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Brittle material strength and fracture toughness
estimation from four-point bending test

Aurélien Doitrand1, Ronan Henry1, and Sylvain Meille1

1
Université Lyon, INSA-Lyon, MATEIS UMR CNRS 5510, F-69621 Villeurbanne Cedex, France

The failure stress under four-point bending cannot be considered as an intrinsic material property because of the

well-known size effect of increasing maximum flexural stress with decreasing specimen size. In this work, four-point

bending tests are analyzed with the coupled criterion for different sample sizes. The maximum flexural stress only

tends towards the material tensile strength provided the specimen height is large enough as compared to the material

characteristic length. In that case, failure is mainly driven by a stress criterion. Failure of smaller specimens is

driven both by energy and stress conditions, thus depending on the material tensile strength and fracture toughness.

Regardless of the material mechanical properties, we show that the variation of the ratio of maximum flexural stress to

strength as a function of the ratio of specimen height to material characteristic length follows a master curve, for

which we propose an analytical expression. Based on this relation, we propose a procedure for the post-processing of

four-point bending tests that allows determining both the material tensile strength and fracture toughness. The

procedure is illustrated based on four-point bending experiments on three gypsum at different porosity fractions.

Keywords Strength, Four-point bending, Coupled criterion

1 Introduction
Size effect refers to the influence of the characteristic structure dimension on the nominal failure stress.

Considering four-point bending as a matter of example, it is usually observed experimentally that the

smaller the specimen the larger the maximum flexural stress. An explanation of this size effect relying on

the weakest link theory was introduced by Weibull (Weibull 1939; Weibull 1949; Weibull 1951), based on

the idea that failure is driven by flaws inside the materials and that the larger the specimen, the larger

the probability for a large flaw to exist in the specimen. This approach was later on justified based on

statistical distribution of microscopic flaws. It is used for describing the size effect in the fracture of brittle

solids (Bermejo et al. 2014). However, it also suffers from some drawbacks since some tests revealed either

a stronger (Bažant and Planas 1998) or weaker (Lu et al. 2004) size effects than predicted by Weibull theory.

Another objection to this purely statistical approach is that it does not contain any material characteristic

length (Bažant 1999).

To avoid this limitation, the idea of combining the theory of plasticity (characterized by the material

strength 𝜎𝑐 or yield limit) and Linear Elastic Fracture Mechanics (LEFM, characterized by the fracture energy

G𝑐 ) was proposed. While both approaches do not contain any characteristic length, their combination does

through the material characteristic length
𝐸G𝑐

𝜎2

𝑐
, where 𝐸 is the material Young’s modulus. This idea led to

the possibility of a deterministic size effect that could be an alternative explanation to the statistical size

effect. Such deterministic size effect was extensively studied by Bazant et al. (Bažant 1999; Bažant 1984;

Bažant and Pfeiffer 1987; Bažant and Xi 1991).

LEFM is mainly limited by the basic assumption of a pre-existing crack preventing the assessment of

crack initiation. To overcome this drawback, the coupled criterion (CC) was developed by Leguillon

(Leguillon 2002) in order to study crack initiation Weißgraeber et al. 2016. It is basically founded on the

simultaneous fulfillment of both energy and stress conditions. Coupling these two conditions allows

determining the material characteristic length and thus reproducing deterministic size effects. A tool for

the finite element implementation of the CC has recently been developed (Doitrand, Martin, et al. 2020).

Crack initiation in laminates (Parvizi et al. 1978) was the first example of size effect assessed with the CC

(Leguillon 2002), which was also studied by García et al. (I. G. García, Carter, et al. 2016; I. G. García,
Mantič, et al. 2018; I. García et al. 2019) in 3D, accounting for residual stresses or comparing the CC with

other criteria. The size effect assessment by the CC offered an alternative explanation to the statistical

approach. Later on, Leguillon et al. (Leguillon, Martin, and Lafarie-Frenot 2015) combined the CC and

Weibull statistics in order to account for both deterministic and statistical size effects. They also pointed

out that according to the CC, the tensile strength can be considered as a material parameter, contrary to the

flexural strength which depends on the specimen size. Cornetti et al. (Cornetti, Pugno, et al. 2006) studied
size effect under three point bending and highlighted the ability of the CC to reproduce the experimentally

observed size effect and catch the concave-convex transition in bi-logarithmic plot of flexural stress as a
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function of specimen size when passing from un-notched to notched specimen. Size effect of the notch

radius on the initiation loading at blunt notches under pure opening mode was studied by Leguillon et
al. (Leguillon, Quesada, et al. 2007) and Carpinteri et al. (Carpinteri et al. 2011) using either the classical

stress criterion (Leguillon, Quesada, et al. 2007) or its averaged version (Carpinteri et al. 2011). Size effect

on the failure stress in notched structures under mixed mode was studied by Cornetti et al. (Cornetti,
Sapora, and Carpinteri 2013), considering either self-similar specimens containing a re-entrant cornered

hole or square holed configuration undergoing various mixed mode loading configurations. The CC also

allows studying the size effect of holed specimens (Leguillon, Quesada, et al. 2007; Cornetti, Sapora, and

Carpinteri 2013; Doitrand, Estevez, et al. 2019; Doitrand and Sapora 2020; Martin, Leguillon, and Carrère

2012; Cornetti and Sapora 2019). The influence of flaw size in ceramics under tensile loading was assessed

by Leguillon et al. (Leguillon, Martin, Seveček, et al. 2018) and Martin et al. (Martin, Leguillon, Seveček,

et al. 2018), showing a transition between a constant to decreasing apparent tensile strength depending on

the flaw size relatively to the material characteristic length.

Size effect is particularly marked in case of small-scale specimen testing. Indeed, the smaller the specimen,

the smaller the energy available for crack initiation and thus the larger the loading required to fulfill the

energy condition necessary for crack initiation, which may result in large local stress levels compared

to the material tensile strength. For instance, stresses up to 5 GPa are locally reached in micron-scale

alumina platelets under three-point bending (Feilden et al. 2017), the material exhibiting a ≈1 GPa tensile
strength considering the CC. The application of the CC allows a correct prediction of the failure force and

demonstrates that in such configuration, failure is driven by the energy condition involving the platelet

fracture toughness (Doitrand, Henry, Chevalier, et al. 2020). The efficiency of the CC to predict crack

initiation at small-scale was also recently illustrated on silicon nanoscale cantilevers (Gallo et al. 2020) and

UO2 micro-cantilevers loaded in flexion (Doitrand, Henry, Zacharie-Aubrun, et al. 2020).

This work is focused on size effect in four-point bending samples without notch, studied experimentally by

tests on gypsum and assessed numerically using the CC. The objective of the paper is to establish a relation

between the maximum flexural stress at failure (calculated from the measured failure force), the specimen

dimensions and the material properties, namely Young’s modulus, fracture toughness and tensile strength.

Section 2 is dedicated to the experimental characterization of gypsum specimens: manufacturing and

testing under four-point bending. In Section 3 we present the CC for crack initiation modeling. In section

4, we use the CC to assess numerically the size effect, which allows establishing a relation between the

maximum stress locally reached, the specimen size and material parameters in Section 5. We thus propose

a post-processing approach for the determination of G𝑐 and 𝜎𝑐 based on four-point bending experiments.

2 Experiments
The material under investigation is gypsum. We study three shades of gypsum: 𝛼-gypsum, 𝛽-gypsum

and a dental gypsum referred to as 𝛾-gypsum in the following. The main difference between these

three shades is their pore fraction and density, their properties are given in Tab. 1. Manufacturing of

samples is made by manually mixing hemihydrate powders with tap water at 23
◦
C. Depending on the

powder type, the amount of water varies, leading to different final porosity fraction. 𝛾 , 𝛼 and 𝛽 samples

are made from a type 4 dental gypsum (Fujirock), Prestia model (Lafarge) and a powder supplied in

a store retail respectively. The specimens exhibit typical interconnected pores between the gypsum

crystals of the micrometer size as well as some macropores (Adrien et al. 2016). The macropores are not

likely to be connected since they originate from entrapped air in the hemihydrate powder before mixing

(Meille 2001; Adrien et al. 2016). The purity of the powders is larger than 96%. The impurities mainly

consist of calcium carbonate micron-size grains (Meille 2001). Young’s modulus has been determined with

ultrasonic method (Grindo-sonic) and Poisson’s ratio is estimated for porous gypsum as shown in (Meille

and Garboczi 2001; Sanahuja et al. 2010).

Material Pore fraction density 𝜌 (g/cm
3
) Young’s modulus 𝐸 (GPa) Poisson’s ratio 𝜈

𝛾-gypsum 0.15 1.94 +0.03 38 + 1 0.21

𝛼-gypsum 0.30 1.59 +0.03 16 + 0.5 0.21

𝛽-gypsum 0.50 1.03 +0.03 3.8 + 0.5 0.21

Table 1: Material properties of 𝛼-, 𝛽- and 𝛾-gypsum (Meille and Garboczi 2001; Meille 2001; Sanahuja et al. 2010).

It can be observed that the Young’s modulus is strongly dependent on pore fraction. Similar relations

can be found for the tensile strength 𝜎𝑐 and critical stress intensity factor 𝐾𝐼𝑐 . The tensile strength

and critical stress intensity factor were determined experimentally (𝛼- and 𝛽-gypsum) and estimated

(𝛾-gypsum) based on the gypsum pore fraction (Meille and Garboczi 2001; Sanahuja et al. 2010; Meille

2001):
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. 𝛾-gypsum: 𝜎𝑐 ≈ 12+2 MPa , 𝐾𝐼𝑐 ≈ 0.4+0.05 MPa.m
0.5

. 𝛼-gypsum: 𝜎𝑐 ≈ 9.5+1.5 MPa, 𝐾𝐼𝑐 ≈ 0.35+0.03 MPa.m
0.5

. 𝛽-gypsum: 𝜎𝑐 ≈ 2.7+1 MPa, 𝐾𝐼𝑐 ≈ 0.1+0.03 MPa.m
0.5

Several specimens of each gypsum shade are tested under four-point bending. The material exhibits

a linear elastic behavior until brittle failure. Different specimen heights are used in order to assess a

possible size effect. Accordingly, two bending apparatus (with (𝐿𝑠𝑝𝑎𝑛 = 90.5 mm, 𝑙𝑠𝑝𝑎𝑛 = 30 mm) and

(𝐿𝑠𝑝𝑎𝑛 = 35 mm, 𝑙𝑠𝑝𝑎𝑛 = 10 mm) lower and upper spans distance respectively) have been used depending

on the specimen height. The specimen dimensions are given in Appendix in Tabs. 6 (𝛼-gypsum), 7

(𝛽-gypsum) and 8 (𝛾-gypsum) together with the failure force 𝐹𝑐 and the corresponding maximum flexural

stress 𝜎max, calculated as:

𝜎max =
3

2

𝐹𝑐 (𝐿𝑠𝑝𝑎𝑛 − 𝑙𝑠𝑝𝑎𝑛)
𝑡ℎ2

, (1)

where 𝑡 is the specimen thickness and ℎ the specimen height.

The specimen dimensions are depicted in Fig. 1a. A size effect can be observed since the maximum

flexural stress measured experimentally increases with decreasing specimen height. As mentioned in

Figure 1: a) Four-point bending specimen dimensions and b) maximum stress to strength ratio as a function of the

initiation crack length to specimen height ratio given in Eqn (3).

(Leguillon, Martin, and Lafarie-Frenot 2015), the maximum flexural stress (or flexural strength) cannot

therefore be considered as an intrinsic material property. It can also be noted that a given specimen height,

a statistical scattering is observed which is linked to the presence of macropores acting as critical flaws

(Sanahuja et al. 2010). Indeed, stress concentrations are induced at the macropore vicinity, which may

thus be privileged crack initiation locations. Therefore, provided the macropore is located sufficiently

close to the specimen face under tension, crack initiation at the macropore may be more likely than

crack initiation at the specimen free edge. It also depends on the pore size as shown for instance in

(Leguillon, Quesada, et al. 2007).

The objective of this work is to assess numerically the size effect and provide a post-processing approach

establishing a link between the measured specimen dimensions and maximum flexural stress (ℎ and 𝜎max)

and the material properties (tensile strength 𝜎𝑐 and critical stress intensity factor 𝐾𝐼𝑐 or fracture toughness

G𝑐 ).

3 The coupled criterion
The CC aims at predicting crack initiation by combining stress and energy conditions. It states that

crack nucleation requires, on the one hand, that the stress just before crack initiation exceeds the tensile

strength over the whole crack path, and on the other hand, that a sufficient amount of energy is dissipated

by crack initiation. The energy condition reverts to comparing the potential energy released by crack

initiation −Δ𝑊 =𝑊 (0) −𝑊 (𝑙), where 𝑙 is the crack length and𝑊 the potential energy, to the energy

required for crack initiation G𝑐𝑙 , where G𝑐 is the material fracture toughness. Coupling both conditions

consist in determining the initiation displacement𝑈0 = 𝑈𝑐 and the corresponding initiation crack length 𝑙𝑐
that simultaneously satisfy both conditions, which can thus be written as follows (𝑦 = 0 corresponds to the

specimen mid-height, cf. Fig.1a) :{
𝜎 (𝑦 = −ℎ + 𝑙,𝑈𝑐 ) ⩾ 𝜎𝑐 ∀ 𝑙 ⩽ 𝑙𝑐 ,
𝐺𝑖𝑛𝑐 (𝑙𝑐 ,𝑈𝑐 ) = −Δ𝑊 (𝑙𝑐 )

𝑙𝑐
= G𝑐 .

(2)

Solving the CC reverts to the determination of the minimum imposed loading 𝑈𝑐 for which both criteria

are simultaneously fulfilled. The corresponding crack length 𝑙𝑐 is the initiation crack length. It requires

the calculation of the potential energy release as a function of the crack length −Δ𝑊 =𝑊 (0) −𝑊 (𝑙).
This quantity is obtained by means of Finite Element (FE) calculations, successively unbuttoning nodes

along the predefined crack path. The calculation allowing the determination of𝑊 (0) corresponds to a

configuration without a crack, which also enables calculating the stress variation along the crack path
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before crack initiation. Note that the stress variation could also be obtained analytically using beam theory

provided the specimen dimensions verifies the corresponding hypotheses. 2D plane strain linear elastic FE

calculations are set-up employing Abaqus
𝑇𝑀

. Since the stress fields are homogeneous within the specimen

thickness, the 2D analysis is expected to provide results close to 3D analysis. The boundary conditions

consist in imposed displacements at the spans and support locations. The mesh is refined in the vicinity of

the crack initiation location. The minimum mesh size is set to
𝑙mat

100
, where 𝑙mat =

𝐸′G𝑐

𝜎2

𝑐
(with 𝐸 ′ = 𝐸

1−𝜈2 ) is

the material characteristic length.

The stress distribution is a linear function of the position along the specimen height that varies from

−𝜎max to 𝜎max, 𝜎max being the maximum flexural stress, therefore the stress conditions gives a relation

between the maximum flexural stress to strength ratio and the initiation length to specimen height ratio:

𝜎max

𝜎𝑐
=

1

1 − 2𝑙𝑐
ℎ

, (3)

shown in Fig. 1b. The initiation 𝑙𝑐 is not known a priori and depends both on the material properties

and specimen geometry but can be determined using the CC. The incremental energy release rate is a

monotonic increasing function of the crack length and tends to zero when the crack size tends towards

zero. Fig. 2a shows a graphical representation of the CC solution including the stress (dashed line) and the

energy (thick solid line) criteria for i) a too small imposed displacement (dashed line) and ii) an imposed

displacement corresponding to the initiation displacement (plain lines). The stress criterion is fulfilled for

Figure 2: Stress to strength (stress criterion) and incremental energy release rate to fracture toughness (energy

criterion) ratios as a function of crack length to specimen height ratio. a) Classical case, b) dominating stress criterion

(small initiation length to specimen height ratio) and c) dominating energy criterion (initiation length to specimen

height ratio close to 0.5).

all the lengths for which
𝜎
𝜎𝑐
⩾ 1. Therefore, for a given imposed displacement 𝑈0, it yields an upper bound

for the admissible initiation crack lengths. Similarly, the energy criterion is fulfilled for all the lengths for

which
𝐺𝑖𝑛𝑐

G𝑐
⩾ 1. It thus provides a lower bound for the admissible initiation crack lengths for a given

imposed displacement. For a too small imposed displacement (𝑈0 < 𝑈𝑐 ), it can be seen that both the stress

and the energy criteria are satisfied for two non-intersecting ranges of crack lengths (the upper bound

given by the stress criterion is smaller than the lower bound given by the energy criterion). Increasing the

imposed displacement allows increasing the upper bound given by the stress criterion and decreasing the

lower bound given by the energy criterion until they match for an imposed displacement𝑈0 = 𝑈𝑐 . It thus

enables determining the crack length for which both criteria are simultaneously fulfilled, i.e. the initiation
crack length (white dot in Fig. 2).

In most of cases, crack initiation is driven by both criteria and thus depends on both G𝑐 and 𝜎𝑐 (Fig. 2a).

Special configurations may also arise for which one of the two criteria is dominant. For instance, the stress

criterion may be dominant if the initiation length is very small compared to the specimen height (Fig. 2b),

therefore the maximum flexural stress is close to the material tensile strength (𝑙𝑐 ≪ ℎ => 𝜎max ≈ 𝜎𝑐 ).
Since the initiation length is a fraction of the material characteristic length 𝑙mat (Martin, Leguillon, Seveček,

et al. 2018), this situation is expected for large specimens. On the contrary, the energy criterion may be

dominant for initiation length close to half the specimen height (Fig. 2c), the stress criterion being almost

fulfilled over the whole area undergoing traction. This situation is rather expected for small specimens.

The CC allows computing the initiation length 𝑙𝑐 and the imposed displacement 𝑈𝑐 from which

the failure force and corresponding failure stress are obtained by means of finite element calculations.

Therefore, for given specimen geometry (ℎ) and material properties (𝐸, 𝜈 , G𝑐 , 𝜎𝑐 ), the CC allows calculating

the corresponding maximum flexural stress 𝜎max, which is exploited in next section in order to assess the

size effect.
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4 Size effect
In this section, we study the deterministic size effect related to the interaction between the initiation

length predicted by the CC and the dimensions of the sample. It is not related to any statistical distribution

of defects.

4.1 Size effect for given material properties
We first consider given material properties representative of 𝛼-gypsum, i.e. 𝐸=16 GPa, 𝜈 = 0.21, G𝑐 =7.3 J/m

2

and 𝜎𝑐 =9.5 MPa. The corresponding material characteristic length is 𝑙mat = 1.36 mm. The CC is used to

predict failure of specimens with different heights from 0.1𝑙mat to 90𝑙mat. Fig. 3 shows the initiation length

(normalized by the material characteristic length - Figure 3a - or by the specimen height - Figure 3b) as a

function of the ratio of the specimen height to material characteristic length
ℎ
𝑙mat

.

It can be observed first that for specimen with a large height relatively to the material characteristic

length (
ℎ
𝑙mat

⩾ 20), the initiation length reaches a plateau and is independent of the specimen size, typically

leading to a situation for which failure is driven by the stress criterion (Fig. 3a). When decreasing the

specimen height, the initiation length also decreases whereas the ratio of initiation length to specimen

height
𝑙𝑐
ℎ
increases. When ℎ → 0 ,

𝑙𝑐
ℎ
→ 0.5 so that the energy criterion becomes more and more dominant

(Fig. 3a). The classical situation involving both criteria is encountered for intermediate ratios of specimen

height to material characteristic length. Therefore, the initiation length to specimen height ratio decreases

from 0.5 to zero with increasing specimen height (Fig. 3b). Since the stress variation is linear as a function

of the position along the specimen height and since crack initiation ensures that 𝜎 (𝑙𝑐 ) = 𝜎𝑐 , it yields that
the maximum flexural stress increases with decreasing specimen size. Fig. 4 shows the increase in the

maximum flexural stress as a function of
ℎ
𝑙mat

, hence reproducing qualitatively the size effect observed

experimentally.

For large enough specimen height (
ℎ
𝑙mat

> 20), the theoretical difference between the maximum flexural

stress 𝜎max and the material tensile strength 𝜎𝑐 is smaller than 5%. For this range of
ℎ
𝑙mat

, the flexural

strength measurement should thus provide a good estimate of the tensile strength, which is not the case

for smaller specimen height to material characteristic length ratios.

4.2 Influence of material properties on size effect
We now investigate the influence of the material fracture properties (𝜎𝑐 ,G𝑐 ) on the observed size effect.

We consider seven fracture parameter couples given in Tab. 2 corresponding to four different 𝑙mat.

Fig. 5 shows the initiation length to material characteristic length ratio as a function of the specimen

height obtained using the CC for the different fracture parameter couples. First, it can be observed that the

same variation is obtained for material parameters giving a similar value of 𝑙mat (symbols are superimposed

on Fig. 5). The increase in initiation length as a function of the specimen height until a plateau for

sufficiently large specimen height is observed for all the studied fracture parameter couples. Besides, the

initiation length at the plateau is an increasing function of the material characteristic length, as shown in

Figure 3: a) Initiation crack length to material characteristic length ratio as a function of specimen height to material

characteristic length ratio. The insets show the CC in the form of stress to strength (dashed line) and incremental

energy release rate to fracture toughness (thick solid line) ratios. b) Initiation crack length to specimen height ratio as

a function of specimen height to material characteristic length ratio. The insets depict the size of the initiation length

𝑙𝑐 compared to the specimen height ℎ.
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Property #1 #2 #3 #4 #5 #6 #7

𝜎𝑐 (MPa) 9.5 9.5 6.72 9.5 4.25 9.5 13.4

G𝑐 (J/m
2
) 7.3 14.6 7.3 36.6 7.3 3.65 7.3

𝑙mat (mm) 1.36 2.72 2.72 6.79 6.79 0.68 0.68

Table 2: Strength and toughness couples leading to four different material characteristic lengths.

the inset of Fig. 5.

Fig. 6 shows the initiation length to specimen height ratio as a function of either the specimen height (6a)

or the specimen height to material characteristic length ratio (6b). For a given specimen height, the same

𝑙𝑐
ℎ
is obtained for different fracture parameter couples leading to the same material characteristic length.

The initiation length to specimen height ratio decreases with increasing specimen height and for a fixed

specimen height, the larger the material characteristic length, the larger the initiation length. Moreover,

the initiation length to specimen height ratio as a function of the specimen height to material characteristic

length ratio is independent of the material parameters and can thus be described by a master curve.

Fig. 7 shows the maximum flexural stress to strength ratio as a function of either the specimen height or

the specimen height to material characteristic length ratio. Once again, the same variation is obtained for

different fracture parameter couples leading to the same material characteristic length. The maximum

flexural stress to strength ratio decreases with increasing specimen height and for a fixed specimen height,

the larger the material characteristic length, the larger the maximum flexural stress. The maximum flexural

Figure 4: Maximum flexural stress to strength ratio as a function of specimen height to material characteristic length

ratio. The insets depict the stress gradient along the specimen height as well as the initiation length 𝑙𝑐 for which

𝜎 (𝑙𝑐 ) = 𝜎𝑐 .

Figure 5: Initiation crack length to characteristic material length ratio as a function of the specimen size for several

(G𝑐 , 𝜎𝑐 ) couples corresponding to different material characteristic lengths 𝑙mat. The inset depicts the initiation length

for the largest specimen as a function of the material characteristic length.
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Figure 6: Initiation crack length to specimen height ratio for several (G𝑐 , 𝜎𝑐 ) couples corresponding to different

material characteristic lengths 𝑙mat as a function of a) the specimen size and b) specimen height to material characteristic

length ratio.

Figure 7: Maximum flexural stress to strength ratio for several (G𝑐 , 𝜎𝑐 ) couples corresponding to different material

characteristic lengths 𝑙mat as a function of a) the specimen size and b) specimen height to material characteristic

length ratio.

stress to strength ratio as a function of the specimen height to material characteristic length ratio is

independent of the material properties so that it can also be described by a master curve.

The deterministic size effect of increasing failure stress with decreasing specimen size under bending

can be explained by the interaction between the initiation length predicted by the CC and the sample

dimensions. Note that even if the initiation length is related to the material characteristic length, it

also depends on the specimen geometry. Therefore, the initiation length must be compared to both the

specimen height and the material characteristic length to assess the size effect. The CC predicts a unique

relation between 𝑙𝑐/ℎ and ℎ/𝑙𝑚𝑎𝑡 that is monolithically decreasing and tends towards 0 for large ℎ/𝑙𝑚𝑎𝑡 . In

this case, the initiation length is sufficiently small so that the stress is higher than the strength on a short

distance and the bending failure stress is close the tensile strength. Failure is thus mainly driven by the

stress criterion in this case. The size effect arises from the interaction between the initiation length and the

sample height. Indeed, in configurations for which the initiation length is not small with respect to the

specimen height (𝑖 .𝑒 ., for small ℎ/𝑙𝑚𝑎𝑡 ratios), the stress exceeds the tensile strength over a sufficiently

large distance so that the bending failure stress may be much larger than the tensile strength (as observed

experimentally, cf. Doitrand, Henry, Chevalier, et al. 2020). Failure is driven by both stress and energy

criteria in this case, the energy condition becomes more and more dominant as ℎ/𝑙𝑚𝑎𝑡 → 0.

7



Aurélien Doitrand et al. Brittle material strength and fracture toughness estimation from four-point bending test

5 Post-processing procedure of four-point bending test
In the previous section, we highlighted that both

𝜎max

𝜎𝑐
and

𝑙𝑐
ℎ
variation as a function of

ℎ
𝑙mat

follow a master

curve that does not depend on the material properties. This section is dedicated to exploit these curves in

order to provide a post-processing procedure for the determination of the material strength and fracture

toughness based on four-point bending experiments.

5.1 Analytical expression of the master curves
The specimen height ℎ and the maximum flexural stress 𝜎max can be measured or obtained experimentally

in four-point bending tests. We obtained a relation between
𝜎max

𝜎𝑐
and

ℎ
𝑙mat

that does not depend on the

tested material through the master curve (Fig. 7). Therefore for given 𝜎max and ℎ, we can adjust the

material parameters so as to follow the master curve. This step could be done by interpolation of the

calculated points forming the master curve (Cornetti, Pugno, et al. 2006). A more convenient approach

consists in determining an analytical expression that reproduces the master curve, which we propose

hereafter:

𝜎max

𝜎𝑐
=

(
ℎ
𝑙mat

)𝑎
+ 1(

ℎ
𝑙mat

)𝑎
+ 𝑏

, (4)

with 𝑎=0.884 and 𝑏=0.179. This expression can be used in the range
ℎ

𝑙𝑚𝑎𝑡
> 0.1 for any material under linear

Figure 8: a) Maximum flexural stress to strength ratio and b) initiation crack length to specimen height ratio as a

function of specimen height to material characteristic length ratio, also displayed as a log-log graph in the insets.

elasticity and small deformation assumption. Given the relation between 𝜎max and 𝑙𝑐 (Eqn. (3)), it yields

𝑙𝑐

ℎ
=
1

2

1 − 𝑏(
ℎ
𝑙mat

)𝑎
+ 1

. (5)

Eqs. (4) and (5) can be used for any brittle materials with a linear elastic behavior. Fig. 8a shows the

proposed functions in classical and log-log space, which correctly reproduces the data obtained numerically

to form the master curve. Rewriting the ratio
𝜎max

𝜎𝑐
by replacing 𝑙mat by

𝐸′G𝑐

𝜎2

𝑐
yields

𝜎max

𝜎𝑐
=

(
ℎ𝜎2

𝑐

𝐸′G𝑐

)𝑎
+ 1(

ℎ𝜎2

𝑐

𝐸′G𝑐

)𝑎
+ 𝑏

, (6)

which can also be rewritten as:

𝜎2𝑎+1𝑐 − 𝜎max𝜎
2𝑎
𝑐 +

(
𝐸 ′G𝑐

ℎ

)𝑎
𝜎𝑐 − 𝜎max𝑏

(
𝐸 ′G𝑐

ℎ

)𝑎
= 0. (7)

This equation can be solved in order to determine the fracture parameter G𝑐 and 𝜎𝑐 . In next sections,

we provide examples of the parameter determination in cases:

8
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i) 𝜎𝑐 is known,

ii) G𝑐 is known,

iii) neither G𝑐 nor 𝜎𝑐 are known.

5.2 Determination of G𝑐
We assume in this section that the only unknown material property is G𝑐 (or 𝐾𝐼𝑐 ). The Young’s modulus

and strength for the different gypsums are those given in Section 2. Rewritting Eqn. (7) yields:

G𝑐 =
ℎ𝜎2𝑐

𝐸 ′

(
𝜎max𝑏 − 𝜎𝑐
𝜎𝑐 − 𝜎max

)− 1

𝑎

(8)

which is an explicit expression of the quantities measured experimentally (specimen height and maximum

flexural stress) and of the other material properties (𝐸 ′ and 𝜎𝑐 ). Using Eqn. (8), each tested specimen

provides a value of G𝑐 . Therefore, the scattering obtained on the identified values is representative of the

statistical scattering for a given specimen size, which mainly depends on the presence of macropores in

the case of gypsum. The values obtained for the three shades of gypsum are shown as a function of the

specimen height or the specimen density for G𝑐 (Fig. 9) or𝐾𝐼𝑐 (Fig. 10) and the mean and standard deviation

are given in Tab.3. The obtained mean value are in the order of magnitude of those taken from (Meille and

Garboczi 2001; Sanahuja et al. 2010; Meille 2001) and recalled in Section 2. Note that if only specimens large

with respect to the material characteristic length are tested (
ℎ

𝑙𝑚𝑎𝑡
> 20), failure is mainly driven by the

stress condition. Therefore, the post-processing of the experiments provides a good estimate of the tensile

Figure 9: Fracture toughness G𝑐 identified from experimental measurements of specimen height ℎ and maximum

flexural stress 𝜎max on gypsum specimens assuming 𝜎𝑐 =9.5 J/m
2
(𝛼-gypsum), 𝜎𝑐 =2.7 J/m

2
(𝛽-gypsum) and

𝜎𝑐 =12 J/m2
(𝛾-gypsum) as a function of specimen a) height ℎ and b) density 𝜌 .

Figure 10: Critical stress intensity factor 𝐾𝐼𝑐 identified from experimental measurements of specimen height ℎ and

maximum flexural stress 𝜎max on gypsum specimens assuming 𝜎𝑐 =9.5 J/m2
(𝛼-gypsum), 𝜎𝑐 =2.7 J/m2

(𝛽-gypsum)

and 𝜎𝑐 =12 J/m2
(𝛾-gypsum) as a function of specimen a) height ℎ and b) density 𝜌 .
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Material 𝜎𝑐 (MPa) (fixed) G𝑐 (J/m
2
) (identified) 𝐾𝐼𝑐 (MPa.m

0.5
) (identified)

𝛾-gypsum 12 4.7 + 1.9 0.42 + 0.078

𝛼-gypsum 9.5 7.6 + 1.4 0.35 + 0.031

𝛽-gypsum 2.7 3.0 + 2.2 0.1 + 0.029

Table 3: Identified fracture toughness G𝑐 and critical energy release rate 𝐾𝐼𝑐 mean and standard deviation for given

𝜎𝑐 values.

strength but it is not expected to obtain an accurate value of the fracture toughness in this case. How-

ever, for smallerℎ/𝑙𝑚𝑎𝑡 ratios, both the tensile strength and fracture toughness can be determined accurately.

5.3 Determination of 𝜎𝑐
We assume in this section that the only unknown material property is the tensile strength 𝜎𝑐 . The Young’s

modulus and fracture toughness for the different gypsums are those given in Section 2. Contrary to the

case for which only G𝑐 is not known which provides an explicit solution, the determination of 𝜎𝑐 requires

solving Eqn. (7). This can be done numerically which provides a value of 𝜎𝑐 for each tested specimens. The

values obtained for the three shades of gypsum are shown as a function of the specimen height or the

specimen density in Fig. 11 and the mean and standard deviation are given in Tab.4.

Material G𝑐 (J/m
2
) (fixed) 𝜎𝑐 (MPa) (identified)

𝛾-gypsum 4.0 11.6 + 1.9

𝛼-gypsum 7.3 9.5 + 0.86

𝛽-gypsum 2.5 2.7 + 0.5

Table 4: Identified strength 𝜎𝑐 mean and standard deviation for given G𝑐 values.

Figure 11: Strength 𝜎𝑐 identified from experimental measurements of specimen height ℎ and maximum flexural stress

𝜎max on gypsum specimens assuming G𝑐 =7.3 J/m2
(𝛼-gypsum), G𝑐 =2.5 J/m2

(𝛽-gypsum) and G𝑐 =4 J/m2
(𝛾-gypsum)

as a function of specimen a) height ℎ and b) density 𝜌 .
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5.4 Determination of G𝑐 and 𝜎𝑐
The last example concerns the case for which neither 𝜎𝑐 nor G𝑐 are known. It is possible to deduce

simultaneously G𝑐 and 𝜎𝑐 based on a set of experimental results. Let us consider that 𝑁 measurements of

the specimen height and maximum flexural stress {(𝜎
(𝑖)
max

,ℎ (𝑖) ), 𝑖 = 1..𝑁 } are available. Based on Eqn. (7),

we define the functions:

𝑅 (𝑖) (𝜎𝑐 ,G𝑐 ) = 𝜎2𝑎+1𝑐 − 𝜎 (𝑖)
max

𝜎2𝑎𝑐 +
(
𝐸 ′G𝑐

ℎ (𝑖)

)𝑎
𝜎𝑐 − 𝜎 (𝑖)

max
𝑏

(
𝐸 ′G𝑐

ℎ (𝑖)

)𝑎
(9)

which should be close to zero provided the fracture parameters are those of the studied material. Therefore,

we seek the couple (𝜎∗𝑐 ,G∗
𝑐 ) that minimizes the following residuals:

𝑅(𝜎𝑐 ,G𝑐 ) =
𝑁∑︁
𝑖=1

(ℎ (𝑖)𝑅 (𝑖) (𝜎𝑐 ,G𝑐 ))2 (10)

The residuals are weighted by the specimen height in order to balance the higher measurement uncertainty

sensitivity for small specimens (see next section for more details). The minimization of the residuals is

performed using a gradient descent algorithm. Fig. 12a shows the residuals for 𝛼-gypsum as a function of

G𝑐 and 𝜎𝑐 as well as the obtained minimum (black star). Fig. 12b shows the maximum flexural stress to

strength ratio as a function of specimen height to material characteristic length ratio for the identified

values of G𝑐 and 𝜎𝑐 together with the master curve. The optimization process finally reverts to adjusting

the experimental data to the master curve on Fig. 12b. The identified tensile strength and toughness

corresponding to the residual minimum for each shade of gypsum are given in Tab. 5. The quality of

strength and toughness identification depends on the specimen size related to the material characteristic

length. Indeed, if only large enough (
ℎ
𝑙mat

> 20) specimens are tested, it is expected that the maximum

flexural stress is close to the material tensile strength, therefore the estimate of G𝑐 may not be as accurate

in this case as for smaller specimens, since for this configuration failure is mainly driven by the stress

criterion.

Material G𝑐 (J/m
2
) (identified) 𝐾𝐼𝑐 (MPa.m

0.5
) (identified) 𝜎𝑐 (MPa) (identified) 𝑙mat (mm)

𝛾-gypsum 2.74 0.33 12.7 0.68

𝛼-gypsum 6.15 0.32 9.9 1.06

𝛽-gypsum 0.62 0.05 3.3 0.23

Table 5: Identified strength 𝜎𝑐 and fracture toughness G𝑐 based on four-point bending experiments.

The material characteristic lengths of the three shades of gypsum are between ≈ 0.2 mm and 1 mm (Tab. 5).

It can be shown that the initiation crack length predicted by the CC is a fraction of the material characteristic

length (Martin, Leguillon, Seveček, et al. 2018). Therefore, crack initiation may be influenced by a flaw

which size lies in the same order of magnitude as the initiation crack length. It is the case for macropores,

Figure 12: a) Residuals as a function of strength 𝜎𝑐 and fracture toughness G𝑐 (𝛼-gypsum) and b) maximum flexural

stress to strength ratio as a function of specimen height to material characteristic length ratio measured experimentally

for the identified fracture properties (𝛼-gypsum: G𝛼
𝑐 =6.15 J/m

2
,𝜎𝛼𝑐 =9.9 MPa, 𝛽-gypsum: G𝛽

𝑐 =0.62 J/m
2
,𝜎
𝛽
𝑐 =3.3 MPa,

𝛾-gypsum: G𝛾
𝑐 =2.74 J/m

2
, 𝜎

𝛾
𝑐 =12.7 MPa corresponding to the residuals minimum.
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they are likely to induce premature failure provided they are sufficiently large and depending on their

position in the specimen, which partly explains the scattering observed experimentally.

5.5 Measurement uncertainty influence on G𝑐 and 𝜎𝑐 identification
We finally investigate the measurement uncertainty influence on G𝑐 and 𝜎𝑐 identification. The two

quantities that are measured experimentally are the specimen height ℎ and the maximum flexural stress

𝜎max. We denote Δℎ and Δ𝜎max the measurement uncertainties respectively on the specimen height and

the maximum flexural stress. We denote 𝜎
𝑟𝑒 𝑓
𝑐 the identified strength without uncertainty measurement

(Δℎ=0 mm and Δ𝜎max = 0 MPa).

We first consider a measurement uncertainty on the specimen height and study its influence on the

strength identification. Fig. 13a shows the identified strength (taking into account the measurement

uncertainty Δℎ) to reference strength ratios as a function of the specimen height to material characteristic

length ratio. For specimens height larger than the material characteristic length, the relative uncertainty

Δℎ
ℎ

on the specimen size measurement induces an uncertainty on 𝜎𝑐 identification
Δ𝜎𝑐
𝜎
𝑟𝑒𝑓
𝑐

smaller than
Δℎ
ℎ
.

The influence of the measurement uncertainty on geometry is however larger for specimens height smaller

than the material characteristic length.

We now consider a measurement uncertainty Δ𝜎max on the maximum flexural stress. Fig. 13b shows the

Figure 13: Uncertainty on determination of 𝜎𝑐 as a function of the specimen size induced by several uncertainty level

on Δℎ and 𝜎max.

identified strength (taking into account the measurement uncertainty Δ𝜎max) to reference strength ratios

as a function of the maximum flexural stress to reference strength ratio. The uncertainty measurement on

the maximum flexural stress
Δ𝜎max

𝜎
𝑟𝑒𝑓
𝑐

induces a uncertainty on the determination of 𝜎𝑐 approximately equal

to
Δ𝜎max

𝜎
𝑟𝑒𝑓
𝑐

for large specimen (ℎ >> 𝑙mat, corresponding to ratios
𝜎max

𝜎
𝑟𝑒𝑓
𝑐

close to 1) and increasing for smaller

specimens (ℎ >> 𝑙mat, corresponding to ratios
𝜎max

𝜎
𝑟𝑒𝑓
𝑐

larger than 1).

6 Conclusion
The maximum flexural stress at failure under four-point bending, sometimes called flexural strength,

cannot be considered as an intrinsic material property because of the well-known size effect leading to

increasing maximum flexural stress with decreasing specimen size.

This size effect can be reproduced using the CC which allows the prediction of the failure force (and hence

the maximum flexural stress) and the initiation crack length for given specimen geometry and material

properties. The initiation length tends to a constant value for large enough specimens compared to the

material characteristic length (failure driven by the stress criterion), whereas it tends to half the specimen

height when the specimen height tends towards 0 (failure driven by the energy criterion). For intermediate

specimen heights, failure is driven by both stress and energy conditions and thus depends on both the

material tensile strength and fracture toughness. The maximum flexural stress tends to the material tensile

strength for specimens large enough compared to the material characteristic length, Therefore, according

to the CC, measurements of the flexural strength can only be considered as a material parameter (actually,

the tensile strength) for large enough specimens.

We show that regardless the material under investigation (under the assumption of linear elasticity), the

maximum flexural stress to strength ratio variation as a function of the specimen height to material

12
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characteristic length ratio follows a master curve, which can be described by an analytical function

involving two parameters. Based on this relationship, we establish a procedure for the determination of

the material tensile strength and fracture toughness which can be employed for the post-processing of

four-point bending experiments that only requires the measurement of the specimen height ℎ and the

failure force 𝐹𝑐 in order to calculate the maximum flexural stress 𝜎max.
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8 Appendix

Specimen 𝛼# 1 2 3 4 5 6 7 8 9 10

h(mm) 4 .03 4.05 4.16 4.16 3.98 4.00 4.10 4.01 3.87 4.06

t (mm) 3.10 3.07 3.00 2.99 3.06 3.01 3.03 2.96 3.12 3.02

𝜌 (g/cm
3
) 1.53 1.6 1.63 1.61 1.58 1.63 1.61 1.62 1.62 1.60

𝐹𝑐 (N) 16.61 16.76 16.74 16.09 17.43 16.00 15.08 16.19 15.07 16.15

𝜎max (MPa) 12.37 12.48 12.09 11.66 13.48 12.46 11.1 12.75 12.09 12.16

Specimen 𝛼# 11 12 13 14 15 16 17 18

h(mm) 5.33 5.18 5.10 5.12 5.08 5.14 5.09 5.37

t (mm) 10.32 10.35 10.29 9.85 10.49 10.25 10.1 10.13

𝜌 (g/cm
3
) 1.60 1.60 1.59 1.60 1.61 1.62 1.62 1.59

𝐹𝑐 (N) 34.91 36.88 39.86 33.15 39.70 35.61 35.77 36.47

𝜎max (MPa) 10.8 12.05 13.51 11.65 13.3 11.93 12.4 11.33

Specimen 𝛼# 19 20 21 22 23 24 25 26 27 28 29

h(mm) 9.83 10.17 9.72 10.00 9.98 10.08 10.02 9.92 10.38 10.14 9.93

t (mm) 10.23 10.63 10.08 10.30 10.56 10.18 10.48 10.23 9.95 10.15 10.29

𝜌 (g/cm
3
) 1.59 1.5 1.62 1.56 1.51 1.58 1.59 1.58 1.59 1.58 1.57

𝐹𝑐 (N) 106.7 132.6 106.6 121.3 138.8 109.7 129.3 125.6 124.5 127.7 115.8

𝜎max (MPa) 9.79 10.94 10.15 10.69 11.97 9.62 11.15 11.32 10.53 11.1 10.35

Specimen 𝛼# 30 31 32 33 34 35 36 37 38 39

h(mm) 10.1 10.07 10.09 10.18 10.04 10.22 10.13 10.2 10.3 9.98

t (mm) 10.12 9.87 10.03 10.16 10.09 10.22 10.15 10.09 10.18 10.35

𝜌 (g/cm
3
) 1.58 1.59 1.56 1.6 1.56 1.6 1.56 1.63 1.55 1.59

𝐹𝑐 (N) 120.5 106.7 116.6 121.9 104.7 137.2 125.6 137.1 115.6 120.1

𝜎max (MPa) 10.59 9.67 10.36 10.5 9.34 11.66 10.94 11.85 9.71 10.57

Table 6: Dimensions, failure force 𝐹𝑐 and stress 𝜎max corresponding to 𝛼-gypsum specimens for 𝐿𝑠𝑝𝑎𝑛=35 mm and

𝑙𝑠𝑝𝑎𝑛=10 mm (specimens 𝛼1 to 𝛼10) or 𝐿𝑠𝑝𝑎𝑛=90.5 mm, 𝑙𝑠𝑝𝑎𝑛=30 mm (specimens 𝛼11 to 𝛼39) distances between the

lower and upper spans.
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Specimen 𝛽# 1 2 3 4 5 6 7 8 9 10 11 12

h(mm) 1.56 2.57 2.82 2.76 2.53 2.61 2.7 2.69 2.68 2.49 2.53 2.43

t (mm) 6.88 7.05 7.74 7.07 7.17 7.34 6.81 7.9 7.79 7.34 6.61 6.39

𝜌 (g/cm
3
) 0.92 1.07 1.02 1.04 1.03 1.03 1.08 1.04 1.04 1.06 1.07 1.01

𝐹𝑐 (N) 1.78 5.27 6.00 5.27 4.45 3.63 4.66 5.45 4.84 5.10 4.41 3.23

𝜎max (MPa) 3.99 4.24 3.65 3.67 3.63 2.72 3.52 3.57 3.24 4.20 3.91 3.21

Specimen 𝛽# 13 14 15 16 17 18 19 20 21

h(mm) 4.07 4.03 4.11 4.22 4.25 4.13 4.21 4.25 4.15

t (mm) 2.95 2.90 2.90 2.93 2.89 2.91 2.99 2.90 2.95

𝜌 (g/cm
3
) 1.09 1.09 1.07 1.07 1.05 1.07 1.01 1.08 1.07

𝐹𝑐 (N) 4.61 4.73 5.05 5.46 4.83 4.87 4.27 5.03 4.55

𝜎max (MPa) 3.53 3.76 3.86 3.92 3.47 3.68 3.02 3.6 3.35

Specimen 𝛽# 22 23 24 25 26 27 28 29

h(mm) 5.38 5.32 5.26 5.33 5.39 5.26 5.29 5.35

t (mm) 10.22 10.1 10.21 10.27 9.75 10.1 10.28 9.97

𝜌 (g/cm
3
) 1.03 1.04 1.05 1.04 1.03 1.05 1.06 1.03

𝐹𝑐 (N) 11.10 11.05 11.53 10.68 10.71 11.18 11.16 10.89

𝜎max (MPa) 3.40 3.50 3.70 3.32 3.43 3.63 3.52 3.46

Specimen 𝛽# 30 31 32 33 34 35 36 37 38 39 40

h(mm) 10.21 10.1 10.36 9.93 10.12 9.92 10.33 10.44 10.14 10.09 10.11

t (mm) 10.67 10.98 10.42 10.6 10.57 10.32 10.98 10.48 10.36 10.69 10.43

𝜌 (g/cm
3
) 1.01 0.99 1.00 1.03 1.04 1.03 1.01 1.02 1.02 1.05 1.05

𝐹𝑐 (N) 36.78 38.17 32.29 33.94 34.18 31.69 38.60 35.52 43.43 43.19 38.82

𝜎max (MPa) 3.00 3.09 2.62 2.95 2.87 2.83 2.99 2.82 3.70 3.60 3.30

Specimen 𝛽# 41 42 43 44 45 46 47 48 49 50

h(mm) 9.98 9.98 10.12 10.18 9.87 10.67 10.12 10.31 9.9 10.46

t (mm) 10.46 10.44 10.45 10.34 10.79 10.57 10.47 10.73 10.84 10.66

𝜌 (g/cm
3
) 1.04 1.05 1.01 1.03 1.01 0.99 1.03 0.98 1.02 0.99

𝐹𝑐 (N) 38.04 37.31 41.20 38.65 47.07 43.35 44.70 33.94 27.91 36.47

𝜎max (MPa) 3.32 3.26 3.49 3.27 4.06 3.27 3.78 2.70 2.38 2.84

Table 7: Dimensions, failure force 𝐹𝑐 and stress 𝜎max corresponding to 𝛽-gypsum specimens for 𝐿𝑠𝑝𝑎𝑛=35 mm and

𝑙𝑠𝑝𝑎𝑛=10 mm (specimens 𝛽1 to 𝛽21) or 𝐿𝑠𝑝𝑎𝑛=90.5 mm, 𝑙𝑠𝑝𝑎𝑛=30 mm (specimens 𝛽22 to 𝛽50) distances between the

lower and upper spans.
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Specimen 𝛾# 1 2 3 4 5 6 7 8

h(mm) 2.19 2.18 4.16 4.00 4.28 4.21 4.13 4.08

t (mm) 7.07 9.64 3.04 3.03 2.97 2.99 2.99 2.92

𝜌 (g/cm
3
) 1.92 1.94 1.94 1.97 1.89 1.96 1.94 1.97

𝐹𝑐 (N) 14.65 21.59 20.15 20.91 23.25 19.39 31.37 18.70

𝜎max (MPa) 16.2 17.67 14.36 16.17 16.02 18.49 17.35 14.42

Specimen 𝛾# 9 10 11 12 13 14 15 16

h(mm) 4.33 4.28 4.33 5.06 5.01 4.85 4.89 5.23

t (mm) 3.04 3.07 3.05 10.21 10.13 10.37 9.93 10.26

𝜌 (g/cm
3
) 1.9 1.91 1.91 1.9 1.96 1.89 1.94 1.91

𝐹𝑐 (N) 25.57 23.94 21.97 35.37 42.03 28.59 35.84 33.05

𝜎max (MPa) 16.82 15.96 14.4 12.27 15.00 10.63 13.69 10.68

Specimen 𝛾# 17 18 19 20 21 22 23 24

h(mm) 10.45 9.82 10.1 9.9 10.11 10.07 10.32 10.19

t (mm) 10.01 10.08 9.50 10.09 10.08 10.06 10.05 10.02

𝜌 (g/cm
3
) 1.93 1.93 1.97 1.94 1.91 1.92 1.96 1.98

𝐹𝑐 (N) 156.95 118.99 134.89 146.02 134.95 134.78 136.96 169.50

𝜎max (MPa) 13.03 11.10 12.63 13.40 11.88 11.99 11.61 14.78

Specimen 𝛾# 25 26 27 28 29 30 31 32 33

h(mm) 10.27 10.08 10.04 9.95 9.87 9.77 10.48 10.11 10.03

t (mm) 9.85 9.75 10.05 10.11 10.12 10.15 10.03 10.05 10.04

𝜌 (g/cm
3
) 1.93 1.98 1.97 1.90 1.93 1.96 1.93 1.94 1.94

𝐹𝑐 (N) 136.10 134.45 156.30 149.08 137.36 131.61 167.67 150.84 146.84

𝜎max (MPa) 11.88 12.31 14.00 13.51 12.64 12.32 13.81 13.32 13.19

Table 8: Dimensions, failure force 𝐹𝑐 and stress 𝜎max corresponding to 𝛾-gypsum for 𝐿𝑠𝑝𝑎𝑛=35 mm and 𝑙𝑠𝑝𝑎𝑛=10 mm

(specimens 𝛾1 to 𝛾11) or 𝐿𝑠𝑝𝑎𝑛=90.5 mm, 𝑙𝑠𝑝𝑎𝑛=30 mm (specimens 𝛾12 to 𝛾33) distances between the lower and upper

spans.
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9 Supplementary materials
The supplementary materials are available at the following link: https://doi.org/10.5281/zenodo.4271971
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