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Introduction

The exceptional mechanical and physical properties of carbon nanotubes (CNTs) determined experimentally or estimated [START_REF] Shen | Tranversely isotropic elastic properties of single-walled carbon nanotubes[END_REF][START_REF] Xiao | An analytical molecular structural mechanics model for the mechanical properties of carbon nanotubes[END_REF][START_REF] Batra | Uniform radial expansion/contraction of carbon nanotubes and their transverse elastic moduli[END_REF], encouraged the extensive research production for the development of CNT-reinforced composites. In this spirit, composites including fuzzy fibers, i.e. carbon, glass or ceramic fibers coated with CNTs (Figure 1), have been recently the subject of a plethora of publications due to the increasing interest for applications in aerospace, energy, infrastructure and health monitoring, among other areas [START_REF] Sager | Effect of carbon nanotubes on the interfacial shear strength of T650 carbon fiber in an epoxy matrix[END_REF][START_REF] Sebastian | Health monitoring of structural composites with embedded carbon nanotube coated glass fiber sensors[END_REF][START_REF] Hart | Velcro-Inspired SiC Fuzzy Fibers for Aerospace Applications[END_REF].

Several modeling efforts have been conducted the last decade to identify different types of behavior of such composites, namely elastic [START_REF] Chatzigeorgiou | Homogenization of aligned "fuzzy fiber" composites[END_REF]Kundalwal andRay, 2011, 2012;Chatzigeorgiou et al., 2012b), thermoelastic [START_REF] Kundalwal | Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite[END_REF][START_REF] Kundalwal | Micromechanics modelling of the effective thermoelastic response of nano-tailored composites[END_REF] and electromechanical [START_REF] Seidel | Multiscale Modeling of Multifunctional Fuzzy Fibers based on Multi-Walled Carbon Nanotubes[END_REF][START_REF] Dhala | Micromechanics of piezoelectric fuzzy fiberreinforced composite[END_REF][START_REF] Ren | Computational multiscale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites[END_REF].

Since the fibers are coated with the nanotubes, the interlayer (usually called nanocomposite) can be seen as a composite consisting of carbon nanotubes in radial arrangement on the surface of fibers inside the matrix. Thus, the nanocomposite can be treated as a separate heterogeneous material with cylindrically orthotropic response. As a consequence, the fuzzy fiber can be studied as two concentric cylinders (fiber and nanocomposite) embedded into the matrix, with the coating layer being a heterogeneous medium. Thus, the total composite is a three scale medium, with micro-(CNTs embedded in matrix), meso-(fuzzy fiber embedded in matrix) and macro-(composite) scales (Figure 2).

Experimental and theoretical studies on the interphase strength between the matrix and the reinforcement are an extensive research topic. The background for developing a theory of fiber composites with enhanced fibers was the development of elasticity solutions for heterogeneous cylindrical fibers and the determination of the elastic deformation of composite cylinders with cylindrically orthotropic layers. The fundamental solutions for fibers embed- ded in a matrix by [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF]; [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF]; [START_REF] Avery | Effect of fiber anisotropy on thermal stresses in fibrous composites[END_REF]; [START_REF] Hashin | Thermoelastic properties of fiber composites with imperfect interface[END_REF] allow for predicting effective elastic and thermoelastic properties. The composite cylinder assemblage (CCA) approach, introduced by [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF], remains a powerful tool for the prediction of effective properties of fiber composites. The three phases model, consisting of a cylindrically orthotropic cylinder, a coating with several degrees of anisotropy and a matrix, has been studied and its effective thermoelastic behavior has been analyzed [START_REF] Chen | Stress fields in composites reinforced by coated cylindrically orthotropic fibers[END_REF][START_REF] Hashin | Thermoelastic properties of fiber composites with imperfect interface[END_REF].

The presence of a cylindrically orthotropic interphase layer in a fiber composite has been introduced by [START_REF] Honjo | Thermal stresses and effective properties calculated for fiber composites using actual cylindrically-anisotropic properties of interfacial carbon coating[END_REF]. Explicit expressions for stress and displacements in a multilayered hollow cylinder with orthotropic elastic layers have been provided by Tsukrov and Drach (2010). The special case of a fiber composite in which each fiber is surrounded by cylindrically orthotropic layers has been investigated by Tsukrov et al. (2012) in order to analyze the influence of anisotropy and inhomogeneity of the layers on the fibers. In [START_REF] Chatzigeorgiou | Homogenization of aligned "fuzzy fiber" composites[END_REF], a two step asymptotic expansion homogeniza-tion scheme in cylindrical (for the layer) and Cartesian coordinates has been presented. Chatzigeorgiou et al. (2012a) proposed the approximate locally periodic homogenization for fiber composites with cylindrical geometry. In Chatzigeorgiou et al. (2012b), the same problem has been investigated via the CCA method. In the latter article, the reinforced interphase is assumed to behave as a transversely isotropic medium with the axis of symmetry parallel to the axis of CNTs. [START_REF] Kundalwal | Micromechanical analysis of fuzzy fiber reinforced composites[END_REF] have analyzed the fuzzy fiber composite response using Mori-Tanaka, by substituting the interphase layer with an equivalent transversely isotropic medium with the axis of symmetry parallel to the axis of the fiber. The same authors have proposed an alternative approach based on the method of cells [START_REF] Kundalwal | Effective properties of a novel continuous fuzzy-fiber reinforced composite using the method of cells and the finite element method[END_REF] to investigate the influence of the CNTs waviness on the overall response of the fuzzy fiber composites [START_REF] Kundalwal | Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite[END_REF].

The present paper proposes a micromechanical approach for unidirectional fuzzy fiber composites accounting for the presence of inelastic fields.

The fuzzy fibers are considered to be fibers coated with CNTs, which are either straight or wavy microfibers. The developed scheme is based on the CCA method, adopted for the cylindrically orthotropic nature of the nanocomposite layer that surrounds the actual fiber. Accounting for nonlinear mechanisms in analytical micromechanical approaches is a task studied by many authors in the literature. A popular approach addressing inelastic fields in composites is the well known transformation field analysis (TFA) by [START_REF] Dvorak | Transformation field analysis of inelastic composite materials[END_REF]; [START_REF] Dvorak | On transformation strains and uniform fields in multiphase elastic media[END_REF]; [START_REF] Michel | Nonuniform transformation field analysis[END_REF]. According to this approach, the stress or the strain is split into elastic and inelastic parts. In [START_REF] Chatzigeorgiou | Elastic and inelastic local strain fields in composites with coated fibers or particles: Theory and validation[END_REF], a mean field multiscale approach for composites reinforced by coated fibers exhibiting elastic and inelastic strain has been presented. It follows the TFA framework and performs two methodologies; one is based on classical Eshelby-type methods like Mori-Tanaka, while the second is based on the Composite Cylinders/Spheres Assemblage homogenization strategy. The TFA approach is extensively deployed in the present work for accounting the inelastic fields applied to the fuzzy fiber composite.

The organization of the paper is as follows: In Section 2, the problem under consideration is described, including a general description of the fuzzy fiber composites, the assumptions on the material symmetries of the phases and the equations of the problem. Section 3 presents the composite cylinders assemblage methodology for the mesoscale problem. In Section 4, a numerical example of a fuzzy fiber composite with wavy carbon nanotubes is presented. The conclusions section closes the main part of the manuscript. The transformation rules between Cartesian and cylindrical coordinate systems and computational details regarding the elastic and inelastic concentration tensors are summarized in two Appendices.

Problem definition

The scope of this section is to describe the problem under consideration.

Before identifying the various scales, some preliminary notes are required concerning the coordinate systems that are utilized.

Preliminaries

Due to the geometrical characteristics of the fuzzy fiber composite, the theoretical development appears in two different orthogonal coordinate sys-tems, the Cartesian and the cylindrical. In cylindrical coordinates, the axes px 1 , x 2 , x 3 q are transformed to pr, θ, zq, according to the relations

x 1 " r cos θ, x 2 " r sin θ, x 3 " z.

For second order tensors, the adopted Voigt notation considers the following representation: In Cartesian coordinates, 1, 2 and 3 denote the normal components at the directions 1, 2 and 3 respectively, while the shear components 4, 5 and 6 denote the shear angles in 12, 13 and 23 respectively. In cylindrical coordinates, 1, 2 and 3 denote the normal components at the directions r, θ and z respectively, while the shear components 4, 5 and 6 denote the shear angles in rθ, rz and θz respectively. Thus, the various fields are expressed in vector form in the Cartesian system as u "

" u 1 u 2 u 3 ı T , ε " " ε 11 ε 22 ε 33 2ε 12 2ε 13 2ε 23 ı T , σ " " σ 11 σ 22 σ 33 σ 12 σ 13 σ 23 ı T ,
and in the cylindrical system as

u cyl " " u r u θ u z ı T , ε cyl " " ε rr ε θθ ε zz 2ε rθ 2ε rz 2ε θz ı T , σ cyl " " σ rr σ θθ σ zz σ rθ σ rz σ θz ı T .
The transformation of the fields between the two coordinate systems require proper rotation tensors, which are presented in Appendix A. The fibers (phase 1) and the matrix (phase 0) are assumed to be at most transversely isotropic with axis of symmetry parallel to the axis of the fibers.

General description of the fuzzy fiber composite

Thus, their elasticity tensors are expressed in the form

L i " L cyl i " » - - - - - - - - - - - - - K tr i `µtr i K tr i ´µtr i l i 0 0 0 K tr i ´µtr i K tr i `µtr i l i 0 0 0 l i l i n i 0 0 0 0 0 0 µ tr i 0 0 0 0 0 0 µ ax i 0 0 0 0 0 0 µ ax i fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , i " 0, 1.
The material properties for these phases are the transverse bulk modulus1 , K tr i , the transverse shear modulus, µ tr i , the axial shear modulus, µ ax i , and the coefficients l i and n i . These are considered known. It is noted that due to their construction (at most transversely isotropic in the fiber direction), the above elasticity tensors remain unchanged during the transition from cylindrical to Cartesian coordinates. The fuzzy fiber composite can be considered as a three phase medium (Figure 2) consisting of the homogeneous fiber, the matrix and the heterogeneous interphase (nanocomposite). The latter contains the CNTs and matrix material. The multiscale approach that is utilized for such medium consists of two steps. The first homogenization step is performed on the nanocomposite and the new medium is treated as a homogenized coating layer attached to the main fibers. In the second step, the fibers, the coating and the matrix constitute the mesoscale. Homogenization at the mesoscale leads at obtaining the overall properties of the fuzzy fiber composite. The diameter of the CNTs is at the order of nanotubes. Thus, the validity of continuum mechanics concepts at such small scales is questionable.

However, classical homogenization strategies for carbon nanotube reinforced composites are adopted frequently in the literature with quite satisfactory results [START_REF] Seidel | Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites[END_REF].

The cylindrical structure of the nanocomposites' RVE poses certain challenges in terms of homogenization. To properly study such reinforced interphase via periodic homogenization, one has to consider that this composite presents cylindrical periodicity, in which the structure cannot be obtained by repetition of the same unit cell, as in Cartesian periodic composites. In addition, the volume fraction of the CNTs inside the matrix is reduced with the increase of the radial direction.

The most accurate technique for such microstructure is the asymptotic expansion homogenization, interpreted in cylindrical coordinates by [START_REF] Chatzigeorgiou | Homogenization of aligned "fuzzy fiber" composites[END_REF] and for more complex microstructures the generalized periodicity homogenization (Tsalis et al., 2012;[START_REF] Guinovart-Sanjuán | Effective properties of regular elastic laminated shell composite[END_REF]. The importance of cylindrical meso-and micro-coordinates is outlined in the above papers, since they allow to consider a 2-D cell problem and represent in a consistent way the homogenization process for shell structures by exploiting the locally periodic homogenization techniques. The periodic microstructure depends on the radial distance, therefore the approximate locally periodic homogenization technique described in Tsalis et al. (2012) leads to a continuously graded effective material. This homogenization technique is applied to several unit cells, whose effective properties are computed numerically.

Another important aspect in the behavior of a nanocomposite is the possible agglomeration of carbon nanotubes. This phenomenon has been studied extensively in the literature of nanocomposites [START_REF] Ma | A review of the microstructure and rheology of carbon nanotube suspensions[END_REF][START_REF] Al-Saleh | Review of the mechanical properties of carbon nanofiber/polymer composites[END_REF]. High volume fraction of CNTs that are not well dispersed can even cause decrease in the composite's overall behavior [START_REF] Bal | Carbon nanotube reinforced polymer composites -A state of art[END_REF]. With regard to fuzzy fiber composites, high CNT content (over 40%) at the interphase between the fibers and the matrix has been reported in some studies (Chatzigeorgiou et al., 2012b;[START_REF] Ren | Computational multiscale modeling and characterization of piezoresistivity in fuzzy fiber reinforced polymer composites[END_REF][START_REF] Zhou | Carbon fiber/carbon nanotube reinforced hierarchical composites: Effect of CNT distribution on shearing strength[END_REF]. To the best of the authors knowledge, the effects of CNTs agglomeration on the interphase regions of fuzzy fiber composites have not been investigated. In this manuscript, such aspects are not considered. However, one can account for agglomeration of CNTs through various micromechanics tecniques [START_REF] Seidel | Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites[END_REF][START_REF] Feng | Micromechanics and multiscale mechanics of carbon nanotubes-reinforced composites[END_REF].

The results of the computational homogenization indicate that the effective nanocomposite is cylindrically orthotropic with its coefficients spatially dependent on the mesoscale radial distance. In a rough but rather successful approximation, it is assumed that the nanocomposite behaves as a typical unidirectional fiber composite (see [START_REF] Seidel | Multiscale Modeling of Multifunctional Fuzzy Fibers based on Multi-Walled Carbon Nanotubes[END_REF]. This last assumption is also adopted in the present work. When the CNTs are wavy, the unidirectional microfiber composite properties can be identified through computational [START_REF] Kundalwal | Effect of carbon nanotube waviness on the effective thermoelastic properties of a novel continuous fuzzy fiber reinforced composite[END_REF]Tsalis et al., 2017) or analytical [START_REF] Yanase | Effects of CNT waviness on the effective elastic responses of CNT-reinforced polymer composites[END_REF][START_REF] Zhu | An extended Mori-Tanaka micromechanics model for wavy CNT nanocomposites with interface damage[END_REF] strategies.

In general, the microfibers are distributed on the fiber surface in a random way. For computational purposes, one can consider either tetragonal or hexagonal array packing of microfibers. The homogenized nanocomposite (phase 2) presents cylindrical orthotropy and its elasticity tensor is expressed as The random arrangement of the unidirectional fuzzy fibers in the matrix (Figure 3) can be approximated in the mesoscale RVE by a distribution in a hexagonal array, as in Figure 5 a (see the discussion in [START_REF] Hashin | The elastic moduli of fiber-reinforced materials[END_REF]. After the first homogenization step at the microscale, the CNTs and their surrounding matrix are substituted by the equivalent nanocomposite (Figure 5 b ). The latter mesoscale RVE can be treated numerically through the periodic homogenization, but the computational cost is quite important due to the spatially dependent behavior, in Cartesian coordinates, of the nanocomposite. When dealing with the composite cylinders assemblage (CCA) approach, an equivalent RVE of concentric cylinders is introduced, as in Figure 6 a .

L cyl 2 " » - - - - - - - - - - - - - L rr 2 L rθ 2 L rz 2 0 0 0 L rθ 2 L θθ 2 L θz 2 0 0 0 L rz 2 L θz 2 L zz 2 0 0 0 0 0 0 µ rθ 2 0 0 0 0 0 0 µ rz 2 0 0 0 0 0 0 µ θz 2 fi
In Tsukrov et al. (2012); Chatzigeorgiou et al. (2012b), the CCA method has been used for evaluating the effective coefficients. By considering the mechanical response of the model to elementary load cases (axial tension, transverse hydrostatic tension, axial and transverse shear, thermal expansion) the effective thermomechanical behavior has been determined. Additionally, to evaluate the effective transverse shear modulus, the generalized self consistent method has been applied, in which a composite cylinder is surrounded by a transversely isotropic infinite matrix, whose shear modulus is equal to the unknown modulus, subjected to remote shear strain.

In this contribution, the main novelty compared to the previous works on the fuzzy fiber composites modeling of [START_REF] Chatzigeorgiou | Homogenization of aligned "fuzzy fiber" composites[END_REF]Chatzigeorgiou et al. ( , 2012a,b) ,b) and [START_REF] Kundalwal | Micromechanical analysis of fuzzy fiber reinforced composites[END_REF], 2012, 2014) is the integration of the TFA framework into the homogenization scheme. The proposed methodology accounts for nonlinear mechanisms through the presence of inelastic stress fields. To the best of the authors knowledge, the transformation field analysis has not been used in the literature before for the study of fuzzy fiber composites. The current approach permits to incorporate nonlinear mechanisms into the material constituents and to obtain appropriate concentration tensors, which provide the link between mesoscopic and macroscopic fields.

Consider a coated cylindrical inhomogeneity, embedded in a matrix material. The inhomogeneity is characterized by constant elasticity modulus L 1 , occupies the space Ω 1 with volume V 1 , bounded by the surface BΩ 1 and subjected to the uniform inelastic stress σ p 1 . The coating layer is characterized by spatially varying elasticity modulus L p2q pxq, occupies the space Ω 2 with volume V 2 , bounded by the surfaces BΩ 1 and BΩ 2 and subjected to the uniform inelastic stress σ p 2 . It should be noted that, since the coating is cylindrically orthotropic, L p2q is spatially dependent in Cartesian coordinates. The matrix is characterized by constant elasticity modulus L 0 , occupies the space Ω 0 with volume V 0 , bounded by the surface BΩ 0 and subjected to the uniform inelastic stress σ p 0 . At the boundary of the coating, a linear displacement field u ext " ε • x is applied (Figure 6 a ), where ε denotes the macroscopic strain tensor. As shown in Figures 6 a and 6 b , the space

Ω " Ω 1 Y Ω 2 Y Ω 0 denotes the total RVE, whose volume is V " V 1 `V2 `V0 .
For this RVE, the equilibrium equation reads

divσ " 0, in Ω, (1) 
with

σpxq " $ ' ' ' & ' ' ' % L 1 : εpxq `σp 1 , x P Ω 1 , L p2q pxq : εpxq `σp 2 , x P Ω 2 , L 0 : εpxq `σp 0 , x P Ω 0 .
(2)

In the proposed analytical micromechanics scheme, an equivalent medium with unknown elasticity tensor L is considered to occupy the total space Ω, and is subjected: i) to the same displacement field at the boundary, and ii) to the uniform unknown inelastic stress σ p (Figure 6 b ). The main goal is to identify the macroscopic constitutive law for this medium,

0 σ p 0 σ p 1 σ p 2 u ext " ε • x Ω 0 Ω 1 Ω 2 L 0 L 1 L p2q 0 u ext " ε • x σ p Ω L (a) (b)
σ " L : ε `σp . (3) 
The macroscopic stress and strain fields obey the standard relations with their microscopic counterparts ε "

2 ÿ i"0 c i ε i , σ " 2 ÿ i"0 c i σ i , (4) 
where the ε i and σ i denote average quantities per phase,

ε i " 1 V i ż Ω i εpxqdx, σ i " 1 V i ż Ω i σpxqdx, (5) 
for i=0,1,2 with c i denoting the volume fractions of the material constituents.

The applied macroscopic strain, ε, and the inelastic stresses, σ p 1 , σ p 2 , σ p 0 , are known. The tasks of the analytical homogenization strategy are:

• To identify strain-type elastic, A i , and inelastic, A p j,i , concentration tensors that satisfy the relations

ε i " A i : ε `2 ÿ j"0 A p j,i : σ p j , i " 0, 1, 2. (6) 
• To identify stress-type elastic, D i , and inelastic, D p j,i , concentration tensors that satisfy the relations

σ i " D i : ε `2 ÿ j"0 D p j,i : σ p j , i " 0, 1, 2. (7) 
Combining ( 3), (4) 2 and (7) yields

L " 2 ÿ i"0 c i D i , σ p " 2 ÿ j"0 B p j : σ p j , B p j " 2 ÿ i"0 c i D p j,i . (8) 
B p j denote the inelastic stress concentration tensors. In the development of the expressions ( 2)-( 8) the crucial hypothesis is the uniformity of the inelastic fields inside the phases. Generally, the inelastic stresses in the matrix and in the nanocomposite are expected to be strongly nonuniform. However, considering uniform inelastic stresses, σ p i , in all material phases is an unavoidable assumption for the development of analytical micromechanics strategies. The inelastic stresses are considered to represent the average inelastic stresses in a phase2 . The constitutive law (2) combined with the expressions (6) "mimic" the classical TFA approach adopted in mean-field homogenization frameworks, like Mori-Tanaka. From a computational point of view, this hypothesis permits to easily account for nonlinear mechanisms like plasticity, viscoplasticity etc.. Indeed, an iterative multiscale computational scheme for nonlinear materials uses the macroscopic strain field and expressions of the form (6) to identify the average strains per phase. The latter are utilized for predicting the inelastic stresses per phase.

The nonuniform spatial distribution of the inelastic fields inside the matrix phase is a known issue in the micromechanics community and usually leads to stiff macroscopic responses if classical approaches are followed. Certain methodologies have been proposed in the literature to overcome these stiff predictions (see for instance [START_REF] Chaboche | On the capabilities of mean field approaches for the description of plasticity in metal matrix composites[END_REF][START_REF] Lahellec | On the effective behavior of nonlinear inelastic composites: I. Incremental variational principles[END_REF][START_REF] Brassart | Homogenization of elasto-(visco) plastic composites based on an incremental variational principle[END_REF][START_REF] Barral | Homogenization using modified Mori-Tanaka and TFA framework for elastoplasticviscoelastic-viscoplastic composites: Theory and numerical validation[END_REF][START_REF] Wu | An incremental-secant meanfield homogenization method with second statistical moments for elastovisco-plastic composite materials[END_REF].

Inside the nanocomposite, the non-uniformity of inelastic fields is expected to be strong due to its cylindrically orthotropic nature. In the present manuscript, the studied numerical examples examine the accuracy of the framework under known inelastic fields. In a forthcoming publication, the developed framework is going to be applied for composites with nonlinear fiber and coating phases, in which the inelastic fields are computed through appropriate incremental iterative schemes.

As a side note, thermal stresses are a special case of known inelastic fields which are incompatible with (2). To address this incompatibility, a special boundary value problem is studied in section 3.

Mesoscale RVE: effective properties and concentration tensors

Expressing the mesoscale problem in cylindrical coordinates

Inside the RVE of Figure 6 a , the various mechanical fields generated at every phase q (q " 1, 2) depend on the spatial position, i.e.3 u pqq pxq, ε pqq pxq, σ pqq pxq, σ ppqq pxq, @x P Ω q .

Due to the geometry of the inhomogeneities, the problem can be transformed in cylindrical coordinates, using a system of concentric cylinders for the fiber and the nanocomposite. In the cylindrical coordinate system, the strain tensor components at each phase are given by the expressions According to the RVE of Figure 6 a , the fiber has radius r " r 1 , the coating layer has external radius r 2 and the matrix has external radius r 0 . In the sequel, the ratios

ε
φ c " r 2 1 r 2 2 " V 1 V 1 `V2 , φ m " r 2 2 r 2 0 " V 1 `V2 V , (11) 
are introduced. Using these ratios, the volume fractions of the material constituents, c i , are given by the expressions

c 1 " φ c φ m , c 2 " φ m r1 ´φc s, c 0 " 1 ´φm . ( 12 
)
For the heterogeneous mesoscale RVE, the traction and displacement continuity between fiber-coating and between coating-matrix are expressed through Concerning the analytical homogenization strategy, average fields per phase are required to be computed. Considering the phase q, which has inner radius r a , outer radius r b and length 2L, its average strain and stress, in Voigt notation, are given by the expressions

ε q " 1 2Lπrr 2 b ´r2 a s ż L ´L ż 2π 0 ż r b ra q Q T • ε cylpqq rdrdθdz, σ q " 1 2Lπrr 2 b ´r2 a s ż L ´L ż 2π 0 ż r b ra r Q T • σ cylpqq rdrdθdz. ( 14 
)
The rotation matrices q Q and r Q are given in Appendix A.

A major hypothesis in the proposed method is that the equivalent medium is transversely isotropic with elasticity tensor expressed in the form

L " » - - - - - - - - - - - - - K tr `µtr K tr ´µtr l 0 0 0 K tr ´µtr K tr `µtr l 0 0 0 l l n 0 0 0 0 0 0 µ tr 0 0 0 0 0 0 µ ax 0 0 0 0 0 0 µ ax fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl
.

The unknown material properties are the transverse bulk modulus, K tr , the transverse shear modulus, µ tr , the axial shear modulus, µ ax , and the coefficients l and n. The transverse isotropy of the overall medium has been verified in the past through the more accurate periodic homogenization framework [START_REF] Chatzigeorgiou | Homogenization of aligned "fuzzy fiber" composites[END_REF][START_REF] Seidel | Multiscale Modeling of Multifunctional Fuzzy Fibers based on Multi-Walled Carbon Nanotubes[END_REF]). In the numerical example of the current article, the same conclusion is obtained.

Following the classical development of the Composite Cylinders Assemblage approach, several boundary value problems are solved analytically. The adopted strategy has the following steps:

1. Apply special macroscopic boundary conditions and inelastic stresses per phase. The analytical solutions for these conditions are known up to several constants.

2. Obtain the values of constants by using the boundary and the interface conditions between layers.

Compute the various concentration tensors

A i , A p j,i , D i and D p j,i for i, j=0,1,2.
4. Compute the macroscopic elasticity tensor, L, and the inelastic stress concentration tensors, B p j , using the expressions (8).

A small change in the above strategy is required for obtaining the macroscopic transverse shear modulus. In the relevant subsection, the details of this deviation are provided.

Axial shear 13

0 σ p 0 σ p 1 σ p 2 Ω 0 Ω 1 Ω 2 L 0 L 1 L p2q 2ε 13 2ε 13
Figure 7: Axial shear conditions.

The applied displacement boundary conditions in the RVE are

u ext z pr 0 , θ, zq " 2βr 0 cos θ. ( 15 
)
This field corresponds to the macroscopic shear angle 2ε 13 " 2β (Figure 7).

The three phases are subjected to inelastic stresses whose non zero components per phase are

σ ppiq rz " s i cos θ, σ ppiq θz " ´si sin θ, i " 0, 1, 2. ( 16 
)
The latter corresponds to uniform shear stress on the plane x 1 ´x3 . The constants β, s 1 , s 2 and s 0 are known. The displacement fields at every r, θ and z that satisfy the equilibrium equations (10) take the analytical forms

u p1q r " u p1q θ " 0, u p1q z " r Ξ 1,1 cos θ, u p2q r " u p2q θ " 0, u p2q z " r 2 ÿ i"1 Ξ 2,i " r r 1  ξ i ´1 cos θ, u p0q r " u p0q θ " 0, u p0q z " r « Ξ 0,1 `Ξ0,2 " r r 2  ´2ff cos θ, (17) 
with

ξ 1 " d µ θz 2 µ rz 2 , ξ 2 " ´d µ θz 2 µ rz 2 . ( 18 
)
For the expression of u p1q z , it has been taken into account that the displacement at r " 0 is finite. The values of the constants Ξ i,j and the concentration tensors terms A ixz , A p j,ixz , D ixz and D p j,ixz for i, j=0,1,2, are determined with the procedure discussed in subsection B.1 of Appendix B.

Axial shear 23 conditions follow the same procedure: The applied displacement boundary conditions in the RVE are

u ext z pr 0 , θ, zq " 2βr 0 sin θ, (19) 
which correspond to the macroscopic shear angle 2ε 23 " 2β. The three phases are subjected to inelastic stresses whose non zero components per phase are

σ ppiq rz " s i sin θ, σ ppiq θz " s i cos θ, i " 0, 1, 2. ( 20 
)
The latter corresponds to uniform shear stress on the plane x 2 ´x3 . The constants β, s 1 , s 2 and s 0 are known. The displacement fields at every r, θ and z that satisfy the equilibrium equations ( 10) take similar analytical forms with the ones of the axial shear 13 case, simply by exchanging cos θ with sin θ. Moreover, the obtained concentration tensor terms are exactly the same with those obtained in the axial shear 13 boundary value problem.

Transverse normal conditions

0 σ p 0 σ p 1 σ p 2 Ω 0 Ω 1 Ω 2 L 0 L 1 L p2q ε 11 ε 11 ε 22 ε 22 " "
Figure 8: Transverse normal conditions.

The applied displacement boundary conditions in the RVE are u ext r pr 0 , θ, zq " βr 0 .

This field corresponds to the biaxial macroscopic normal strain condition ε 11 " ε 22 " β (Figure 8). The three phases are subjected to inelastic stresses whose non zero components per phase are

σ ppiq rr " σ ppiq θθ " s i , i " 0, 1, 2. ( 22 
)
The latter corresponds to equibiaxial stress on the plane x 1 ´x2 . The constants β, s 1 , s 2 and s 0 are known. The displacement fields at every r, θ and z that satisfy the equilibrium equations (10) take the analytical forms

u p1q r " r Ξ 1,1 , u p1q θ " u p1q z " 0, u p2q r " r 2 ÿ i"1 Ξ 2,i " r r 1  ξ i ´1 , u p2q θ " u p2q z " 0, u p0q r " r « Ξ 0,1 `Ξ0,2 " r r 2  ´2ff , u p0q θ " u p0q z " 0, (23) 
with

ξ 1 " d L θθ 2 L rr 2 , ξ 2 " ´d L θθ 2 L rr 2 . ( 24 
)
For the expression of u p1q r , it has been taken into account that the displacement at r " 0 is finite. The values of the constants Ξ i,j and the concentration tensors terms A ixx , A p j,ixx , D ixx , D p j,ixx , D i x{x and D p j,i x{x for i, j=0,1,2, are determined with the procedure discussed in subsection B.2 of Appendix B.

Axial conditions

The applied displacement boundary conditions in the RVE are u ext z pr, θ, ˘Lq " ˘βL, u ext r pr 0 , θ, zq " 0.

This field corresponds to the axial macroscopic normal strain ε 33 " β (Fig-

ure 9). The three phases are subjected to inelastic stresses whose non zero components per phase are

σ ppiq zz " s i , i " 0, 1, 2. ( 26 
)
The latter corresponds to axial stress in the x 3 direction. The constants β, s 1 and s 2 are known. The displacement fields at every r, θ and z that satisfy

0 σ p 0 σ p 1 σ p 2 Ω 0 Ω 1 Ω 2 L 0 L 1 L p2q ε 33 ε 33 Figure 9: Axial conditions.
the equilibrium equations ( 10) take the analytical forms

u p1q r " r Ξ 1,1 , u p1q θ " 0, u p1q z " βz, u p2q r " γ 2 βr `r 2 ÿ i"1 Ξ 2,i " r r 1  ξ i ´1 , u p2q θ " 0, u p2q z " βz, u p0q r " r « Ξ 0,1 `Ξ0,2 " r r 2  ´2ff , u p0q θ " 0, u p0q z " βz, (27) 
with

γ 2 " L θz 2 ´Lrz 2 L rr 2 ´Lθθ 2 , ξ 1 " d L θθ 2 L rr 2 , ξ 2 " ´dL θθ 2 L rr 2 . ( 28 
)
For the expression of u p1q r , it has been taken into account that the displacement at r " 0 is finite. The values of the constants Ξ i,j and the concentration tensors terms A i x´z , D i x´z and D iz for i, j=0,1,2, are determined with the procedure discussed in subsection B.3 of Appendix B.

σ p 0 σ p 1 σ p 2 Ω 0 Ω 1 Ω 2 L 0 L 1 L p2q σ p L r ext Ñ 8 r 0 r 1 r 2 x 1 x 2 x 3 σ 12 σ 12
Figure 10: Four cylinders RVE model used in the generalized self consistent approach and transverse shear conditions.

Transverse shear conditions

Following [START_REF] Christensen | Solutions for effective shear properties in three phase sphere and cylinder models[END_REF], the Generalized Self Consistent Composite Cylinders Assemblage strategy is considered for this case. The traction boundary conditions are:

σ ext rr pr ext , θ, zq " β sin 2θ, σ ext rθ pr ext , θ, zq " β cos 2θ, r ext Ñ 8. (29) 
These conditions correspond to macroscopic transverse shear stress σ 12 . A fourth layer is added to the RVE, which is characterized by the unknown material properties L (Figure 10). The four phases are subjected to inelastic stresses whose non zero components per phase are σ ppiq rr " s i sin 2θ, σ The constants β, s 1 , s 2 and s 0 are known. The nonzero displacement fields at every r, θ and z that satisfy the equilibrium equations ( 10) and the boundary conditions take the analytical forms

u p1q r " r « Z 1 Ξ 1,1 " r r 1  2 `Ξ1,2 ff sin 2θ, u p1q θ " r « Ξ 1,1 " r r 1  2 `Ξ1,2 ff cos 2θ, (32) 
u p2q r " r « 4 ÿ i"1 X i Ξ 2,i " r r 1  ξ i ´1ff sin 2θ, u p2q θ " r « 4 ÿ i"1 Ξ 2,i " r r 1  ξ i ´1ff cos 2θ, (33) 
u p0q r " r « Z 0 Ξ 0,1 " r r 2  2 `Ξ0,2 ´Ξ0,3 " r r 2  ´4 `Z1 0 Ξ 0,4 " r r 2  ´2ff sin 2θ, u p0q θ " r « Ξ 0,1 " r r 2  2 `Ξ0,2 `Ξ0,3 " r r 2  ´4 `Ξ0,4 " r r 2  ´2ff cos 2θ, (34) 
u p3q r " r 2µ tr « β ´Ξ3 " r r 0  ´4 `Z1 Ξ 4 " r r 0  ´2ff sin 2θ, u p3q θ " r 2µ tr « β `Ξ3 " r r 0  ´4 `Ξ4 " r r 0  ´2ff cos 2θ. (35) 
In the above expressions,

Z 1 " K tr 1 ´µtr 1 2K tr 1 `µtr 1 , Z 0 " K tr 0 ´µtr 0 2K tr 0 `µtr 0 , Z 1 0 " K tr 0 `µtr 0 µ tr 0 , Z 1 " K tr `µtr µ tr , (36) 
and

X i " 2 L θθ 2 ´ξi L rθ 2 `r1 ´ξi sµ rθ 2 L θθ 2 `4µ rθ 2 ´Lrr 2 ξ 2 i , i " 1, 2, 3, 4. (37) 
Moreover, ξ i are the four solutions of the following polynomial equation:

9L θθ 2 µ rθ 2 `Lrr 2 µ rθ 2 ξ 4 i `"4L rθ 2 rL rθ 2 `2µ rθ 2 s ´Lθθ 2 µ rθ 2 ´Lrr 2 r4L θθ 2 `µrθ 2 s ‰ ξ 2 i " 0. ( 38 
)
The values of the constants Ξ i,j and the concentration tensors terms A ixy , A p j,ixy , D ixy and D p j,ixy for i, j=0,1,2, are determined with the procedure discussed in subsection B.4 of Appendix B.

Deviatoric conditions

This case is similar with the previous one. 

) 40 
where s is the unknown macroscopic inelastic stress. The deviatoric conditions lead to similar solution with the transverse shear conditions. The displacement fields in all phases are expressed in the general form4 u r " r

« 4 ÿ i"1 X i Ξ i " r r 1  ξ i ´1ff cos 2θ, u θ " ´r « 4 ÿ i"1 Ξ i " r r 1  ξ i ´1ff sin 2θ. (41) 
Some computational details for this boundary value problem are given in subsection B.5 of Appendix B.

Concentration tensors

The obtained concentration tensor terms from the previously discussed boundary value problems are sufficient to establish the complete form of the tensors. Indeed, in Voigt notation they are written as

A i " » - - - - - - - - - - - - - - - - - - - A ixx `Aixy 2 A ixx ´Aixy 2 A i x´z 0 0 0 A ixx ´Aixy 2 A ixx `Aixy 2 A i x´z 0 0 0 0 0 1 0 0 0 0 0 0 A ixy 0 0 0 0 0 0 A ixz 0 0 0 0 0 0 A ixz fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , (42) 
A p j,i " » - - - - - - - - - - - - - - - - - - - A p j,ixx `Ap j,ixy {2 2 A p j,ixx ´Ap j,ixy {2 2 0 0 0 0 A p j,ixx ´Ap j,ixy {2 2 A p j,ixx `Ap j,ixy {2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 A p j,ixy 0 0 0 0 0 0 A p j,ixz 0 0 0 0 0 0 A p j,ixz fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , (43) 
D i " » - - - - - - - - - - - - - - - - - - - D ixx `2D ixy 2 D ixx ´2D ixy 2 D i x´z 0 0 0 D ixx ´2D ixy 2 D ixx `2D ixy 2 D i x´z 0 0 0 D i x{x 2 D i x{x 2 D iz 0 0 0 0 0 0 D ixy 0 0 0 0 0 0 D ixz 0 0 0 0 0 0 D ixz fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , (44) 
and 

D p j,i " » - - - - - - - - - - - - - - - - - - - - D p j,ixx `Dp j,ixy 2 D p j,ixx

Thermal conditions

When a fuzzy fiber composite is subjected to thermal conditions, the nanocomposite experiences thermal stresses which are constant in the cylindrical coordinate system. The thermal stress tensor is known, since it depends on material properties (elasticity and thermal conductivity tensors), and it takes the form

σ th cyl 2 " " s r 2 s θ 2 s z 2 0 0 0 ı T ,
where, in general, s r 2 ‰ s θ 2 ‰ s z 2 . Transforming σ th cyl 2 to Cartesian coordinates produces a spatially dependent σ th 2 , which is incompatible with the main hypothesis (2) for the constitutive law. To address this incompatibility for the thermal conditions, the following boundary value problem is studied separately from the previously examined cases: The three phases of Figure 6 a are subjected to inelastic stresses whose non zero components per phase are

σ thp1q rr " σ thp1q θθ " s tr 1 , σ thp1q zz " s ax 1 , σ thp2q rr " s r 2 , σ thp2q θθ " s θ 2 , σ thp2q zz " s z 2 , σ thp0q rr " σ thp0q θθ " s tr 0 , σ thp0q zz " s ax 0 . ( 46 
)
The displacement fields at every r, θ and z that satisfy the equilibrium equations take the analytical forms

u p1q r " r Ξ 1,1 , u p1q θ " u p1q z " 0, u p2q r " rXrs r 2 ´sθ 2 s `r 2 ÿ i"1 Ξ 2,i " r r 1  ξ i ´1 , u p2q θ " u p2q z " 0, u p0q r " r « Ξ 0,1 `Ξ0,2 " r r 2  ´2ff , u p0q θ " u p0q z " 0, (47) 
with

ξ 1 " d L θθ 2 L rr 2 , ξ 2 " ´d L θθ 2 L rr 2 , X " 1 L θθ 2 ´Lrr 2 . ( 48 
)
For the expression of u p1q r , it has been taken into account that the displacement at r " 0 is finite. The computational details for obtaining the macroscopic thermal stress tensor, σ th , are provided in subsection B.6 of Appendix B.

Numerical example

This section presents a numerical example of a fuzzy fiber composite with wavy carbon nanotubes. The scope is to investigate the accuracy of the proposed methodology. In a forthcoming article, a proper parametric investigation and applications in nonlinear composites will demonstrate the method's efficiency.

Material properties and geometrical characteristics

Concerning the material phases, the matrix is assumed to be a typical epoxy; the main fibers are made of glass and the carbon nanotubes walls are made of graphene. All these materials are isotropic and their properties are summarized in Table 1. While the graphene is considered isotropic, it should be noted that the effective behavior of a CNT, single-walled or multi-walled, is anisotropic. Straight CNTs behave as transversely isotropic effective media and their properties can be obtained through micromechanical techniques [START_REF] Seidel | Micromechanical analysis of the effective elastic properties of carbon nanotube reinforced composites[END_REF] 

Microscale homogenization: effective response of nanocomposite

The microscale RVE is solved with the help of the FE software ABAQUS.

Periodicity conditions are imposed at the boundaries of the RVE and the mesoscopic strain is provided with the help of the constraint drivers concept [START_REF] Praud | Multi-scale modelling of thermoplastic-based woven composites, cyclic and time-dependent behaviour[END_REF]Tikarrouchine et al., 2018). Six linear perturbation analyses are performed to establish the complete elasticity tensor of the nanocomposite. For the thermal stresses, zero mesoscopic strain and unit temperature are applied at the constraint drivers (Tikarrouchine et al., 2019). The FE computations have been performed using 150088 fully integrated ten-node tetrahedral elements (C3D10). The nanocomposite properties from this analysis are summarized in 

Mesoscale homogenization: thermomechanical properties of fuzzy fiber composite

The mesoscale RVE is solved following two different approaches: (i) via periodic homogenization and (ii) via the CCA method proposed in the previous section. The periodic homogenization, as a full-field approach, is considered to be more accurate and thus it is used here as the reference solution. With respect to the periodic homogenization strategy, the nanocomposite properties obtained from the previous analysis are introduced in the RVE Figure 12. This RVE consists of matrix and fuzzy fibers distributed in hexagonal arrangement. As Figure 13 shows, the cylindrically orthotropic nanocomposite is "translated" in the coordinate system of the mesoscale RVE as a functionally graded monoclinic medium. Its material properties depend on the angular position. Due to this spatial dependency, the constitutive law of the nanocomposite is introduced in the FE software ABAQUS with the help of an appropriate user material (UMAT) subroutine. The performed analysis is 3-D, since though the composite is unidirectional, only one element in the x 3 direction is sufficient for accurate results. The FE computations have been performed using 16552 fully integrated ten-node tetrahedral elements (C3D10). The obtained results have been validated with performed analyses using two different meshes, one coarser (7391 C3D10 elements) and one finer (84787 C3D10 elements) than the chosen mesh in the present study.

In the same spirit with the microscale analysis, periodicity conditions are imposed at the boundaries of the mesoscale RVE and the macroscopic strain is provided with the help of the constraint drivers concept. For the thermal stresses, zero macroscopic strain and unit temperature are applied at the constraint drivers.

Table 3 summarizes the results obtained from the periodic homogenization and from the CCA method as described in the previous section. The relative error for each property is the absolute value of the difference between the results of the two methods, divided by the value given by the periodic homogenization. The first observation is that the periodic homogenization results provide transversely isotropic response of the composite 5 . The second observation is that the CCA method provides very accurate predictions.

Its biggest deviation from the periodic homogenization results (0.8%) is ob-5 Slight deviations in second and third digits are due to the numerical accuracy of the FE computations and inherent trancatures.

served in the transverse shear component, which has been obtained via the generalized self consistent composite cylinders methodology. This observation was expected, since similar discrepancy between mean field and full field predictions has been frequently observed in the case of regular unidirectional fiber composites with moderate and high volume fraction of fibers [START_REF] Hyer | Micromechanics of Linear Elastic Continuous Fiber Composites[END_REF]. The main reason for this discrepancy is that transverse shear loading leads to strain profiles inside the RVE that cannot be properly captured using the assumption of a single strain tensor per phase. 

Mesoscale homogenization: fuzzy fiber composite response under macroscopic strain and inelastic fields

To test the accuracy of the concentration tensors obtained from the analytical methodology of the previous section, an additional comparison between the CCA and the periodic homogenization is provided below.

In the following example, the glass fiber and the nanocomposite are subjected to the uniform inelastic stresses

σ p 1 " ´0.6 • " 1 1 1 1 1 1 ı T MPa, σ p 2 " ´0.4 • " 1 1 1 1 1 1 ı T MPa.
The matrix is assumed to be free from inelastic stresses. In addition, the macroscopic strain

ε " 0.001 • " 1 1 1 1 1 1 ı T ,
is applied in the mesoscale RVE.

The uniform inelastic stresses for both the glass fiber and the nanocomposite are introduced in the FE periodic homogenization computations with the help of specially designed user material (UMAT) subroutines for the ABAQUS software. Moreover, the total macroscopic strain is applied at the constraint drivers. The distribution of the strains in the RVE from the periodic homogenization computations is illustrated in Figure 14.

The obtained macroscopic stresses, as well as the average strains and stresses per phase are summarized in Tables 4, 5 and6 the strain profiles in the RVE under transverse shearing at moderate and high fiber volume fractions. ε 11

σ
ε 22 ε 33 ε 44 ε 55 ε 66 fiber PH 1.92E-6 1.94E-6 1.00E-3 1.13E-4 1.06E-4 1.06E-4 CCA 1.89E-6 1.89E-6 1.00E-3 1.16E-4 1.06E-4 1.06E-4 error 1.74% 2.44% 0.00% 2.41% 0.01% 0.01% NCP PH 2.50E-4 2.51E-4 1.00E-3 6.29E-4 1.10E-3 1.10E-3 CCA 2.50E-4 2.50E-4 1.00E-3 6.37E-4 1.10E-3 1.10E-3 error 0.01% 0.04% 0.00% 1.26% 0.00% 0.01% matrix PH 1.35E-3 1.35E-3 1.00E-3 1.23E-3 1.09E-3 1.09E-3 CCA 1.35E-3 1.35E-3 1.00E-3 1.22E-3 1.09E-3 1.09E-3
error 0.02% 0.02% 0.00% 0.24% 0.01% 0.01% 

Conclusions

This manuscript has presented a micromechanical framework for identifying the overall response of a fuzzy fiber composite. The main novelties of the developed approach are: i) it is applicable for fibers coated with straight or wavy carbon nanotubes, and ii) it accounts for inelastic mechanical and thermal fields. The proposed method for the mesoscale problem of the composite computes strain-type and stress-type concentration tensors through the CCA approach. The inelastic fields are taken into account via the TFA strategy the excellent accuracy of the micromechanical founded approach.

The developed strategy has considered one set of properties to describe the overall behavior of the nanocomposite layer. In the presence of wavy CNTs, this nanocomposite behaves as a cylindrically orthotropic medium.

The proposed methodology can be easily extended to express the response of the nanocomposite with more than one layers, as it is the case for the approximate locally periodic homogenization strategy. This extension could allow to combine, in the future, the CCA approach with other methods at the microscopic scale (Tsalis et al., 2012).

The present manuscript focuses on establishing a new micromechanical framework for fuzzy fiber composites. The numerical example has been utilized to validate the appoach. In a forthcoming paper, a proper parametric investigation with several fuzzy fiber configurations and specific applications in non-linear composites will demonstrate the capabilities and potential applications of the proposed method.

where R is the rotator second order tensor

R " » - - - - cos θ ´sin θ 0 sin θ cos θ 0 0 0 1 fi ffi ffi ffi fl .
and r Q, q Q are proper fourth order rotators that transform second order tensors in Voigt notation [START_REF] Chatzigeorgiou | Thermomechanical Behavior of Dissipative Composite Materials[END_REF], With the help of the above rotators, the transformation of a stiffness tensor L takes the form

r Q " » - - - - - - - - - - - - - cos 2 θ sin 2 θ 0 cos θ sin θ 0 0 sin 2 θ cos 2 θ 0 ´cos θ sin θ 0 0 0 0 1 0 0 0 ´2 cos θ sin θ 2 cos θ sin θ 0 cos 2 θ ´sin 2 θ 0 0 0 0 0 0 cos θ sin θ 0 0 0 0 ´sin θ cos θ fi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl , q Q " » - - - - - - - - - - - - - cos 
L cyl " q Q • L • q Q T , L " r Q T • L cyl • r Q.

B. Computational details for the mesoscale boundary value problems

This appendix is devoted to the presentation of the computational details for the boundary value problems discussed in section 3. The symbol δ ji that appears in the sequel denotes the Kronecker delta:

δ ji " $ & % 1, i " j, 0, i ‰ j, , i, j " 0, 1, 2. (B.1)

B.1. Axial shear xz

For the fields presented in subsection 3.2, the average strains and stresses at every phase are given by the formulas

ε 1 " Ξ 1,1 I xz , ε 2 " 2 ÿ i"1 Φ i Ξ 2,i I xz , ε 0 " Ξ 0,1 I xz , σ 1 " rs 1 `µax 1 Ξ 1,1 s I xz , σ 2 " « s 2 `µrz 2 2 ÿ j"1 ξ j Φ j Ξ 2,j ff I xz , σ 0 " rs 0 `µax 0 Ξ 0,1 s I xz , (B.2) with I xz " " 0 0 0 0 1 0 ı T , (B.3) and Φ i " ? φ c 1´ξ i ´φc 1 ´φc . (B.4)
Using the interface and boundary conditions one obtains the linear system

K • Ξ " 2βF β `2 ÿ i"0 s i F i , (B.5)
where

Ξ " " Ξ 1,1 Ξ 2,1 Ξ 2,2 Ξ 0,1 Ξ 0,2 ı T , F β " " 0 0 0 0 1 ı T , F 1 " " 0 ´1 0 0 0 ı T , F 2 " " 0 1 0 ´1 0 ı T , F 0 " " 0 0 0 1 0 ı T , (B.6) and K " » - - - - - - - - - - 1 ´1 ´1 0 0 µ ax 1 ´µrz 2 ξ 1 ´µrz 2 ξ 2 0 0 0 ? φ c 1´ξ 1 ? φ c 1´ξ 2 ´1 ´1 0 µ rz 2 ξ 1 ? φ c 1´ξ 1 µ rz 2 ξ 2 ? φ c 1´ξ 2 ´µax 0 µ ax 0 0 0 0 1 φ m fi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl . (B.7)
The solution of the above system can be written in the general form

Ξ " 2βΞ β `2 ÿ i"0 s i Ξ s i . (B.8)
From the relations (B.2) and (B.8) one obtains 2ε i 13 " A ixz 2ε 13 `2 ÿ j"0 A p j,ixz σ p j 13 , σ i 13 " D ixz 2ε 13 `2 ÿ j"0 D p j,ixz σ p j 13 , (B.9) with

A 1xz " Ξ β 1,1 , A 2xz " 2 ÿ j"1 Φ j Ξ β 2,j , A 0xz " Ξ β 0,1 , D 1xz " µ ax 1 Ξ β 1,1 , D 2xz " µ rz 2 2 ÿ j"1 ξ j Φ j Ξ β 2,j , D 0xz " µ ax 0 Ξ β 0,1 , A p i,1xz " Ξ s i 1,1 , A p i,2xz " 2 ÿ j"1 Φ j Ξ s i 2,j , A p i,0xz " Ξ s i 0,1 , i " 0, 1, 2, D p i,1xz " δ i1 `µax 1 Ξ s i 1,1 , D p i,2xz " δ i2 `µrz 2 2 ÿ j"1 ξ j Φ j Ξ s i 2,j , D p i,0xz " δ i0 `µax 0 Ξ s i 0,1 , i " 0, 1, 2.

B.2. Transverse normal conditions

For the fields presented in subsection 3.3, the average strains and stresses at every phase are given by the formulas

ε 1 " Ξ 1,1 I x´y , ε 2 " 2 ÿ i"1 Φ i Ξ 2,i I x´y , ε 0 " Ξ 0,1 I x´y , σ 1 " " s 1 `2K tr 1 Ξ 1,1 ‰ I x´y `2l 1 Ξ 1,1 I z , σ 2 " rs 2 `Σx 2 sI x´y `Σz 2 I z , σ 0 " " s 0 `2K tr 0 Ξ 0,1 ‰ I x´y `2l 0 Ξ 0,1 I z , (B.10) with I x´y " " 1 1 0 0 0 0 ı T , I z " " 0 0 1 0 0 0 ı T , (B.11) Φ i " ? φ c 1´ξ i ´φc 1 ´φc , (B.12) and Σ x 2 " 2 ÿ i"1 Σ x 2,i Ξ 2,i , Σ x 2,i " rL rθ 2 `Lrr 2 ξ i sΦ i , Σ z 2 " 2 ÿ i"1 Σ z 2,i Ξ 2,i , Σ z 2,i " 2 L θz 2 `Lrz 2 ξ i 1 `ξi Φ i . (B.13)
Using the interface and boundary conditions one obtains the linear system

K • Ξ " βF β `2 ÿ i"0 s i F i , (B.14) where Ξ " " Ξ 1,1 Ξ 2,1 Ξ 2,2 Ξ 0,1 Ξ 0,2 ı T , F β " " 0 0 0 0 1 ı T , F 1 " " 0 ´1 0 0 0 ı T , F 2 " " 0 1 0 ´1 0 ı T , F 0 " " 0 0 0 1 0 ı T , (B.15) and K " » - - - - - - - - - - 1 ´1 ´1 0 0 2K tr 1 ´rL rθ 2 `Lrr 2 ξ 1 s ´rL rθ 2 `Lrr 2 ξ 2 s 0 0 0 ? φ c 1´ξ1 ? φ c 1´ξ2 ´1 ´1 0 rL rθ 2 `Lrr 2 ξ 1 s ? φ c 1´ξ1 rL rθ 2 `Lrr 2 ξ 2 s ? φ c 1´ξ2 ´2K tr 0 2µ tr 0 0 0 0 1 φ m fi ffi ffi ffi ffi ffi ffi ffi ffi ffi fl .(B.16)
The solution of the above system can be written in the general form

Ξ " βΞ β `2 ÿ i"0 s i Ξ s i . (B.17)
From the relations (B.10) and (B.17) one obtains

ε i 22 " ε i 11 " 1 2 A ixx rε 11 `ε22 s `1 2 2 ÿ j"0 A p j,ixx rσ p j 11 `σp j 22 s, σ i 22 " σ i 11 " 1 2 D ixx rε 11 `ε22 s `1 2 2 ÿ j"0 D p j,ixx rσ p j 11 `σp j 22 s, σ i 33 " 1 2 D i x{x rε 11 `ε22 s `1 2 2 ÿ j"0 D p j,i x{x rσ p j 11 `σp j 22 s, (B.18) with A 1xx " Ξ β 1,1 , A 2xx " 2 ÿ j"1 Φ j Ξ β 2,j , A 0xx " Ξ β 0,1 , D 1xx " 2K tr 1 Ξ β 1,1 , D 2xx " 2 ÿ j"1 Σ x 2,j Ξ β 2,j , D 0xx " 2K tr 0 Ξ β 0,1 , D 1 x{x " 2l 1 Ξ β 1,1 , D 2 x{x " 2 ÿ j"1 Σ z 2,j Ξ β 2,j , D 0 x{x " 2l 0 Ξ β 0,1 , A p i,1xx " Ξ s i 1,1 , A p i,2xx " 2 ÿ j"1 Φ j Ξ s i 2,j , A p i,0xx " Ξ s i 0,1 , i " 0, 1, 2, D p i,1 x{x " 2l 1 Ξ s i 1,1 , D p i,2 x{x " 2 ÿ j"1 Σ z 2,j Ξ s i 2,j , D p i,0 x{x " 2l 0 Ξ s i 0,1 , i " 0, 1, 2, D p i,1xx " δ i1 `2K tr 1 Ξ s i 1,1 , D p i,2xx " δ i2 `2 ÿ j"1 Σ x 2,j Ξ s i 2,j , D p i,0xx " δ i0 `2K tr 0 Ξ s i 0,1 , i " 0, 1, 2.

B.3. Axial conditions

For the fields presented in subsection 3.4, the average strains and stresses at every phase are given by the formulas

ε 1 " Ξ 1,1 I x´y `βI z , ε 2 " « βγ 2 `2 ÿ i"1 Φ i Ξ 2,i ff I x´y `βI z , ε 0 " Ξ 0,1 I x´y `βI z , σ 1 " Σ x 1 I x´y `rs 1 `Σz 1 s I z , σ 2 " rΣ x 2 `Sx 2 βsI x´y `rs 2 `Σz 2 `Sz 2 βs I z , σ 0 " Σ x 0 I x´y `rs 0 `Σz 0 s I z , (B.19) with Σ x 1 " 2K tr 1 Ξ 1,1 `l1 β, Σ z 1 " 2l 1 Ξ 1,1 `n1 β, S x 2 " L θz 2 rL rr 2 `Lrθ 2 s ´Lrz 2 rL θθ 2 `Lrθ 2 s L rr 2 ´Lθθ 2 , S z 2 " rL θz 2 ´Lrz 2 srL θz 2 `Lrz 2 s L rr 2 ´Lθθ 2 `Lzz 2 , Σ x 0 " 2K tr 0 Ξ 0,1 `l0 β, Σ z 0 " 2l 0 Ξ 0,1 `n0 β . (B.20)
In the above expressions, Σ x 2 , Σ z 2 are given by (B.13) and Φ i is given by (B.12). Using the interface and boundary conditions one obtains the linear system with

K • Ξ " βF β , (B.21) where Ξ " " Ξ 1,1 Ξ 2,1 Ξ 2,2 Ξ 0,1 Ξ 0,2 ı T , F β " " γ 2 λ 1 ´γ2 ´λ0 0 ı T , λ 1 " " L rθ 2 `Lrr 2 ‰ γ 2 `Lrz 2 ´l1 , λ 0 " " L rθ 2 `Lrr 2 ‰ γ 2 `Lrz 2 ´l0 , ( 
A 1 x´z " Ξ β 1,1 , A 2 x´z " γ 2 `2 ÿ j"1 Φ j Ξ β 2,j , A 0 x´z " Ξ β 0,1 , D 1 x´z " l 1 `2K tr 1 Ξ β 1,1 , D 2 x´z " S x 2 `2 ÿ j"1 Σ x 2,j Ξ β 2,j , D 0 x´z " l 0 `2K tr 0 Ξ β 0,1 , D 1z " n 1 `2l 1 Ξ β 1,1 , D 2z " S z 2 `2 ÿ j"1 Σ z 2,j Ξ β 2,j , D 0z " n 0 `2l 0 Ξ β 0,1 ,
for i " 0, 1, 2, and Σ x 2,j , Σ z 2,j are given by (B.13).

B.4. Transverse shear conditions

For the fields presented in subsection 3.5, the average strains and stresses at every phase are given by the formulas Using the interface conditions at r " r 1 , r " r 2 , the traction continuity conditions at r " r 0 and the result of the Eshelby's energy principle, one for i " 1, 2, 3, 4. Solving the above system, the Ξ terms are split in two parts and are given in the compact form 
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Figure 1 :

 1 Figure 1: A single fuzzy fiber with densely-packed CNTs on the surface. Reprinted by permission from Springer Nature: Multiscale Modeling of Multifunctional Fuzzy Fibers based on Multi-Walled Carbon Nanotubes, in "Modeling of Carbon Nanotubes, Graphene and their Composites", Tserpes, K. I., Silvestre, N. P. (Eds.), Vol. 188 of Springer Series in Materials Science, by Seidel G.D., Chatzigeorgiou G., Ren X., Lagoudas D.C., 2014.

Figure 2 :

 2 Figure 2: Microscopic (a), mesoscopic (b) and macroscopic (c) scales of a fuzzy fiber composite material.

Figures 3 a

 3 Figures 3 a and 3 c illustrate typical unidirectional fuzzy fiber composites, in which the main fibers (made by carbon, glass or other material) are coated with radially aligned straight (Figure 3 b ) or wavy (Figure 3 d ) carbon nanotubes (CNTs). The CNTs are represented as hollow microfibers. The fibers and the nanocomposite interphase (CNT+matrix) are arranged in such a way that they form a unidirectional lamina layer and are dispersed randomly inside the matrix.

Figure 3 :

 3 Figure 3: (a) Unidirectional fuzzy fiber composite with straight carbon nanotubes. (b) Schematic of fuzzy fiber with straight carbon nanotubes. (c) Unidirectional fuzzy fiber composite with wavy carbon nanotubes. (d) Schematic of fuzzy fiber with wavy carbon nanotubes.

Figure 4 :

 4 Figure 4: Microscale of the fuzzy fiber composite: (a) straight or (b) wavy carbon nanotubes in matrix.

Figure 4

 4 Figure 4 demonstrates a sketch of the microstructure of the nanocomposite. Its geometrical characteristics differ for straigt (Figure 4 a ) or wavy (Figure 4 b ) CNTs. This subsection briefly discusses the method for obtaining the effective properties of the nanotube reinforced interphase.

Figure 5 :

 5 Figure 5: Mesoscale of the fuzzy fiber composite: (a) Hexagonal arrangement of fuzzy fibers. (b) Equivalent RVE where the CNTs and the surrounding matrix are substituted by a an interphase layer, the nanocomposite (NCP).

Figure 6 :

 6 Figure 6: (a) Coated cylindrical fiber, embedded in a matrix material. The fiber, the coating and the matrix have homothetic topology. The fiber and the matrix have constant elasticity moduli and uniform inelastic stresses, while the coating has spatially varying elastic modulus and uniform inelastic stress. Moreover, the system is subjected to linear macroscopic displacement. (b) Equivalent medium with equivalent uniform inelastic stress under the same boundary conditions.

k

  pr 1 , θ, zq " u p2q k pr 1 , θ, zq, u p2q k pr 2 , θ, zq " u p0q k pr 2 , θ, zq, k " r, θ, z, σ p1q rk pr 1 , θ, zq " σ p2q rk pr 1 , θ, zq, σ p2q rk pr 2 , θ, zq " σ p0q rk pr 2 , θ, zq, k " r, θ, z.(13)

  to transverse inelastic shear stresses on the plane x 1 ´x2 . s is the unknown macroscopic inelastic stress. The traction and displacement continuity between the matrix and the equivalent medium are expressed through the relations u p0q k pr 0 , θ, zq " u p3q k pr 0 , θ, zq, σ p0q rk pr 0 , θ, zq " σ p3q rk pr 0 , θ, zq, k " r, θ, z. (31)

  All the constants of the above tensors are obtained through the procedure described in the Appendix B. δ ji stands for the Kronecker delta symbol, given in equation (B.1).

Figure 11

 11 Figure 11: (a) Wavy CNT and (b) RVE at the microscopic scale with tetragonal arrangement of CNTs.

Figure 12 :

 12 Figure 12: Mesoscopic RVE of the fuzzy fiber composite according to the periodic homogenization strategy. The fuzzy fibers appear with hexagonal arrangement.

Figure 13 :

 13 Figure 13: Spatial distribution of (a) L 11 and (b) L 56 component in the glass fiber and the nanocomposite.

σ

  th tr [MPa/K] -0.8161 -0.8161 0.00% σ th ax [MPa/K] -0.8097 -0.8097 0.00%

Figure 14 :

 14 Figure 14: Distribution of strains in the mesoscale RVE: (a) 11 normal strain, (b) 12 shear angle and (c) 13 shear angle.
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  empty index or any of the indices β, s 1 , s 2 , s 0 , s and 3. The last two interface conditions (displacement continuity at r " r 0 ) give the system compact form,Λ • Ξ 0 " β 2µ tr M a `Ξ3 1 2µ tr M b . (B.40)Splitting the Ξ 3 into an elastic and an inelastic part, fields are treated as uniform inelastic stresses, the problem remains linear and the principle of superposition holds. Consequently, it is demanded that each one of the two terms of the system (B.42) should be equal to zero for arbitrary choice of β, s 1 , s 2 and s 0 . Ξ e 3 and µ tr . It is a nonlinear system which leads to a quadratic expression for the µ tr , which has only one positive solution. For this solution,Ξ e 3 " Ξ β β. (B.44) B.4.2. Transverse shear inelastic stressUsing the obtained value of µ tr , the second system" Λ • Ξ 3 0 ´1 2µ tr M b Λ • Ξ s i Λ • Ξ s i 0 , (B.45)is linear and allows to compute Ξ p 3 and s as functions of s 1 , s 2 and s 0 . The solution is expressed as s " of equations are exactly the same with the (B.33) and (B.39). In addition, (B.25) and (B.30) change to

Table 1 :

 1 . Material properties of fuzzy fiber composite constituents. The mechanical properties of graphene have been obtained fromChatzigeorgiou et al. (2012b), while the thermal from[START_REF] Shaina | Estimating the thermal expansion coefficient of graphene: the role of graphene-substrate interactions[END_REF].

	property	epoxy glass graphene
	Young's Modulus [MPa]	3000	72000 1100000
	Poisson's ratio	0.3	0.2	0.14
	Thermal expansion coefficient [1/K] 1.1E-4 5.0E-6 -3.75E-6

Table 2 .

 2 The effective thermal expansion coefficients tensor, α 2 , can be computed by the classical relation

	α cyl 2 " ´"L cyl 2	ı ´1 : σ th cyl 2	.
	property	value	property	value
	L rr 2 [MPa] 34420.2 µ rθ 2 [MPa]	1575.0
	L rθ 2 [MPa] 2568.0 µ rz 2 [MPa]	1416.2
	L rz 2 [MPa] 1940.5 µ θz 2 [MPa]	1349.4
	L θθ 2 [MPa] 4779.5 σ th r 2	[MPa/K] -0.6784
	L θz 2 [MPa] 1967.6 σ th θ 2	[MPa/K] -0.8161
	L zz 2 [MPa] 4712.8 σ th z 2	[MPa/K] -0.8193

Table 2 :

 2 Thermomechanical properties of the nanocomposite obtained via periodic homogenization.

Table 3 :

 3 Thermomechanical properties of the fuzzy fiber composite. Results obtained via periodic homogenization (PH) and CCA and relative error of CCA.

Table 4 :

 4 Macroscopic inelastic stresses obtained via periodic homogenization (PH) and CCA and relative error of CCA. The stress components units are in MPa.

Table 5 :

 5 Average strains in the fiber, the nanocomposite (NCP) and the matrix. Results are obtained via periodic homogenization (PH) and CCA.

Table 6 :

 6 Average stresses in the fiber, the nanocomposite (NCP) and the matrix. Results

	are obtained via periodic homogenization (PH) and CCA. The stress components units
	are in MPa.

  22 " ε i 11 " A i x´z ε 33 , ε i 33 " ε 33 , σ i 22 " σ i 11 " D i x´z ε 33 , σ i 33 " D iz ε 33 `2 ÿ

			B.22)
	and K is given by (B.16). The solution of the above system can be written
	in the general form		
	Ξ " βΞ β .		(B.23)
	From the relations (B.19) and (B.23) one obtains		
	ε i j"0	δ ji σ p j 33 ,	(B.24)

  1,2 s I x{y , Assuming that the equivalent medium is subjected to the uniform thermal stress σ " σ th " s tr I x´y `sax I z , (B.59)

	with						
	ε 2 " ε 0 " 2 are given by (B.13). Using the interface and boundary conditions 1 2 4 ÿ i"1 S r x " L θθ 2 `Lrθ 2 L θθ 2 2 , S θ x " 1 ´Sr x , ´Lrr S r z " L rz 2 `Lθz 2 L θθ 2 ´Lrr 2 , S θ z . (B.55) z " ´Sr r1 `Xi sΦ i Ξ 2,i I x{y , 1 2 " 2 , Σ z and Σ x  1 `φm φ m I x{y , one obtains the linear system r1 `Z0 sΞ 0,1 `2Ξ 0,2 σ 1 " " s 1 `µtr 1 rr1 `Z1 sΞ 1,1 `2Ξ 1,2 s ‰ I x{y , σ 2 " « s 2 `4 ÿ i"1 W i Φ i Ξ 2,i ff K • Ξ " s tr 1 F tr 1 `sr 2 F r 2 `sθ 2 F θ 2 0 F tr 0 , (B.56) `str I x{y , 2r1 `ξi s σ 0 " " s 0 `µtr 0 " where  1 `φm φ m r1 `Z0 sΞ 0,1 `2Ξ 0,2 (B.51) " ı T I x{y , and ε " β 2µ tr I x{y , (B.52) respectively. Consequently, ε i 11 " 1 2 A ixy rε 11 ´ε22 s `1 4 2 ÿ j"0 A p j,ixy rσ p j 11 ´σp j 22 s " ´εi 22 , Ξ 1,1 Ξ 2,1 Ξ 2,2 Ξ 0,1 Ξ 0,2 , Ξ " " ı T F tr 1 " , 0 ´1 0 0 0 " ı T F r 2 " X S r x ´X ´Sr , x 0 " ı T F θ 2 " ´X S θ x X ´Sθ , x 0 " ı T F tr 0 " 0 0 0 1 0 , (B.57)
	σ i 11 " D ixy rε 11 ´ε22 s and K is given by (B.16). The solution of the above system can be written `1 2 2 ÿ j"0 D p j,ixy rσ p j 11 ´σp (B.53) j 22 s " ´σi 22 . in the general form
	B.6. Thermal conditions For the fields presented in subsection 3.8, the average stresses at every Ξ " s tr 1 Ξ s 1 `sr 2 Ξ s r 2 `sθ 2 Ξ s θ 2 `str 0 Ξ s 0 . (B.58)
	phase are given by the formulas	
	σ 1 "	"	2K tr 1 Ξ 1,1	`str 1	‰	I x´y `r2l 1 Ξ 1,1	`sax 1 s I z ,
	σ 2 " rΣ x 2 σ 0 " " 2K tr `Sr x s r 2 0 Ξ 0,1 `str `Sθ x s θ 2 sI x´y `rΣ z 2 0 ‰ I x´y `r2l 0 Ξ 0,1 `Sr z s r 2 `sax 0 s I z , `Sθ z s θ 2	`sz 2 sI z ,	(B.54)

It should not be confused with the traditional bulk modulus of isotropic materials.

Thorough discussion about the implications arising from this assumption is given in[START_REF] Lagoudas | Elastoplastic behavior of metal matrix composittes based on incremental plasticity and the Mori-Tanaka averaging scheme[END_REF].

In the sequel, the exponent pqq above a symbol will denote that the aforementioned quantity may vary spatially.

Some terms vanish in certain phases, see the previous boundary value problem.

Tikarrouchine, E., Chatzigeorgiou, G., Chemisky, Y., Meraghni, F., 2019. Fully coupled thermo-viscoplastic analysis of composite structures by means of multi-scale three-dimensional finite element computations. International Journal of Solids and Structures 164, 120-140.

Tikarrouchine, E., Praud, F., Chatzigeorgiou, G., Piotrowski, B., Chemisky, Y., Meraghni, F., 2018. Three-dimensional FE 2 method for the simulation of non-linear, rate-dependent response of composite structures. Composite Structures 193, 165-179. Tsalis, D., Charalambakis, N., Bonnay, K., Chatzigeorgiou, G., 2017 

A. Transformation between coordinate systems

In Voigt notation, strains and stresses are represented as 6 ˆ1 vectors.

The displacement, strain and stress fields are transformed between cylindrical and Cartesian coordinate systems through the matrix-type formulas

Combining (B.25) and (B.48), one obtains

where

for i " 0, 1, 2.

B.5. Deviatoric conditions

For the fields presented in subsection 3.6, there are many similarities with the transverse shear conditions. The tensor I xy is actually substituted by