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Acceleration of the computation of the method of
moments EFIE impedance matrix from an updated
Fraunhofer criterion

Christophe Bourlier

Abstract—This paper deals with the acceleration of the com-
putation of the impedance matrix obtained from the electric field
integral equation (EFIE) discretized by the Galerkin method of
moment (MoM) with Rao-Wilton-Glisson basis functions. The
elements of the impedance matrix need to calculate a double
integral (quadruple integral) over two planar triangles, which is
typically done from two numerical Gauss-Legendre integrations.
For far-field interactions, this integration can be done analytically
by introducing a criterion for which the resulting closed-form
expression is valid. This approximation is tested on a sphere and
a concave cavity-shaped object, for which the results show that
the time saving factor is about 20, with a mean difference of
0.1-0.5 dB on the radar cross section (RCS) compared to that
obtained from two numerical integrations.

Index Terms—Electric Field Integral Equation, Method of
Moments, Radar cross section, fast algorithm.

I. INTRODUCTION

The method of moments (MoM) [1] has been commonly
used to solve electromagnetic scattering problems. It trans-
forms integral equations into a matrix equation. For small
problems, the resulting linear system can be solved from
the LU (lower-upper) decomposition. For larger problems,
iterative solvers like the conjugate gradient and their improved
versions [2], [3] can be employed, in which accelerations are
accounted for [4], [5]. Another family of fast iterative solvers
has also been developed. The problem geometry is subdivided
into sub-domains (blocks) and the problem solution is then
reduced in order to successively solve a set of impedance sub-
matrix equations [6], [7], in which accelerations are included
(81, [9].

Whatever the solver, some elements of the impedance
matrix must be calculated. This step requires the evaluation
of a double integration (quadruple one-dimensional integral)
over the source and observation facets (of triangular shapes
in our case, since the Rao-Wilton-Glisson basis functions are
used to discretize the electric field integral equation (EFIE)
from the Garlerkin MoM). Usually, two Gauss-Legendre inte-
grations with ngauss points are applied, both on the source and
observation triangles. For large ngauss, this step can be time
consuming. The purpose of this paper is to accelerate this
stage when the observation facet is in the far-field with regard
to the source facet. Then, a criterion is derived by updating
the conventional Fraunhofer criterion to our problem. When

C. Bourlier is with IETR (Institut d’Electronique et de Télécommunications
de Rennes) laboratoryy, LUNAM Université, Université de Nantes, La
Chantrerie, Nantes, France.

this criterion is valid, it is shown that the two integrations
can be done analytically, which reduces the computing time.
In addition, it is important to underline that the closed-
form expression is only valid for planar facets and that the
complexity of assembling the matrix is not changed.

The paper is organized as follows. Section 2 presents the
MoM, whereas section 3 derives the criterion and gives the
closed-form expression of an element of the impedance matrix.
Section 4 presents numerical results, and the last section gives
concluding remarks.

II. METHOD OF MOMENTS

In this paper, to compute the field scattered by a perfectly-
conducting object, the EFIE is solved from the MoM. In
addition, the Galerkin method is applied with the Rao-Wilton-
Glisson basis functions. This leads to solve the linear system
Z X = b, where Z is the impedance matrix, b a vector related
to the incident wave and X, the unknown vector. The time
convention e~7“? is used throughout this paper.

The element Z,,, ,, of the impedance matrix Z, correspond-
ing to the interaction between two edges m (observation) and
n (source) of a facet couple (p, q) is expressed as [2]

pd R,

1 1] e 7FPra
z pl - | (
T Lot =] o
(1)

where ¢ = LypLpSm,n/(47), in which {L,,,} are the
edge lengths and s,,, = *1, {4, ,} are the triangle areas,
pnd, = Vi, — R, 4, in which V19 'is the position vector
of the vertex unshared by the edge (m,n) and belonging to
the facet (p, ¢). In addition, D, , = |R, — R,|| and k is the
wavenumber which equals 27/, where A is the wavelength.

Assuming a plane incident wave, a component b, of the

vector b associated to the source edge n and facet g is [2]

// pgz ) i)inceikinC-ququ (2)
Tq

where w is the wave pulsation and p the permeability of the
surrounding medium. In addition, p,;,. (either vertical, Dinc
(0), or horizontal, fzinc (¢)) and kj,. are the polarization and
incident wave vectors, respectively, both defined in spherical
coordinates from the angles (O, Pinc). Solving the linear

system X = Z ~'b, the components {a,} of the vector X

Cm,n

Fmin = ApAq
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Source

Observation

Fig. 1. Interaction of a facet source g with an observation facet p. The point
Gp,q is the gravity centre of the triangle (p,¢) and the point M), 4 is the
integration point which spans the triangle (p, q).

are found. The far-field scattered field is then expressed as

Pracet MEdge

jw,ue’ijo Z Z Lyamsm
Ap

Y5
8 RO p=1 m=1

X// pfnejksca'deRZ” (3)
T

P

sca(RO)

where Pryce; is the number of facets and Mggge the number
of edges associated to the facet p. In addition, Ry is the
distance from the receiver to the phase origin of the object.
The scattering coefficient is then expressed as

§C21 pSCd
“4)

S Cpincpscu = E. ’
mnc plnC

lim 2v/7Ry

Rp—oc0

where pine = {0,6} and pen = {6,¢}. The subscripts
“inc” and “sca” stand for incident and scattered (waves)
respectively. The receiver polarization basis (ksw,'vgca,hsca)
can be defined in a similar way as that of the incident field
(lcmc, Dinc, th) in which 0, and ¢, are the receiver (scat-
tering) angles. The radar cross section RCS,, ... is obtained
by taking the squared modulus of SC,, ..

Equation (1) shows that Z,, ,, requires the calculation of two
numerical integrations over the surfaces of the triangles T, and
T,. This is done from two-fold Gauss-Legendre integrations.
In this paper, we propose to derive them from a closed-form
expression. The singularity, which occurs for D, , = 0, is
computed from the work published by [10].

III. APPROXIMATION OF Z,, ,

As shown in Fig. 1, the distance D,, = “Dp,qH
|vaz, M, M i+G, gt
5wherequ—GG andé—MG +GM—6 -0, If

HG = R, , > ||d|| = 0, the distance D can be expanded

over I, ; up to the second order as

Dy = /B2y + 07 + 20y g0 cos &

sin?(¢)d?

~ R, 4+ 0 cos(¢) + Ry,

&)
where ¢ = (R;; d). The term in ¢ is related to the local
behavior of a plane wave, whereas 52 is related to the
local behavior of a spherical wave. The Fraunhofer criterion
is obtained from equation (5) by neglecting the term in
52. In Green’s function, this approximation is satisfied if
6%sin* ¢/(2R,,,) does not exceed \/ng (typically ng is an
integer ranging from 10 to 20). This leads for kD, 4, to

2 o2
L ©
2 Rp,q no
The maximum value of §, named A, equals
A = max 8, — 8,]| = max |5, + max] 8,
~ Z max {(xMz - ‘rGi)Q + (yM1 - yGi)2
i={p,q}
5 11/2
If the criterion (7) is satisfied, then
R
~ Ry +0cos(p) =Rpq+ =24 (8, —8,). (8)
Rp’q
In equation (1), the double integral can be simplified as
L] e g R
L = A A // // [ on kQ} Dy q re

s // // [ 1}
Pr - PR~
~ A AR, Z
X e_JkRp,q ‘spe"‘Jkprq qddeRq7 (9)

where Rp,q = R, ,/R, 4. Using the variable transformation
= GypM,, = G,0 + OM, = OM, — OG, = OM,, —

Rg, = OM, = R, = §, + Rg,, where the point O stands

for the phase origin, the above integral can be simplified as

I ¢ I FJ J !k Kk 10
mn — T 5 |7 ,m " ; n-_ 79 ; ( )
R,, 471 pno 2P

where ) A

K; = E//{ eIFBy.a0i s, (11)
and

1 . .

Tin=g ], Vi Ro o) R,
= (Vi, - Rg,) K; — L;, (12)

where ) )

L= —/ 8;e7 a1 ds;. (13)

Ai JJr

It is important to underline that the integration domain T
of the facet i = (p, ¢) is now defined from the gravity centre
R¢,. In addition, the integrals K; (scalar) and L; (vector) do
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not depend on the edge and only depend on the distance R, ,

and on the triangle ¢ defined from its three vertices. Owing to 1 — s
the presence of the term Vﬁn, the integral J; ,, depends on ] i 2222?1 o0
the edge m. As shown in appendix, the integrals K; and L; 19 M| S mormmrermn, no=30
can be derived analytically. In conclusion, an element of the NE ==X
impedance matrix can be computed analytically from equation @ 5
10) if , ) §
Asmd) A <i. (14) % oL
2 Rpq 2Rp,q ng &
In practice, the angle ¢ can not be determined numer- 51
ically since it depends on the integration variables. Then,
¢ = m/2 is chosen as an upper limit of the criterion. For 10 | ‘ | ‘ ‘ |
two given triangles p and ¢, the coordinates of their gravity 0 30 60 90 120 150 180
centers { Rg,, R, } are known and then the distance R, ; = Angle d_ [°]
||RG - Rg, } is computed Moreover, A is computed from

ion Typically, A = her is the circl
equation (7). Typically, ap + aq, Where a; 1s the circle Fig. 2. Bistatic RCS in dBm? versus the scattering angle Osca. Gine = 0,

radius circumscribed to the triangle ¢ (1 = {p, Q}) ¢inc = 0 and ¢sca = 0. The illuminated object is a sphere of radius a =
It is important to underline that integrals (2) and (3) can 0.6Xo.

also be computed analytically, since

—+—0.02dB

1 . . 0.2 0.05 dB+UFC: p=99.98%, n_=10
—_ // p;’nes'Ri d.l:fZ = Vanl - Ll (15) 0.03 dB+UFC: p=99.91%.nz=20
Ap T, 0.16 [|- ¢ - 0.02 dB+UFC: p=99.83%, n,=30
For equation (2), s = —kj,. and for equation (3), s = Kq,. — 0121 =
In addition, the variable transformation over §; is not applied % 658
(the three vertices of the triangle ¢ are defined from the phase S .
origin O). -% 0.04 [ e ypmm
w0
IV. NUMERICAL RESULTS & 0.04
The wavelength in free space A is 1 m and the polarization '
is 00. 0081
First, to test the accuracy of the proposed method, a sphere -0.12 : : ‘
is considered, for which the field scattered by a plane wave is 0 30 60 90 120 150 180
known exactly from the Mie series [11]. Angle 0[]
Fig. 2 plots the bistatic RCS in dBm? versus the scattering
angle Os,. The incidence angles are Oic = 0, Gine = 0 Fig. 3. Ratio RCS/RCS|pe in dB scale versus the scattering angle 0sca. The
and ¢y, = 0 is the scattering azimuthal angle. To better parameters are the same as in Fig. 2.
highlight the differences, Fig. 3 plots the corresponding ratio
RCS/RCS|mie in dB scale (becomes a difference) versus the o
scattering angle 0y.,, where RCS|y;. is the reference Mie ({’g ;Eé %?,,mﬂ*&"'&”-g»-—-m-n%w’“"’“@'
solution. The sphere has a radius a = 0.6\¢ and the number of o
edges is Nggge = 6279, corresponding to an edge mean length g12p”
of 0.05\y. As shown in Figs. 2 and 3, this value ensures a é i
very good agreement between the results obtained from two O 3 T g;' " '?8' " _?' T 2

Gauss-Legendre integrations, for which the number of points al\
is NGauss — 6.

In Fig. 3, in the legend, the first number gives the mean
value of 10|log;o(RCS/RCS|mie)| over bsa € [0;7]. The
acronym “UFC” means updated Fraunhofer criterion. The
second number p gives the percentage of facet pairs which
are in far-field and for which the approximation is applied.
The integer mo is the number of points per wavelength,
corresponding to a phase error of \g/ng to estimate Green’s
function. As expected, as ng increases, the results better match
with those of Mie and are very similar to those computed from Fig. 4. ToP: Time saving factor versus a/Ag. Bottom: Mean difference on

. . . the RCS ratio versus a/\g.
two numerical integrations.

In Fig. 2, in the legend, the first number ¢ gives the com-
puting time to calculate the impedance matrix. In comparison

—O' No approximation

0.14 == UFC:n=10
: % —D UFC: n,=20
)

o
=

=]

+{)-- UFC: ng=30

Mean difference [dBmz]




This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TAP.2020.3025440, IEEE

Transactions on Antennas and Propagation

PAPER SUBMITTED TO IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION

Height [,]

-04

-1.2
2 Y [h]

Fig. 5. Example of a concave cavity-shaped object with L, = Ly = 4.
The number of edges is Nggge = 9633 and the edge mean length is 0.08 \¢.

to two numerical integrations, the time saving factor is of
the order of 25. As ng decreases, the number of the facet
pairs p in far-field increases and then, all the elements of
the impedance matrix are computed from the approximation.
The time saving factor is approximatively proportional to
M = Nuuss/Capps Where nd, . is the complexity of two
numerical integrations and Cypp, that of the approximation.
Theoretically, this value is equal to one, but it differs from one
in practice because the calculation of the analytical expression
needs some multiplications. This explains why in Fig. 2, n; is
smaller than n2, . = 62 = 36. Fig. 2 also shows that 7; is
little sensitive to nyg.

Fig. 4 plots the time saving factor 7; versus a/Xg (NVedge
ranging from 669 to 24,321) and at the bottom, the mean
ratio 10|log;,(RCS/RCS|mie)| over § € [0;7] is plotted
versus a/MAg. As the radius a increases, the gain in time
saving is nearly constant, equal to approximately 25, and the
mean difference does not exceed 0.08 dB. The percentage
of facet pairs in far-field over a/A\g € [0.2,1.2] ranges
from {0.9836,0.9919,0.9978} to {0.9995,0.9998,0.9999}
for ng = {30, 20, 10}, respectively.

To produce strong interactions between the facets, a con-
cave cavity-shaped object is considered to produce multiple
reflections. The geometry is shown in Fig. 5. It is defined
as z(x,y) = —Aexp(—2%/a? — y*/b?) where a; = L, /4,
by = L,/4, A = a;e'/?/y/2 and L, and L, are the lengths
of the object (defined for z = 0 corresponding to the top of
figure 5) with respect to the x and y directions, respectively. In
addition, the number A is chosen such that the absolute values
of the maximum slopes with respect to the = and y directions
are equal to one in order to produce a dihedral effect (at least
two reflections).

Fig. 6 plots the RCS in dBm? versus the scattering angle
Oscar Oinc = 0, Pinc = 0 and ¢gca = 0. Fig. 7 plots the ratio
RCS/RCS|, in dB scale versus the scattering angle 6y,. The
parameters are the same as in Fig. 6 and the number RCS|y
is the RCS calculated without approximation.

Fig. 6 shows a very good agreement between the RCS
computed without approximation and those obtained from the

35
—+——t=567.4s f
30 = t=25.1 s+UFC: p=99.97%, n0=10 4
t=25.1 s+UFC: p=99.86%, nD=20 ?
25 s = =@ = t=26.0 s+UFC: p=99.68%, nD=30 I
o .
g0 AN Al
SRRY by
2 19 1 ¢ .: i
1 \
g1or v Ag § 4
ia § ¥ :
i e
ol i
¥
-5 : : 9 : : ;
0 30 60 90 120 150 180
Angle (isca [°]

Fig. 6. RCS in dBm? versus the scattering angle Osca. Oinc = 0, Pinc = 0
and ¢sca = 0. A concave cavity-shaped object is considered (Fig. 5).

=+ 0.00 dB
0 8 L 0.15 dB+UFC: p=99.97%, nn=10
: 0.12 dB+UFC: p=99.86%, nD=20

— - =¢ - 0.10 dB+UFC: p=99.68%, n0=30
m 06
S
04}
RS p
€ 02} § i
N L ¢ |
QO it M %A g s W
v 0 % ]

0.2+

-0.4 ' ' ' ' ' '

0 30 60 90 120 150 180
Angle 6_ [°]
Fig. 7. Ratio RCS/RCS|o in dB scale versus the scattering angle 6sca. The

parameters are the same as in Fig. 6.
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Fig. 8. Top: Time saving factor versus Ly /Ao (Ly = Lg). Bottom: Mean
difference on the RCS ratio versus a/Xg.
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approximation. Like for the sphere, the time saving factor is
of the order of 21. In Fig. 7, the difference decreases as ng
increases, and it increases as the RCS level in Fig. 6 takes
low values. For these particular values, a better precision is
required.

Fig. 8 plots the time saving factor versus L, /Ao (L, =
L, and Nggg ranging from 5208 to 29800). At the bottom,
the RCS ratio between the proposed method and that without
approximation is plotted in dB scale (becomes a difference)
versus L, /\g. As we can see, the gain in time saving is little
sensitive to the length L, and the mean difference does not
exceed 0.5 dB. As ng increases, this value slightly decreases.

V. CONCLUSION

In this paper, from the derivation of a far-field criterion,
the elements of the EFIE impedance matrix are computed
from a closed-form expression. This approximation avoids
to calculate these elements from two numerical integrations,
which can be time consuming. The numerical results showed
that the proposed method offers a time saving factor of the
order of 25 for nguss = 6, whereas for ngauss = 3 it equals
6 (not shown in the paper). This number is directly related
to nd,. Which corresponds to the complexity of the two
numerical integrations. The choice of ng.ss depends on the
expected accuracy (related to the surface curvature, calculation
in near or far field, ...). In addition, for the ¢¢ polarization,
results (not depicted here) show that the approximation gives
better results in comparison to the 86 polarization.

APPENDIX A
DERIVATION OF THE INTEGRAL FOR A TRIANGULAR SHAPE

This appendix presents the derivation of the double integral

).
In simplex coordinates, any two-dimensional integral on a
triangular domain T can be converted as (Eq. (9.29) of [2])

//f dR_2A/0 Ala fla, B)dadp,

where R=(1—a—pB)Vi+aVy+Vzand (V1,V,,Vy)
are the coordlnates of the three vertices of the triangle T of
area A. Then

1 : ,
=7 //T IS RIR = 2¢78 V1
1 -«
x/ / e?s(Va=Vi)apis(Va=ViBgadp, (A2)
0 0

where s is a constant vector (independent of R). After some
tedious but straightforward algebra, we obtain (equation (9.44)

of [2])
24e751 (1 —elss 1 —el%2
83 — 82 ( 53 - 52 ) )

S‘(VQ_Vl) and S3 = 8'(V3—V1).

(AL)

K(s) = (A3)

where s1 = s-Vq, s9 =

In addition, since e/* ~ 1+ js for |s| < 1, we can show that
El + js2 —€7%2) /53 if s3=0
; 1+ jsg —e*2) /s3 if s5=0
— 90751 3 3
K(s) = 2¢ e%3 [(1 — js3) — 1] /s3  if so = s3
1/2 if SS9 = 83 = 0

(A4)

The above equation is useful to avoid numerical problems.
Applying the same way for L(s), we show that

11—«
// RS BIR = 24675 / / dadf

[(1—a—B)Vi+aVy+ BVs]el2aci®h

. 0K 0K
=ViFy(s) = j(Vo—=V1) — D59 J(Vs—=Vy) — B
(A5)

From Eq. (A3), the partial derivatives are expressed as

0K _ 24e/™ [ K(s)  14ée*2(jsy—1)

sy — 59 | 2A€751 52

0 o 2 (A6)

383 882 (s2,53)—(3,52)
In addition

—2—j32+ej52 —js2)] /53 ifs3=0
aiK :26_']81 2+2j83 _53 _2€J63] /52 lf So =0
Dsa 2+ €% (s3 + 2js3 — 2)] /(253) if 5o = s3
j/6 if s55=83=0

(A7)

In conclusion, K; expressed from equation (11) is obtained

from equation (A3) by setting s = kR@q, for which the

triangle ¢ is defined from its three vertices. In addition, L;

(equation (13)) is obtained from equation (AS) by setting

s = kprq and §; = R, for which the three vertices of the
facet ¢ are defined from their gravity centre R, .
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