

n6s1c2 (6)

n7s3 (7)

randomnet_n7k3 (7)

xiao_wnt5a (7)

arellano_rootstem (9)

davidich_yeast (10)

faure_cellcycle (10)

fission_yeast (10)

mammalian (10)

budding_yeast (12)

n12c5 (12)

tournier_apoptosis (12)

Fig. 6: Accuracy of the models learned by GULA when predicting possible target variable values
from unseen states with different amounts of training data in the synchronous semantics in two
different settings: (left) experiment 1, with a complete set of input transitions from a partial
number of initial states; and (right) experiment 2, with a potentially incomplete set of input
transitions from an incomplete set of initial states.

In this first experiment, the input of GULA is complete for the initial states
observed, i.e., every transitions from first(training) are given. For the second experi-
ment, the algorithm is provided an incomplete input, i.e., for some s ∈ first(training),
∃(s, s′) ∈ T, (s, s′) 6∈ training. Thus in the second case, having missing transitions
from some initial state is a first form of noise. The test set must remain complete to
ensure a correct evaluation. Thus, as in the first experiment, transitions are grouped
by initial states. Here, 20% of the initial states are randomly chosen to form a complete
test set with all their outgoing transitions. From the remaining 80% of initial states of
T , 10% to 100% of their transitions are randomly chosen as training set and used as
input by GULA. Figure 6 (right) shows the accuracy of the predicted possible values
w.r.t. the ratio of input data with the synchronous semantics.

In order to predict from unseen states, for each target atom we need rules that as-
sert possibility and rules that assert impossibility. The first kind of rules can be learned
from a regular call to GULA on the training transitions and form a first DMVLP
P . To obtain impossibility rules we just have to reverse the computation of negative

Learning any semantics for dynamical systems represented by logic programs 19

example in the algorithm so that: ∀vval ∈ AT , Negvval := {s | ∃(s, s′) ∈ T, vval ∈ s′}.
Rules learned using least revision from this Negvval will match when vval is not pos-
sible in the next state and form a second DMVLP P . Both types of rules are then
weighted by counting the number of initial state they match in the training set: let
R be a rule, then weight(R, T) := |{s | ∃(s, s′) ∈ T,R u s, h(R) ∈ s′}|. To forecast
how likely each atom is to appear in a transition from an unseen state s, we take the
matching rules of P and P with the maximal weight, as follows. Let s ∈ SF , then
forecast(vval, s, P, P , T) = 0.5 + p−np

2(p+np) be the forecast probabilities of vval being

in some next state of s according to P, P and T with p := max({0} ∪ {weight(R, T) |
R ∈ P, h(R) = vval, b(R) ⊆ s}) and let np := max({0} ∪ {weight(R, T) | R ∈
P , h(R) = vval, b(R) ⊆ s}). The forecast probabilities are compared to the ob-

served values of the test set. Let actual(vval, s, T) =

{
1, if ∃(s, s′) ∈ T, vval ∈ s′

0, otherwise
.

Given T, T ′ ∈ SF × ST , P, P ∈ DMVLP, the accuracy of prediction from P, P
according to T over T ′ is: accuracy(P, P , T, T ′) = 1 − 1

|first(T ′)|
∑

s∈first(T ′) error(P, P , T, T ′, s)

with error(P, P , T, T ′, s) = 1
|T |

∑
vval∈T

abs(actual(vval,s,T ′)−forecast(vval,s,P,P,T))

abs(actual(vval,s,T ′))
. The evolution

of accuracy(P, P , training, test) is shown in Figure 6 for experiments 1 (left) and 2
(right). For both experiments, we observe poor results for the smallest benchmarks of 3
to 5 variables unless most transitions are given. In those cases, the number of training
samples are too low for the weighting heuristic to help choices between possibility and
impossibility rules. Starting from 7 variables, we observe much better results. From
10 variables, 80% accuracy can be achieved with no more than 10% of the possible
transitions as training examples. Performance is quite similar in both experiments,
showing that our method can handle some noise caused by missing observations. We
observed similar results with asynchronous and general semantics and thus did not
presented it here because of the lack of space.

If one is only interested by the prediction, it is certainly easier to achieve better
results using other methods like neural networks or random forest since prediction here
is basically a binary classification for each target variables values. In the case where
explainability is of interest, the rules used for the predictions and their weights may
be quite simple human readable candidates for explanations. Furthermore, when good
prediction model can be built from training data, it can replace our learned model to
forecast next state but it can also be used to improve the output of GULA. Indeed, one
can use such models to produce artificial transitions from both observed and unseen
states that can be given as input to GULA in place of the raw observations. It can
help to deal with noisy data and improve the diversity of initial state that can speed up
and improve the quality of the rules of GULA and thus also its approximated version
[36]. Actually, as long as feature and target variables are discrete (or can be properly
discretized), GULA (or its approximated version for big systems) could be used to
generate rules that could explain in a more human readable fashion the behavior of
other less explainable models. Such a combination study is out of the scope of this
paper but will be an interesting application part of our future works.

7 Related Work

Learning the dynamics of Boolean networks has been considered in bioinformatics [28,
1,33]. Rather than studying particular dynamics, our learning methods are complete
algorithms to learn a set of logical state transitions rules that model Boolean network
and more generally any memory-less discrete dynamical systems. As in [33], we can
also deal with partial transitions, but will not need to identify or enumerate all possible
complete transitions. [34] learns a model as a probability distribution for the next state
given the previous state and an action. Here, exactly one dynamic rule fires every time-
step, which corresponds to the asynchronous semantics in our paper. In [41], action
rules are learned using inductive logic programming but require as input background
knowledge. In [3], the authors use logic program as a meta-interpreter to explain

20 Tony Ribeiro et al.

system behaviour as stepwise transitions in Petri nets. They produce new possible
traces of execution, while our output is an interaction model of the systems that aims
to explain the observed behavior. In [21], Klarner et al. provide an optimization-based
method for computing model reduction by exploiting the prime implicant graph of
the Boolean network. This graph is similar to the rules of PO(T) that can be learned
by GULA. But while [21] works directly on a model, we try to learn a model. In [23],
Lähdesmäki et al.. propose algorithms to infer the truth table of Boolean functions
of gene regulatory network from gene expression data. The logic programs learned by
GULA are a generalization of those truth tables. [10,11] proposes the Apperception
Engine, a system able to learn programs from a sequence of state transitions. The
first difference is that our approach is limited to propositional atoms while first order
logic is considered in this approach. Furthermore, the Aperception Engine can predict
the future, retrodict the past, and impute missing intermediate values, while we only
consider rules to explain what can happen in the future. But our input can represent
transitions from multiple trajectories, while they consider a single trajectory, and
thus our setting can be considered as a generalized apperception task. Another major
difference with this work is that they only consider deterministic inputs. In [24,25,26,
27] the authors propose a powerful and general framework named ILASP for learning
answer set programs. Our learning setting can be represented using ILASP when
variables are Boolean but our notion of optimality and thus our learning goal differs.
ILASP minimizes a program as a whole, i.e., the sum of the length of all rules and
constraints. In contrast, we aim to minimize each rules and constraints individually
and expect to find as many of them in practice and all of them in theory to ensure
good properties regarding dynamical semantics.

8 Conclusions

While modeling a dynamical system, the choice of a proper semantics is critical for
the relevance of the subsequent analysis of the dynamics. The works presented in
this paper aim to widen the possibilities offered to a system designer in the learning
phase. Until now, the systems that the LFIT framework handles were restricted to
synchronous deterministic dynamics. However, many other dynamics exist in the field
of logical modeling, in particular the asynchronous and generalized semantics which
are of deep interest to model biological systems.

In this paper, we proposed a modeling of memory-less multi-valued dynamic sys-
tems in the form of annotated logic programs and a first algorithm, GULA, that
learns optimal programs for a wide range of semantics (see Theorem 2) including
notably the asynchronous and generalized semantics. But the semantics need to be
assumed to use the learned model, in order to produce predictions for example. Our
second proposition is a new approach that makes a decisive step in the full automation
of logical learning of models directly from time series, e.g., gene expression measure-
ments along time (whose intrinsic semantics is unknown or even changeable). The
Synchronizer algorithm that we proposed is able to learn a whole system dynam-
ics, including its semantics, in the form of a single propositional logic program. This
logic program explains the behavior of the system in the form of human readable
propositional logic rules, as well as, be able to reproduce the behavior of the observed
system without the need of knowing its semantics. Furthermore, the semantics can
be explained, without any previous assumption, in the form of human readable rules
inside the logic program.

After having exhibited the benefits of our approach on several benchmarks, fur-
ther work will consist in a practical use of our method on open problems coming from
systems biology. An approximate version of the method is a necessity to tackle large
systems and is under development [36]. In addition, lack of observations and noise
handling is also an issue when working with biological data. Data science methodolo-
gies and deep learning techniques can then be good candidate to tackle this challenge.
The combination of such techniques to improve our method may be of prime interest
to tackle real data.

Learning any semantics for dynamical systems represented by logic programs 21

References

1. Akutsu, T., Kuhara, S., Maruyama, O., Miyano, S.: Identification of genetic networks by
strategic gene disruptions and gene overexpressions under a boolean model. Theoretical
Computer Science 298(1), 235–251 (2003)

2. Apt, K.R., Blair, H.A., Walker, A.: Towards a theory of declarative knowledge. Foundations
of deductive databases and logic programming p. 89 (1988)

3. Bain, M., Srinivasan, A.: Identification of biological transition systems using meta-
interpreted logic programs. Machine Learning 107(7), 1171–1206 (2018)

4. Blair, H.A., Subrahmanian, V.: Paraconsistent foundations for logic programming. Journal
of non-classical logic 5(2), 45–73 (1988)

5. Blair, H.A., Subrahmanian, V.: Paraconsistent logic programming. Theoretical Computer
Science 68(2), 135 – 154 (1989). DOI http://dx.doi.org/10.1016/0304-3975(89)90126-6.
URL http://www.sciencedirect.com/science/article/pii/0304397589901266

6. Chatain, T., Haar, S., Kolčák, J., Paulevé, L., Thakkar, A.: Concurrency in boolean networks.
Natural Computing 19(1), 91–109 (2020)

7. Chatain, T., Haar, S., Koutny, M., Schwoon, S.: Non-atomic transition firing in contextual
nets. In: International Conference on Applications and Theory of Petri Nets and Concur-
rency, pp. 117–136. Springer (2015)

8. Chatain, T., Haar, S., Paulevé, L.: Boolean networks: Beyond generalized asynchronicity.
In: AUTOMATA 2018. Springer (2018)

9. Dubrova, E., Teslenko, M.: A SAT-based algorithm for finding attractors in synchronous
boolean networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics
(TCBB) 8(5), 1393–1399 (2011)

10. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Making sense of sensory
input. arXiv preprint 1910.02227 (2019)

11. Evans, R., Hernandez-Orallo, J., Welbl, J., Kohli, P., Sergot, M.: Evaluating the apperception
engine. arXiv preprint 2007.05367 (2020)

12. Fitting, M.: Bilattices and the semantics of logic programming. The Journal of Logic Pro-
gramming 11(2), 91 – 116 (1991). DOI http://dx.doi.org/10.1016/0743-1066(91)90014-G.
URL http://www.sciencedirect.com/science/article/pii/074310669190014G

13. Ginsberg, M.L.: Multivalued logics: A uniform approach to reasoning in artificial intelligence.
Computational intelligence 4(3), 265–316 (1988)

14. Inoue, K.: Logic programming for boolean networks. In: IJCAI Proceedings-International
Joint Conference on Artificial Intelligence, vol. 22, p. 924 (2011)

15. Inoue, K.: Logic programming for boolean networks. In: Proceedings of the Twenty-Second
international joint conference on Artificial Intelligence-Volume Volume Two, pp. 924–930.
AAAI Press (2011)

16. Inoue, K., Ribeiro, T., Sakama, C.: Learning from interpretation transition. Machine Learn-
ing 94(1), 51–79 (2014)

17. Inoue, K., Sakama, C.: Oscillating behavior of logic programs. In: Correct Reasoning, pp.
345–362. Springer (2012)

18. Kaplan, S., Bren, A., Dekel, E., Alon, U.: The incoherent feed-forward loop can generate
non-monotonic input functions for genes. Molecular systems biology 4(1), 203 (2008)

19. Kauffman, S.A.: Metabolic stability and epigenesis in randomly constructed genetic nets.
Journal of theoretical biology 22(3), 437–467 (1969)

20. Kifer, M., Subrahmanian, V.: Theory of generalized annotated logic programming and its
applications. Journal of Logic Programming 12(4), 335–367 (1992)

21. Klarner, H., Bockmayr, A., Siebert, H.: Computing symbolic steady states of boolean net-
works. In: Cellular Automata, pp. 561–570. Springer (2014)

22. Klarner, H., Streck, A., Siebert, H.: PyBoolNet: a python package for the generation, analysis
and visualization of boolean networks. Bioinformatics 33(5), 770–772 (2016). DOI 10.1093/
bioinformatics/btw682. URL https://doi.org/10.1093/bioinformatics/btw682

23. Lähdesmäki, H., Shmulevich, I., Yli-Harja, O.: On learning gene regulatory networks under
the boolean network model. Machine Learning 52(1-2), 147–167 (2003)

24. Law, M., Russo, A., Broda, K.: Inductive learning of answer set programs. In: European
Workshop on Logics in Artificial Intelligence, pp. 311–325. Springer (2014)

25. Law, M., Russo, A., Broda, K.: Learning weak constraints in answer set programming. arXiv
preprint arXiv:1507.06566 (2015)

26. Law, M., Russo, A., Broda, K.: Iterative learning of answer set programs from context
dependent examples. Theory and Practice of Logic Programming 16(5-6), 834–848 (2016).
DOI 10.1017/S1471068416000351

27. Law, M., Russo, A., Broda, K.: The ilasp system for inductive learning of answer set pro-
grams. arXiv preprint arXiv:2005.00904 (2020)

28. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for
inference of genetic network architectures (1998)

29. Martınez, D., Alenya, G., Torras, C., Ribeiro, T., Inoue, K.: Learning relational dynamics
of stochastic domains for planning. In: Proceedings of the 26th International Conference on
Automated Planning and Scheduling (2016)

http://www.sciencedirect.com/science/article/pii/0304397589901266
http://www.sciencedirect.com/science/article/pii/074310669190014G
https://doi.org/10.1093/bioinformatics/btw682

22 Tony Ribeiro et al.

30. Mart́ınez Mart́ınez, D., Ribeiro, T., Inoue, K., Alenyà Ribas, G., Torras, C.: Learning prob-
abilistic action models from interpretation transitions. In: Proceedings of the Technical
Communications of the 31st International Conference on Logic Programming (ICLP 2015),
pp. 1–14 (2015)

31. Naldi, A., Hernandez, C., Abou-Jaoudé, W., Monteiro, P.T., Chaouiya, C., Thieffry, D.:
Logical modeling and analysis of cellular regulatory networks with ginsim 3.0. Frontiers in
physiology 9, 646 (2018)

32. Noual, M., Sené, S.: Synchronism versus asynchronism in monotonic boolean automata net-
works. Natural Computing 17(2), 393–402 (2018)

33. Pal, R., Ivanov, I., Datta, A., Bittner, M.L., Dougherty, E.R.: Generating boolean networks
with a prescribed attractor structure. Bioinformatics 21(21), 4021–4025 (2005)

34. Pasula, H.M., Zettlemoyer, L.S., Kaelbling, L.P.: Learning symbolic models of stochastic
domains. Journal of Artificial Intelligence Research 29, 309–352 (2007)

35. Ribeiro, T., Folschette, M., Magnin, M., Roux, O., Inoue, K.: Learning dynamics with syn-
chronous, asynchronous and general semantics. In: International Conference on Inductive
Logic Programming, pp. 118–140. Springer (2018)

36. Ribeiro, T., Folschette, M., Trilling, L., Glade, N., Inoue, K., Magnin, M., Roux, O.: Les
enjeux de l’inférence de modèles dynamiques des systèmes biologiques à partir de séries
temporelles. In: C. Lhoussaine, E. Remy (eds.) Approches symboliques de la modélisation
et de l’analyse des systèmes biologiques. In edition.

37. Ribeiro, T., Inoue, K.: Learning prime implicant conditions from interpretation transition.
In: Inductive Logic Programming, pp. 108–125. Springer (2015)

38. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning delayed influences of biological
systems. Frontiers in Bioengineering and Biotechnology 2, 81 (2015)

39. Ribeiro, T., Magnin, M., Inoue, K., Sakama, C.: Learning multi-valued biological models
with delayed influence from time-series observations. In: 2015 IEEE 14th International
Conference on Machine Learning and Applications (ICMLA), pp. 25–31 (2015). DOI 10.
1109/ICMLA.2015.19

40. Ribeiro, T., Tourret, S., Folschette, M., Magnin, M., Borzacchiello, D., Chinesta, F., Roux,
O., Inoue, K.: Inductive learning from state transitions over continuous domains. In:
N. Lachiche, C. Vrain (eds.) Inductive Logic Programming, pp. 124–139. Springer Inter-
national Publishing, Cham (2018)

41. Schüller, P., Benz, M.: Best-effort inductive logic programming via fine-grained cost-based
hypothesis generation. Machine Learning 107(7), 1141–1169 (2018)

42. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical description.
Journal of Theoretical Biology 153(1), 1–23 (1991)

43. Van Emden, M.H.: Quantitative deduction and its fixpoint theory. The Journal of Logic
Programming 3(1), 37–53 (1986)

44. Van Emden, M.H., Kowalski, R.A.: The semantics of predicate logic as a programming
language. Journal of the ACM (JACM) 23(4), 733–742 (1976)

Learning any semantics for dynamical systems represented by logic programs 23

A Appendix: proofs of Section 2.2

Theorem 11 (Theorem 1: double domination is equality) Let R1, R2 be twoMVL rules.
If R1 ≤ R2 and R2 ≤ R1 then R1 = R2.

Proof. Let R1, R2 be two MVL rules such that R1 ≤ R2 and R2 ≤ R1. Then h(R1) = h(R2)
and b(R1) ⊆ b(R2) and b(R2) ⊆ b(R1), hence b(R1) ⊆ b(R2) ⊆ b(R1) thus b(R1) = b(R2) and
R1 = R2. ut

Proposition 5 (Proposition 1: uniqueness of optimal program) Let T ⊆ SF ×ST . The
MVLP optimal for T is unique and denoted PO(T).

Proof. Let T ⊆ SF ×ST . Assume the existence of two distinctMVLPs optimal for T , denoted
by PO1 (T) and PO2 (T) respectively. Then w.l.o.g. we consider that there exists a MVL rule
R such that R ∈ PO1 (T) and R 6∈ PO2 (T). By the definition of a suitable program, R is not
conflicting with T and there exists a MVL rule R2 ∈ PO2 (T), such that R ≤ R2. Using the
same definition, there exists R1 ∈ PO1 (T) such that R2 ≤ R1 since R2 is not conflicting with T .
Thus R ≤ R1 and by the definition of an optimal program R1 ≤ R. By Theorem 1, R1 = R and
thus R ≤ R2 ≤ R hence R2 = R, a contradiction. ut

B Appendix: proofs of Section 3

Theorem 12 (Theorem 2: Pseudo-idempotent Semantics and Optimal DMVLP) Let
DS be a dynamical semantics. For all P a DMVLP, if:

• ∃pick ∈ (SF × ℘(AT)→ ℘(ST) \ {∅}) so that
(1) ∀D ⊆ AT , pick(s,

⋃
s′∈pick(s,D)

s′) = pick(s,D) ∧

(2) ∀s ∈ SF ,
(
DS(P)

)
(s) = pick(s,Ccl(s, P)),

then: for all P a DMVLP, DS(PO(DS(P)))) = DS(P).

Proof.
Let DS be a dynamical semantics, P a DMVLP, pick a function from SF × ℘(AT) to

℘(ST) \ {∅} with the properties described in (1) and (2).
In this proof, we use the following equivalent notations, for all (s, s′) ∈ SF × ST : (s, s′) ∈

DS(P) ⇐⇒ s′ ∈
(
DS(P)

)
(s).

By Definition 10, first(DS(P)) = SF (∗).
By Definition 9, PO(DS(P)) realizes DS(P). Therefore, according to Definition 5, for all

(s, s′) in DS(P) and vval in s′, because v ∈ T , there exists R in PO(DS(P)) so that var(h(R)) =
v∧Rus∧h(R) ∈ s′. Because of Definition 3, a discrete state cannot contain two different atoms
on the same variable: from var(h(R)) = v ∧ vval ∈ s′ ∧ h(R) ∈ s′, it comes: h(R) = vval.
Moreover, by definition of Ccl, because R ∈ P ∧ R u s, we have: vval ∈ Ccl(s, PO(DS(P))). By
generalizing on all vval, it comes: s′ ⊆ Ccl(s, PO(DS(P))). By generalizing on all s′, it comes:
∀s ∈ SF ,

⋃
s′∈(DS(P))(s)

s′ ⊆ Ccl(s, PO(DS(P))) (†).

By Definition 9, PO(DS(P)) is also consistent with DS(P). Therefore, according to Defini-
tion 7: ∀R ∈ PO(DS(P)), ∀s ∈ first(DS(P)), R u s =⇒ ∃s′ ∈

(
DS(P)

)
(s), h(R) ∈ s′. From (∗),

first(DS(P)) = SF , thus ∀s ∈ SF ,∀vval ∈ Ccl(s, PO(DS(P))), ∃s′ ∈ DS(P)(s), vval ∈ s′. Thus:
∀s ∈ SF ,Ccl(s, PO(DS(P))) ⊆

⋃
s′∈(DS(P))(s)

s′ (§).

From (†) and (§): ∀s ∈ SF ,Ccl(s, PO(DS(P))) =
⋃

s′∈(DS(P))(s)

s′ (?).

From (?) and (2): ∀s ∈ SF ,Ccl(s, PO(DS(P))) =
⋃

s′∈pick(s,Ccl(s,P))

s′ (♦).

Let s in SF .

– From (2):
(
DS(PO(DS(P)))

)
(s) = pick(s,Ccl(s, PO(DS(P)))).

– From (♦):
(
DS(PO(DS(P)))

)
(s) = pick(s,

⋃
s′∈pick(s,Ccl(s,P))

s′

– From (1):
(
DS(PO(DS(P)))

)
(s) = pick(s,Ccl(s, P))

– From (2):
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s).

Thus: ∀s ∈ SF ,
(
DS(PO(DS(P)))

)
(s) =

(
DS(P)

)
(s), QED. ut

Theorem 13 (Theorem 3 Semantics-free correctness) Let P be a DMVLP.

24 Tony Ribeiro et al.

– Tsyn(P) = Tsyn(PO(Tsyn(P))),
– Tasyn(P) = Tasyn(PO(Tasyn(P))),
– Tgen(P) = Tgen(PO(Tgen(P))).

Proof. Let d ∈ (SF ×℘(T)→ ℘(AT)), so that ∀s ∈ SF , ∀W ⊆ T ,W ⊆ var(d(s,W))∧ d(s, ∅) ⊆
d(s,W).

Let p be a function from SF × ℘(AT) to ℘(ST) \ {∅} so that ∀s ∈ SF , ∀D ⊆ AT , p(s,D) =
{s′ ∈ ST | s′ ⊆ D ∪ d(s, T \ var(D))}. Since T \ var(D) ⊆ var(d(s,W)), ∅ 6∈ p(s,D). Thus from
Definition 14, ∀s ∈ SF , Tsyn(P)(s) = p(s,Ccl(s, P)) (property 1).

Since ∀W ⊆ T , d(s, ∅) ⊆ d(s,W), ∀D ⊆ AT , d(s, ∅) ⊆ D∪d(s, T \var(D)), thus d(s, ∅) ⊆
⋃

s′∈p(s,D)

s′

(property 2).
Moreover, ∀D ⊆ AT , let D′ :=

⋃
s′∈p(s,D)

s′. Straightforwardly: D′ = D∪d(s, T \var(D)) because we

can always create a state with any atom in D ∪ d(s, T \ var(D)), thus all atoms of this set are in
D′, and conversely (property 3). p(s,D′) = {s′ ∈ ST | s′ ⊆ D′∪d(s, T \var(D′))} by definition of
p. p(s,D′) = {s′ ∈ ST | s′ ⊆ D′∪d(s, ∅)} since var(D′) = T by definition of D′ and p. p(s,D′) =
{s′ ∈ ST | s′ ⊆ D′} from property 2. p(s,D′) = {s′ ∈ ST | s′ ∈ D ∪ d(s, T \ var(D))} = p(s,D)
from property 3. Therefore p respects (1). Since Tsyn(P) = p(s,Ccl(s, P)), p also respects (2).
Thus, Tsyn(P) = Tsyn(PO(Tsyn(P))) according to Theorem 2.

By definition of Tgen: ∀s ∈ SF , (Tgen(P))(s) = {s′ ∈ ST | s′ ⊆ Ccl(s, P) ∪ d(s, T \
var(Ccl(s, P)))} with spF→T (s) ⊆ d(s, ∅). Thus, the same proof gives Tgen(P) = Tgen(PO(Tgen(P)))
according to Theorem 2.

[Let us show that: Tasyn(P) = Tasyn(PO(Tasyn(P))).] Let p be a function from SF ×℘(AT)

to ℘(ST) \ {∅} so that ∀s ∈ SF , ∀D ⊆ AT :

p(s,D) = {s′ ∈ ST | s′ ⊆ D ∪ d(s, T \ var(D)) ∧(
|s′ \ spF→T (s)| − |T \ T | = 1 ∨ (D ∪ d(s, T \ var(D)))T = spF→T (s))}

where AT and DT are restriction notations from Definition 12. From Definition 15, we have:
TasynP = p(s,Ccl(s, P)).

[Let us show that: ∀D ⊆ AT , p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).] Let D in AT .

– If (D ∪ d(s, T \ var(D)))T = spF→T (s), then
⋃

s′∈p(s,D)

s′ = D and thus p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).

– If there exists vval ∈ AT so that var(D ∪ d(s, T \ var(D)) \ spF→T (s))∩T = {v}, then for all

state s′ ∈ p(s,D), s′ differs from s on the regular variable v and on variables in T \T . Thus,⋃
s′∈p(s,D)

s′ = (D∪d(s, T \var(D)))\{vval′ | vval′ ∈ s}. By construction of p, it comes: p(s,
⋃

s′∈p(s,D)

s′) =

p(s,D) because vval′ ∈ s′ would contradict the condition |s′ \ spF→T (s)| − |T \ T | = 1.

– Otherwise, |var(D ∪ d(s, T \ var(D)) \ spF→T (s)) ∩ T | > 1 then there exists two states
s′1, s

′
2 ∈ p(s,D), so that they differ from s on a different regular variable each. Espe-

cially, by construction of p, spF→T (s) ⊆ s′1 ∪ s′2 ⊆ D ∪ d(s, T \ var(D)). Therefore,
⋃

s′∈p(s,D)

s′ ⊆

D ∪ d(s, T \ var(D)). Finally, and by definition of p, D ∪ d(s, T \ var(D)) ⊆
⋃

s′∈p(s,D)

s′ because for

each atom in D ∪ d(s, T \ var(D)), it is possible to build a state s′ containing it: either as
the projection of the initial state s or as the only variable changing its value in s′ compared
to spF→T (s). In conclusion: D ∪ d(s, T \ var(D)) =

⋃
s′∈p(s,D)

s′, which gives: p(s,
⋃

s′∈p(s,D)

s′) = p(s,D).

Thus, Tasyn(P) = Tasyn(PO(Tasyn(P))), according to Theorem 2. ut

C Appendix: proofs of Section 4.1

Theorem 14 (Theorem 4: properties of the least revision) Let R be a MVL rule and
s ∈ SF such that R u s. Let SR := {s′ ∈ SF | R u s′} and Sspe := {s′ ∈ SF | ∃R′ ∈
Lspe(R, s,A,F), R′ u s′}.

Let P be a DMVLP and T, T ′ ⊆ SF ×ST such that |first(T)| = 1∧ first(T)∩ first(T ′) = ∅.
The following results hold:

1. Sspe = SR \ {s},
2. Lrev(P, T,A,F) is consistent with T ,

Learning any semantics for dynamical systems represented by logic programs 25

3.
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ′,

4.
P
↪−→ T =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→ T ,

5. P is complete =⇒ Lrev(P, T,A,F) is complete.

Proof.

1. First, let us suppose that ∃s′′ 6∈ SR \ {s} such that ∃R′ ∈ Lspe(R, s,A,F), R′ u s′′. By
definition of matching R′ u s′′ =⇒ b(R′) ⊆ s′′. By definition of least specialization,

b(R′) = b(R) ∪ {vval}, vval′ ∈ s, vval′′ 6∈ b(R), val 6= val′. Let us suppose that s′′ = s, then
b(R′) 6⊆ s′′ since vval ∈ b(R′) and vval 6∈ s, this is a contradiction. Let us suppose that
s′′ 6= s then ¬(R u s′′), thus b(R) 6⊆ s′′ and b(R′) 6⊆ s′′, this is a contradiction.
Second, let us assume that ∃s′′ ∈ SR \ {s} such that ∀R′ ∈ Lspe(R, s,A,F),¬(R′ u s′′). By
definition of SR, Rus′′. By definition of matching ¬(R′us′′) =⇒ b(R′) 6⊆ s′′. By definition

of least specialization, b(R′) = b(R)∪{vval}, vval′ ∈ s, val 6= val′. By definition of matching
R u s′′ =⇒ b(R) ⊆ s′′ =⇒ s′′ = b(R)∪ I, b(R)∩ I = ∅ and thus b(R′) 6⊆ s′′ =⇒ vval 6∈ I.

The assumption implies that ∀vval′ ∈ I, ∀R′ ∈ Lspe(R, s,A,F), vval ∈ b(R′), val 6= val′.

By definition of least specialization, it implies that vval′ ∈ s and thus I = s \ b(R) making
s′′ = s, which is a contradiction.
Conclusion: Sspe = SR \ {s}

2. By definition of a consistent program, if two sets of MVL rules SR1, SR2 are consistent
with T then SR1 ∪ SR2 is consistent with T . Let RP = {R ∈ P | R u s, ∀(s, s′) ∈
T, h(R) 6∈ s′} be the set of rules of P that conflict with T . By definition of least revision
Lrev(P, T,A,F) = (P \ RP) ∪

⋃
R∈RP

Lspe(R, s,A,F). The first part of the expression P \ RP

is consistent with T since @R′ ∈ P \ RP such that R′ conflicts with T . The second part of
the expression

⋃
R∈RP

Lspe(R, s,A,F) is also consistent with T : @R′ ∈ Lspe(R, s,A,F), R′ u s

thus @R′ ∈ Lspe(R, s,A,F) that conflict with T and
⋃

R∈RP

Lspe(R, s,A,F) is consistent with T .

Conclusion: Lrev(P, T,A,F) is consistent with T .

3. Let (s1, s2) ∈ T ′ thus s1 6= s. From definition of realization, vval ∈ s2 =⇒ ∃R ∈ P, h(R) =

vval, R u s1. If ¬R u s then R ∈ Lrev(P, T,A,F) and
Lrev(P,T,A,F)
↪−−−−−−−−−−→ (s1, s2). If R u s, from

the first point ∃R′ ∈ Lspe(R, s,A,F), R′us1 and since h(R′) = h(R) = vval,
Lrev(P,T,A,F)
↪−−−−−−−−−−→

(s1, s2). Applying this reasoning on all elements of T ′ implies that
P
↪−→ T ′ =⇒

Lrev(P,T,A,F)
↪−−−−−−−−−−→

T ′.

4. Let (s1, s2) ∈ T , since
P
↪−→ T by definition of realization ∀vval ∈ s2,∃R ∈ P,R u s1, h(R) =

vval. By definition of conflict, R is not in conflict with T thus R ∈ Lrev(P, T,A,F) and
Lrev(P,T,A,F)
↪−−−−−−−−−−→ T .

5. Let (s1, s2) ∈ SF × ST , if P is complete, then by definition of a complete program ∀v ∈
V, ∃R ∈ P,R u s1, var(h(R)) = v. If ¬(R u s) then R ∈ Lrev(P, T,A,F). If R u s, from
the first point ∃R′ ∈ Lspe(R, s,A,F), R′ u s1 and thus R′ ∈ Lrev(P, T,A,F) and since
var(h(R′)) = var(h(R)) = v, Lrev(P, T,A,F) is complete.

ut

Proposition 6 (Proposition 2: optimal program of empty set) PO(∅) = {vval ← ∅ |
vval ∈ AT }.

Proof. Let P = {vval ← ∅ | vval ∈ AT }. The MVLP P is consistent and complete by

construction. Like all MVLPs,
P
↪−→ ∅ and there is no transition in ∅ to match with the rules in

P . In addition, by construction, the rules of P dominate all MVL rules. ut

Theorem 15 (Theorem 5: least revision is suitable) Let s ∈ SF and T, T ′ ⊆ SF × ST
such that |first(T ′)| = 1 ∧ first(T) ∩ first(T ′) = ∅. Lrev(PO(T), T ′,A,F) is a DMVLP suitable
for T ∪ T ′.

Proof. Let P = Lrev(PO(T), T ′). Since PO(T) is consistent with T , by Theorem 4, P is also

consistent with T and thus consistent with T ′ ∪T . Since PO(T) realizes T by Theorem 4,
P
↪−→ T .

Since s 6∈ first(T), a MVL rule R such that b(R) = s does not conflict with T . By definition of

suitable program ∃R′ ∈ PO(T), R ≤ R′, thus
PO(T)
↪−−−−→ T ′. Since

PO(T)
↪−−−−→ T ′ by Theorem 4

P
↪−→ T ′

26 Tony Ribeiro et al.

and thus
P
↪−→ T ∪ T ′. Since PO(T) is complete, by Theorem 4, P is also complete. To prove that P

verifies the last point of the definition of a suitableMVLP, let R be aMVL rule not conflicting
with T ∪T ′. Since R is also not conflicting with T , there exists R′ ∈ PO(T) such that R ≤ R′. If
R′ is not conflicting with T ′, then R′ will not be revised and R′ ∈ P , thus R is dominated by a
rule of P . Otherwise, R′ is in conflict with T ′, thus R′us and ∀(s, s′) ∈ T ′, h(R′) 6∈ s′. Since R is
not in conflict with T ′ and h(R) = h(R′), since R ≤ R′ then b(R) = b(R′)∪I, ∃vval ∈ I, vval 6∈ s.
By definition of least revision and least specialization, there is a rule R′′ ∈ Lspe(R′, s) such that

vval ∈ b(R′′) and since R′′ = h(R′)← b(R′)∪ vval thus R ≤ R′′. Thus R is dominated by a rule
of P . ut

D Appendix: proofs of Section 4

Theorem 16 (Theorem 6: GULA Termination, soundness, completeness, optimal-
ity) Let T ⊆ SF × ST .

(1) Any call to GULA on finite sets terminates,
(2) GULA(A, T,F , T) = PO(T),
(3) ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′}.

Proof. (1) The algorithm of GULA iterates on finite sets, and thus terminates.
(3) Let T ⊆ SF ×ST . The algorithm iterates over each atom vval ∈ A′, A′ ⊆ AT iteratively

to extract all states s such that (s, s′) ∈ T =⇒ vval 6∈ s′. This is equivalent to group the
transitions by initial state: generate the set TT = {T ′s ⊆ T | s ∈ SF , first(T ′s) = {s} ∧ ∀s′ ∈
ST , (s, s′) ∈ T =⇒ (s, s′) ∈ T ′s}.

To prove that ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′} and thus
GULA(A, T,F , T) = PO(T), it suffices to prove that the main loop (Algorithm 3, lines 19–46)
preserves the invariant P val

v = {R ∈ PO(Ti) | h(R) = vval ∈ A′} after the ith iteration where
Ti is the union of all set of transitions of TT already selected line 19 after the ith iteration for
all i from 0 to |TT |.

Line 18 initializes Pvval to {vval ← ∅}. Thus by Proposition 2, after line 18, Pvval = {R ∈
PO(∅) | h(R) = vval}.

Let us assume that before the (i + 1)th iteration of the main loop, Pvval = {R ∈ PO(Ti) |
h(R) = vval}. Through the loop of lines 21–24, P ′ = {R ∈ PO(Ti) | R does not conflict with Ti+1∧
h(R) = vval} is computed. Then the set P ′′ =

⋃
R∈PO(Ti)\P ′∧h(R)=vval Lspe(R, s,A,F) is it-

eratively build through the calls to least specialization at line 27 and the dominated rules
are pruned as they are detected by the loop of lines 28–45. Each revised rule can be dominated
by a rule in {R ∈ PO(Ti)\P ′} or another revised rule and thus dominance must be checked
from both. But only a revised rule (R ∈ P ′′) can be dominated by a revised rule: if a rule in
{R ∈ PO(Ti)\P ′} is dominated by a revised rule, then it was dominated by its original rule in
{R ∈ PO(Ti)} which is impossible since Pvval = {R ∈ PO(Ti) | h(R) = vval}. Thus it is safe to
only check domination of the revised rules by previous rules (PO(Ti) \ P ′) or by other revised
rules (P ′′). Thus by Theorem 5 and Proposition 3, Pvval = {R ∈ PO(Ti+1) | h(R) = vval}
after the (i + 1)th iteration of the main loop. By induction, at the end of all the loop lines 19–
46, Pvval = {R ∈ PO(

⋃
T ′∈TT T ′) | h(R) = vval} = {R ∈ PO(T) | h(R) = vval} since

it has iterated on all elements of TT . Since the same operation holds for each vval ∈ A′,
P =

⋃
vval∈A′ Pvval = {R ∈ PO(T) | h(R) = vval ∧ vval ∈ A′} after all iterations of the loop of

line line 6. Finally: ∀A′ ⊆ AT ,GULA(AF ∪ A′, T,F , T) = {R ∈ PO(T) | h(R) ∈ A′}.
(2) Thus GULA(A, T,F , T) = GULA(AF ∪ AT , T,F , T) = {R ∈ PO(T) | h(R) ∈ AT } =

PO(T). ut

Theorem 17 (Theorem 7: GULA Complexity) Let T ⊆ SF × ST be a set of transitions,
Let n := max(|F|, |T |) and d := max({|dom(v)|) ∈ N | v ∈ F ∪ T }. The worst-case time com-
plexity of GULA when learning from T belongs to O(|T |2 + |T |×(2n4d2n+2 +2n3dn+1)) and its
worst-case memory use belongs to O(d2n+2ndn+1 +ndn+2). Proof. Let df := max({|dom(v)| ∈
N | v ∈ F}) (resp. dt := max({|dom(v)| ∈ N | v ∈ T })) be the maximal number of values of
features (resp. target) variables. The algorithm takes as input a set of transition T ⊆ SF × ST

bounding the memory use to O(d
|F|
f)×d

|T |
t) = O(d2n). The learning is performed iteratively for

each possible rule head vval ∈ A′ ⊆ AT . The extraction of negative example requires to compare
each transition of T one to one and thus has a complexity of op1 = O(|T |2). Those transitions are

stored in Negvval which size is at most |SF | extending the memory use to O(d
|F|
f × d

|T |
t + d

|F|
f)

which is bounded by O(d2n + dn).
The learning phase revises a set of rule Pvval where each rule has the same head vval.

There are at most d
|F|
f ≤ dn possible rule bodies and thus |Pvval | ≤ d

|F|
t ≤ dn, the memory

Learning any semantics for dynamical systems represented by logic programs 27

use of |Pvval | is then O(d
|F|
t) extending the memory bound to O(d

|F|
f × d

|T |
t + d

|F|
f) + d

|F|
f) =

O(d
|F|
f × d

|T |
t + 2d

|F|
f)), which is bound by O(d2n + 2dn).

For each state s of Negvval , each rule of Pvval that matches s are extracted into a set of

rules Rm. This operation has a complexity of op2 = O(d
|F|
f × |F|) bound by O(ndn). Each rule

of Rm are then revised using least specialization, this operation has a complexity of O(|F|2)

bound by O(n2). |Rm| ≤ d
|F|
f ≤ dn thus the revision of all matching rules is op3 = O(d

|F|
f ×n2)

bounded by O(dn × n2). All revisions are stored in LS and there are at most df × |F| ≤ dn

revisions for each rule, thus |LS| ≤ d
|F|
f × df |F| ≤ dn × dn extending the memory bound to

O(d
|F|
f × d

|T |
t + 2d

|F|
f) + df |F| × d

|F|
f) bounded by O(d2n + 2dn + ndn+1).

Learning is performed for each vval ∈ A′ ⊆ T , thus the memory usage of GULA is therefore

O(d
|F|
f ×d

|T |
t + |A′|(2d|F|f +df |F|×d

|F|
f)), bounded by O(d

|F|
f ×d

|T |
t +tdt(2d

|F|
f)+df |F|×d

|F|
f))

wich is bounded by O(d2n + dn(2dn + ndn+1)) = O(d2n + 2ndn+1 + ndn+2).
The worst-case memory use of GULA is thus O(d2n + 2ndn+1 + ndn+2).
All rules of LS are compared to the rule of Pvval for domination check, this operation

has a complexity of op4 = O(2 × |LS| × |Pvval | × |F|2) = O(2 × d
|F|
f × df |F| × dn × n2) =

O(2× |F|3 × d
2|F|+1
f) which is bounded by O(2× n3 × d2n+1).

Learning is performed for each vval ∈ A′ ⊆ T , |A′| ≤ |T |dt, thus the complexity is bound by

O(op1 + |T |× |T |×dt(op2 +op3 +op4)) = O(|T |2 + |T | times|T |×dt(d
|F|
f ×|F|+d

|F|
f ×n2 +2×

|F|3× d
2|F|+1
f)) which is bounded by O(|T |2 + |T | ×nd(dn×n2 + dn×n2 + 2×n3× d2n+1)) =

O(|T |2 + |T | × nd(2n3d2n+1 + 2n2dn)) = O(|T |2 + |T | × (2n4d2n+2 + 2n3dn+1)).
The computational complexity of GULA is thus O(|T |2 + |T | × (2n4d2n+2 + 2n3dn+1)).

ut

E Appendix: proofs of Section 5

Theorem 18 (Theorem 8: Optimal DMVLP and constraints correctness under syn-
chronous constrainted semantics) Let T ⊆ SF × ST , it holds that T = Tsyn−c(PO(T) ∪
C′O(T)).

Proof. From Definition 9, ∀(s, s′) ∈ T, s′ ⊆ Ccl(s, PO(T)) thus according to Definition 21,
s′ ∈ Tsyn−c(PO(T))(s), thus T ⊆ Tsyn−c(PO(T)) (property 1).

By Definition 24, ∀(s, s′) ∈ T, @C ∈ CO(T), C u (s, s′), thus since C′O(T) ⊆ CO(T), @C ∈
C′O(T), C u (s, s′) and then T ⊆ Tsyn−c(PO(T) ∪ C′O(T)) (property 2).

Let us suppose ∃(s, s′) ∈ Tsyn−c(PO(T) ∪ C′O(T)), (s, s′) /∈ T . From Definition 21, ∀vval ∈
s′, ∃R ∈ PO(T), b(R) u s, h(R) = vval. From Definition 24, ∃C′ ∈ CO(T), C′ u (s, s′) since
(s, s′) /∈ T . But since ∃(s, s′) ∈ Tsyn−c(PO(T) ∪C′O(T)), thus C′ /∈ C′O(T). From Definition 25,

it implies that ∃vval ∈ s′, @R ∈ PO(T), h(R) = vval, ∀w ∈ F , ∀val′, val′′ ∈ dom(w),wval′ ∈
b(R)∧wval′′ ∈ b(C) =⇒ val′ = val′′. Since b(C′) ⊆ (s∪s′), @R ∈ PO(T), h(R) = vval, b(R) ⊆ s,
thus s′ 6⊆ Ccl(s, PO(T)) and by Definition 21, (s, s′) 6∈ Tsyn−c(PO(T) ∪ C′O(T)), contradiction,
thus Tsyn−c(PO(T) ∪ C′O(T)) ⊆ T (property 3).

From property 2 and 3: Tsyn−c(PO(T) ∪ C′O(T)) = T . ut

Theorem 19 (Theorem 9: Synchronizer correctness) Given any set of transitions T ,
Synchronizer(A, T , F , T) outputs PO(T) ∪ C′O(T).

Proof. Let G1 = GULA(A, T,F , T) and G2 = GULA(AF∪T ∪{ε1}, T ′,F ∪ T , {ε}). From The-

orem 6, P = G1 = PO(T) (property 1).
Let P ′ = G2. By definition of T ′: ∀(s, s′) ∈ T ′, s′ = {ε0}. Thus ∀R ∈ P ′, R is consistent

with T ′ by Theorem 6, thus @(s, s′) ∈ T ′, R u s, since h(R) = ε1 because ∀(s, s′) ∈ T ′, s′ = {ε0}
(property 2).

From Theorem 6, P ′ = {R ∈ PO(T ′) | h(R) = ε1}. From Definition 9, PO(T ′) is complete
thus ∀(s, s′) ∈ SF × ST , ss′ := s ∪ s′, ss′ /∈ first(T ′), ∃R ∈ P ′, R u ss′ (property 3).

From definition of T ′, (s, s′) ∈ T =⇒ (s ∪ s′, {ε0}) ∈ T ′, thus ∀C ∈ P ′, C is a constraint
(property 4).

– From property 2 and 4: (s, s′) ∈ T =⇒ (s ∪ s′, {ε0}) ∈ T ′ =⇒ @C ∈ P ′, C u (s, s′), P ′

consistent with T .

28 Tony Ribeiro et al.

– From property 3 and 4: (s, s′) 6∈ T =⇒ (s ∪ s′) 6∈ first(T ′) =⇒ ∃R ∈ P ′, R u (s, s′), P ′ is
complete with T .

– If there exists a constraint consistent with T that is not dominated by a constraint in P ′ it
implies that a rule consistent with T ′ whose head is ε1 is not dominated by a rule in G2
wich is in contradiction with Theorem 6. All constraint consistent with T are dominated by
a constraint in P ′.

– From Theorem 6, the rules of G2 do not dominate eachover, thus the same hold for the
constraint of P ′.

– From Definition 24, P ′ = CO(T) (property 5).

Let P ′′ := {C ∈ P ′ | ∀vval ∈ b(C), v ∈ T ,∃R ∈ P, h(R) = vval ∧
(
∀w ∈ F , ∀val′, val′′ ∈

dom(w),wval′ ∈ b(R) ∧ wval′′ ∈ b(C) =⇒ val′ = val′′
)
}). Since P = PO(T) and P ′ = CO(T),

thus P ′′ = C′O(T), from Definition 25 (property 6).
Therefore, from property 1 and 6, Synchronizer(A, T,F , T) = PO(T) ∪ C′O(T).

ut

F Appendix: detailed pseudo-code of Section 4
Algorithms 3 and 4 provide the detailed pseudocode of GULA. Algorithm 3 learns from a set of
transitions T the conditions under which each value val of each variable v may appear in the next
state. Here, learning is performed iteratively for each value of variable to keep the pseudo-code
simple. But the process can easily be parallelized by running each loop in an independent thread,
bounding the run time to the variable for which the learning is the longest. In the case where
we are not interested about the dynamics of some variables, the parameter A′ and T ′ can be
reduced accordingly. The algorithm starts by the pre-processing of the input transitions. Lines 7–
16 of Algorithm 3 correspond to the extraction of Negvval , the set of all negative examples of the

appearance of vval in next state: all states such that v never takes the value val in the next state of
a transition of T . For efficiency purpose, it is important that the negatives examples are ordered in
a way that reduce the difference between nearby elements, for example lexicographically. Indeed,
it increase the proportion of revised rules (produced to satisfy a previous example) still consistent
with the following examples, reducing the average number of rules stored and thus checked in the
following processes. Those negative examples are then used during the following learning phase
(lines 17–46) to iteratively learn the set of rules PO(T). The learning phase starts by initializing
a set of rules Pvval to {R ∈ PO(∅) | h(R) = vval} = {vval ← ∅} (see Proposition 2).

Pvval is iteratively revised against each negative example neg in Negvval . All rules Rm of
Pvval that match neg have to be revised. In order for Pvval to remain optimal, the revision of each
Rm must not match neg but still matches every other state that Rm matches. To ensure that,
the least specialization (see Definition 17) is used to revise each conflicting rule Rm. Algorithm 4
shows the pseudo code of this operation. For each variable of F ′ so that b(Rm) has no condition
over it, a condition over another value than the one observed in state neg can be added (lines 3–
8). None of those revision match neg and all states matched by Rm are still matched by at least
one of its revisions.

Each revised rule can be dominated by a rule in Pvval or another revised rules and thus
dominance must be checked from both. But only revised rule can be dominated by a revised
rule: if a rule in Pvval is dominated by a revised rule, then it was dominated by its original rule
and thus could not be part of Pvval since it would have been discard in a previous step. Thus we
can safely only check the revised rules to discard the ones dominated by the new current revised
rule. The non-dominated revised rules are then added to Pvval .

Once Pvval has been revised against all negatives example of Negvval , Pvval = {R ∈ PO(T) |
h(R) = vval}, that is, Pvval is the subset of rules of the final optimal program having vval as
head. Finally, Pvval is added to P and the loop restarts with another atom. Once all values of
each variable have been treated, the algorithm outputs P which is then equal to PO(T).

Learning any semantics for dynamical systems represented by logic programs 29

Algorithm 3 GULA(A′,T ,F ′,T ′)

1: INPUT: A set of atoms A′, a set of transitions T ⊆ SF
′
× ST

′
, two sets of variables F′ and T ′

2: OUTPUT: PO(T)

3: T := {(s1, {s2 | (s1, s2) ∈ T}) | s1 ∈ first(T)} // Group transitions by initial state
4: T := sort(T) // Sort the transitions in Lexicographical order over initial state
5: P := ∅
6: for each vval ∈ A′ such that v ∈ T ′ do
7: // 1) Extraction of negative examples, (states where no successor contains vval)
8: Neg

vval := ∅
9: for each (s1, S) ∈ T do
10: negative example := true
11: for each s2 ∈ S do

12: if vval ∈ s2 then
13: negative example := false
14: break
15: if negative example == true then
16: Neg

vval := Neg
vval ∪ {s1}

17: // 2) Revision of the rules of vval to avoid matching of negative examples

18: P
vval := {vval ← ∅}

19: for each neg ∈ Neg
vval do

20: M := ∅ // Set of rules of P
vval that are in conflict

21: for each R ∈ P
vval do // Extract all rules that conflict and remove them from P

22: if b(R) ⊆ neg then
23: M := M ∪ {R}
24: Pval

v := Pval
v \ {R}

25: LS := ∅
26: for each Rm ∈ M do // Revise each conflicting rule
27: P ′ := least specialization(Rm, neg,A′,F′)

28: for each Rls ∈ P ′ do
29: dominated := false
30: for each Rp ∈ P

vval do // Check if the revision is dominated by P
vval

31: if b(Rp) ⊆ b(Rls) then

32: dominated := true
33: break
34: if dominated == true then
35: continue

36: for each Rp ∈ LS do // Check if the revision is dominated LS

37: if b(Rp) ⊆ b(Rls) then

38: dominated := true
39: break
40: if dominated == true then
41: continue

42: for each Rp ∈ LS do// Remove previous specialization that are now dominated

43: if b(Rls) ⊆ b(Rp) then

44: LS := LS \ {Rp}

45: LS := LS ∪ {Rls} // Add the revision

46: P
vval := P

vval ∪ LS // Add non-dominated revisions

47: P := P ∪ P
vval

48: return P

Algorithm 4 least specialization(R, s, A′, F ′) : specialize R to avoid matching of s

1: INPUT: a rule R, a state s, a set of atoms A′ and a set of variables F′
2: OUTPUT: a set of rules LS which is the least specialization of R by s according to F′ and A′.

3: LS := ∅
// Revise the rules by least specialization

4: for each vval ∈ s do
5: if v /∈ var(b(R)) then // Add condition for all values not appearing in s

6: for each vval′ ∈ A′, v ∈ F′, val′ 6= val do

7: R′ := h(R)← (b(R) ∪ {vval′})
8: LS := LS ∪ {R′}
9: return LS

30 Tony Ribeiro et al.

G Synchronizer Scalability

Benchmark size synchronous asynchronous general
n6s1c2 6 0.2s/0.3s/0.2s/0.1s/64 2.5s/4.4s/3.6s/1s/230 9s/6s/2.9s/0.5s/1, 039
n7s3 7 1.6s/3.1s/2.5s/0.3s/128 32s/35s/26s/5s/451 139s/68s/21s/6s/2, 243
randomnet n7k3 7 5.9s/16s/19s/6.6s/128 25s/47s/32s/5.4s/394 133s/93s/45s/9.9s/1, 580
xiao wnt5a 7 0.96s/1.4s/1s/0.2s/128 11s/21s/12s/3s/324 25s/14s/7s/1.1s/972
arellano rootstem 9 86s/83s/40s/2.6s/512 -/-/-/145s/1, 940 -/-/-/41s/11, 472
davidich yeast 10 -/796s/363s/28s/1, 024 -/-/-/622s/4, 364 -/-/-/-/38, 720
faure cellcycle 10 -/-/558s/31s/1, 024 -/-/-/865s/4, 273 -/-/-/-/30, 971
fission yeast 10 -/-/478s/36s/1, 024 -/-/-/662s/4, 157 -/-/-/-/33, 727
mammalian 10 -/-/598s/33s/1, 024 -/-/-/841s/4, 273 -/-/-/-/30, 971

Table 2: Run time of Synchronizer for Boolean network benchmarks from 9 to 23 nodes for
the three semantics: run time in seconds for 25%/50%/75%/100% of the transitions as input /
total number of transitions with the semantics.

Table 2 shows the run time of Synchronizer when learning from transitions of Boolean
networks from Boolenet [9] and PyBoolnet [22] with same settings as in the experiements of
Table 1. For the synchronous and general semantics, its only when we are given a subset of
all possible transitions that the algorithm output constraints. Those constraint at least prevent
transitions from unseen states and also some combination of atoms that are missing in next states
but that are observed individually. Even when it outputs an empty set of constraint, the learning
process needs to produce and revises constraint until its no more possible, so run time of full set
of transitions is also considered. In the asynchronous case, given a set of transitions T , it needs

to learn the constraints ensuring at most one change per transitions, i.e., {← ait, b
j
t , a

i′
t−1, b

j′

t−1 |
a, b ∈ AT , i 6= i′ ∧ j 6= j′} and the ones preventing the projection when only one variable can

be updated: {C | {ait, ait−1} ∈ b(C), a ∈ AT , @(s, s′) ∈ T, b(C) ⊆ s ∪ s′}. Those second kind
of constraint will be specific to the few states this limitation occurs and show the limits of
propositional representation for the explanation of the dynamics.

Learning constraints is obviously more costly than learning regular rules since both features
and targets variables can appear in the body, i.e., number of features becomes |F| + |T |. The
algorithm reached the time out of 1, 000 seconds with benchmarks of 9 nodes. Scalability of the
algorithm can be greatly improved by using the approximated version of GULA for learning
both rules and constraints. If learning rules can be done in polynomial time, learning constraint
remains exponential. Since we do not present this approximated algorithm in this paper we
will not go into the details. In short, this approximated version needs positives examples and
thus require to generate the Cartesian product of all applicable rules heads for each initial
state observed which is exponential. Scalability, readability and applicability could be improved
by considering first order generalization of both rule and constraints but those generalization
are application dependant and thus remains as future work. Such generalization is required to
perform proper prediction from unseen states, thus application of the synchronizer output for
prediction from unseen states are out of the scope of this paper.

Learning any semantics for dynamical systems represented by logic programs 31

H Information About this Paper

H.1 History of the paper

This paper is a substantial extension of [35] where a first version of GULA was introduced. In
[35], there was no distinction between feature and target variables, i.e., variables at time step t
and t+1. From this consideration, interesting properties arise and allow to characterize the kind
of semantics compatible with the learning process of the algorithm (Theorem 2). It also allows to
represent constraints and to propose an algorithm (Synchronizer, Section 5) to learn programs
whose dynamics can mimic any given set of transitions with optimal properties on both rules
and constraints. It also allows to use GULA to learn human readable explanations in form of
rules on static classification problems (as long as all variables are discrete), which will be one of
the focus of our future works.

H.2 Main contributions of the paper

The main contributions of this paper are:

– A modeling of discrete memory-less dynamics system as multi-valued propositional logic.
This modeling is independent of the dynamical semantics the system relies on, as long as
it respects some given properties we provided in this paper. The main contributions of this
formalism is the characterization of optimality and the study of which semantics are com-
patible with this formalism (which includes notably synchronous, asynchronous and general
semantics).

– A first algorithm named GULA, to learn such optimal programs.
– The formalism is also extended to represent and use constraints. This allows to reproduce

any discrete memory-less dynamical semantics behaviors inside the logic program when the
original semantics is unknown.

– A second algorithm named Synchronizer, that exploits GULA to learn a logic program
with constraints that can reproduce any given set of state transitions. The method we pro-
posed is able to learn a whole system dynamics, including its semantics, in the form of a
single propositional logic program. This logic program not only explains the behavior of
the system in the form of human readable propositional logic rules but also is able to re-
produce the behavior of the observed system without the need of knowing its semantics.
Furthermore, the semantics can be explained, without any previous assumption, in the form
of human readable rules inside the logic program. In other words, the approach allows to
learn all the previously cited semantics, as well as new ones.

H.3 What evidence is provided

We show through theoretical results the correctness of our approach for both modeling and
algorithms (see above contribution for details). Empirical evaluation is performed on benchmarks
coming from biological literature. It shows the capacity of GULA to produce correct models
when all transitions are available. Also, we observe that learned models generalize to unseen data
when given a partial input in those experiments.

H.4 Related work

The paper refers to relevant related work. As we discussed in the related work section, our
approach is quite related to Bain and Srinivasan [3], Evans et al. [10,11] and Law et al. [24,25,
26,27].

The techniques we propose in this paper are a continuation of the works on the LFIT
framework from [16,37,35].

In [15,17], state transitions systems are represented with logic programs, in which the state
of the world is represented by an Herbrand interpretation and the dynamics that rule the en-
vironment changes are represented by a logic program P . The rules in P specify the next state
of the world as an Herbrand interpretation through the immediate consequence operator (also
called the TP operator) [44,2] which mostly corresponds to the synchronous semantics we present
in Section 3. In this paper, we extend upon this formalism to model multi-valued variables and
any memory-less discrete dynamic semantics including synchronous, asynchronous and general
semantics.

[16] proposed the LFIT framework to learn logic programs from traces of interpretation
transitions. The learning setting of this framework is as follows. We are given a set of pairs of
Herbrand interpretations (I, J) as positive examples such that J = TP (I), and the goal is to
induce a normal logic program (NLP) P that realizes the given transition relations. As far as we
know, this concept of learning from interpretation transition (LFIT) has never been considered
in the ILP literature before [16]. In this paper, we propose two algorithms that extend upon this
previous work: GULA to learn the minimal rules of the dynamics from any semantics states
transitions that respect Theorem 2 and Synchronizer that can capture the dynamics of any
memory-less discrete dynamic semantics.

32 Tony Ribeiro et al.

I Declarations

I.1 Funding
This work was supported by JSPS KAKENHI Grant Number JP17H00763 and by the ”Pays de
la Loire” Region through RFI Atlanstic 2020.

I.2 Conflicts of interest/Competing interests
None

I.3 Availability of data and material
Experiments data and sources code is available at https://github.com/Tony-sama/pylfit under
GPL-3.0 License.

I.4 Code availability
Algorithms and experiments sources code is available at https://github.com/Tony-sama/pylfit
under GPL-3.0 License.

https://github.com/Tony-sama/pylfit
https://github.com/Tony-sama/pylfit

	Introduction
	Logical Modeling of Dynamic Systems
	Dynamical semantics
	GULA
	Learning From Any Dynamical Semantics
	Evaluation
	Related Work
	Conclusions
	Appendix: proofs of Section 2.2
	Appendix: proofs of Section 3
	Appendix: proofs of Section 4.1
	Appendix: proofs of Section 4
	Appendix: proofs of Section 5
	Appendix: detailed pseudo-code of Section 4
	Synchronizer Scalability
	Information About this Paper
	Declarations

