Jorge Fernandez

Olivier Gasquet

Andreas Herzig

Dominique Longin

Emiliano Lorini

Frédéric Maris

Pierre Régnier
email: pierre.regnier@irit.fr

Olivier Fernandez

Andreas Gasquet

Dominique Herzig

Emiliano Longin

Frederic Lorini

Maris

TouIST: a Friendly Language for Propositional Logic and More

This work deals with logical formalization and problem solving using automated solvers. We present the automatic translator TouIST that provides a simple language to generate logical formulas from a problem description. Our tool allows us to model many static or dynamic combinatorial problems and to benefit from the regular improvements of SAT, QBF or SMT solvers in order to solve these problems efficiently. In particular, we show how to use TouIST to solve different classes of planning tasks in Artificial Intelligence.

Introduction to TOUIST

TO UIST is an automatic translator which offers user friendly language and graphical interface to easily use SAT, SMT (SAT Modulo Theories) or QBF solvers. Input formulas need not to be in clausal form and arbitrary connectives may be used. The translation into DIMACS, QDIMACS or SMT-LIB format is done automatically, depending on the selected solver. Beyond the Boolean connectives of propositional logic, the input language of TO UIST has sets, conjunctions and disjunctions parametrized by sets, abbreviations. . . We can directly express complex propositional formulas such as: i∈{1..N } X∈S(i) n∈X m∈Y|m =n (p i,X,n → ¬p i,X,m)

where we can define the variable N as a particular integer, the S(i) as sets of sets of symbols for each i ∈ {1, . . . , N }, and Y as a set of symbols. For example, if N = 2, S(1) = {{blue, red }, {red }}, S(2) = {{red }, {blue}, {white, blue, red }}, and Y = {white, red }, we write in the TO UIST input language:

$N = 2 $S(1) = [[blue, red], [red]] $S(2) = [[red], [blue], [white, blue, red]] $Y = [white, red] bigand $i in [1..$N]: bigor $X in $S($i): bigand $n in $X: bigand $m in $Y when $m!=$n: p($i,$X,$n) => not p($i,$X,$m) end end end end
We can also use multiple binding of indexes as in i∈A,j∈B and rich computations on indexes as well as on domain sets as in i∈(A∪(B∩C)) , expressed in the TO UIST input language as: bigand $i,$j in $A,$B:

... end bigand $i in $A union ($B inter $C):

... end Running the solver only consists in clicking a button and the tool displays the models successively computed by the solvers in the syntax of the input formula. Literals of interest can be filtered by regular expressions. Moreover, it is possible to use the software in command line and/or batch modus.

TO UIST is publicly available for download from the following site: https://www.irit.fr/TouIST/ On the one hand, the tool can be used by researchers to compute logical encodings of problems, for example of symbolic AI problems such as planning tasks. On the other hand, TO UIST is a pedagogical tool to show the power of propositional logic to students who have been trained a couple of hours to formalize sentences in logic and who have acquired basic notions of validity and satisfiability: it allows them to automatically solve some combinatorial puzzles.

In the sequel, we introduce several examples of static and dynamic reasoning that will serve to demonstrate TO UIST.

Static Reasoning with TOUIST

Solving Puzzles with SAT

TO UIST allows us to encode and solve static generalized games such as the well known Sudoku for a N × N grid. For example, to express that each cell must have at least one value we write the formula:

i∈[1..N] j∈[1..N] k∈[1..N] p(i, j, k)
where p(i, j, k) means that cell (i, j) has value k. This formula is expressed in the TO UIST input language as:

bigand $i,$j in [1..$N],[1..$N]: bigor $k in [1..$N]: p($i,$j,$k) end end
It also allows us to solve well-known puzzles and games involving epistemic deductive reasoning, given existing polynomial embeddings of fragments of epistemic logic into propositional logic. This includes "Guess Who?" and the muddy children puzzle [START_REF] Barwise | Jon Barwise. Scenes and other situations[END_REF].

Solving Puzzles with SMT

In a similar way to Sudoku, the Binario (binary game) consists in filling a grid by deduction with only 0s and 1s. It is possible to model it in propositional logic, but to obtain a more compact encoding one can use SMT (SAT Modulo Theories) with atoms of QF-LIA (linear arithmetic on integers). 1 In particular we can encode the rule "each row and column must contain as many 0s as 1s" by

N R i=1   N C j=1 x i,j = N C 2   ∧ N C j=1 N R i=1 x i,j = N R 2
where N R is the number of rows of the grid and N C is the number of columns.

Another rule is that "there is no more than two of either number adjacent to each other", expressed in the TO UIST input language as:

bigand $i,$j in [1..$NR-2],[1..$NC]: x($i,$j)!=x($i+1,$j) or x($i+1,$j)!=x($i+2,$j) end bigand $i,$j in [1..$NR],[1..$NC-2]:
x($j,$i)!=x($j,$i+1) or x($j,$i+1)!=x($j,$i+2) end 3 Dynamic Reasoning with TOUIST

Finding a Winning Strategy

The language of QBF allows us to express naturally and concisely the existence of winning strategies as described in [START_REF] Kroening | [END_REF]. The moves of player 0 (for whom we are searching for a winning strategy) will be existentially quantified while those of his opponent will be universally quantified: we look for the moves of player 0 which 1 The theories QF-IDL, QF-RDL (difference logic on integers/rationals) and QF-RDL (linear arithmetic on rationals) are also available in TO UIST. The winning strategy for player 0 is in red.

will lead him to victory regardless of the moves made by player 1. TO UIST natively integrates the QBF solver Quantor 3.2 [START_REF] Biere | Armin Biere. Resolve and expand[END_REF] and can be interfaced with other solvers supporting the QDIMACS format. Selecting this prover in TO UIST allows us to use quantifiers ∀ and ∃ on propositional variables.

Figure 1 shows the exhaustive set of solutions in a Nim's game with four matches. The root of the tree represents the initial number of matches and each arrow represents the action of removing 1 () or 2 () matches. We see that there is a winning strategy for player 0 if she starts. We are leveraging QBF to write this strategy in TO UIST. The variable takes 2 (i) is true if the current player takes 2 matches at step i and is false if she takes only one. If we denote by Φ the conjunction of formulas representing the rules of Nim's game then the existence of a winning strategy for player 0 is simply written:

∃takes 2 (0)∀takes 2 (1) ∃takes 2 (2)∀takes 2 (3) ∃takes 2 (4) . (¬0 lost ∧ Φ)

Solving Classical Planning Tasks

A planning task can be transformed into a propositional formula whose models correspond to solution plans (i.e., sequences or steps of actions starting from an initial state and leading to a goal). These models can be found using a SAT solver [Kautz and Selman, 1992]. Numerous improvements of this approach have been proposed via the development of more compact and efficient encodings, see [START_REF] Kautz | [END_REF][START_REF] Ernst | [END_REF]Mali and Kambhampati, 1999;[START_REF] Rintanen | [END_REF] among others. We here illustrate the expressive power of the TO UIST language by encoding of explanatory frame-axioms. If a fact is false at step i-1 of a solution plan and becomes true at step i then the disjunction of actions that can establish the fact (i.e. it is a positive effect of such an action) at step i of the plan is true. Indeed, at least one of the actions that can establish the fact must have been applied.

i∈{1..P lanLength} f ∈Facts   (¬f (i-1) ∧ f (i)) ⇒ a∈Actions|f ∈Effects + (a) a(i)   bigand $i in [1..$PlanLength]: bigand $f in $Facts: not $f($i-1) and $f($i) => bigor $a in $Actions when $f in $Effects_pos($a): $a($i) end end end
Much more compact QBF encodings have also been developed [START_REF] Cashmore | [END_REF][START_REF] Gasquet | [END_REF].

Solving Conformant/Temporal Planning Tasks

Beyond classic planning, TO UIST allows us to encode and solve conformant planning tasks with QBF [Rintanen, 2007].

It can also be used to solve temporal planning tasks involving durative actions, exogenous events and temporally extended goals with SMT encodings [START_REF] Shin | Ji-Ae Shin and Ernest Davis. Processes and continuous change in a sat-based planner[END_REF][START_REF] Rintanen | Discretization of temporal models with application to planning with SMT[END_REF]. We here focus on the SMT encoding rules proposed in [START_REF] Maris | TLP-GP: new results on temporally-expressive planning benchmarks[END_REF]. Below we give an encoding of temporal mutual exclusion of actions. If two actions a 1 and a 2 , respectively producing a fact f (i.e. f is a positive effect of a 1) and its negation ¬f (i.e. f is a negative effect of a 2), are active in the plan, then the time interval [τ + start (a 1 , f), τ + end (a 1 , f)] corresponding to the activation of f by a 1 and the time interval [τ - start (a 2 , f), τ - end (a 2 , f)] corresponding to the activation of ¬f by a 2 are disjoint.

a1∈Actions a2∈Actions f ∈F acts|f ∈Effects + (a1)∩Effects -(a2) (a 1 ∧ a 2) ⇒ τ - end (a 2 , f) < τ + start (a 1 , f) ∨ τ + end (a 1 , f) < τ - start (a 2 , f) bigand $a1,$a2,$f in $Actions,$Actions,$Facts when $f in $Effects_pos($a1
)and $f in $Effects_neg($a2): $a1 and $a2 => (t_end_del($a2,$f) < t_start_add($a1,$f)) or (t_end_add($a1,$f) < t_start_del($a2,$f)) end

TOUISTPLAN Module

In order to tune and compare different logical encodings of planning tasks we have implemented the TO UISTPL A N module which automatically solves planning tasks with TO UIST. For example, thanks to this module we compared the performance of different QBF encodings for reference planning problems from different International Planning Competitions (IPC) [START_REF] Gasquet | [END_REF]. We were able to show that our new encodings are two times more efficient in terms of resolution time.

Conclusion

We have developed TO UIST to offer a friendly language together with a modular tool that makes it easier to use SAT, SMT and QBF solvers. The aim of this demonstration is to show that TO UIST can be used to solve many combinatorial problems, in particular for symbolic AI, and to spread its use in the community.

Figure 1 :

 1 Figure1: Solutions for Nim's game with 4 matches and 2 players. The winning strategy for player 0 is in red.