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Abstract

The article deals with the homogeneous Stokes resolvent system in a 3D exte-
rior domain, under inhomogeneous Dirichet boundary conditions. Solutions to this
boundary value problem are estimated in Lp-norms, with the bounds in these esti-
mates depending on the absolute value of the resolvent parameter λ in an explicit
way. Two types of boundary data are considered, that is, Lp- and W 2−1/p, p-data.
It is shown in particular that the Lp-norm of the velocity outside a vicinity of the
boundary, after subtraction of the gradient of a certain harmonic function, is bounded
by a constant times |λ| ‖b‖p. This estimate carries over to the Oseen resolvent sys-
tem, leading to a result which has applications in the theory of spatial asymptotics of
solutions to the 3D time-dependent Navier-Stokes system with Oseen term.
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Inhomogeneous boundary conditions

1 Introduction

We consider the Stokes resolvent problem

−∆u+ λu+∇π = f, divu = 0 (1.1)

in an exterior domain Ω
c

:= R3\Ω, where Ω is an open, bounded set with C2-boundary.
The system in (1.1) is supplemented by Dirichlet boundary conditions

u|∂Ω = b. (1.2)

The velocity u : Ω
c 7→ C3 and the pressure π : Ω

c 7→ C are unknown, whereas the
volume force f : Ω

c 7→ C3, the resolvent parameter λ ∈ C\(−∞, 0] and the boundary data
b : ∂Ω 7→ C3 are given. In the case of homogeneous Dirichlet boundary data (b = 0),
problem (1.1), (1.2) has been studied extensively [32], [10] – [12], [47]. The results in these
articles provide a functional analytic access to the study of the time-dependent Navier-
Stokes system in Ω

c
. Some of these results will be needed here, too. They are stated in

Theorem 4.1 and Corollary 4.1 below.

The case f = 0 and b nonvanishing has been investigated much less. In fact, to the best of
our knowledge, as concerns Lp-theory, there are only some technical results in [11], where
b is supposed to be given by b = w|∂Ω, where w is some function from C2(R3)3 ∩Lp(R3)3

with divw = 0. However, the case b 6= 0 is of interest, too. In fact, the work at hand
is motivated by a study [16] of spatial decay of time-dependent flows, where estimates of
solutions to (1.1), (1.2) with b 6= 0 play a key role. We will come back to this point further
below.

In this work we consider two cases, that is, b ∈ Lp(∂Ω)3 and b ∈ W 2−1/p, p(∂Ω)3. In the
first case we estimate ‖u‖p by ‖b‖p, and in the second we give a bound of ‖u‖2,p in terms
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of ‖b‖2−1/p, p+ |λ| ‖b‖p. Each of these estimates is explicit with respect to |λ|, and uniform
with respect to λ ∈ C with |λ| ≥ λ0 and |arg(λ)| ≤ ϑ, where λ0 ∈ (0,∞) and ϑ ∈ [0, π)
are given. More details are stated in the ensuing theorem.

Theorem 1.1 Let n(Ω) denote the outward unit normal to Ω. Fix a function N (Ω) ∈
C1(Ω)3 with N (Ω)|∂Ω = n(Ω) (Lemma 2.2). Put N(z) := (4π |z|)−1 for z ∈ R3\{0}
(Newton kernel), and define F(Ω)(x) := −

∫
Ω(∇N)(x− y) divN (Ω)(y) dy for x ∈ R3. Then

F(Ω) ∈ Lr(R3)3 for r ∈ (3/2, ∞).

Let p ∈ (1,∞), λ ∈ C\(−∞, 0], b ∈ Lp(∂Ω)3. Then there is a pair of functions (u, π) =(
u(λ, b), π(λ, b)

)
∈ C∞(Ω

c
)3 × C∞(Ω

c
) such that (u, π) solves (1.1) with f = 0, and u

satisfies (1.2) in the Lp-sense, that is,
∫
∂Ω

∣∣ b(x) − u
(
x + ε n(Ω)(x)

) ∣∣p dox → 0 (ε ↓ 0),
where (2.4) is used implicitly.

If b ∈ W 2−1/p, p(∂Ω)3, R ∈ (0,∞) with Ω ⊂ BR, and ΩR := BR\Ω, then u|ΩR ∈
W 2,p(ΩR)3, π|ΩR ∈W 1,p(ΩR), and (1.2) is satisfied in the trace sense.

Let ϑ ∈ [0, π) and λ0 ∈ (0,∞). Then∥∥u− |∂Ω|−1

∫
∂Ω
b · n(Ω) dox F

(Ω)
∥∥
p
≤ C(p, ϑ, λ0) ‖b‖p (1.3)

for λ ∈ C with |λ| ≥ λ0, | arg(λ)| ≤ ϑ and b ∈ Lp(∂Ω)3. In particular

‖u‖p ≤ C(p, ϑ, λ0) ‖b‖p (1.4)

for λ as in (1.3) and for b ∈ Lp(∂Ω)3 with
∫
∂Ω b · n

(Ω) dox = 0 (zero flux condition). If
p > 3/2, inequality (1.4) holds for λ and b as in (1.3).

Let R ∈ (0,∞) with Ω ⊂ BR. If r1 ∈ (3/2,∞), then ‖u|Bc
R‖r1 ≤ C(r1) ‖b‖p, ‖∇π|Bc

R‖r1 ≤
C(r1) (1 + |λ|) ‖b‖p;
if r2 ∈ (1,∞) and α ∈ N3

0 with 1 ≤ |α| ≤ 2, then ‖∂αu|Bc
R‖r2 ≤ C(r2) ‖b‖p;

if r3 ∈ (3,∞), then ‖π|Bc
R‖r3 ≤ C(r3) (1 + |λ|) ‖b‖p, each time for λ, b as in (1.3), and

with C(rj) = C(rj , ϑ, p, λ0, R) for j ∈ {1, 2, 3}.
If a ∈ (0, 2/p), then ‖u|ΩR‖(1/p−a/2)−1 ≤ C(p, ϑ, λ0, a, R) ‖b‖p for λ, b as in (1.3). Finally

‖u|ΩR‖2,p + ‖π|ΩR‖1,p ≤ C(p, ϑ, λ0, R) (‖b‖2−1/p, p + |λ| ‖b‖p) (1.5)

for λ as in (1.3) and for b ∈W 2−1/p, p(∂Ω)3.

The usual approach for proving Theorem 1.1 would consist in extending b to a suitable
function b̃ on Ω

c
, and then estimating u− b̃ by means of the theory pertaining to the case

f 6= 0, b = 0. But in order to obtain the estimates stated in Theorem 1.1, it would be
necessary that every function b ∈ Lp(∂Ω)3 admits a solenoidal extension B to at least ΩR

with the property that ‖B‖p may be estimated by ‖b‖p. The only way we found to obtain
such an extension consists in directly constructing a solution to (1.1), (1.2) with f = 0. To
this end, we used the same approach as in [11], that is, the method of integral equations.

More precisely, we construct u(x) and π(x) as boundary potentials – integrals on ∂Ω
depending on x (Lemma 5.2) –, with layer functions solving an integral equation with
right-hand side b (equation (5.3)). Theorem 1.1 may then be established by estimating
these potential functions (Section 5 and 6).
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This approach provides some further properties – not mentioned in Theorem 1.1 – of our
solutions. For example, for any φ ∈ Lp(∂Ω)3, we define a function F(φ) : R3\∂Ω 7→ C3 by
setting

F(φ)(x) :=

∫
∂Ω

(∇N)(x− y) (n(Ω) · φ)(y) doy for x ∈ R3\Ω. (1.6)

(The kernel N was introduced in Theorem 1.1.) Note that F(φ) is the gradient of a
harmonic function in R3\∂Ω. Then, for any λ ∈ C\(−∞, 0] and b ∈ Lp(∂Ω)3, we take
the solution φ = φλ,b ∈ Lp(∂Ω)3 of the integral equation (5.3) and consider F(φ) for
such φ. Fixing numbers ϑ ∈ [0, π), λ0, R ∈ (0,∞) with Ω ⊂ BR, we will prove that
‖λ
(
u − F(φ)

)
|Bc

R‖p ≤ C(p, ϑ, λ0, R) ‖φ‖p for λ et b as in (1.3) (Corollary 6.2). This
inequality is remarkable because of the presence of the factor λ on the left-hand side,
contrary to the situation in (1.3) and (1.4). It turned out (Theorem 7.2) this inequality,
with an additional term ‖∇u‖p on the right-hand side, carries over to weak solutions of
the Oseen resolvent system

−∆u+ τ u+ λu+∇π = f, divu = 0 in Ω
c
, (1.7)

under Dirichlet boundary conditions (1.2), where τ ∈ (0,∞) is given (Reynolds number).
A slightly generalized version (Corollary 7.1) of this Oseen resolvent estimate plays an
important role in the article [16] mentioned above, which deals with spatial decay of L2-
strong solutions to the time-dependent Navier Stokes system in Ω

c
with Oseen term and

with some additional terms arising in stability estimates. In fact, for technical reasons
we cannot elaborate here, the theory in [16] gives rise to the question as to whether
certain weak solutions to the time-dependent Oseen system admit a time derivative that
may be considered as an L2-integrable function of the time variable with values in certain
Banach spaces. By means of a Fourier transform, this question translates into the problem
whether for a weak solution u to (1.7), (1.2) with λ = i ξ and f = 0, the quantity ‖i ξ u‖p is
bounded by C |ξ|−1 ‖b‖p, uniformly with respect to ξ ∈ R3 with |ξ| ≥ 1. Unfortunately such
an estimate cannot be expected to hold, as is already obvious by the situation in the Stokes
case; see (1.3) and (1.4). However, it turned out that the estimate of ‖λ

(
u−F(φ)

)
|Bc

R‖p
we are able to derive (Corollary 7.1) is sufficient for the purposes of [16]. This is the reason
why we think our results on the Oseen resolvent (Section 7) are interesting.

We remark that reference [18], frequently used in this work, elaborates some sections of
Ladyzhenskaya’s monograph [37]. We further indicate that in literature, there is a great
number of articles on the Stokes resolvent system, dealing with various aspect of this
system. As examples, we cite [1] – [9], [14], [20] – [29], [33], [35], [36], [39] – [45], [49], [50].
The Oseen resolvent system has been studied much less [15], [17], [19], [34].

2 Notation. Local coordinates of Ω.

The bounded open set Ω ⊂ R3 with C2-boundary will be kept fixed throughout. Recall
that its outward unit normal is denoted by n(Ω) (Theorem 1.1).

The symbol | | denotes the Euclidean norm of Rn for any n ∈ N, the length α1 + α2 + α3

of a multi-index α ∈ N3
0, and the Borel measure of measurable subsets of R3 or ∂Ω. For

R ∈ (0,∞), x ∈ R3, put BR(x) := {y ∈ R3 : |x − y| < R}. In the case x = 0, we write
BR instead of BR(0), and we set ΩR := BR\Ω.
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If A ⊂ R3, we denote by Ac the complement R3\A of A in R3. If A is some nonempty set
and γ : A 7→ R a function, we set |γ|∞ := sup{|γ(x)| : x ∈ A}.
Let p ∈ [1,∞), m, n ∈ N. For A ⊂ Rn open, the notation ‖ ‖p stands for the usual norm
of the Lebesgue space Lp(A), and ‖ ‖m,p for the usual norm of the Sobolev space Wm,p(A)
of order m and exponent p. If A ⊂ R3 is open and bounded with C2-boundary, and if
s ∈ (0, 2], analogous notation are used for the Lebesgue space Lp(∂A) and the Sobolev
space W s,p(∂A) (of fractional order if s /∈ {1, 2}; see [30, Section 6.8.6]). Again for an
open set A ⊂ Rn, we write Lploc(A) and Wm,q

loc (A) for the set of all functions v from A
into C such that v|B ∈ Lp(B) and v|B ∈ Wm,p(B), respectively, for any open, bounded
set B ⊂ R3 with B ⊂ A. We put ∇v := (∂kvj)1≤j,k≤3 for v ∈ W 1,1

loc (A)3. Moreover the
notation C∞0 (A) stands for the set of all functions v ∈ C∞0 (R3) with supp(v) ⊂ A. In
the case of a closed subset A of R3, we write C∞0 (A) for the set of all functions v|A with
v ∈ C∞0 (R3).

Let V be a normed space, and let the norm of V be denoted by ‖ ‖. Take n ∈ N.
Then we will use the same notation ‖ ‖ for the norm on Vn defined by ‖(f1, ..., fn)‖ :=(∑n

j=1 ‖fj‖2
)1/2

for (f1, ..., fn) ∈ Vn. The space V3×3, as concerns its norm, is identified

with V9.

For open sets A ⊂ R3, we define C∞0,σ(A) := {V ∈ C∞0 (A)3 : divV = 0}, and we write

Lpσ(A) for the closure of C∞0,σ(A) with respect to the norm of Lp(A)3, where p ∈ (1,∞).
This function space Lpσ(A) (”space of solenoidal Lp-functions”) is equipped with the norm
‖ ‖p.
We write C for numerical constants and C(γ1, ..., γn) for constants depending exclusively
on paremeters γ1, ..., γn ∈ [0,∞) for some n ∈ N. However, such a precise bookkeeping
will be possible only at some places. Mostly we will use the symbol C for constants whose
dependence on parameters must be traced from context. Sometimes we write C(γ1, ..., γn)
in order to indicate that the constant in question is influenced by the quantities γ1, ..., γn.
But in such cases, this constant depends on other parameters as well. In most cases, these
implicit dependencies are associated with Ω.

Following [30, Section 6.2], and recalling the assumption that Ω is C2-bounded, we choose

numbers k(Ω) ∈ N, α(Ω) ∈ (0,∞), orthonormal matrices A
(Ω)
1 , ..., A

(Ω)
k(Ω) ∈ R3×3, vectors

C
(Ω)
1 , ..., C

(Ω)
k(Ω) ∈ R3, and functions a

(Ω)
1 , ..., a

(Ω)
k(Ω) ∈ C

2([−α(Ω), α(Ω)]2) with the following
properties:

Put ∆Ω :=
(
−α(Ω), α(Ω)

)2
, H(j)(η, r) := A

(Ω)
j ·

(
η, a

(Ω)
j (η) + r

)
+ C

(Ω)
j and h(j)(η) :=

H(j)(η, 0) = A
(Ω)
j ·

(
η, a

(Ω)
j (η)

)
+ C

(Ω)
j for η ∈ ∆Ω, r ∈

(
−α(Ω), α(Ω)

)
, and define the

set Uj by Uj :=
{
H(j)(η, r) : η ∈ ∆Ω, r ∈

(
−α(Ω) , α(Ω)

)}
, for 1 ≤ j ≤ k(Ω). Then we

assume that

Ω
c ∩ Uj =

{
H(j)(η, r) : η ∈ ∆Ω, r ∈

(
−α(Ω), 0

) }
, ∂Ω ∩ Uj =

{
h(j)(η) : η ∈ ∆Ω

}
for 1 ≤ j ≤ k(Ω), ∂Ω = ∪

{
h(j)(η) : η ∈

(
−α(Ω)/4, α(Ω)/4

)2 }
.

It is obvious that for j as before, the function H(j) is a C2-diffeomorphism so that Uj is
an open set in R3. We further set

J
(Ω)
j (η) :=

[
1 +

2∑
l=1

(
∂la

(Ω)
j (η)

)2 ]1/2
for η ∈ ∆Ω, 1 ≤ j ≤ k(Ω),
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Λγj :=
{
h(j)(%) : % ∈

(
−γ α(Ω), γ α(Ω)

)2 }
for γ ∈ (0, 1], j as before,

and Cm(∂Ω) :=
{
v : ∂Ω 7→ C : v ◦ h(j) ∈ Cm(∆Ω) for 1 ≤ j ≤ k(Ω)

}
for m ∈ {1, 2}.

Note that∫
Λ1
j

g dox =

∫
∆(Ω)

(g ◦ h(j))(η) J
(Ω)
j (η) dη for g ∈ L1(∂Ω), 1 ≤ j ≤ k(Ω). (2.1)

Moreover∫
Uj

g dx =

∫ α(Ω)

−α(Ω)

∫
∆Ω

(g ◦H(j))(%, r) d% dr for g ∈ L1(Uj), 1 ≤ j ≤ k(Ω). (2.2)

The key properties of ∂Ω used in the following are collected in the ensuing lemma. It also
serves to introduce some further notation. For the convenience of the reader, we give some
indications on the proof of (2.4) and (2.5). The other claims of the lemma are obvious or
were proved in [18].

Lemma 2.1 For v ∈ C1(∂Ω), there is M(v) > 0 with |v(x) − v(y)| ≤ M(v) |x − y| for
x, y ∈ ∂Ω. (The definition of C1(∂Ω) involves local coordinates, whereas the Lipschitz
continuity stated here does not.) In particular Cα(∂Ω) ⊂ C1(∂Ω) for α ∈ (0, 1). There are
constants D1, D2, ε(Ω) ∈ (0,∞) such that

|%− η|+ r ≤ D1 |H(j)(%, r)− h(j)(η)| for %, η ∈ ∆Ω, r ∈
(
−α(Ω), α(Ω)

)
, (2.3)

1 ≤ j ≤ k(Ω), as well as |(x−y) ·n(Ω)(y)| ≤ D1 |x−y|2 and |n(Ω)(x)−n(Ω)(y)| ≤ D1 |x−y|
for x, y ∈ ∂Ω,

x+ ε n(Ω)(x) ∈ Ω
c
, x− ε n(Ω)(x) ∈ Ω for x ∈ ∂Ω, ε ∈

(
0, ε(Ω)

]
, (2.4)∣∣x+ κn(Ω)(x)−

(
x′ + κ′ n(Ω)(x′)

) ∣∣ ≥ D2 (|x− x′|+ |κ− κ′|) for x, x′ ∈ ∂Ω, (2.5)

κ, κ′ ∈ [−ε(Ω), ε(Ω)].

Let γ ∈ (−2,∞). Then
∫
∂Ω |x− y|

γ dox ≤ C and
∫
∂Ω ε (|x− y|+ ε)−3 dox ≤ C uniformly in

x ∈ ∂Ω and ε ∈ (0,∞).

Proof: By [18, (2.24)], there is ε̃(Ω) > 0 such that the two relations in (2.4) hold for
ε ∈ (0, ε̃(Ω)], x ∈ ∂Ω.

Put D0 := max{
∑2

l=1 |∂la
(Ω)
j |∞ : 1 ≤ j ≤ k(Ω)}. Let j ∈ {1, ..., k(Ω)}, %, η ∈ ∆Ω

and r ∈
(
−α(Ω), α(Ω)

)
. It is obvious that |% − η| ≤ |H(j)(%, r) − h(j)(η)|, so if r ≤

2D0 |% − η|, we get r ≤ 2D0 |H(j)(%, r) − h(j)(η)|. In the case r > 2D0 |% − η|, we use

that |a(Ω)
j (%) − a(Ω)

j (η)| ≤ D0 |% − η|, hence |a(Ω)
j (%) + r − a(Ω)

j (η)| ≥ |r| − D0 |% − η| ≥
|r|/2, so |r| ≤ 2 |H(j)(%, r) − h(j)(η)|. Since by [18, (2.22), (2.23)], there is D̃ > 0 with
|(x − y) · n(Ω)(y)| ≤ D̃ |x − y|2 and |n(Ω)(x) − n(Ω)(y)| ≤ D̃ |x − y| for x, y ∈ ∂Ω, we see
there is a constant D1 > 0 with the properties listed in the lemma.

Recall the sets Λγj defined above. Set δ̃ := min{dist(Λ1/4
j , ∂Ω\Λ1/2

j ) : 1 ≤ j ≤ k(Ω)}.
Then δ̃ > 0 by [18, (2.12)]. Moreover, inequality [18, (2.48)] yields constants D, ε′(Ω) ∈
(0,∞) such that for κ, κ′ ∈ [−ε′(Ω), ε′(Ω)], 1 ≤ j ≤ k(Ω) and x, y ∈ Λ1

j , we have∣∣x+ κn(Ω)(x)−
(
x′ + κ′ n(Ω)(x′)

) ∣∣ ≥ D (|x− x′|+ |κ− κ′|) The assumption κ, κ′ ≥ 0 in
[18, (2.48)] is not needed. Now let x, y ∈ ∂Ω be such that there is no j ∈ {1, ..., k(Ω)} with
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x, y ∈ Λ1
j . By our assumptions on the functions h(j), there is some j ∈ {1, ..., k(Ω)} such

that x ∈ Λ
1/4
j . Then y /∈ Λ

1/2
j in view of the case we are considering, so |x− y| ≥ δ̃ by the

definition of δ̃. Let κ, κ̃ ∈ R with |κ|, |κ′| ≤ δ̃/8. Then
∣∣x+κn(Ω)(x)−

(
y+κ′ n(Ω)(y)

) ∣∣ ≥
|x− y| − (|κ|+ |κ′|) ≥ |x− y| − δ̃/4 ≥ 3 |x− y|/4 ≥ |x− y|/2 + δ̃/4 ≥ |x− y|/2 + |κ|+ |κ′|.
Thus (2.5) and (2.4) hold with D2 := min{1/2, D} and ε(Ω) := min{ε̃(Ω), ε′(Ω), δ̃/8}.
Let us prove the last inequality in the lemma. The second from last follows with a
similar argument. So take x ∈ ∂Ω and ε ∈ (0,∞). There is j ∈ {1, ..., k(Ω)} and

% ∈
(
−α(Ω)/4, α(Ω)/4

)2
with x = h(j)(%). Thus by (2.1) and because |h(j)(%)−h(j)(η)| ≥

|%−η| for η ∈ ∆Ω, the integral
∫

Λ1
j
ε (|x−y|+ε)−3 doy is bounded by C

∫
∆Ω ε (|%−η|+ε)−3 dη,

and therefore by a constant C independent of x and ε. Obviously dist(∂Ω\Λ1
j , Λ

1/4
j ) > 0,

so
∫
∂Ω\Λ1

j
ε (|x− y|+ ε)−3 doy ≤ C with the same type of constant C. Altogether we obtain

the estimate at the end of the lemma. �

Lemma 2.2 The relation n(Ω) ∈ C1(∂Ω)3 holds. There is a function N (Ω) ∈ C1(∂Ω)3

with N (Ω)|∂Ω = n(Ω).

Proof: We have (n(Ω) ◦ h(j))(%) = J
(Ω)
j (%)−1A

(Ω)
j ·

(
−∇a(Ω)

j (%), 1
)T

for % ∈ ∆Ω, 1 ≤
j ≤ k(Ω) ([18, (2.15)]), in particular n(Ω) ∈ C1(∂Ω)3. For j as before, put N (j)(%, r) :=
(n(Ω)◦h(j))(%) for % ∈ ∆Ω, r ∈

(
−α(Ω), α(Ω)

)
. Then we define N (Ω) by setting N (Ω)(y) :=∑k(Ω)

j=1 ϕ
(Ω)
j (y)

(
N (j) ◦ (H(j))−1

)
(y) for y ∈ Ω ∩ (∪{Uj : 1 ≤ j ≤ k(Ω)}), N (Ω)(y) := 0 for

any other y ∈ Ω. �

Lemma 2.3 Let p ∈ (1,∞), b ∈ Lp(∂Ω)3. Then there is a sequence (bn) in C2(∂Ω) such
that ‖b− bn‖p → 0.

Proof: For any j ∈ {1, ..., k(Ω)}, choose a sequence (b
(j)
n )n≥1 in C∞(∆Ω) such that

‖b ◦ h(j) − b
(j)
n ‖p → 0 (n → ∞). Then define B

(j)
n (%, r) := b

(j)
n (%) for % ∈ ∆Ω, r ∈(

−α(Ω), α(Ω)
)
, n ∈ N and j as before. For n ∈ N, we define the function bn by setting

bn(y) :=
∑k(Ω)

j=1 ϕ
(Ω)
j (y)

(
B

(j)
n ◦ (H(j))−1

)
(y) for y ∈ ∂Ω. Then the sequence (bn) has the

properties claimed in the lemma. �

3 Some auxiliary results.

In this section, we state some known results for which do not know a direct reference, or
which we state in a form adapted to our purposes. We begin with a simple application of
Hölder’s inequality.

Lemma 3.1 Let K : ∂Ω× ∂Ω 7→ [0,∞) be measurable. Assume that the two terms

A1 := sup{
∫
∂Ω
|K(x, y)| doy : x ∈ ∂Ω} and A2 := sup{

∫
∂Ω
|K(x, y)| dox : y ∈ ∂Ω}

are both finite. Then
∫
∂Ω

( ∫
∂ΩK(x, y) |φ(y)| doy

)p
dox ≤ Ap−1

1 A2 ‖φ‖pp for p ∈ (1,∞), φ ∈
Lp(∂Ω).

Proof: For p and φ as in the lemma, Hölder’s inequality yields that the left-hand side of the
estimate in the lemma is bounded by

∫
∂Ω

( ∫
∂ΩK(x, y) doy

)p−1 ∫
∂ΩK(x, y) |φ(y)|p doy dox.

The lemma follows from this observation. �
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Next we study the Lp-integrability of certain surface potentials, considered as functions
of x ∈ BR.

Lemma 3.2 Let p ∈ (1,∞), a ∈ (0, 2/p), R ∈ (0,∞) with Ω ⊂ BR. Then, for φ ∈
Lp(∂Ω),

A :=
(∫

BR

(∫
∂Ω
|x− y|−2 |φ(y)| doy

)(1/p−a/2)−1

dx
)1/p−a/2

≤ C(a, p,R) ‖φ‖p.

Proof: We use the functions H(j) and h(j) and the sets Uj and Λγj introduced at the
beginning of Section 2. Take φ ∈ Lp(∂Ω). Proceeding as in [13, proof of Lemma 13.1], we

start with the estimate A ≤ C
∑k(Ω)

j=1 (Aj + Bj), where

Aj :=
(∫

Uj∩BR

(∫
Λ

1/2
j

|x− y|2 |φ(y)| doy
)(1/p−a/2)−1

dx
)1/p−a/2

,

and with Bj defined in the same way as Aj , except that the domain of integration Uj ∩BR
is replaced by BR\Uj

(
1 ≤ j ≤ k(Ω)

)
. Let j ∈ {1, ..., k(Ω)}. Since H(j) is a diffeo-

morphism and H(j)(%, 0) = h(j)(%) for % ∈ ∆Ω, we have dist(BR\Uj , Λ
1/2
j ) > 0, so

Bj ≤ C ‖φ|Λ1/2
j ‖1 ≤ C‖φ‖p. Moreover, by (2.1), (2.2) and the first inequality in (2.3),

we get

Aj ≤ C
(∫ α(Ω)

−α(Ω)

∫
∆Ω

(∫
∆Ω

1/2

|%− η|−2+a |r|−a |φ ◦ h(j)|(η) dη
)(1/p−a/2)−1

d% dr
)1/p−a/2

,

with the abbreviation ∆Ω
1/2 :=

(
−α(Ω)/2, α(Ω)/2

)2
. But a < 2/p, so −a (1/p− a/2)−1 >

−1. Thus we may integrate with respect to r, to obtain

Aj ≤ C
(∫

∆Ω

(∫
∆Ω

1/2

|%− η|−2+a |φ ◦ h(j)|(η) dη
)(1/p−a/2)−1

d%
)1/p−a/2

.

Therefore Aj ≤ C‖φ ◦ h(j)‖p by the Hardy-Littlewood-Sobolev inequality ([48, p. 119]).

Since ∂Ω = ∪
{

Λ
1/4
j : 1 ≤ j ≤ k(Ω)} by our assumptions on the functions h(j), Lemma

3.2 is implied by the preceding inequalities. �

Next we state a theorem on solenoidal lifting of functions in W 1−1/p, p(∂Ω)3.

Theorem 3.1 ([31, Exercise III.3.5]) Let p ∈ (1,∞), b ∈ W 1−1/p, p(∂Ω)3 with
∫
∂Ω b ·

n(Ω) dox = 0. Then there is B ∈W 1,p(Ω)3 with divB = 0 and B|∂Ω = b.

Functions in exterior domains with Lq-integrable gradient are Lq-integrable in a neigh-
bourhood of the boundary:

Lemma 3.3 ([31, Lemma II.6.1]) Let A ⊂ R3 be open and bounded, with Lipschitz
boundary, q ∈ (1,∞), R ∈ (0,∞) with A ⊂ BR, V ∈W 1,1

loc (A
c
) with ∇V ∈ Lq(Ac)3. Then

V |BR\A ∈W 1,q(BR\A).

We will use a class of functions in Ω
c

which, in a certain sense, vanish at infinity.

Theorem 3.2 ([31, Theorem II.6.1]) Let p ∈ (1, 3). Then ‖g‖3p/(3−p) ≤ C‖∇g‖p for

g ∈ L3p/(3−p)(Ω
c
) ∩W 1,1

loc (Ω
c
) with ∇g ∈ Lp(Ωc

)3.
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In the ensuing theorem, we specify in which way functions u ∈W 1,1
loc (Ω

c
) with Lp-integrable

gradient may be approximated by functions from C∞0 (Ωc):

Theorem 3.3 Let p ∈ (1,∞), v ∈ W 1,1
loc (Ω

c
) with ∇v ∈ Lp(Ω

c
)3. In the case p < 3,

further suppose that v ∈ L3p/(3−p)(Ω
c
). Then there is a sequence (vn) in C∞0 (Ωc) such that

‖∇(v − vn)‖p → 0 and ‖v − vn|ΩR‖p → 0 (n→∞) for any R ∈ (0,∞) with Ω ⊂ BR.

Proof: According to Lemma 3.3, we have v|ΩR ∈ Lp(ΩR) forR as in the theorem. Fix such
a number R and denote it by R0. Let ϕ0 ∈ C∞0 (Ω2R0) with ϕ0|BR0 = 1. Then (1−ϕ0) v ∈
W 1,p
loc (Ω

c
), (1−ϕ0) v|ΩR ∈ Lp(ΩR) for R as in the theorem, and ∇

(
(1−ϕ0) v

)
∈ Lp(Ωc

)3.

Moreover, in the case p < 3 we have (1−ϕ0) v ∈ L3p/(3−p)(Ω
c
). Obviously (1−ϕ0) v|∂Ω = 0.

At this point, [46, Theorem 2.7 and 2.8] yield there is a sequence (ϕn) in C∞0 (Ω
c
) with

‖∇
(
ϕn−(1−ϕ0) v

)
‖p → 0 and ‖ϕn−(1−ϕ0) v|ΩR‖p → 0 for R as in the theorem. On the

other hand, supp(ϕ0 v) ⊂ B2R0 , so ϕ0 v ∈W 1,p(Ω
c
). Let ṽ ∈W 1,p(R3) be an extension of

ϕ0 v to R3, and let (ψn) be a sequence in C∞0 (R3) with ‖ṽ−ψn‖1,p → 0. Put vn := ϕn+ψn
for n ∈ N. Then the sequence (vn) has all the properties stated in the theorem. �

We introduce the Helmholtz decomposition of Lq(Ω
c
)3.

Theorem 3.4 Let A ⊂ R3 be open and bounded, with Lipschitz boundary. Then for q ∈
(1,∞), there is a constant Cq > 0, and for any f ∈ Lq(Ac)3 there are uniquely determined

functions Pq(f) = P(A)
q (f) ∈ Lqσ(A

c
) and Gq(f) = G(A)

q (f) ∈ W 1,q
loc (A

c
) such that f =

Pq(f) +∇Gq(f) and ‖Pq(f)‖q + ‖∇Gq(f)‖q ≤ Cq ‖f‖q. Moreover Pq′ = P ′q, Pq(f) = f for

f ∈ Lqσ(A
c
), and Pq(∇π) = 0 for π ∈W 1,q

loc (A
c
) with ∇π ∈ Lq(Ac)3, for any q ∈ (1,∞).

Proof: [31, Theorem III.1.2], [15, Corollary 2.3]. �

Corollary 3.1 Let q ∈ (1,∞). Fix some R0 ∈ (0,∞) with Ω ⊂ BR0. Then for any
f ∈ Lq(Ωc

)3, the function Gq(f) ∈W 1,q
loc (Ω

c
) in Theorem 3.4 may be chosen in such a way

that Gq(f) ∈ L3q/(3−q)(Ω
c
) in the case q < 3 and

∫
ΩR0
Gq(f) dx = 0 if q ≥ 3.

Proof: Let f ∈ Lq(Ωc
)3, and take Gq(f) as in Theorem 3.4. According to [31, Theorem

II.6.1], in the case q < 3, there is cf ∈ C with Gq(f)− cf ∈ L3q/(3−q)(Ω
3
). Thus, for any f

as before, we replace Gq(f) by Gq(f)− cf if q < 3, and by Gq(f)− |ΩR|−1
∫

ΩR0
f dx in the

case q ≥ 3. �

The following well known theorem on the Poisson equation in the whole space R3 follows
from the Hard-Littlewood-Sobolev and the Calderon-Zygmund inequality, Lebesgue’s the-
orem and some approximation arguments. The kernel N was introduced in Theorem 1.1.

Theorem 3.5 Let p ∈ (1, 3/2) and f ∈ Lp(R3). Then
∫
R3 |(∂αN)(x − y) f(y)| dy < ∞

for α ∈ N3
0 with |α| ≤ 1 and for a. e. x ∈ R3. As a consequence, we may define

(N∗f)(x) :=
∫
R3 N(x−y) f(y) dy for x ∈ R3. Then N∗f ∈W 2,p

loc (R3), −∆(N∗f) = f and
∂l(N ∗ f)(x) =

∫
R3(∂lN)(x − y) f(y) dy (1 ≤ l ≤ 3, x ∈ R3). Moreover, for any r ∈ (1, 3)

with f ∈ Lr(R3), the inequality ‖∇(N ∗ f)‖(1/r−1/3)−1 ≤ C(r) ‖f‖r holds, and for any
s ∈ (1,∞) with f ∈ Ls(R3), we have ‖∂l∂m(N ∗ f)‖s ≤ C(s) ‖f‖s (1 ≤ l,m ≤ 3).

If supp(f) is compact, then ∂l∂m(N∗f)(x) =
∫
R3(∂l∂mN)(x−y) f(y) dy for l, m as before

and for x ∈ R3\supp(f).

We end this section with a remark on the link between solutions of the Laplace equation
in C0(U) ∩ C∞(U) on the one hand and in W 2,r(U) on the other, if U ⊂ R3 is open,
bounded and with smooth boundary.
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Lemma 3.4 Let U be a bounded open set with C2-boundary, let q ∈ (3/2, ∞), b ∈
W 2−1/q, q(∂U), f ∈ Lq(U), u ∈ C0(U) with u|U ∈ C2(U), ∆(u|U) = f and u|∂U = b.
Then for r ∈ (1, q], the relations u ∈ W 2,r(U), u|∂U = b in the trace sense and ‖u‖2,r ≤
C(r) (‖f‖q + ‖b‖2−1/r, r) hold, with the constant C(r) only depending on U and r.

Proof: By standard results (see [46, Theorem II.3.1, II.9.1, II.10.1] for example), for
any r ∈ (1, q] there is a uniquely determined function u(r) ∈ W 2,r(U) with ∆u(r) = f
and u(r)|∂U = b in the trace sense. This function u(r) satisfies the estimate ‖u(r)‖2,r ≤
C(r) (‖f‖r + ‖b‖2−1/r, r), with a constant C(r) only depending on r and U. Since q > 3/2,

a Sobolev inequality yields u(q) ∈ C0(U). At this point we may conclude that u(q)|∂U = b
in the sense of C0(U)-functions. Obviously

∫
U (u(q) − u) ∆ϕdx = 0 for ϕ ∈ C∞0 (U), so

u(q) − u ∈ C∞(U) by Weil’s lemma ([46, Appendix]). As a consequence u(q) ∈ C2(U). It
follows by the maximum principle that u(q) = u. Let r ∈ (1, q). Since U is bounded, we
have u(q) ∈W 2,r(U), so u(q) = u(r) by the uniqueness property of u(r), and thus u(r) = u.
�

4 Some known results about the Stokes resolvent system in
Ω
c
with homogeneous Dirichlet boundary conditions.

We start with an existence result and the basic estimate of the Stokes resolvent.

Theorem 4.1 Let A ⊂ R3 be open and bounded, with C2-boundary, and let B ∈ {R3, A
c}

and q ∈ (1,∞). Then, for any λ ∈ C\(−∞, 0] and for any f ∈ Lq(B)3, there is a unique
function u = u(λ, f) ∈ W 2,q(B)3 ∩ W 1,q

0 (B)3 and a function π = π(λ, f) ∈ W 1,q
loc (B),

unique up to a constant, such that ∇π ∈ Lq(B)3 and −∆u+ λu+∇π = f, divu = 0.

Let ϑ ∈ [0, π). Then ‖λu(λ, f)‖ ≤ C ‖f‖q for f ∈ Lq(B)3, λ ∈ C\{0} with | arg λ| ≤ ϑ.

Proof: See [38] in the case B = R3, and [32] or [10] – [12] or [47] else. �

We turn to uniqueness, first considering solutions to (1.1) in R3, then solutions to (1.1) in
B
c

with u|∂B = 0, for B ⊂ R3 open and bounded.

Theorem 4.2 Let λ ∈ C\(−∞, 0], R ∈ (0,∞), n ∈ N, qj , rj ∈ (1,∞), u(j) ∈ W 1,1
loc (R3)3

with u(j)|Bc
R ∈ Lrj (Bc

R)3, ∇u(j) ∈ Lqj (R3)9 for j ∈ {1, ..., n}. Put u :=
∑n

j=1 u
(j), and

suppose that divu = 0 and
∫
R3(∇u · ∇ϑ+ λu · ϑ) dx = 0 for ϑ ∈ C∞0,σ(R3). Then u = 0.

Proof: The function u given in the theorem belongs to C∞(R3)3, and there is π ∈ C∞(R3)
such that −∆u + λu + ∇π = 0, divu = 0. This follows by the same arguments and
references as in the proof of [15, Theorem 3.1, Theorem 3.2, Corollary 3.2] (associate
pressure, interior W 2,q-regularity, C∞-regularity), where the Oseen system and the Oseen
resolvent system (1.7) are considered. But with this result on u available, Theorem 4.2
may be proved in exactly the same way as [15, Theorem 5.1], dealing with uniqueness of
weak solutions to either the Oseen system or to the Oseen resolvent system in R3. �

Theorem 4.3 Let A ⊂ R3 be open, bounded, with Lipschitz boundary, R0 ∈ (0,∞) with
A ⊂ BR0 , λ ∈ C\(−∞, 0], n ∈ N, qj , sj ∈ (1,∞), u(j) ∈ W 1,1

loc (A
c
)3, ∇u(j) ∈ Lqj (Ac)9

(hence u(j)|BR\A ∈ W 1,qj (BR\A)3 for R ∈ (0,∞) with Ω ⊂ BR by Lemma 3.3), and
u(j)|Bc

R0
∈ Lsj (Bc

R0
)3 for j ∈ {1, ..., n}. Put u :=

∑n
j=1 u

(j), and suppose that u|∂A =

0, divu = 0 and
∫
R3(∇u · ∇ϑ+ λu · ϑ) dx = 0 for ϑ ∈ C∞0,∞(A

c
). Then u = 0.
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Proof: As in the proof of Theorem 4.2, we refer to the proof of [15, Theorem 3.1, Theorem
3.2, Corollary 3.2] dealing with the Oseen system and the Oseen resolvent system, in order
to obtain that u ∈ C∞(A

c
)3 and there is π ∈ C∞(A

c
) such that −∆u + λu + ∇π =

0, divu = 0. Similarly, the arguments applied in the proof of [15, Theorem 3.3, Corollary
3.1] (boundary regularity) to the Oseen system and to the Oseen resolvent system yield
in our situation that u|BR\A ∈W 2,p(BR\A)3 and π|BR\A ∈W 1,p(BR\A) for R ∈ (0,∞)
with A ⊂ BR, where p := min{q1, ..., qn}. Morever, for any f ∈ C∞0 (R3)3, Theorem 4.1
and the proof of [15, Corollary 3.2] furnish existence of a solution (w, γ) to (1.1) in R3 with
u, π replaced by w and γ, respectively, where w ∈W 2,2(R3)3∩C∞(R3)3 and γ ∈ C∞(R3).
With these ingredients available, Theorem 4.3 may be shown in the same way as [15,
Theorem 5.2] (uniqueness of weak solutions to the Oseen system or to the Oseen resolvent
system), but with Theorem 4.2 in the role of [15, Theorem 5.1]. �

We introduce the Stokes operator.

Corollary 4.1 Let A ⊂ R3 be open, bounded, with C2-boundary. Let q ∈ (1,∞), and

define D(Aq) := D(A(A)
q ) := W 2,q(A

c
)3 ∩ W 1,q

0 (A
c
)3 ∩ Lqσ(A

c
), Aq(u) := A(A)

q (u) :=

−Pq(∆u) for u ∈ D(Aq), with the operator Pq = P(A)
q introduced in Theorem 3.4.

Then Aq is a linear and densely defined operator from D(Aq) into Lqσ(A
c
). The set

C\(−∞, 0] is contained in the resolvent set %(Aq) of Aq. Let Iq = I(A)
q denote the iden-

tical mapping of Lqσ(A
c
) onto itself. Then the operator (λ Iq + Aq)−1 is holomorphic as

a function of λ ∈ %(Aq) with values in the space of linear bounded operators from Lqσ(A
c
)

into Lqσ(A
c
).

Let λ ∈ C\(−∞, 0], f ∈ Lq(Ac)3, u ∈ W 2,q(A
c
)3 ∩W 1,q

0 (A
c
)3, π ∈ W 1,q

loc (A
c
) with ∇π ∈

Lq(A
c
)3, −∆u+λu+∇π = f, divu = 0. Then u = (λ Iq +Aq)−1

(
Pq(f)

)
. For ϑ ∈ [0, π),

the inequality ‖(λ Iq + Aq)−1(f)‖q ≤ C |λ|−1 ‖f‖q holds for f ∈ Lqσ(A
c
), λ ∈ C\{0} with

| arg λ| ≤ ϑ.

Proof: Let λ ∈ C\(−∞, 0], f ∈ Lq(A
c
)3. Then, by Theorem 4.1, there is a pair of

functions (u, π) =
(
u(λ, f), π(λ, f)

)
with properties as stated in that theorem. In par-

ticular u ∈ W 1,q
0 (A

c
)3 and divu = 0, so u ∈ Lqσ(A

c
) by [31, Theorem III.4.2]. Since in

addition u ∈ W 2,q(A
c
)3, we have u ∈ D(Aq). Applying the operator Pq to the equation

−∆u + λu +∇π = f, recalling that ∇π ∈ Lq(Ac)3 and referring to Theorem 3.4, we get
(λ Iq + Aq)(u) = Pq(f). Since Pq(f) = f if f ∈ Lqσ(A

c
) (Theorem 3.4), we may con-

clude that λ Iq + Aq : D(Aq) 7→ Lqσ(A
c
) is onto. Let ũ ∈ D(Aq) satisfy the equation

(λ Iq +Aq)(ũ) = 0. The relation ũ ∈ Lqσ(A
c
)∩W 1,1

loc (A
c
)3 implies div ũ = 0. Since P ′q = Pq′

and Pq′(v) = v for v ∈ C∞0,σ(A
c
) (Theorem 3.4), we see that

∫
R3(∇ũ · ∇v + λ ũ · v) dx = 0

for v as before. Thus Theorem 4.3 implies ũ = 0, so the operator λ Iq + Aq is one-to-
one. Now we may conclude that the operator (λ Iq + Aq)−1 exists, has domain Lqσ(A

c
)

and (λ Iq + Aq)−1(f) = u(λ, f) for f ∈ Lqσ(A
c
). By Theorem 4.1 with ϑ := | arg λ|, we

have ‖u(λ, f)‖q ≤ C(λ) ‖f‖q for f as before, so (λ Iq + Aq)−1 is bounded. Therefore we
get λ ∈ %(Aq). The estimate at the end of the corollary now follows from Theorem 4.1.
Abstract theory yields that the mapping λ 7→ (λ Iq +Aq)−1

(
λ ∈ %(Aq)

)
is holomorphic

as described in the corollary. �
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5 Some surface potentials related to the Stokes resolvent
problem.

In this section we recreate the framework used in [11] in order to deal with the bound-
ary value problem (1.1), (1.2). In addition we state some results proved in [10] or [11].
We begin by introducing the fundamental solution to the Stokes resolvent system (1.1)
constructed in [38].

Define g1(r) := e−r + r−2 (e−r + r e−r − 1), g2(r) := e−r + 3 r−2 (e−r + r e−r − 1) (r ∈
C\{0}), Ẽ(λ)

jk (z) := (4π |z|)−1
(
δjk g1(λ1/2 |z|)− zj zk |z|−2 g2(λ1/2 |z|)

) (
z ∈ R3\{0}, λ ∈

C\(−∞, 0], 1 ≤ j, k ≤ 3
)

The matrix-valued function (Ẽ
(λ)
jk )1≤j,k≤3 is the velocity part of

a fundamental solution to (1.1). Its associated pressure part is given by −∇N, where N
was defined in Theorem 1.1.

Put Ejk(z) := (8π |z|)−1 (δjk + zj zk |z|−2) for z ∈ R3\{0}, 1 ≤ j, k ≤ 3 (velocity part
of a fundamental solution to the Stokes system −∆u + ∇π = f, divu = 0). Define

E̊
(λ)
jk := Ẽ

(λ)
jk − Ejk, S̃

(λ)
jkl := −δjk ∂lN − ∂kẼ

(λ)
jl − ∂jẼ

(λ)
kl , Sjkl := −δjk ∂lN − ∂kEjl −

∂jEkl, S̊jkl := S̃
(λ)
jkl − Sjkl = −∂kE̊

(λ)
jl − ∂jE̊

(λ)
kl for λ ∈ C\(−∞, 0], 1 ≤ j, k, l ≤ 3. The

ensuing lemma collects some properties of the preceding functions.

Lemma 5.1 The functions Ẽ
(λ)
jk , Ejk, E̊

(λ)
jk , N, S̃

(λ)
jkl , Sjkl, S̊

(λ)
jkl belong to C∞(R3\{0}) and

the equations −∆Ẽ
(λ)
jk +λ Ẽ

(λ)
jk −∂j∂kN = 0,

∑3
µ=1 ∂µẼ

(λ)
jµ = 0 hold for λ ∈ C\(−∞, 0], 1 ≤

j, k, l ≤ 3. Let ϑ ∈ [0, π). Then

|∂αẼ(λ)
jk (z)| ≤ C(ϑ, γ) |λ|−γ |z|−1−2 γ−|α|, |∂βE̊(λ)

jk (z)| ≤ C(ϑ, γ) |λ|γ |z|−1+2 γ−|β|,

and |∂α′S̃(λ)
jkl (z)| ≤ C(ϑ) |z|−2−|α′|, for 1 ≤ j, k, l ≤ 3, λ ∈ C\{0} with | arg λ| ≤ ϑ, z ∈

R3\{0}, γ ∈ [0, 1], α, β, α′ ∈ N3
0 with |α| ≤ 3, 1 ≤ |β| ≤ 3, |α′| ≤ 1. Moreover

Sjkl(z) = 3 zj zk zl |z|−5/(4π) for z ∈ R3\{0}, 1 ≤ j, k, l ≤ 3. (5.1)

Proof: The lemma follows from the properties of the exponential function, in particular
its series expansion; compare [11, (1.7), (3.2), (3.3)]. �

Next we define the potential functions we will use in the following.

Lemma 5.2 Let λ ∈ C\(−∞, 0], φ ∈ L1(∂Ω)3 and l ∈ {1, 2, 3}. Then, for x ∈ R3\∂Ω,
set

W̃ (λ)(φ)l(x) :=

∫
∂A

3∑
j,k=1

−S̃(λ)
jkl (x− y)φj(y)n

(Ω)
k (y) doy,

and define Wl(φ)(x) and W̊ (λ)(φ)l(x) in the same way as W̃ (λ)(φ)l(x), but with S̃jkl re-

placed by Sjkl and S̊
(λ)
jkl , respectively. Further define

Π(φ)(x) :=

∫
∂Ω

3∑
j,k=1

−2 (∂j∂kN)(x− y)φj(y)n
(A)
k (y) doy,

Π̊(φ)(x) :=
∫
∂Ω−N(x− y) (n(Ω) · φ)(y) doy, Π̃(λ)(φ)(x) := Π(φ)(x) + λ Π̊(φ)(x),

J̃ (λ)(φ)l(x) :=

∫
∂Ω

3∑
j,k=1

(∂jẼ
(λ)
kl + ∂kẼ

(λ)
jl )φj(y)n

(Ω)
k (y) doy
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and F(φ)l(x) :=
∫
∂Ω(∂lN)(x− y) (n(Ω) · φ)(y) doy for x ∈ R3\∂Ω, 1 ≤ l ≤ 3.

Then the functions W̃ (λ)(φ)l, W (φ)l, W̊
(λ)(φ)l, Π(φ), Π̊(φ), Π̃(λ)(φ), J̃ (λ)(φ)l and F(φ)l

belong to C∞(R3\∂Ω) for 1 ≤ l ≤ 3,

−∆W̃ (λ)(φ) + λ W̃ (λ)(φ) +∇Π̃(λ)(φ) = 0, div W̃ (λ)(φ) = div J̃ (λ)(φ) = 0, (5.2)

W̃ (λ)(φ) = W (φ) + W̊ (λ)(φ) = J̃ (λ)(φ) + F(φ).

Proof: Lebesgue’s theorem and the relations Ẽ
(λ)
jk , Ejk, E̊

(λ)
jk , N ∈ C∞(R3\{0}) (1 ≤

j, k ≤ 3) yield the claims about C∞-regularity. The differential equations satisfied by
Ẽ(λ) according to Lemma 5.1 and the equation ∆N = 0 imply (5.2). �

Theorem 5.1 Let p ∈ (1,∞), λ ∈ C\(−∞, 0], φ ∈ Lp(∂Ω)3. For Z ∈ {S̃(λ), S, S̊(λ)}, l ∈
{1, 2, 3} and for a. e. x ∈ ∂Ω, we have

∫
∂Ω

∑3
j,k=1 |Zjkl(x − y)n

(Ω)
k (y)φj(y)| doy < ∞.

Thus we may set

T̃
(λ)

(φ)l(x) :=

∫
∂Ω

2
3∑

j,k=1

S̃
(λ)
jkl (x− y)n

(Ω)
k (y)φj(y) doy

for a. e. x ∈ ∂Ω and for 1 ≤ l ≤ 3, and we may define T(φ)l(x) and T̊
(λ)

(φ)l(x) in the

same way as T̃
(λ)

(φ)l(x), but with the function S̃(λ) replaced by S and S̊(λ), respectively.

Note that T̃
(λ)

(φ) = T(φ) + T̊
(λ)

(φ).

The inequalities ‖T(φ)‖p ≤ C ‖φ‖p and ‖T̃
(λ)

(φ)‖p + ‖T̊(λ)
(φ)‖p ≤ C(λ) ‖φ‖p hold for

φ ∈ Lp(∂Ω)3. If b ∈ Lp(∂Ω)3, there is a unique function φ = φ(λ, b) ∈ Lp(∂Ω)3 such that

(−1/2)
(
φ+ T̃

(λ)
(φ)
)

= b. (5.3)

If b ∈ Ca(∂Ω)3 for some a ∈ [0, 1), then φ also belongs to Ca(∂Ω)3. Moreover the estimate

‖φ‖p ≤ C(λ) ‖φ+ T̃
(λ)

(φ)‖p holds for φ ∈ Lp(∂Ω)3.

Proof: The statements related to Sjkl and T(φ) follow from (5.1) and [18, Lemma 5.1],

those associated with S̊(λ) and T̊
(λ)

(φ) are a consequence of the estimate |∂jE̊(λ)
kl (z)| ≤

C(λ) for z ∈ R3\{0}, 1 ≤ j, k, l ≤ 3 (Lemma 5.1). This implies all the claims about S̃
(λ)
jkl

and T̃
(λ)

(φ), except those related to equation (5.3). In this respect we refer to [11, Lemma
1.1]. �

The estimate at the end of Theorem 5.1 actually is valid uniformly with respect to λ with
|λ| larger than some positive constant and | arg(λ)| bounded by some ϑ ∈ [0, π):

Theorem 5.2 Let p ∈ (1,∞), ϑ ∈ [0, π). Then there are constants Λ0, C0 ∈ (0,∞) such

that ‖φ‖ ≤ C0 ‖φ+ T̃
(λ)

(φ)‖p for φ ∈ Lp(∂Ω)3, λ ∈ C with |λ| ≥ Λ0 and | arg(λ)| ≤ ϑ.

Proof: A proof of this theorem is the content of [10]. �

The lower bound Λ0 in Theorem 5.2 may be replaced by any other λ0 ∈ (0,∞):

Corollary 5.1 Let p ∈ (1,∞), ϑ ∈ [0, π) and λ0 ∈ (0,∞). Then the conclusion of Theo-
rem 5.2 remains valid with λ0 in the place of Λ0.
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Proof: Choose R ∈ (0,∞) so large that x − y ∈ BR for x, y ∈ ∂Ω. Let λ ∈ C\(−∞, 0]
and ε ∈ (0,∞). Put δλ := dist(λ, (−∞, 0])/2 and

Kλ := {(µ, z) ∈ C×BR : |µ− λ| ≤ δλ, z 6= 0}.

By Lemma 5.1, there is Mλ > 0 with |∂jE̊(µ)
kl (z)| ≤ Mλ for (µ, z) ∈ Kλ, 1 ≤ j, k, l ≤ 3.

Thus we may choose δ1 ∈ (0,∞) with
∫
∂Ω χ(0,δ1](|x − y|) |∂jE̊(µ)

kl (x − y)| doy ≤ ε/3 for

x ∈ ∂Ω, µ ∈ C with |µ − λ| ≤ δλ and j, k, l as before. The function (µ, z) 7→ ∂jE̊
(µ)
kl (z)

with (µ, z) ∈ Kλ and |z| ≥ δ1 is uniformly continuous. Therefore we may choose δ2 ∈ (0, δλ]

such that
∫
∂Ω χ(δ1,∞)(|x− y|) |∂jE̊

(µ)
kl (x− y)− ∂jE̊(λ)

kl (x− y)| doy ≤ ε/3 for x ∈ ∂Ω, µ ∈ C
with |µ−λ| ≤ δ2, 1 ≤ j, k, l ≤ 3. Altogether

∫
∂Ω |∂jE̊

(µ)
kl (x−y)−∂jE̊(λ)

kl (x−y)| doy ≤ ε for
x, µ, j, k, l as in the preceding inequality. When the roles of x and y are exchanged, we

obtain the same inequality. Thus Lemma 3.1 yields that ‖T̊(µ)
(φ)− T̊

(λ)
(φ)‖p ≤ 48 ε ‖φ‖p

for µ ∈ C with |µ − λ| ≤ δ2, φ ∈ Lp(∂Ω)3. As a consequence, ‖T̃
(µ)

(φ) − T̃
(λ)

(φ)‖p ≤
48 ε ‖φ‖p for such µ and φ by Theorem 5.1. On the other hand, by the last statement in

that theorem, we have ‖φ‖p ≤ C(λ) ‖φ + T̃
(λ)

(φ)‖p for φ ∈ Lp(∂Ω)3. Now Corollary 5.1
follows from Theorem 5.2 by a standard compactness argument. �

The role of the operator φ 7→ φ+ T̃
(λ)

(φ) becomes apparent from the following theorem.

Theorem 5.3 Let λ ∈ C\(−∞, 0] and φ ∈ C0(∂Ω)3. Define the functions Wex(φ) : Ωc 7→
C3 and Win(φ) : Ω 7→ C3 by setting

Wex(φ)|Ωc
:= W (φ)|Ωc

, Wex(φ)|∂Ω := (−1/2)
(
φ+ T(φ)

)
, Win(φ)|Ω := W (φ)|Ω,

Win(φ)|∂Ω := (−1/2)
(
−φ+T(φ)

)
. The functions W̃

(λ)
ex (φ) and W̃

(λ)
in (φ) are to be defined

in an analogous way. (Replace W (φ) by W̃ (λ)(φ) and T(φ) by T̃
(λ)

(φ).)

Then Wex(φ), W̃
(λ)
ex (φ) ∈ C0(Ωc)3 and Win(φ), W̃

(λ)
in (φ) ∈ C0(Ω)3 (”jump relation”).

The function W̊ (λ)(φ) may be extended to a C∞-function in R3. We denote this extension

also by W̊ (λ)(φ). Then W̊ (λ)(φ)|∂Ω = (−1/2) T̊
(λ)

(φ).

Proof: The claims about Wex(φ) and Win(φ) hold by [18, Satz 4.1]. By Lemma 5.1,

the function ∂jE̊
(λ)
kl : R3\{0} 7→ C is continuous and bounded. It follows by Lebesgue’s

theorem that W̊ (λ)(φ) may be continuously extended from R3\∂Ω to R3 and the equation

at the end of Theorem 5.3 holds. Since W̃ (λ)(φ) = W (φ) + W̊ (λ)(φ) (Lemma 5.2) and

T̃
(λ)

(φ) = T(φ) + T̊
(λ)

(φ) (Theorem 5.1), the remaining claims of Theorem 5.3 follow. �

If φ belongs to Lp(∂Ω)3 but may not be continuous, then W̃ (λ)(φ)|Ωc
takes the boundary

value (−1/2)
(
φ+ T̃

(λ)
(φ)
)

only in the Lp-sense:

Corollary 5.2 Let p ∈ (1,∞), λ ∈ C\(−∞, 0], φ ∈ Lp(∂Ω)3. Then∫
∂Ω

∣∣ W̃ (λ)(φ)
(
x± ε n(Ω)(x)

)
+ (1/2)

(
±φ+ T̃

(λ)
(φ)
)
(x)
∣∣p dox → 0 (ε ↓ 0). (5.4)

Proof: For any ψ ∈ C0(∂Ω)3, we know by Theorem 5.3 and the relations in (2.4) that

W̃ (λ)(ψ)
(
x ± ε n(Ω)(x)

)
→ (−1/2)

(
±φ + T̃

(λ)
(ψ)

)
(x) (ε ↓ 0) uniformly in x ∈ ∂Ω. Also,
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recall that ‖T̃
(λ)

(ψ)‖p ≤ C(λ) ‖ψ‖p for ψ ∈ Lp(∂Ω)3 (Theorem 5.1). This leaves us to
show that for ψ ∈ Lp(∂Ω)3, ε ∈

(
0, ε(Ω)

]
,(∫

∂Ω

∣∣ W̃ (λ)(ψ)
(
x± ε n(Ω)(x)

) ∣∣p dox)1/p
≤ C(λ) ‖ψ‖p, (5.5)

with a constant independent of ε. (The parameter ε(Ω) was introduced in Lemma 2.1.)
The corollary then follows from a density argument based on Lemma 2.3 and the remark

on C1(∂Ω) in Lemma 2.1. In view of a proof of (5.5), we recall that S̃
(λ)
jkl = Sjkl + S̊

(λ)
jkl ,

the function ∂jE̊
(λ)
kl is bounded for 1 ≤ j, k, l ≤ 3 (Lemma 5.1), and |(x− y) · n(Ω)(y)| ≤

D1 |x− y|2 for x, y ∈ ∂Ω (Lemma 2.1). Using (5.1) and (2.5), we thus see that

|
3∑

k=1

Sjkl(x± ε n(Ω)(x)− y)n
(Ω)
k (y)| ≤ C

(
|x− y|−1 + ε (|x− y|+ ε)−3 + 1

)
for x, y, j, l as before and ε ∈

(
0, ε(Ω)

]
. Therefore by the last two inequalities in Lemma

2.1, we get
∫
∂Ω |

∑3
k=1 Sjkl(x ± ε n(Ω)(x) − y)n

(Ω)
k (y)| doy ≤ C for x ∈ ∂Ω, ε ∈

(
0, ε(Ω)

]
.

If we integrate with respect to x ∈ ∂Ω instead of y, the same argument yields a bound
uniform in y ∈ ∂Ω and ε ∈

(
0, ε(Ω)

]
. Thus inequality (5.5) follows from Lemma 3.1. �

The function W̃ (λ)(ψ)|Ωc
may rather easily be approximated by functions that are C∞ in

a domain slightly larger than Ω
c
. An analogous remark is true with respect to W̃ (λ)(ψ)|Ω.

Here are the details:

Lemma 5.3 Let φ ∈ L1(∂Ω)3, λ ∈ C\(−∞, 0] and ε ∈
(

0, ε(Ω)
]
, with ε(Ω) introduced

in Lemma 2.1. Define Uε :=
{
x ∈ R3 : dist(x,Ω) < D2 ε/2

}
, U−ε :=

{
x ∈ R3 :

dist(x,Ωc) < D2 ε/2
}
, with D2 also introduced in Lemma 2.1. Note that Uε and U−ε are

open, Ω ⊂ Uε and Ωc ⊂ U−ε. Further define

W̃ (λ, ε)(φ)l(x) :=

∫
∂Ω
−

3∑
j,k=1

S̃
(λ)
jkl

(
x− [y + ε n(Ω)(y)]

)
φj(y)n

(Ω)
k (y) doy for x ∈ Uε,

1 ≤ l ≤ 3, and let W̃ (λ,−ε)(φ)l(x) be defined in the same way as W̃ (λ, ε)(φ)l(x), but for
x ∈ U−ε and with the term y + ε n(Ω)(y) replaced by y − ε n(Ω)(y).

Then W̃ (λ,±ε)(φ) ∈ C∞(U±ε)
3 and div W̃ (λ,±ε)(φ) = 0.

Proof: Let x ∈ Uε\Ω. Then there is x′ ∈ ∂Ω with |x− x′| = dist(x,Ω). Since x ∈ Uε, we
have |x′ − x| < D2 ε/2. Thus with (2.5), for y ∈ ∂Ω,

|x− [y + ε n(Ω)(y)]| ≥ |x′ − [y + ε n(Ω)(y)]| − |x− x′| ≥ D2 ε− |x− x′| ≥ D2 ε/2.

Suppose that x ∈ Ω, and let y ∈ ∂Ω. By (2.4), we have y + ε n(Ω)(y) ∈ Ω
c
, so there

is x′ ∈ ∂Ω with |x − [y + ε n(Ω)(y)]| ≥ |x′ − [y + ε n(Ω)(y)]|. Hence due to (2.5) again,
|x− [y+ ε n(Ω)(y)]| ≥ D2 ε. Altogether |x− [y+ ε n(Ω)(y)]| ≥ D2 ε/2 for any x ∈ Uε and for

any y ∈ ∂Ω. Since S̃
(λ)
jk ∈ C

∞(R3\{0}) for 1 ≤ j, k l ≤ 3, the claims of the lemma related

to W̃ (λ, ε) follow by the estimate of S̃
(λ)
jkl in Lemma 5.2 and Lebesgue’s theorem. Analogous

arguments are valid for the function W̃ (λ,−ε). �
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Corollary 5.3 Let λ ∈ C\(−∞, 0] and φ ∈ C0(∂Ω)3. Then W̃ (λ,±ε)(φ)(x) converges to

(−1/2)
(
∓φ+ T̃

(λ)
(φ)
)
(x) for ε ↓ 0 uniformly in x ∈ ∂Ω.

Let p ∈ (1,∞) and φ ∈ Lp(∂Ω)3. Then the preceding convergence result holds in the
Lp-sense.

Proof: Put G(x, y, κ)jkl :=
∣∣ S̃(λ)

jkl

(
x + κn(Ω)(x) − y

)
− S̃

(λ)
jkl

(
x − [y − κn(Ω)(y)]

) ∣∣ for
x, y ∈ ∂Ω, κ ∈ [−ε(Ω), ε(Ω)]\{0}, 1 ≤ j, k, l ≤ 3. Then

G(x, y, κ)jkl =
∣∣ ∫ 1

0
Λjkl(x, y, κ, ϑ) dϑκ

(
n(Ω)(x)− n(Ω)(y)

) ∣∣,
with Λjkl(x, y, κ, ϑ) :=

∑3
m=1 ∂mS̃

(λ)
jkl

(
x−y+ϑκn(Ω)(x)+(1−ϑ)κn(Ω)(y)

)
for x, y, j, k, l

and κ as above and for ϑ ∈ [0, 1]. But |Λjkl(x, y, κ, ϑ)| ≤ C(λ)D−3
2 (|x − y| + |κ|)−3 by

Lemma 5.2 and (2.5). Using the estimate |n(Ω)(x) − n(Ω)(y)| ≤ D1 |x − y| for x, y ∈ ∂Ω
(Lemma 2.1), we may conclude with the second from last inequality in Lemma 2.1 that∫
∂ΩG(x, y, κ) doy ≤ C(λ) |κ|−1/2. Therefore |W̃ (λ)(φ)

(
x ± ε n(Ω)(x)

)
− W̃ (λ,∓ε)(φ)(x)| ≤

C(λ) ‖φ‖1 ε1/2 for ε ∈
(

0, ε(Ω)]. Now the first part of the lemma follows with Theorem
5.3. The second part is a consequence of (5.4), Lemma 3.1 and the preceding estimate of∫
∂Ω G(x, y, κ) doy and an analogous inequality for

∫
∂Ω G(x, y, κ) dox. �

Lemma 5.4 Let λ ∈ C\(−∞, 0], p ∈ (1,∞), φ ∈ Lp(∂Ω)3, a ∈ (0, 2/p), r ∈ (1,∞)

and R ∈ (0,∞) with Ω ⊂ BR. Then the relations ‖W̃ (λ)(φ) − W̃ (λ, ε)(φ)|Ω‖(1/p−a/2)−1 →
0, ‖W̃ (λ)(φ) − W̃ (λ,−ε)(φ)|ΩR‖(1/p−a/2)−1 → 0 and ‖W̃ (λ)(φ) − W̃ (λ,−ε)(φ)|∂BR‖r → 0
hold for ε ↓ 0.

Proof: Let x ∈ Ω, y ∈ ∂Ω and ε ∈
(

0, ε(Ω)
]
. If ε < |x−y|/2, we have |x−y−ε n(Ω)(y)| ≥

|x−y|−ε ≥ |x−y|/2. Suppose that ε ≥ |x−y|/2. Since y+ε n(Ω)(y) ∈ Ω
c

(see (2.4)), there
is x′ ∈ ∂Ω such that |x−y−ε n(Ω)(y)| ≥ |x′−y−ε n(Ω)(y)|. Using (2.5) and our assumption
ε ≥ |x− y|/2, it follows that |x− y − ε n(Ω)(y)| ≥ D2 ε ≥ D2 |x− y|/2. So we have in any

case that |x− y− ε n(Ω)(y)| ≥ C |x− y|, hence by Lemma 5.1, |S̃(λ)
jkl

(
x− [y+ ε n(Ω)(y)]

)
| ≤

C |x− y|−2 for x, y, ε as above and for 1 ≤ j, k, l ≤ 3. If ε = 0, the preceding estimate is
also valid by Lemma 5.1.

Let x ∈ Ω. Since dist(x, ∂Ω) > 0, the function y 7→ |x − y|−2 (y ∈ ∂Ω) is integrable, so

we get A(ε, x) := |W̃ (λ)(φ) − W̃ (λ, ε)(φ)|(x) → 0 (ε ↓ 0) by the preceding estimates and

Lebesgue’s theorem. But the function x 7→
( ∫

∂Ω |x − y|
−2 |φ(y)| doy

)(1/p−a/2)−1

(x ∈ Ω)
is integrable by Lemma 3.2. So, since A(x, ε) → 0 (ε ↓ 0) and because of the estimates
obtained in the first part of this proof, we may apply Lebesgue’s theorem a second time,

obtaining that
( ∫

Ω |A(x, ε)|(1/p−a/2)−1
dx
)1/p−a/2 → 0 for ε ↓ 0. This proves the first

relation stated in the lemma. The other two follow by an analogous argument. �

We end this section by three estimates taken from [18] or [11].

Theorem 5.4 ([11, (5.2)]) Let ϑ ∈ [0, π) and p ∈ (1,∞). Then for φ ∈ Lp(∂Ω)3 and
λ ∈ C\{0} with | arg(λ)| ≤ ϑ, the inequality ‖J̃ (λ)(φ)|Ωc‖p ≤ C(ϑ, p) |λ|−1/(2p) ‖φ‖p holds.

Theorem 5.5 ([18, Lemma 7.8]) Let p ∈ (1,∞). Then, for % ∈ (0, 1), b ∈ C%(∂Ω)3 ∩
W 2−1/p, p(∂Ω)3, φ ∈ C%(∂Ω)3 with b = (−1/2)

(
φ + T(φ)

)
, we have φ ∈ W 2−1/p, p(∂Ω)3

and ‖φ‖2−1/p, p ≤ C (‖b‖2−1/p, p + ‖φ‖p).

Theorem 5.6 Let r ∈ (1,∞) and R ∈ (0,∞) with Ω ⊂ BR. Then ‖Π(φ)|ΩR‖1,r ≤
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C ‖φ‖2−1/r, r for φ ∈W 2−1/r, r(∂Ω)3 with φ ∈ C%(∂Ω)3∩W 2−1/p, p(∂Ω)3 for some % ∈ (0, 1)
and some p ∈ (3/2, ∞).

Proof: Let φ, %, p be given as in the theorem. Define ψ(m,n) := (δnj φm)1≤j≤3 for

m, n ∈ {1, 2, 3}, and set u(x) := (−2/3)
(∑3

j=1 W̃
(λ)(ψ(m,j))j(x)

)
1≤m≤3

for x ∈ ΩR.

Obviously (Lemma 5.2) u ∈ C∞(ΩR)3. According to the proof of [18, Lemma 7.15],
we have ∆u = 0, u may be continuously extended to a function ũ ∈ C0(ΩR)3, and
‖ũ|∂ΩR‖2−1/q, q ≤ C(q) ‖φ‖2−1/q, q for q ∈ {p, r}. In this situation Lemma 3.4 yields
‖u‖2,r ≤ C(r) ‖ũ|∂Ω‖2−1/r, r. Since Π(φ)|ΩR = divu by the proof of [18, Lemma 7.15],
the theorem follows from the two preceding inequalities. �

6 Proof of Theorem 1.1.

We recall that for any φ ∈ Lp(∂Ω)3, the function W̃ (λ)(φ) splits into the sum J̃ (λ)(φ)+F(φ)
(Lemma 5.2). We begin by taking a closer look at the function F(φ), considering functions
φ ∈ Lp(∂Ω)3 that solve equation (5.3) with a right-hand side b falling into one of the
following three categories: either b ∈ Lp(∂Ω)3 with

∫
∂Ω b · n

(Ω) dox = 0, or secondly

b = B|∂Ω with B ∈ W 1,p
loc (R3)3 ∩ Lp(R3)3 and divB = 0, or thirdly b = n(Ω). The second

case is of interest if f does not vanish. Then B is chosen as a volume potential involving
f . This is the situation considered in [11], for more regular B.

Theorem 6.1 Let p ∈ (1,∞) and ϑ ∈ [0, π). Then

‖F(φ)|Ωc‖p ≤ C(p, ϑ)(‖b‖p + |λ|−1/(2p) ‖φ‖p) for λ ∈ C\{0} with | arg(λ)| ≤ ϑ, (6.1)

b ∈ Lp(∂Ω)3 with
∫
∂Ω b · n

(Ω) dox = 0, and φ ∈ Lp(∂Ω)3 the unique solution of (5.3). In
addition

‖F(φ)|Ωc‖p ≤ C(p, ϑ)(‖B‖p + |λ|−1/(2p) ‖φ‖p) (6.2)

for λ as before, b = B|∂Ω for some function B ∈W 1,p
loc (R3)3∩Lp(R3)3 with divB = 0, and

φ as before.

For any λ ∈ C\(−∞, 0], there exists a unique function φ(λ) ∈ C0(∂Ω)3 such that n(Ω) =

(−1/2)
(
φ(λ) + T̃

(λ)
(φ(λ))

)
(Theorem 5.1). The function F(φ(λ)) − F(Ω)|Ωc

belongs to

Lp(Ω
c
)3, where F(Ω) was introduced in Theorem 1.1. This latter function is in Lr(R3)3 for

any r ∈ (3/2, ∞).

Proof: Take λ as in (6.1), g ∈ C1(∂Ω)3 and ψ ∈ C0(∂Ω)3 with (−1/2)
(
ψ+ T̃

(λ)
(ψ)

)
= g

(Theorem 5.1). Let x ∈ Ω
c
. The function y 7→ (∂αN)(x− y) (y ∈ Ω) belongs in particular

to C1(Ω
c
) (α ∈ N3

0, |α| ≤ 2). Since ψ = −g − (1/2)
(
−ψ + T̃

(λ)
(ψ)

)
, we thus get with

Corollary 5.3 that F(ψ)l(x) = limε↓0
∫
∂Ω(∂lN)(x− y)n(Ω)(y) ·

(
−g + W̃ (λ, ε)(ψ)

)
(y)
)
doy.

Take some G ∈W 1,1(Ω)3 with G|∂Ω = g. Then, due to the smoothness of W̃ (λ, ε)(ψ) on an
open set larger than Ω, and because in addition this function is solenoidal (Lemma 5.3),
we get F(ψ)(x) = F(1)(ψ)(x) + F(2)(G)(x), where

F(1)(ψ)l(x) = lim
ε↓0

∫
Ω

3∑
k=1

∂yk
(

(∂lN)(x− y)
) (
−Gk + W̃ (λ, ε)(ψ)k

)
(y) dy,

F(2)(G)l(x) = −
∫
∂Ω

(∂lN)(x− y) divG(y) dy (1 ≤ l ≤ 3).
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Lemma 5.4 yields that F(1)(ψ)l(x) =
∫

Ω

∑3
k=1(∂k∂lN)(x−y)

) (
Gk−W̃ (λ)(ψ)k

)
(y) dy. Here

x was arbitrarily chosen in Ω
c
. If divG ∈ Lr(Ω) for some r ∈ (1, 3), Theorem 3.5 implies

that F(2)(G) ∈ L(1/r−1/3)−1
(Ω

c
)3. Suppose that G ∈ Lp(Ω)3 for some p ∈ (1,∞). Then

again Theorem 3.5 allows us to conclude that ‖F(1)(ψ)‖p ≤ C(p) (‖G‖p + ‖W̃ (λ)(ψ)|Ω‖p).
But |S̃(λ)

jkl (z)| ≤ C(ϑ) |z|−2 for z ∈ R3\{0}, 1 ≤ j, k, l ≤ 3 according to Lemma 5.1, so

Lemma 3.2 implies ‖W̃ (λ)(ψ)|Ω‖p ≤ C ‖ψ‖p. Thus we arrive at the estimate ‖F(1)(ψ)‖p ≤
C(p) (‖G‖p + ‖ψ‖p). Here ψ was arbitrarily taken in C0(∂Ω)3.

Recall that in Theorem 1.1, we chose N (Ω) ∈ C1(Ω)3 with N (Ω)|∂Ω = n(Ω). Thus we may
apply the preceding results to the case that g, ψ and G are replaced by n(Ω), φ(λ) and
N (Ω). Note that F(2)(N (Ω)) = F(Ω)|Ωc

. Thus the last part of Theorem 6.1 follows from
what has been proved above for F(1)(ψ) and F(2)(G), and because F(Ω) ∈ Lr(R3)3 for
r > 3/2 by Theorem 3.5.

Let b ∈ C1(∂Ω)3 with
∫
∂Ω b ·n

(Ω) dox = 0. Theorem 5.1 yields a function φ ∈ C0(∂Ω)3 with

b = (−1/2)
(
φ+ T̃

(λ)
(φ)
)
. Moreover, by Theorem 3.1, we may choose B ∈W 1,p(Ω)3 with

divB = 0 and B|∂Ω = b. In this situation, we may apply the first part of this proof with
g, ψ and G replaced by b, φ and B, respectively. Then F(2)(B) = 0, so F(φ)|Ωc

= F(1)(φ).
The first part of this proof thus yields F(φ)|Ωc ∈ Lp(Ωc

)3.

In order to show (6.1) for this b, we proceed as in [11, p. 346-347]. So let ϕ ∈ C∞0 (Ωc).
With Lemma 5.4, 5.3 and Corollary 5.3, we obtain∫

Ω
c
W̃ (λ)(φ) · ∇ϕdx = − lim

ε↓0

∫
Ω
c
W̃ (λ,−ε)(φ) · ∇ϕdx =

∫
∂Ω

(1/2)
(
φ+ T̃

(λ)
(φ)
)
·ϕn(Ω)dox.

By the choice of φ, the right-hand side of this equation equals −
∫
∂Ω b · ϕn

(Ω) dox. Since

F(φ) = W̃ (λ)(φ)− J̃ (λ)(φ) (Lemma 5.2), we may conclude with Theorem 5.4 that∣∣ ∫
Ω
c
F(φ) · ∇ϕdx

∣∣ ≤ C (‖b‖p ‖ϕ|∂Ω‖p′ + |λ|−1/(2p) ‖φ‖p ‖∇ϕ‖p′). (6.3)

Fix some R ∈ (0,∞) with Ω ⊂ BR. Let g ∈W 1,p′

loc (Ω
c
)3 with ∇g ∈ Lp′(Ωc

)3. If p′ < 3, fur-

ther assume that g ∈ L3 p′/(3−p′)(Ω
c
)3. Else suppose that

∫
ΩR

g dx = 0. Then, by Theorem
3.3, there is a sequence (ϕn) in C∞0 (Ωc) with ‖∇(ϕn − g)‖p′ → 0 and ‖ϕn − g|ΩR‖p′ → 0.
Since F(φ)|Ωc ∈ Lp(Ωc

)3, as shown above, we get that
∫

Ω
c F(φ)·∇ϕn dx→

∫
Ω
c F(φ)·∇g dx.

On the other hand, by a standard trace estimate, ‖ϕn|∂Ω‖p′ ≤ C ‖ϕn|ΩR‖1,p′ for n ∈ N,
so ‖ϕn|∂Ω‖p′ ≤ C (‖ϕn−g|ΩR‖1,p′ +‖g|ΩR‖1,p′). If ∇g 6= 0, we may choose n so large that
‖ϕn − g|ΩR‖1,p′ ≤ ‖∇g‖p′ . Then ‖ϕn|∂Ω‖p′ ≤ C (‖g|ΩR‖p′ + ‖∇g‖p′). In the case p′ < 3,
we have ‖g|ΩR‖p′ ≤ C(R, p) ‖g|ΩR‖3p′/(3−p′) ≤ C ‖∇g‖p′ , with the last inequality being
valid by Theorem 3.2. If p′ ≥ 3, Poincaré’s inequality yields ‖g|ΩR‖p′ ≤ C ‖∇g|ΩR‖p′
because

∫
ΩR

g dx = 0 by assumption. So in any case we obtain for n large enough that
‖ϕn|∂Ω‖p′ ≤ C ‖∇g‖p′ . Thus, after replacing ϕ by ϕn in (6.3) and then letting n tend to
infinity, we arrive at the estimate∣∣ ∫

Ω
c
F(φ) · ∇g dx

∣∣ ≤ C (‖b‖p + |λ|−1/(2p) ‖φ‖p) ‖∇g‖p′ . (6.4)

Define Z(φ)(x) :=
∫
∂Ω N(x−y)n(Ω)(y)·φ(y) doy for x ∈ Ω

c
. Obviously Z(φ) ∈ C∞(Ω

c
) and

∇Z(φ) = F(φ)|Ωc
Thus we get for h ∈ C∞0, σ(Ω

c
) that

∫
Ω
c F(φ) · h dx = 0. Since F(φ)|Ωc ∈
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Lp(Ω
c
)3, as shown above, it follows that

∫
Ω
c F(φ) · h dx = 0 even for Lp

′
σ (Ω

c
). Therefore

from (6.4) and Corollary 3.1,
∣∣ ∫

Ω
c F(φ) · f dx

∣∣ ≤ C (‖b‖p + |λ|−1/(2p) ‖φ‖p) ‖∇Gp′(f)‖p′)
for f ∈ Lp′(Ωc

)3. Since ‖∇Gp′(f)‖p′ ≤ C ‖f‖p′ for f as before (Corollary 3.1), we obtain
inequality (6.1) for the function b chosen above.

If b = B|∂Ω for some B ∈ C1(R3)3 ∩ Lp(R3)3 with divB = 0, then
∫
∂Ω b · ϕn

(Ω) dox =∫
Ω
c B · ∇ϕdx for ϕ ∈ C∞(Ωc). Thus we obtain (6.2) by a simpler reasoning than the one

leading to (6.1) for the function b given above; compare [11, p. 346-347].

A density argument now yields (6.1) and (6.2) for b and B as in the theorem. In fact,
take λ, b and φ as in the first part of the theorem. Lemma 2.2 yields a sequence (bn) in
C1(∂Ω)3 with ‖b− bn‖p → 0. For n ∈ N, put b̃n := bn− |∂Ω|−1

∫
∂Ω bn ·n

(Ω) dox n
(Ω). Then

b̃n ∈ C1(∂Ω)3,
∫
∂Ω b̃n · n

(Ω) dox = 0 for n ∈ N, and ‖b̃n − b‖p → 0. Let φn ∈ C0(∂Ω)3

with b̃n = (−1/2)
(
φn + T̃

(λ)
(φn)

)
for n ∈ N (Theorem 5.1). Then ‖φn − φ‖p → 0 also by

Theorem 5.1. Inequality (6.1) is already proved for b ∈ C1(∂Ω)3 and is therefore valid with
b, φ replaced by bn−bm and φn−φm, respectively, for m, n ∈ N. Thus ‖F(φn−φm)|Ωc‖p →
0 for m, n→∞. On the other hand, the relation ‖φn − φ‖p → 0 and Lebesgue’s theorem
yield for A ⊂ R3 open with A ⊂ Ω

c
that ‖F(φn−φ)|A‖p → 0. Altogether we may conclude

that ‖F(φn−φ)|Ωc‖p → 0. Inequality (6.1) now follows by applying it to bn and φn instead
of b and φ and then letting n tend to infinity.

Let λ, B, φ be given as in (6.2). Using Friedrich’s mollifier, we may choose a family (Bε)ε>0

of functions in C∞(R3)3 ∩ Lp(R3)3 such that ‖Bε − B‖p → 0 and ‖∇(Bε − B)|A‖p → 0
for ε ↓ 0 for any open bounded set A ⊂ R3, and divBε = 0 for ε > 0. In particular
Bε|∂Ω ∈ C1(∂Ω)3 (ε > 0) and ‖Bε−B|∂Ω‖p → 0 (ε ↓ 0). With this type of approximation,
inequality (6.2) for B as above may be deduced from (6.2) for B ∈ C1(R3)3 ∩ Lp(R3)3,
that is, for the case already considered. �

In the ensuing corollary, we collect our various previous estimates in order to obtain Lp-
estimates in particular of W̃ (λ)(φ).

Corollary 6.1 For b ∈ C1(∂Ω)3, abbreviate γ(b) := |∂Ω|−1
∫
∂Ω b · n

(Ω) dox. Let p ∈
(1,∞), ϑ ∈ [0, π). Then

‖F(φ)− γ(b)F(Ω)|Ωc‖p + ‖W̃ (λ)(φ)− γ(b)F(Ω)|Ωc‖p (6.5)

≤ C(p, ϑ)
(
‖b‖p + |λ|−1/(2p) ‖φ‖p + |γ(b)| (|λ|−1/(2p) + 1)

)
for λ ∈ C\{0} with | arg(λ)| ≤ ϑ and b ∈ Lp(∂Ω)3, where φ ∈ Lp(∂Ω)3 with b =

(−1/2)
(
φ + T̃

(λ)
(φ)
)

(Theorem 5.1). The function F(Ω) was introduced in Theorem 1.1.

Moreover ‖γ(b)F(Ω)|Ωc‖r ≤ C(r) ‖b‖p for r ∈ (3/2, ∞), b ∈ Lp(∂Ω)3 (Theorem 6.1).
Thus, if p > 3/2, the estimate

‖F(φ)|Ωc‖p + ‖W̃ (λ)(φ)|Ωc‖p ≤ C(p, ϑ)
(

(|λ|−1/(2p) + 1) ‖b‖p + |λ|−1/(2p) ‖φ‖p
)

(6.6)

holds for λ, φ, b as in (6.5).

If R ∈ (0,∞) with Ω ⊂ BR, the term ‖F(φ)|ΩR‖p + ‖W̃ (λ)(φ)|ΩR‖p, too, is bounded by
the right-hand side of (6.6) for λ, φ, b as in (6.5), except that the constant additionally
depends on R.

Moreover ‖F(φ)|Ωc‖p + ‖W̃ (λ)(φ)|Ωc‖p ≤ C(p, ϑ) (‖b‖p + |λ|−1/(2p) ‖φ‖p) for λ as in (6.5),
b ∈ Lp(∂Ω)3 with

∫
∂Ω b · n

(Ω) dox = 0, and φ as in (6.5).
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In addition, ‖W̃ (λ)(φ)|Ωc‖p ≤ C (‖B‖p + |λ|−1/(2p) ‖φ‖p) for λ as in (6.5) and for B ∈
W 1,p
loc (R3) ∩ Lp(R3)3 with divB = 0, where φ ∈ Lp(∂Ω)3 solves (5.3) with b = B|∂Ω.

For R as above and a ∈ (0, 2/p), the inequality ‖W̃ (λ)(φ)|ΩR‖(1/p−a/2)−1 ≤ C ‖φ‖p holds
for λ as in (6.5) and φ ∈ Lp(∂Ω)3.

Proof: Let λ, b and φ be given as in (6.5), and set b̃ := b− γ(b)n(Ω). Then b̃ ∈ Lp(∂Ω)3

and
∫
∂Ω b̃ n

(Ω) dox = 0. Let φ̃ ∈ Lp(∂Ω)3 with b̃ = (−1/2)
(
φ̃ + T̃(φ̃)

)
(Theorem 5.1).

Then inequality (6.1) yields that ‖F(φ̃)|Ωc
)‖p ≤ C (‖b̃‖p + |λ|−1/(2p) ‖φ̃‖p). On the other

hand, due to the uniqueness of the solution to (5.3) and the choice of φ(λ) in Theorem
6.1, we have φ = φ̃ + γ(b)φ(λ), and thus F(φ) − γ(b)F(Ω) = F(φ̃) + γ(b)

(
F(φ(λ) − F(Ω)

)
.

Thus the estimate involving F(φ) in (6.5) follows from the estimate of F(φ̃) given above,
from the relation between φ and φ̃ also given above, and because F(φ(λ))−F(Ω) ∈ Lp(Ωc

)3

(Theorem 6.1). All the other statements of the corollary are now a direct consequence of

the equation W̃ (λ)(φ) = J̃ (λ)(φ) + F(φ) (Lemma 5.2), Theorem 6.1, 5.4, Lemma 3.2, (6.5)

and the estimate |S̃(λ)
jkl (z)| ≤ C(ϑ) |z|−2 for λ as in (6.5) and z ∈ R3\{0} (Lemma 5.1). �

The structure of our solutions immediately provides pointwise decay estimates.

Lemma 6.1 Let R ∈ (0,∞) with Ω ⊂ BR, and take ϑ ∈ [0, π). Then

|∂αW̃ (λ)(φ)(x)|+ |∂αF(φ)(x)| ≤ C |x|−2−|α| ‖φ‖1,
|
(
W̃ (λ)(φ)− F(φ)

)
(x)| ≤ C |λ|−1 |x|−4 ‖φ‖1, |∂αΠ̃(λ)(φ)(x)| ≤ C (1 + |λ|) |x|−1−|α| ‖φ‖1

for λ ∈ C\{0} with | arg(λ)| ≤ ϑ, φ ∈ L1(∂Ω)3, x ∈ Bc
R, α ∈ N3

0 with |α| ≤ 2, where all
constants C only depend on R, δ := dist(Bc

R, Ω) or ϑ.

Proof: Since Ω ⊂ BR, we have δ > 0. Let x ∈ Bc
R, y ∈ ∂Ω. Then |x − y| ≥ |x| δ/R +

|x| (1− δ/R)− |y| ≥ |x| δ/R+R− δ− |y|. But R− |y| = |R |y|−1 y− y| and R |y|−1 y ∈ Bc
R

if y 6= 0, so R − |y| ≥ δ. Thus we may conclude that |x − y| ≥ |x| δ/R. The lemma now

follows from the estimates of ∂αẼ
(λ)
jk given in Lemma 5.1. �

The preceding pointwise decay estimates immediately imply Lp-estimates.

Corollary 6.2 Take R, δ and ϑ as in Lemma 6.1. Then

‖W̃ (λ)(φ)|Bc
R‖p1 + ‖F(φ)|Bc

R‖p1 ≤ C ‖φ‖1, ‖∂αW̃ (λ)(φ)|Bc
R‖p2 ≤ C ‖φ‖1,

‖∇Π̃(λ)(φ)|Bc
R‖p1 ≤ C (1 + |λ|) ‖φ‖1, ‖Π̃(λ)(φ)|Bc

R‖p3 ≤ C (1 + |λ|) ‖φ‖1,

as well as ‖
(
W̃ (λ)(φ) − F(φ)

)
|Bc

R‖p2 ≤ C |λ|−1 ‖φ‖1, for λ, φ as in Lemma 6.1, p1 ∈
(3/2, ∞), p2 ∈ (1,∞), p3 ∈ (3,∞), and α ∈ N3

0 with 1 ≤ |α| ≤ 2, with constants
depending exclusively on R, δ, ϑ, p1, p2 or p3.

We show that if b satisfies a zero flux condition on ∂Ω, and if φ solves (5.3), then F(φ)
fulfills a zero flux condition on ∂BR:

Lemma 6.2 Let p ∈ (1,∞), λ ∈ C\(−∞, 0], b, φ ∈ Lp(∂Ω)3 with
∫
∂Ω b ·n

(Ω) dox = 0 and

b = (−1/2)
(
φ+ T̃

(λ)
(φ)
)
, R ∈ (0,∞) with Ω ⊂ BR. Then

∫
∂BR

F(φ)(x) ·R−1 x dox = 0.

Proof: Since W̃ (λ,−ε)(φ) is a smooth, solenoidal function on an open set somewhat larger

that Ωc (Lemma 5.3), we get
∫
∂BR

W̃ (λ,−ε)(φ)(x)·R−1 x dox =
∫
∂Ω W̃

(λ,−ε)(φ)·n(Ω) dox, for

ε ∈
(

0, ε(Ω)
]
. Letting ε tend to zero, we may conclude with Corollary 5.3 and Lemma 5.4
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that
∫
∂BR

W̃ (λ)(φ)(x)·R−1 x dox =
∫
∂Ω b·n

(Ω) dox = 0. On the other hand, from Lemma 5.2

we know that div J̃ (λ)(φ) = 0, so
∫
∂BR

J̃ (λ)(φ)(x) · R−1 x dox =
∫
∂Br

J̃ (λ)(φ)(x) · r−1 x dox

for r ∈ (R,∞). But from the estimate of ∂jẼ
(λ)
kl provided by Lemma 5.1, we obtain that∫

∂Br
J̃ (λ)(φ)(x) · r−1 x dox → 0 for r → ∞. Thus Lemma 6.2 follows with the equation

W̃ (λ)(φ) = J̃ (λ)(φ) + F(φ) (Lemma 5.2). �

The ensuing theorem was already used in [11] but not proved there. For the convenience of
the reader, we give a proof in the appendix, with an approach different from the indication
on [11, p. 347].

Theorem 6.2 Let p ∈ (1,∞), ϑ ∈ [0, π). Then T̊
(λ)

(φ) ∈W 2−1/p, p(∂Ω)3 and the inequal-

ity ‖T̊(λ)
(φ)‖2−1/p, p ≤ C |λ|1−1/(2p) ‖φ‖p holds for φ ∈ Lp(∂Ω)3 and λ ∈ C\(−∞, 0] with

| arg(λ)| ≤ ϑ.

We turn to the case b ∈W 2−1/p, p(∂Ω)3.

Theorem 6.3 Let p ∈ (1,∞), ϑ ∈ [0, π) and R ∈ (0,∞) with Ω ⊂ BR. Then

‖W̃ (λ)(φ)|ΩR‖2,p + ‖Π̃(λ)(φ)|ΩR‖1,p (6.7)

≤ C(p, ϑ,R)
(

(|λ|1−1/(2p) + 1) ‖φ‖p + |λ| ‖b‖p + ‖b‖2−1/p, p

)
for λ ∈ C\(−∞, 0] with | arg(λ)| ≤ ϑ, b ∈ W 2−1/p, p(∂Ω)3 and φ ∈ Lp(∂Ω)3 with b =

(−1/2)
(
φ+ T̃

(λ)
(φ)
)
.

For B ∈ W 2,p(R3)3 with divB = 0 and λ as in (6.7), the left hand side in (6.7) is
bounded by C(p, ϑ,R)

(
(|λ|1−1/(2p) + 1) ‖φ‖p+ |λ| ‖B‖p+‖B‖2,p

)
, where φ ∈ Lp(∂Ω)3 with

B|∂Ω = (−1/2)
(
φ+ T̃

(λ)
(φ)
)
.

Proof: Take λ as in the theorem and b ∈ C2(∂Ω)3. In particular b belongs to C%(∂Ω)3

for % ∈ (0, 1) (Lemma 2.1) and to W 2−1/r, r(∂Ω)3 for r ∈ (1,∞). There is a function φ
as specified in the theorem, and this function additionally belongs to C%(∂Ω)3 for % ∈
(0, 1) (Theorem 5.1). Recall that W := W̃ (λ)(φ) and Π := Π̃(λ)(φ) are C∞-functions in

R3\∂Ω (Lemma 5.2), and W |Ωc
admits a continous extension Wex := W̃

(λ)
ex (φ) to Ωc with

Wex|∂Ω = (−1/2)
(
φ+ T̃

(λ)
(φ)
)

(Theorem 5.3), that is, Wex|∂Ω = b.

For this smooth function b, let us briefly check whether (6.7) follows by an approach
as in [11, p. 348], but without the assumption that b admits a solenoidal extension to
R3, as required in [11]. Afterwards we will extend (6.7) to functions b as given in the

theorem, via a density argument. Referring to the choice of φ, and because T̃
(λ)

(φ) =

T(φ) + T̊
(λ)

(φ) (Theorem 5.1), we get φ + T(φ) = −T̊(λ)
(φ) − 2b. Moreover we have

T̊
(λ)

(φ) ∈ W 2−1/r, r(∂Ω)3 for r ∈ (1,∞) by Theorem 6.2, hence in view of the properties
of b, and with Theorem 6.2 and 5.5, we conclude that φ ∈W 2−1/r, r(∂Ω)3 and

‖φ‖2−1/r, r ≤ C
(
‖b‖2−1/r, r + (|λ|1−1/(2r) + 1) ‖φ‖r

)
for r ∈ (1,∞). (6.8)

At this point, Theorem 5.6 implies that ‖Π(φ)|ΩR‖1,r ≤ C ‖φ‖2−1/r, r and thus with (6.8),

‖Π(φ)|ΩR‖1,r ≤ C
(
‖b‖2−1/r, r+(|λ|1−1/(2r) +1) ‖φ‖r

)
for r ∈ (1,∞). Moreover we observe

that ∇Π̊(φ) = −F(φ), so Corollary 6.1 yields that

‖λW |ΩR‖r + ‖λ∇Π̊(φ)|ΩR‖r ≤ C
(

(|λ|1−1/(2r) + |λ|) ‖b‖r + |λ|1−1/(2r) ‖φ‖r
)
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for r as before. Since W ∈ C∞(R3\∂Ω)3 and Ω ⊂ BR, we have ‖W |∂BR‖2−1/r, r ≤ C ‖φ‖r
for r as before (Lemma 6.1); compare [18, Lemma 7.14]. We may thus conclude that
‖Wex|∂ΩR‖2−1/r, r ≤ C (‖b‖2−1/r, r + ‖φ‖r). Recalling that Π = Π(φ) + λ Π̊(φ) and the
pair (W,Π) solves (1.1) with f = 0 (Lemma 5.2), we may thus apply Lemma 3.4, which
together with the preceding estimates of ∇Π(φ)|ΩR, λW |ΩR, λ∇Π̊(φ)|ΩR and Wex|∂ΩR

yields that W ∈ W 2,p(ΩR)3, W |∂Ω = b in the trace sense and inequality (6.7) holds.
Recall that we assumed b ∈ C2(∂Ω)3.

Now take λ, b and φ as in the theorem. Choose B ∈ W 2,p(Ω)3 with B|∂Ω = b, and
take a sequence (Bn) in C∞(Ω)3 with ‖Bn − B‖2,p → 0. Put bn := Bn|∂Ω. Then (bn)
is a sequence in C2(∂Ω)3 with ‖b − bn‖2−1/p, p → 0. For n ∈ N, take φn ∈ Lp(∂Ω)3

with bn = (−1/2)
(
φn + T̃

(λ)
(φn)

)
; see Theorem 5.1. Due to the same theorem, we have

‖φn − φ‖p → 0. By what has been proved above, the function W̃ (λ)(φn)|ΩR belongs

to W 2,p(ΩR)3 and [W̃ (λ)(φn)|ΩR]|∂Ω = bn in the trace sense, and inequality (6.7) is
valid with b, φ replaced by bn and φn, respectively, for n ∈ N. It follows from (6.7) that

‖W̃ (λ)(φn − φm)|ΩR‖2,p + ‖Π̃(λ)(φn − φm)|ΩR‖1,p ≤ C(λ) (‖bn − bm‖2−1/p, p + ‖φn − φm‖p)
for m, n ∈ N. Therefore

(
W̃ (λ)(φn)|ΩR

)
n≥1

and
(

Π̃(λ)(φn)|ΩR

)
n≥1

are Cauchy sequences

in W 2,p(ΩR)3 and W 1,p(ΩR), respectively. In addition, if A ⊂ R3 with A ⊂ ΩR, then

Lebesgue’s theorem and the relation ‖φn − φ‖p → 0 imply ‖W̃ (λ)(φn − φ)|A‖p → 0 and

‖Π̃(λ)(φn − φ)|A‖p → 0. Thus W̃ (λ)(φ)|ΩR ∈W 2,p(ΩR)3, Π̃(λ)(φ)|ΩR ∈W 1,p(ΩR) and

‖W̃ (λ)(φn)− W̃ (λ)(φ)|ΩR‖2,p + ‖Π̃(λ)(φn)− Π̃(λ)(φ)|ΩR‖1,p → 0. (6.9)

Since ‖bn − b‖2−1/p, p → 0 and [W̃ (λ)(φn)|ΩR]|∂Ω = bn in the trace sense, as remarked

above, we thus get that [W̃ (λ)(φ)|ΩR]|∂Ω = b in the trace sense. Moreover the relations
‖bn − bm‖2−1/p, p → 0, ‖φn − φm‖p → 0 and those in (6.9), as well as the fact that (6.7)
holds for bn, φn in the place of b and φ, respectively, for n ∈ N, allows us to conclude that
(6.7) holds as stated in the theorem.

Under the additional condition B ∈ C2(R3)3, the last statement of Theorem 6.3 holds
by [11, (1.15)]. The assumption B ∈ C2(R3)3 may be removed by a density argument
involving Friedrich’s mollifier, in a similar way as in the proof of Theorem 6.1. �

Now we are in a position to carry out the

Proof of Theorem 1.1: Let p ∈ (1,∞), λ ∈ C\(−∞, 0], b ∈ Lp(∂Ω)3. Theorem 5.1

yields a function φ ∈ Lp(∂Ω)3 with b = (−1/2)
(
φ+ T̃

(λ)
(φ)
)
. Put u := W̃ (λ)(φ)|Ωc

, π :=

Π̃(λ)(φ)|Ωc
. Then Lemma 5.2 yields that uj , π ∈ C∞(Ω

c
) for 1 ≤ j ≤ 3, and the pair

(u, π) solves (1.1) with f = 0. According to Corollary 5.2, the boundary condition (1.2) is
fulfilled in the Lp-sense. If b ∈W 2−1/p, p(∂Ω)3, Theorem 6.3 states that u|ΩR ∈W 2,p(ΩR)3

and π|ΩR ∈ W 1,p(ΩR) for R ∈ (0,∞) with Ω ⊂ BR, and equation (1.2) is satisfied in the
trace sense.

Let ϑ ∈ [0, π), λ0 ∈ (0,∞) and λ ∈ C\{0} with | arg(λ)| ≤ ϑ and |λ| ≥ λ0. Then

‖φ‖p ≤ C(p, ϑ, λ0) ‖φ + T̃
(λ)

(φ)‖p by Corollary 5.2. The estimates stated in Theorem 1.1
follow from this inequality and from Corollary 6.1, 6.2 and Theorem 6.3. �
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7 An application to the Oseen resolvent problem (1.7).

First we recall a result on interior regularity of weak solutions to the stationary Oseen
system and to the Oseen resolvent problem.

Theorem 7.1 Let A ⊂ R3 be open, λ ∈ C, q, s ∈ (1,∞), f ∈ Lqloc(A)3, u ∈ W 1,1
loc (A)3

with ∇u ∈ Lsloc(A)9 such that∫
A

(
∇u · ∇ϑ+ (τ ∂1u+ λu− f) · ϑ

)
dx = 0 for ϑ ∈ C∞0,σ(A), divu = 0. (7.1)

Then u ∈W 2,q
loc (A)3.

Proof: The theorem is a consequence of interior regularity of solutions to the Stokes
system; see [15, Theorem 3.2]. �

Note that if u ∈ W 2,1
loc (Ω

c
)3 and π ∈ W 1,1

loc (Ω
c
) such that the pair (u, π) solves (1.7), then

u is a solution to (7.1). This is, of course, because
∫

Ω
c ∇π · ϑ dx = 0 for ϑ ∈ C∞0,σ(Ω

c
).

The main theorem of this section provides conditions allowing to represent an Oseen
resolvent by a sum of solutions to problem (1.1), (1.2). In addition this theorem derives
Lp-estimates from this representation.

Theorem 7.2 Let n0, µ0 ∈ N, p1, ..., pn0 , q
(1), ..., q(µ0), q1 ∈ (1,∞), and define q :=

min({p1, ..., pn0} ∪ {q(1), ..., q(µ0)} ∪ {q1}).
Let ϑ ∈ [0, π), λ0 ∈ (0,∞), λ ∈ C with |λ| ≥ λ0 and | arg(λ)| ≤ ϑ,

f (j) ∈ Lpj (Ωc
)3 for 1 ≤ j ≤ n0, v

(µ) ∈ Lq(µ)
(Ω

c
)3 ∩W 1,1

loc (Ω
c
)3 and ∇v(µ) ∈ Lq1(Ω

c
)3 for

1 ≤ µ ≤ µ0.

Put v :=
∑µ0

µ=1 v
(µ) and suppose that v|ΩR ∈W 2,q(ΩR)3 for R ∈ (0,∞) with Ω ⊂ BR, and

(7.1) is satisfied with A = Ω
c

and f =
∑n0

j=1 f
(j).

Put pn0+1 := q1, f
(n0+1) := −τ ∂1v and u(j) := (λ Ipj + Aj)−1

(
Ppj (f (j))

)
for 1 ≤ j ≤

n0+1 (notation as in Corollary 4.1). Let φ ∈ Lq(∂Ω)3 with (−1/2)
(
φ+T̃

(λ)
(φ)
)

= −v|∂Ω

(Theorem 5.1), and u(n0+2) := W̃ (λ)(φ)|Ωc
.

Then v =
∑n0+2

j=1 u(j), u(j) ∈ W 2,pj (Ω
c
)3 for 1 ≤ j ≤ n0 + 1, u(n0+2) ∈ C∞(Ω

c
)3 and

u(n0+2)|ΩR ∈W 2,q(ΩR)3 for R as above, u(n0+2)|∂Ω = −v|∂Ω,

‖λu(j)‖pj ≤ C(pj , ϑ, λ0) ‖f (j)‖pj for 1 ≤ j ≤ n0, ‖λu(n0+1)‖q1 ≤ C(q1, ϑ, λ0) τ ‖∇v‖q1 .

Moreover ‖λ
(
u(n0+2) − F(φ)

)
|Bc

R‖r ≤ C(q, r, ϑ, λ0, R) ‖v|∂Ω‖q if R is given as above and
r ∈ (1,∞). If in addition r > 3/2, the estimate ‖F(φ)|Bc

R‖r ≤ C(q, r, ϑ, λ0, R) ‖v|∂Ω‖q is
valid, where F(φ) was introduced in Lemma 5.2.

Proof: All the claims of the lemma except the equation v =
∑n0+2

j=1 u(j) follow from

Corollary 4.1, Theorem 1.1 and Corollary 6.2 (estimate of λ
(
u(n0+2) − F(φ)

)
|Bc

R and
of F(φ)|Bc

R). Concerning these last two points, note that ‖φ‖q ≤ C(q, ϑ, λ0) ‖v|∂Ω‖q by
Corollary 5.1.

Turning to the proof of the equation v =
∑n0+2

j=1 u(j), we fix R ∈ (0,∞) with Ω ⊂ BR.

Theorem 1.1 yields that u(n0+2)|Bc
R ∈ Lr(Bc

R)3 for any r ∈ (3/2, ∞). Thus each of
the functions v(µ)|Bc

R and u(j)|Bc
R for 1 ≤ µ ≤ µ0 and 1 ≤ j ≤ n0 + 2 belongs to
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Lr(Bc
R)3 for some r ∈ (1,∞). Theorem 1.1 further yields that u(n0+2)|ΩR ∈ W 2,q(ΩR)9

and ∇u(n0+2)|Bc
R ∈ Lq(Bc

R)9. So each of the functions ∇v(µ)|Bc
R and ∇u(j)|Bc

R for µ and
j as before is in Lr(Bc

R)9 for some r ∈ (1,∞).

Put w := v−
∑n0+2

j=1 u(j). Since u(j)|∂Ω = 0 for 1 ≤ j ≤ n0 + 1 (Corollary 4.1) and because

u(n0+2)|∂Ω = −v|∂Ω, it follows that w|∂Ω = 0. Due to Theorem 4.1 and Corollary 4.1 as
concerns u(1) to u(n0+1), Theorem 1.1 with respect to u(n0+2), and our assumptions on v,
we may conclude that divw = 0 and

∫
Ω0c(∇w · ∇ϑ + λw · ϑ) dx = 0 for ϑ ∈ C∞0,σ(Ω

c
).

Thus we see that all conditions of the uniqueness result in Theorem 4.3 are satisfied with
A = Ω. It follows that w = 0, so v =

∑n0+2
j=1 u(j). �

The version of Theorem 7.2 which is relevant in [16] (see [16, Theorem 3.2]) is stated as

Corollary 7.1 Let A ⊂ R3 be open and bounded, with Lipschitz boundary. Fix S ∈ (0,∞)
with Ω ⊂ BS . Let n0, µ0, p1, ..., pn0 , q

(1), ..., q(µ0), q, ϑ, λ0 and λ be given as in Theorem
7.2. Take f (1), ..., f (n0), v(1), ..., v(µ) also as in Theorem 7.2, but with Ω

c
replaced by A

c
.

Define v :=
∑µ0

µ=1 v
(µ) and suppose that v satisfies (7.1) with A replaced by A

c
and with

f =
∑n0

j=1 f
(j).

Then v|BR\BS
c ∈W 2,q(BR\BS

c
)3 for R ∈ (S,∞).

Define pn0+1 and f (no+1) as in Theorem 7.2. For j ∈ {1, ..., n0 + 1}, let Ppj be de-
fined as in Theorem 3.4 and Ipj , Apj as in Corollary 4.1, each time with A = BS .

Put u(j) := (λ Ipj + Apj )−1
(
Ppj (f |BS

c
)
)

for 1 ≤ j ≤ n0 + 1. Let φ ∈ Lp(∂BS)3 with

−v|∂BS = (−1/2)
(
φ + T̃

(λ)
(φ)
)
, and put u(n0+2) := W̃ (λ)(φ)|BS

c
, where the definitions

of both T̃
(λ)

(φ) and W̃ (λ)(φ) refer to the case Ω = BS (Theorem 5.1 and Lemma 5.2,
respectively).

Then v|BS
c

=
∑n0+2

j=1 u(j), u(j) ∈ W 2,pj (BS
c
)3 for 1 ≤ j ≤ n0 + 1, u(n0+2) ∈ C∞(BS

c
)3

and u(n0+2)|BR\BS ∈W 2,q(BR\BS)3 for R ∈ (S,∞), u(n0+2)|∂BS = −v|∂BS ,

‖λu(j)‖pj ≤ C(pj , ϑ, λ0, S) ‖f (j)|BS
c‖pj for 1 ≤ j ≤ n0.

Define L :=
∑µ0

µ=1 ‖v(µ)‖q(µ)+‖∇v‖q1 . Then ‖λu(n0+1)‖q1 ≤ C(q1, ϑ, λ0, S, τ)L and ‖φ‖q ≤
C(q, ϑ, λ0, S)L. For R ∈ (S,∞) and r ∈ (1,∞), the inequality ‖λ

(
u(n0+2)−F(φ)

)
|Bc

R‖r ≤
C(q, r, ϑ, λ0, R, S)L holds, and if r > 3/2, then ‖F(φ)|Bc

R‖r ≤ C(q, r, ϑ, λ0, R, S)L.

If
∫
∂A v ·n

(A) dox = 0, then
∫
∂BR

F(φ)(y)·R−1 y doy = 0 for R ∈ (S,∞), where n(A) denotes
the outward unit normal to A.

Proof: By Theorem 7.1 and because q ≤ pj for 1 ≤ j ≤ n0, we know that u ∈W 2,q
loc (A

c
)3.

Thus v|BR\BS ∈ W 2,q(BR\BS)3 for R ∈ (S,∞). Obviously v|BS
c

satisfies (7.1) with
A replaced by BS

c
. By a trace theorem and because q ≤ q(µ) (1 ≤ µ ≤ µ0) and q ≤

q1, we have ‖v|∂BS‖q ≤ C(S, q) ‖v|B2S\BS‖1,q ≤ L. Therefore the estimates stated in
the corollary follow from those in Theorem 7.2 and, as concerns the inequality ‖φ‖q ≤
C(q, ϑ, λ0, S)L, from Corollary 5.1 with Ω = BS .

Suppose that
∫
∂A v · n

(A) dox = 0. Since q ≤ min({q(µ) : 1 ≤ µ ≤ µ0} ∪ {q1}), we have
v|BS\A ∈ W 1,q(BS\A)3. In addition div v = 0, so we get that

∫
∂BS

v(y) · S−1 y doy =∫
∂A v · n

(A) dox = 0. Therefore
∫
∂BR

F(φ)(y) · R−1 y dox = 0 by Lemma 6.2 with Ω =
BS , b = −v|∂BS . �

23



Appendix

Proof of Theorem 6.2: Take φ and λ as in the theorem. The functions W̊ (λ)(φ) and

J̃ (λ)(φ) are defined in an analogous way, with the role of the function Ẽ
(λ)
jk in the definition

of J̃ (λ)(φ) played by E̊
(λ)
jk in the definition of W̊ (λ)(φ) (Lemma 5.2). Moreover the proof

given in [11, Section 5] for the estimate ‖J̃ (λ)(φ)|Ωc‖p ≤ C(ϑ, p) |λ|−1/(2p) ‖φ‖p (Theorem

5.4) is based exclusively on the inequality |∂lẼ
(λ)
jk (z)| ≤ C(ϑ) min{|z|−2, |λ|−1 |z|−4} (z ∈

R3, 1 ≤ j, k, l ≤ 3). (Lemma 5.1). On the other hand, also by Lemma 5.1, we have

|∂n∂m∂lE̊
(λ)
jk (z)| ≤ C(ϑ) |λ| min{|z|−2, |λ|−1 |z|−4} for z, j, k, l as before, and m, n also

in {1, 2, 3}. Thus the same proof as that of Theorem 5.4 yields ‖∂n∂mW̊ (λ)(φ)|Ωc‖p ≤
C(ϑ, p) |λ|1−1/(2p) ‖φ‖p. We fix a constant R ∈ (0,∞) with Ω ⊂ BR. Due to the inequal-

ity |∂lE̊
(λ)
jk (z)| ≤ C(ϑ) |λ|1−1/(2p) |z|−2+1/p (Lemma 5.1), we may use Lemma 3.2 to ob-

tain ‖W̊ (λ)(φ)|ΩR‖p ≤ C |λ|1−1/(2p) ‖φ‖p. Altogether we obtain that ‖W̊ (λ)(φ)|ΩR‖2,p ≤
C |λ|1−1/(2p) ‖φ‖p.

Let W̊
(λ)
tr (φ) denote the restriction to ∂Ω of the trace of W̊ (λ)(φ)|ΩR. Then it follows that

W̊
(λ)
tr (φ) ∈ W 2−1/p, p(∂Ω)3 and ‖W̊ (λ)

tr (φ)‖2−1/p, p ≤ C |λ|1−1/(2p) ‖φ‖p. Recall that φ was
arbitrarily chosen from Lp(∂Ω)3.

The proof is completed once we have shown that W̊
(λ)
tr (φ) = (−1/2)

(
φ + T̃(φ)

)
for such

φ. In fact, again take such a function φ, and let (φn) be a sequence in C0(∂Ω)3 with
‖φ − φn‖p → 0 (Lemma 2.2). Then ‖φ − φn + T̃(φ − φn)‖p → 0 by Theorem 5.1 and

‖W̊ (λ)
tr (φ− φn)‖2−1/p, p → 0 by what was shown above. But W̊ (λ)(φn)|Ωc

may be continu-

ously extended to Ωc with boundary value (−1/2)
(
φn + T̃(φn)

)
on ∂Ω (Theorem 5.3), so

W̊
(λ)
tr (φn) = (−1/2)

(
φn + T̃(φn)

)
, for n ∈ N. By the convergence results just mentioned,

the preceding equation remains valid if φn is replaced by φ. �
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