A CGM-Based Parallel Algorithm Using the Four-Russians Speedup for the 1-D Sequence Alignment Problem - Archive ouverte HAL
Communication Dans Un Congrès Année : 2020

A CGM-Based Parallel Algorithm Using the Four-Russians Speedup for the 1-D Sequence Alignment Problem

Résumé

The CGM model is one of the most widely used models for the design of parallel algorithms. It has shown its efficiency in solving several problems modeled by dynamic programming such as the longest common subsequence problem, which is a special case of the one-dimensional sequence alignment problem. This problem consists in aligning two strings of length n to measure their similarity. It is widely used in many fields, particularly in Bioinformatics where n is usually very large. Brubach and Ghurye proposed a sequential solution based on the Four-Russians speed-up that requires O(n^2 / log n) execution time. To the best of our knowledge, there are not yet parallel solutions on the CGM model to solve this problem. This paper is exclusively dedicated to this task. Our solution applies to both local and global similarity computations and is based on Brubach and Ghurye’s sequential algorithm. It requires O(n^2 / p log n) execution time with O(p) communication rounds on p processors.
Le modèle CGM est l’un des modèles les plus utilisés pour la conception d’algorithmes parallèles. Il a montré son efficacité pour la résolution de plusieurs problèmes modélisés par la programmation dynamique comme le problème de la plus longue sous-séquence commune, qui est un cas particulier du problème d’alignement de séquence à une dimension. Ce problème consiste à aligner deux chaînes de longueur n afin de mesurer leur similarité. Il est largement utilisé dans de nombreux domaines, en particulier dans la Bio-informatique où n est généralement très grand. Brubach et Ghurye ont proposé une solution séquentielle basée sur l’accélération de Four-Russians qui nécessite un temps d’exécution de O(n^2 / log n). À notre connaissance, il n’existe pas encore de solutions parallèles sur le modèle CGM pour la résolution de ce problème. Ce papier est exclusivement dédié à cette tâche. Notre solution s’applique aux calculs de similarité locaux et globaux, et est basée sur l’algorithme séquentiel de Brubach et Ghurye. Elle nécessite un temps d’exécution de O(n^2 / p log n) avec O(p) rondes de communication sur p processeurs.
Fichier principal
Vignette du fichier
CARI2020-09.pdf (5.61 Mo) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-02925791 , version 1 (31-08-2020)

Identifiants

  • HAL Id : hal-02925791 , version 1

Citer

Jerry Lacmou Zeutouo, Grace Colette Tessa Masse, Franklin Ingrid Kamga Youmbi. A CGM-Based Parallel Algorithm Using the Four-Russians Speedup for the 1-D Sequence Alignment Problem. CARI 2020 - Colloque Africain pour la Recherche en Informatique et Mathématiques Appliquées, Oct 2020, Thiès, Senegal. ⟨hal-02925791⟩

Collections

AFRIQ CARI2020
172 Consultations
51 Téléchargements

Partager

More