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In this paper, a new numerical method for solving fractional delay-integro-di↵erential equations (FDIDEs) with a weakly singular kernel is presented. The transformation matrix of Bessel polynomials to Taylor polynomials and Taylor operational matrix of integration are used to transform the equation to a system of algebraic equations. Illustrative examples are included to demonstrate the validity and applicability of the technique.

Introduction

In recent years, many phenomena in various branches of science like physics, chemistry and engineering can be modeled more e ciently by the fractional calculus. FDIDEs with a weakly singular kernel have many applications in various areas. These equations appear in the radiative equilibrium, heat conduction problem, elasticity and fracture mechanics [START_REF] Yi | CAS wavelet method for solving the fractional integro-di↵erential equation with a weakly singular kernel[END_REF][START_REF] Yi | Legendre wavelets method for the numerical solution of fractional integro-di↵erential equations with weakly singular kernel[END_REF] and so on. Consider the FDIDEs with a weakly singular kernel: D ↵ u(t) = f t, u(q 0 t), u 0 (q 1 t),

Z h(t) 0 [u(⌘)] p (t ⌘) d⌘, Z 1 0 k(t, ⌘)[u(⌘)] p d⌘ ! , (1) 
u(0) = 0.

Here, 0 < ↵,  1, 0 < q 0 , q 1  1, D ↵ denotes the fractional derivative defined by Caputo [START_REF] Rahimkhani | Numerical solution of fractional pantograph di↵erential equations by using generalized fractional-order Bernoulli wavelet[END_REF], f (t) and k(t, ⌘) are the known functions and u(t) is an unknown function.

Bessel polynomials and operational matrices of integration

The n-th degree truncated Bessel polynomials of first kind are defined by [START_REF] Yüzbasi | A collocation approach for solving high-order linear FredholmVolterra integro-di↵erential equations[END_REF] J n (t) =

[ N n 2 ] X k=0 ( 1) k k!(k + n)! ( t 2 ) 2k+n , 0  t < 1, n 2 N, (2) 
where N is chosen the positive integer so that N n and n = 0, 1, • • • , N. We can transform the Bessel polynomials of first kind to in N-th degree Taylor basis functions. In matrix form as

J(t) = DT (t), ( 3 
)
where D is defined in [START_REF] Yüzbasi | A collocation approach for solving high-order linear FredholmVolterra integro-di↵erential equations[END_REF],

J(t) = [J 0 (t), J 1 (t), • • • , J N (t)] T , and 
T (t) = [T 0 (t), T 1 (t), • • • , T N (t)] T .
We can write k(t, ⌘) to matrix form as [START_REF] Yüzbasi | A collocation approach for solving high-order linear FredholmVolterra integro-di↵erential equations[END_REF] 

k(t, ⌘) ' T T (t)k t T (⌘), k(t, ⌘) ' J T (t)k b J(⌘). (4) 
By using Eqs. ( 3) and ( 4), we obtain:

k b = (D T ) 1 k t (D) 1 , k t = [ t k mn ], t k mn = 1 m!n! @ m+n k(0, 0) @ m t@ n ⌘ m, n = 0, 1, • • • , N.
Now, we obtain operational matrix of integer and fractional order integration of Bessel polynomials as

Z t 0 J(⌘)d⌘ = tDLT (t), (5) 
where

L = diag(1, 1 2 , • • • , 1 N +1
), is called operational matrix of integer order integration of Bessel polynomials. Also, by using Riemann-Liouville fractional integral and there properties, we have

I ↵ J(⌘) = t ↵ D⇠ ↵ T (t), (6) 
where

⇠ ↵ = diag( (1) (2 ) , • • • , (N +1) (N +2 ) )
, is called operational matrix of fractional order integration of Bessel polynomials.

Method of solution

For solving this problem, we approximate u 0 (t) by using Bessel polynomials as follows

u 0 (t) ' A T J(t) = A T DT (t), (7) 
then,

u 0 (qt) ' A T J(qt) = A T DT (qt). (8) 
According to Eqs. (7), (8) and the operational matrix of integration, we get

u(t) ' tA T DLT (t), u(qt) ' tA T DLT (qt). (9) 
Using Eqs. ( 6) and (7), to obtain the fractional derivative of u(t) as

D ↵ u(t) = I 1 ↵ u 0 (t) ' t 1 ↵ A T D⇠ 1 ↵ T (t). ( 10 
)
Numerical solution of fractional delay-integro-di↵erential equations... Now, for solving these equations we need to define

[u(t)] p ' B T J(t) = B T DT (t). (11) 
Also, we approximate the integral part of Eq. ( 1) by using Eqs. ( 4) and (11) as follows

Z 1 0 k(t, ⌘)[u(⌘)] p d⌘ ' Z 1 0 T T (t)D T k b DT (⌘)T T (⌘)D T Bd⌘ = T T (t)D T k b DHD T B, (12) 
and

Z h(t) 0 [u(⌘)] p (t ⌘) d⌘ ' B T D Z h(t) 0 T (⌘) (t ⌘) d⌘ = h(t) B T D ST (h(t)), (13) 
where

S = diag( (1 ) (1) (2 ) , (1 ) (2) (3 ) , • • • , (1 ) (1+N ) (2 +N ) )
, and H is dual operational matrix of Taylor polynomials, which is defined in [START_REF] Yüzbasi | A collocation approach for solving high-order linear FredholmVolterra integro-di↵erential equations[END_REF]. Now, we write fundamental matrix equation corresponding to Eq. ( 1) as follows 8 > < > :

t 1 ↵ A T D⇠ 1 ↵ T (t) ' f ⇣ t, tA T DLT (q 0 t), A T DT (q 1 t), h(t) B T D ST (h(t)), T T (t)D T k b DHD T B ⌘ , ⇥ tA T DLT (t) ⇤ p ' B T DT (t).
Then, we collocate this system at the following points

t i = 2i 1 2(N +1) , i = 1, 2, • • • , N + 1.
Consequently, we obtain the solution of Eq. ( 1) under conditions for the unknown vector A by using Newton's iterative method.

Error analysis

In this section, we investigate the convergence analysis of our proposed method. We assume that f (t) is a su ciently smooth function on [0, 1] and p N (x) is the interpolating polynomial to f at points t i , where t i , i = 0, 1, • • • , N are the roots of the (N + 1)-degree shifted Chebyshev polynomial in [0, 1], then we have [START_REF] Yüzbasi | A collocation approach for solving high-order linear FredholmVolterra integro-di↵erential equations[END_REF] 

|f (t) p N (t)|  M N 2 2N +1 (N + 1)! , M N sup t2[0,1] | f (N +1) (t) | . Theorem 1. Suppose u(t) 2 C N +1 [0, 1] and u N (t) = A T J(t)
be the approximate solution obtained by the present method in previous section. If ũN (t) = ÃT J(t) be the Bessel polynomials of first kind expansion of the exact solution u(t), where Ã

= [ã 0 , ã1 , • • • , ãN ] T , J(t) = [ J0 (t), J1 (t), • • • , JN (t)] T and Jn (t) = P 1 k=0 ( 1) k k!(k+n)! ( t 2 ) 2k+n , 0  t < 1. The set of Bessel polynomials of first kind Jn (t) in L 2 [0, 1] is orthogonal with respect to the weight function w(t) = t, Z 1 0 w(t)[ Jn (t)] 2 dt = 1 2 [ Jn+1 (1)] 2 .
Then obtain the upper bound of the error, as

kf (t) u N (t)k L 2 w [0,1]  M N 2 2N + 3 2 (N + 1)! + k à Ak 2 ✓ N + kAk 2 ! N , (14) 
where

✓ N = h P N n=0 1 2 [ Jn+1 (1)] 2 i 1 2 and ! N = h P N n=0 P 1 k=[ N n 2 ] 1 (k!(k+n)!2 2k+n ) 2 (4k+2n+2) i 1 2 . Proof: we can write kf (t) u N (t)k L 2 w [0,1]  kf (t) ũN (t)k L 2 w [0,1] + kũ N (t) u N (t)k L 2 w [0,1] , (15) 
Since ũN (t) is the best approximation of u(t), we have

kf (t) ũN (t)k L 2 w [0,1] = ✓Z 1 0 |f (t) ÃT J(t)| 2 tdt ◆ 1 2  ✓Z 1 0 |f (t) p N (t)| 2 tdt ◆ 1 2  ✓ M 2 N (2 2N +1 (N + 1)!) 2 Z 1 0 tdt ◆ 1 2 = M N 2 2N + 3 2 (N + 1)! . ( 16 
)
Also, we have

kũ N (t) u N (t)k L 2 w [0,1] = k N X n=0 ãn Jn (t) N X n=0 a n J n (t)k L 2 w [0,1] (17) 
 k N X n=0 (ã n a n ) Jn (t)k L 2 w [0,1] + k N X n=0 a n ( Jn (t) J n (t))k L 2 w [0,1] = 0 @ Z 1 0 " N X n=0 (ã n a n ) Jn (t) # 2 tdt 1 A 1 2 + 0 @ Z 1 0 " N X n=0 a n ( Jn (t) J n (t)) # 2 tdt 1 A 1 2  Z 1 0 " N X n=0 |ã n a n | 2 # " N X n=0 | Jn (t)| 2 # tdt ! 1 2 + Z 1 0 " N X n=0 |a n | 2 # " N X n=0 | Jn (t) J n (t)| 2 # tdt ! 1 2  k à Ak 2 " N X n=0 Z 1 0 t| Jn (t)| 2 dt # 1 2 + kAk 2 " N X n=0 Z 1 0 | Jn (t) J n (t)| 2 tdt # 1 2 ,
k.k 2 is 2-norm of vectors. Therefore, by use of orthogonality property of Bessel polynomials, we get

kũ N (t) u N (t)k L 2 w [0,1]  k à Ak 2 " N X n=0 1 2 [ Jn+1 (1)] 2 # 1 2 + kAk 2 2 6 4 N X n=0 Z 1 0 0 B @ 1 X k=[ N n 2 ]
( 1

) k t 2k+n k!(k + n)!2 2k+n 1 C A 2 tdt 3 7 5 1 2  k à Ak 2 " N X n=0 1 2 [ Jn+1 (1)] 2 # 1 2 + kAk 2 2 6 4 N X n=0 1 X k=[ N n 2 ] 1 (k!(k + n)!2 2k+n ) 2 (4k + 2n + 2) 3 7 5 1 2 . ( 18 
)
According to Eq. ( 15)-( 18), we determine the upper bound of error.

Recent theorem demonstrates that by increasing the number of Bessel polynomials the approximate solutions convergence to exact solution.

Numerical results

In this section, three examples are given to demonstrate the applicability and accuracy of our methods. 

Present Method

Ref [START_REF] Rahimkhani | Numerical solution of fractional pantograph di↵erential equations by using generalized fractional-order Bernoulli wavelet[END_REF] variational iteration [START_REF] Chen | The variational iteration method for solving a neutral functional-di↵erential equation with proportional delays[END_REF] Runge-Kutta subject to the initial condition u(0) = 0. In the case = 1, the exact solution is u(t) = t exp( t). In Table 1, we compare the absolute errors of the proposed method for = 1 with method in [START_REF] Rahimkhani | Numerical solution of fractional pantograph di↵erential equations by using generalized fractional-order Bernoulli wavelet[END_REF], variational iteration method and Runge-Kutta method.

t i N = 3 N = 6 N = 8 k = 2, M =
h(t) = t M = 1, k = 3 M = 1, m = 24 n = 4 M = 3, k = 4 0 0 0 6 .
Example 2. Consider the following fractional order integro-di↵erential equation with weakly singular kernel [1]

D 0.25 u(t) = 1 2 Z h(t) 0 u(⌘) (t ⌘) 1 2 d⌘ + 1 3 Z 1 0 (t ⌘)u(⌘)d⌘ + f (t),
and f (t) = (3) (2.75) t , with the condition u(0) = 0. The exact solution is known and it is given by u(t) = t 2 + t 3 . In Table 2, obtained absolute error between the approximate solutions and the exact solution for various functions of h(t) with N = 2. This example considered in other papers, results show that present method more accurate than these methods.

Example 3. Consider the nonlinear equation [5]

D ↵ u(t) = Z t 0 [u(⌘)] 2 (t ⌘) 1 2 d⌘ + Z 1 0 t⌘[u(⌘)] 2 d⌘ + f (t), with f (t) = 3t 2 p ⇡h(t) 13 2 (7) ( 15 
2 ) t 8 , subject to the initial condition u(0) = 0. In the case ↵ = 1, the exact solution is u(t) = t 2 . Numerical results for values of ↵ = 1, 0.95, 0.85, 0.75, and the exact solution with N = 6 are shown in Figure 1(a). Also, absolute error for ↵ = 1 with N = 6 is demonstrate in Figure 1(b). From Figure 1(a), we see that, as ↵ approaches 1, the numerical solutions converge to the exact solution. 

Conclusion

In this work, we introduce operational matrices of integration and use these matrices to solve fractional delay-integro-di↵erential equations with a weakly singular kernel. Our numerical finding are compared with exact solutions and with the solutions obtained by some other numerical methods. The results of numerical examples demonstrate that this method is more accurate than some existing methods.
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 1 Figure 1: a) The comparison of u(t) for various values of ↵ with N = 6 and the exact solution, b) the absolute error for ↵ = 1 with N = 6 of Example

  

Table 1 :

 1 Absolute error with di↵erent values of N with = 1 for Example 1.

  6 method method 0.1 2.22 ⇥ 10 4 5.46 ⇥ 10 8 2.30 ⇥ 10 10 4.98 ⇥ 10 8 1.30 ⇥ 10 3 8.68 ⇥ 10 4 0.3 1.24 ⇥ 10 4 4.59 ⇥ 10 8 1.10 ⇥ 10 8

	0.5 5.65 ⇥ 10 5 1.59 ⇥ 10 7 5.56 ⇥ 10 8 0.7 4.54 ⇥ 10 5 4.66 ⇥ 10 7 1.47 ⇥ 10 7 0.9 8.34 ⇥ 10 6 1.06 ⇥ 10 6 2.84 ⇥ 10 7	7.78 ⇥ 10 9 6.34 ⇥ 10 5 4.36 ⇥ 10 5 2.80 ⇥ 10 5	2.63 ⇥ 10 3 2.83 ⇥ 10 3 2.39 ⇥ 10 3 1.64 ⇥ 10 3	1.90 ⇥ 10 3 2.28 ⇥ 10 3 2.27 ⇥ 10 3 2.03 ⇥ 10 3

Table 2 :

 2 The comparison of absolute errors for N = 2 and h(t) = t with methods in[START_REF] Yi | CAS wavelet method for solving the fractional integro-di↵erential equation with a weakly singular kernel[END_REF] of Example 2.

		Present method	CASW	HaarW	ADM	SCW
	t	h(t) = cos(t 2 )			

  34 ⇥ 10 3 5.82 ⇥ 10 3 4.23 ⇥ 10 3 1.43 ⇥ 10 4 1/6 8.95 ⇥ 10 18 1.39 ⇥ 10 16 1.14 ⇥ 10 2 1.14 ⇥ 10 2 9.18 ⇥ 10 3 2.26 ⇥ 10 4 2/6 1.77 ⇥ 10 17 2.76 ⇥ 10 16 9.69 ⇥ 10 3 9.70 ⇥ 10 3 2.43 ⇥ 10 2 5.98 ⇥ 10 4 3/6 2.63 ⇥ 10 17 4.09 ⇥ 10 16 2.95 ⇥ 10 3 3.11 ⇥ 10 3 4.52 ⇥ 10 2 1.12 ⇥ 10 3 4/6 3.45 ⇥ 10 17 5.37 ⇥ 10 16 9.67 ⇥ 10 3 9.70 ⇥ 10 3 8.02 ⇥ 10 2 1.49 ⇥ 10 3 5/6 4.22 ⇥ 10 17 6.56 ⇥ 10 16 2.94 ⇥ 10 2 2.95 ⇥ 10 2 1.04 ⇥ 10 1 2.20 ⇥ 10 3

	Example 1. Consider the fractional pantograph di↵erential equation [3, 6]
	D u(t) = u(t) + 0.1u(	4 5	t) + 0.5u 0 (	4 5	t) + (0.32t 0.5)exp( 0.8t) + exp( t), 0 <  1,