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Abstract
Stochastic models based on random diffusivities, such as the diffusing-diffusivity approach, are
popular concepts for the description of non-Gaussian diffusion in heterogeneous media. Studies of
these models typically focus on the moments and the displacement probability density function.
Here we develop the complementary power spectral description for a broad class of
random-diffusivity processes. In our approach we cater for typical single particle tracking data in
which a small number of trajectories with finite duration are garnered. Apart from the
diffusing-diffusivity model we study a range of previously unconsidered random-diffusivity
processes, for which we obtain exact forms of the probability density function. These new
processes are different versions of jump processes as well as functionals of Brownian motion. The
resulting behaviour subtly depends on the specific model details. Thus, the central part of the
probability density function may be Gaussian or non-Gaussian, and the tails may assume
Gaussian, exponential, log-normal, or even power-law forms. For all these models we derive
analytically the moment-generating function for the single-trajectory power spectral density. We
establish the generic 1/f 2-scaling of the power spectral density as function of frequency in all cases.
Moreover, we establish the probability density for the amplitudes of the random power spectral
density of individual trajectories. The latter functions reflect the very specific properties of the
different random-diffusivity models considered here. Our exact results are in excellent agreement
with extensive numerical simulations.

1. Introduction

Diffusive processes came to the attention of the broader scientific community with the experiments on
‘active molecules’ by Brown, who reported the jittery motion of granules of ‘1/4000th to 1/5000th of an
inch in length’ contained in pollen grains as well as control experiments on powdered inorganic rocks [1].
In the mid-19th century physician-physiologist Fick published his studies on salt fluxes between reservoirs
of different concentrations connected by tubes [2]. To quantify the observed dynamics Fick introduced the
diffusion equation (‘Fick’s second law’) for the spatio-temporal concentration profile. A major
breakthrough was the theoretical description of ‘Brownian motion’ and the diffusion equation in terms of
probabilistic arguments by Einstein [3], Smoluchowski [4], and Sutherland [5]. Concurrently Pearson
introduced the notion of the ‘random walk’ [6], and Langevin proposed the intuitive picture of the random
force and the stochastic Langevin equation [7].
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More recently, major advances in experimental techniques such as superresolution microscopy continue
to provide unprecedented insight into the motion of submicron and even fluorescently tagged molecular
tracers in complex environments such as living biological cells [8–11]. Concurrently, simulations are
becoming ever more powerful and reveal the molecular dynamics in systems such as lipid
membranes [12] or internal protein motion [13]. The data resulting from such complex systems unveil a
number of new phenomena in the stochastic particle motion and thus call for new theoretical concepts
[14–16] on top of already known approaches [17–19].

Among these new insights is that endogenous and introduced tracers in living biological cells perform
anomalous diffusion of the form

〈
r2(t)
〉
� Kαtα in a wide range of systems [8,9,20]. For instance,

subdiffusion with 0 < α < 1 was measured for messenger RNA probes in bacteria cells [21,22], for DNA
loci and telomeres in bacteria and eukaryotic cells [22–24], for granules in yeast and human cells [25,26], as
well as for the stochastic motion of biological membrane constituents [27,28]. In these cases the
slower than Brownian, passive tracer motion is effected by the highly crowded nature of the environment, as
can be studied in in vitro systems [29,30]. In fact, even small green fluorescent proteins of some 2 nm in size
were shown to subdiffuse [31]. Conversely, superdiffusion with 1 < α < 2 in biological cells is caused by
active motion of molecular motors due to consumption of biochemical energy units. Examples include the
motor motion itself [32,33], the transport of introduced plastic beads in fibroblast cells [34], RNA cargo in
neuron cells [35], and of granules in amoeba [36].

However, even when the mean squared displacement seemingly suggests Brownian motion based on the
observation that α = 1, remarkable effects have been reported recently. Thus, the motion of micron-sized
tracer beads moving along nanotubes as well as in entangled polymer networks was shown to be ‘Fickian’
(α = 1) yet the measured displacement distribution exhibited significant deviations from the expected
Gaussian law: namely, an exponential distribution of the form P(r, t) ∝ exp(−|r|/λ(t)) with
λ(t) ∝ t1/2 was observed [37,38]. Similar ‘Fickian yet non-Gaussian’ diffusion was found for the tracer
dynamics in hard sphere colloidal suspensions [39], for the stochastic motion of nanoparticles in nanopost
arrays [40], of colloidal nanoparticles adsorbed at fluid interfaces [41–43] and moving along membranes
and inside colloidal suspension [44], and for the motion of nematodes [45]. Even more complicated
non-Gaussian distributions of displacements were recently observed in Dictyostelium discoideum cells
[46,47] and protein-crowded lipid bilayer membranes [48]. While in some experiments the non-Gaussian
shape of P(r, t) is observed over the entire experimental window, others report clear crossover behaviours
from a non-Gaussian shape at shorter time scales to an effective Gaussian behaviour at longer time scales,
for instance, see [37,38].

A non-Gaussian probability density along with the scaling exponent α = 1 of the mean squared
displacement can be achieved in the superstatistical approach, in which it is assumed that individual
Gaussian densities are averaged over a distribution of diffusivities [49–53]. A microscopic realisation of
such a behaviour was proposed for a model of diffusion during a polymerisation process [54].
However, in superstatistics (and in the related process called generalised grey Brownian motion [55–57])
the distribution is a constant of the motion and thus no crossover behaviour as mentioned above can be
described. In order to include such a non-Gaussian to Gaussian crossover models were introduced in which
the diffusion coefficient is considered as a stochastic process itself. In this diffusing-diffusivity picture,
originally proposed by Chubynsky and Slater [58], the stochastic dynamics of the diffusivity is characterised
by a well-defined correlation time above which the diffusivity becomes equilibrated. Concurrently to this
equilibration the ensuing form of P(r, t) becomes effectively Gaussian. Random-diffusivity models have
since then been developed and analysed further, and their application is mainly the diffusive dynamics in
heterogeneous systems [59–70].

In fact, stochastic models based on random diffusivities are ubiquitous in financial mathematics for the
modelling of stock price dynamics. They are commonly known as stochastic volatility models and many
different examples have been analysed in order to identify a proper description for the volatility [71].
Among them, one can find diffusion-based models, where the volatility is described with continuous
sample paths, as well as more complicated dynamics where, for instance, jumps are also allowed or where
the volatility is defined as a function of separate stochastic processes [72]. Financial mathematics hosts a
rich variaty of random-diffusivity models, motivated by various aspects of the observed financial market
data. Here we present a range of additional, new random-diffusivity models in the context of time series
analysis, extending the range of available models beyond the diffusing-diffusivity model developed for
Fickian yet non-Gaussian diffusion processes. These may in turn be useful for financial mathematics. As
both fields are quickly expanding and new facets are being continuously unveiled, we are confident that the
different models introduced here and their detailed features offer the necessary flexibility to account for the
new observations.
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The central purpose of our study here is twofold. First we analyse several new classes of
random-diffusivity models, divided into two groups, jump models and functionals of Brownian motion.
For both groups we consider several concrete examples and derive analytic solutions for the probability
density function (PDF) Π(x, t). The PDF turns out to delicately depend on the precise formulation of the
model: the central part may be Gaussian or non-Gaussian, and the tails may be of Gaussian,
exponential, log-normal, or even power-law shape. The second goal we pursue here are the spectral
properties of random-diffusivity processes. Namely, while earlier studies of the random-diffusivity
dynamics were mainly concerned with the PDF and the mean squared displacement encoded in the process
we assume a different stance and derive the spectral properties of single particle trajectories with finite
observation time, geared for the description of contemporary single particle tracking experiments. Such an
analysis was worked out in detail for specific systems of normal and anomalous diffusion [73–78], and we
here study the commonalities and differences emerging for random-diffusivity scenarios.

Traditionally, power spectral analyses are based on the textbook definition of the spectral density

μ(f ) = lim
T→∞

1

T

〈∣∣∣∣
∫ T

0
eiftx(t)dt

∣∣∣∣
2
〉
. (1)

This definition involves taking the limit of infinite (practically, very long) measurement times as well as
averaging over an ensemble (practically, a large number of) of particles, here and in the following denoted
by angular brackets, 〈·〉. Typical single particle tracking experiments, however, are limited in the
measurement time, for instance, due to the lifetime of the employed fluorescent tags or the time a particle
stays in the microscope focus. At the same time, such experiments are often limited to a relatively small
number of individual trajectories. To cater for this common type of experimental situations we avoid
taking the long time and ensemble limits by considering the single-trajectory power spectral density (PSD)

ST(f ) =
1

T

∣∣∣∣
∫ T

0
eiftx(t)dt

∣∣∣∣
2

(2)

as functions of frequency f and measurement time T. We previously analysed the behaviour of ST( f ) for
different diffusion scenarios [76–78] and demonstrated that it is practically useful in the analysis of
experimental data [76,77]. In what follows we derive the moment-generating function (MGF) of the PSD
(2) for different classes of random-diffusivity processes, including several cases not yet studied in literature.
In particular, we obtain the probability density P(A) of the single PSD amplitude, an intrinsically random
quantity for a finite-time measurement of a stochastic motion that was demonstrated to be a very useful
quantity for the analysis of measured particle trajectories. In addition to analytical derivations we present
detailed numerical analyses. This study provides a quite general approach to obtain the PDF for any
diffusing-diffusivity model, providing new insights on this class of processes.

This work is structured as follows. We start from section 2 with a description of the model and in
section 3 we report general results on the spectral properties of this class of processes. Specific examples of
diffusing-diffusivity models are described in sections 4–6. The first example is the well known case in
which the diffusivity is modelled as the squared Ornstein–Uhlenbeck process. In the second group of
examples we analyse two cases in which the diffusivity is defined as a jump process. The third and last group
shows three examples in which the diffusivity is described as a functional of Brownian motion. Finally, in
section 7 we draw our conclusions. In the appendix we report details on the explicit derivations of our
results.

2. Random-diffusivity processes

We consider a class of one-dimensional stochastic processes xt that obey the Langevin equation in the Itô
convention,

ẋt =
√

2D0Ψtξt . (3)

Here D0 is a constant, dimensional coefficient in units length2/time, and in our analysis we will assume the
initial condition x0 = 0. In equation (3) ξt denotes a standard Gaussian white noise with zero mean and
covariance function ξtξt′ = δ

(
t − t′

)
. The bar here and henceforth denotes averaging with respect to the

noise ξt. Lastly Ψt is a positive-definite random function, which multiplies D0 and thus introduces a
time-dependent randomness into the effective noise amplitude. In the following we stipulate that Ψt is
Riemann-integrable on a finite interval (0, T) such that

∫ T
0 dtΨt exists with probability 1.

Note that the case Ψt ≡ 1 corresponds to standard Brownian motion, while a deterministic choice of the
form Ψt = tα−1 produces so-called scaled Brownian motion [79,80]. We will here discuss several particular
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choices for the random function Ψt. In addition to the previously made choice of a squared
Ornstein–Uhlenbeck process we will consider the case when Ψt is a jump-process, that attains independent,
identically distributed random values. We also present several examples when Ψt is subordinated to
standard unbiased Brownian motion Bt: namely, Ψt = B2

t /a2, where a is a model parameter, Ψt = Θ(Bt),
where Θ(x) is the Heaviside theta function, and geometric Brownian motion Ψt = exp(−Bt/a).

Regardless of the choice of the random function Ψt, we can solve the Langevin equation (3) for the
trajectory xt for a fixed realisation of the noise and a given realisation of Ψt, to obtain

xt = (2D0)1/2

∫ t

0
dτΨ1/2

τ ξτ . (4)

The characteristic function of xt can be written down in the form

Φw =

〈
exp

(
iw(2D0)1/2

t
∫
0

dτΨ1/2
τ ξτ

)〉
Ψ

, (5)

where the bar stands for averaging over thermal histories, while the angular brackets denote averaging over
the realisations of the random function Ψt. The thermal average can be performed straightforwardly to give

Φw =

〈
exp

(
−D0w

2

∫ t

0
dτΨτ

)〉
Ψ

. (6)

The desired PDF Π(x, t) can then be written as

Π(x, t) =
1

2π

∫ ∞

−∞
dwe−iwxΦw. (7)

In the following section 4 we provide several examples with explicit expressions for the probability density,
and we will see how different choices of Ψt may lead to PDFs of considerably different shapes.

3. General theory

We first obtain exact expressions for the PSD (2) and then study the limiting behaviour for high
frequencies.

3.1. Exact expressions for arbitrary frequency and observation time
We investigate the PSD of an individual trajectory xt encoded in the stochastic dynamics (3) with t ∈ (0, T),

ST(f ) =
1

T

∫ T

0
dt1

∫ T

0
dt2 cos

(
f (t1 − t2)

)
xt1 xt2 , (8)

as function of the frequency f and the observation time T. We determine the MGF and the PDF of the
random variable ST( f ).

The MGF of the single-trajectory PSD in (8) is defined as

φλ =

〈
exp

(
−λ

T
∫T

0 dt∫T
0 dt′ cos

(
f (t − t′)

)
xtxt′

)〉
Ψ

(9)

with λ � 0. Relegating some intermediate calculations to appendix A we find the following expression for
φλ in (9) averaged over thermal noises,

φλ =
1

4πλ

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2 exp

(
− z2

1 + z2
2

4λ

)〈
exp

(
−D0

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2
)〉

Ψ

, (10)

where

Qt = z1
cos(ft)√

T
+ z2

sin(ft)√
T

. (11)

Performing the inverse Laplace transform of expression (10) we find the general result for the PDF

p(ST(f ) = S) =
1

4π

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2J0

(√(
z2

1 + z2
2

)
S

)〈
exp

(
−D0

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2
)〉

Ψ

, (12)

where J0(z) denotes the Bessel function of the first kind. A more explicit dependence on the frequency f can

4
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be obtained in the form (see appendix A for more details)

φλ =

〈[
1 +

8λD0

f 2T

∫ T

0
dtΨt

(
1 − cos

(
f (T − t)

))

+
16λ2D2

0

f 4T2

∫ T

0
dt1Ψt1

∫ T

0
dt2Ψt2

(
3

4
+ Lf (t1, t2)

)]−1/2
〉

Ψ

, (13)

where Lf(t1, t2) is defined by the somewhat lengthy expression (A.6).
The expression within the angular brackets in relation (13) is the exact MGF of the PSD of the

process xt in (3) for any fixed realisation of Ψt and holds for arbitrary T and arbitrary f. It also represents
the exact form of the MGF in the case when Ψt is non-fluctuating: as mentioned, in particular, for Ψt = 1 it
describes the MGF in case of standard Brownian motion [76], while the choice Ψt = tα−1 corresponds to
the case of scaled Brownian motion recently studied in [78].

3.2. Exact high frequency limiting behaviour
As already remarked we here concentrate on random processes Ψt which, for any finite T, are
Riemann-integrable with probability 1, which implies that in the limit f →∞ certain integrals vanish, as
shown in appendix B. As a consequence, expression (13) attains the following exact analytic high-frequency
form

φλ ∼
〈[

1 +
8λD0

f 2T

∫ T

0
dtΨt +

12λ2D2
0

f 4T2

(∫ T

0
dt Ψt

)2
]−1/2〉

Ψ

, (14)

in which we dropped the vanishing terms and kept only the leading terms in 1/f.
We note that the Laplace parameter λ appears in the combination D0λ/f 2 so that the high-f spectrum of

a single-trajectory PSD has the universal form

ST(f ) ∼ 4D0A

f 2
, (15)

regardless of the specific choice of Ψt. Here A is a dimensionless, random amplitude, which differs from
realisation to realisation. This means that the characteristic high-frequency dependence of the PSD
can be learned, in principle, from just a single trajectory, in agreement with the conclusions in [76–78].

The MGF Φλ of the random amplitude A follows from (14) and can be written as

Φλ =

∫ ∞

0
dAe−λAP(A)

=
2√
3

∫ ∞

0
dp exp

(
−4p

3

)
I0

(
2p

3

)
Υ(T;λp/T), (16)

where I0(z) is the modified Bessel function of the first kind, and

Υ(T;λ) =

〈
exp

(
−λ

∫ T

0
dtΨt

)〉
Ψ

(17)

is the MGF of the integrated diffusivity (see [64,66])

τT =

∫ T

0
dtΨt . (18)

Relation (16) links the MGFs of A and τT. Moreover, note that the characteristic function of the
diffusing-diffusivity model in (6) is tightly related to the MGF of τT in (17), specifically

Υ(T;D0w
2) = Φw. (19)

As shown in [64] the function Υ(T;λ) determines the first-passage time properties of the stochastic process
xt. Here we show how this function controls the high-frequency behaviour of the PSD.

Taking the inverse Laplace transform with respect to the parameter λ
we evaluate the PDF of A,

P(A) =
2√
3

∫ ∞

0
dzJ0

((
1 +

1√
3

)√
2zA

)
J0

((
1 − 1√

3

)√
2zA

)
Υ(T; z/T). (20)

This exact expression determines the high-f behaviour of the PDF p(ST( f ) = S),
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p(ST(f ) = S) ∼ f 2

4D0
P

(
A =

Sf 2

4D0

)
(21)

as f →∞. The exact high-f forms in (16) and (20) will serve as the basis of our analysis for several
particular choices of the process Ψt in section 4.

Before proceeding, we stop to make several general statements.

(a) Expanding the exponential function on the right-hand side of (16) into the Taylor series in
powers of λ we obtain straightforwardly the relation between the moments of A and the moments of
the integrated diffusivity τT, which is valid for any n,

E{An} =

(
3

4

)n+1/2

n!2F1

(
n + 1

2
,

n + 2

2
; 1;

1

4

)〈
τn

T

Tn

〉
Ψ

, (22)

where 2F1(a, b; c; z) is the Gauss hypergeometric function. Since the moments of τT are related to the
moments of the process xT [66] we also find

E{An} =

(
3

4

)n+1/2 (n!)2

(2n)! 2F1

(
n + 1

2
,

n + 2

2
; 1;

1

4

)〈
x2n

T

(D0T)n

〉
Ψ

. (23)

(b) Starting from the results in (22) and (23) we can readily obtain the moments of ST( f ) as well. In
particular, if we focus on its average value, we have

〈ST(f )〉 = 4D0C1

f 2T
〈τT〉Ψ =

2C1

f 2T

〈
x2

T

〉
Ψ

, (24)

where C1 = (3/4)3/2
2F1(1, 3/2; 1; 1/4). This suggests that those random-diffusivity models that

display anomalous scaling of the MSD, i.e.,
〈

x2
T

〉
Ψ
≄T, exhibit ageing behaviour, namely, a

dependence of the PSD properties on the trajectory length T.

(c) Equations (15) and (22) permit us to directly access the coefficient of variation γ of the PDF
p(ST( f ) = S) in the high-f limit. We get straightforwardly

γ =

⎛
⎝
〈

S2
T(f )
〉
Ψ
−
〈

ST(f )
〉2

Ψ〈
ST(f )

〉2

Ψ

⎞
⎠

1/2

≈
(〈

A2
〉
Ψ
− 〈A〉2

Ψ

〈A〉2
Ψ

)1/2

=

(
3

4

〈
x4

T

〉
Ψ〈

x2
T

〉2

Ψ

− 1

)1/2

=

(
9

4

〈
τ 2

T

〉
Ψ

〈τT〉2
Ψ

− 1

)1/2

=

(
9

4

∂2
λΥ(T;λ)|λ=0(

∂λΥ(T;λ)|λ=0

)2 − 1

)1/2

, (25)

which implies that the effective broadness of p(ST( f ) = S) is entirely defined by the first two
moments of the random variable τT in (18). Specifically, it is independent of D0 and f when f is only
large enough.

(d) The behaviour of the left tail of p(ST( f ) = S) can be assessed in the following way. Note that the
product of the two Bessel functions in (20) can be represented as a power series with an infinite
radius of convergence (see (C.1) in appendix C). Inserting the expansion in (C.1) in (20) and
integrating over z we find

P(A) =
2√
3

∞∑
n=0

(−1)n

n!

(√
3 + 1√

6

)2n

2F1

(
−n,−n; 1;

1 −
√

3/2

1 +
√

3/2

)〈
Tn+1

τn+1
T

〉
Ψ

An, (26)

if the inverse moments of the variable τT exist (and do not grow too fast with n). Therefore, the PDF
P(A) is an analytic function of A in the vicinity of A = 0, with

P(0) =
2√
3

〈
T

τT

〉
Ψ

. (27)

We note that below we will encounter both situations when P(A) is analytic and when it is not.
In the latter situation we will show that p(ST( f ) = S) diverges as S → 0, which can be already inferred
from (27).
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4. Diffusivity modelled as squared Ornstein–Uhlenbeck process

In this and the following sections we apply the above general theory to several random-diffusivity models.
According to our main results (16) and (20) one first needs to evaluate the MGF Υ (T;λ) of the integrated
diffusivity τT for a chosen diffusivity process Ψt. To illustrate the quality of the theoretical predictions in the
high-frequency limit we also performed numerical simulations using a Python code.
The Euler integration scheme is used to compute (3), where Ψt is obtained by a numerical integration of
the proper stochastic equation for each case. The PSD is obtained by fast Fourier transform for each
trajectory. Starting from the single-trajectory power spectra the random amplitude A is calculated according
to (15).

Concretely when Ψt in the diffusing-diffusivity model is defined as a stochastic process satisfying some
Langevin equation, the distribution of A is determined by (16) and (20) through the MGF Υ (T;λ) of the
integrated diffusivity τT that can be obtained by solving the associated backward Fokker–Planck equation
(see [66] for details). Here we consider the common example of squared Ornstein–Uhlenbeck process and
related models.

The Ornstein–Uhlenbeck process Yt defined by the stochastic equation

Ẏ t = −τ−1
� Yt + σ�ξ

′
t (28)

is a stationary Gaussian process mean-reverting to zero at a time scale τ� and driven by standard Gaussian
white noise ξ′t with volatility σ�. The process Ψt = Y2

t is one of the most common models of
diffusing-diffusivity, which satisfies, due to Itô’s formula,

Ψ̇t = τ−1(Ψ̄−Ψt) + σ
√

2Ψtξ
′
t , (29)

where τ = τ�/2, σ =
√

2σ�, and Ψ̄ = σ2
�τ�/2 = σ2τ/2. This model was extended in [59–61] by

considering Ψt as the sum of n independent squared Ornstein–Uhlenbeck processes, when (29) still holds
with Ψ̄ = nσ2τ/2. More generally, setting Ψ̄ to be any positive constant, the Langevin equation (29)
defines the so-called Feller process [81], also known as square root process or the Cox–Ingersoll–Ross
process [82], and related in the Heston model [83]. This process was used to model the diffusing-diffusivity
in [63,64], see also the discussion in [61].

The MGF Υ (T;λ) for the integrated squared Ornstein–Uhlenbeck process was first computed by Dankel
[84] and employed in [59–61]. Its computation for the Feller process in (29) was presented in [63],

Υ(T;λ) =

(
4ωe−(ω−1)T/(2τ)

(ω + 1)2 − (ω − 1)2e−ωT/τ

)ν

, (30)

where ω =
√

1 + 4σ2τ 2λ and ν = Ψ̄/(τσ2). In particular, setting Ψ̄ = σ2τ/2 (and thus ν = 1/2) one
retrieves the MGF for the squared Ornstein–Uhlenbeck process. A detailed discussion on the PDF of this

model is presented in [59–61,63,64]. Using the explicit formulas for
〈

x2
T

〉
Ψ

and
〈

x4
T

〉
Ψ

from [61,63] we get

from (25) that

γ =

[
3

4

(
3 +

6τ

νT

(
1 − τ

T
(1 − e−T/τ )

))
− 1

]1/2

. (31)

Moreover, as the second moment
〈

x2
T

〉
shows a linear trend in time [61,63], no ageing of the PSD occurs,

as suggested in (24).
The PDF of A is determined via (20). Since an explicit calculation of this integral is not straightforward

we perform a numerical integration. The results are shown in figure 1, in which we observe excellent
agreement between the simulations and the theoretical results. The 1/f 2 scaling is recovered for any value of
τ�. The coefficient of variation γ converges to different values when we change τ�, according to (31).
Note that this result reflects the different degrees of broadness of the PDF of the random amplitude A. In
particular for τ� � T we obtain a result that is very similar to the one of Brownian motion, while for
increasing τ� the PDF of the random amplitude A becomes increasingly broader.

5. Diffusivity modelled as a jump process

We divide the interval (0, T) into N equal subintervals of duration δ = T/N and suppose that Ψt is a jump
process on these intervals, of the form

Ψt = ψk on t ∈ ([k − 1]δ, kδ) , k = 1, . . . , N. (32)

7
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Figure 1. Diffusing-diffusivity defined as the squared Ornstein–Uhlenbeck process, for three different values of τ�. Other
parameters are T = 102 and σ� = 1. Panels (a)–(c) show a few realisations of the power spectra from individual trajectories and
the average value for τ� = 100, 101, and 102, respectively. Panel (d) shows a comparison of the mean power spectrum. Panel (e)
shows the coefficient of variation, the black dashed lines correspond to the theoretical result in (31). Panel (f) shows the
distribution of the random amplitude A, the black dashed lines correspond to (20) with the explicit expression of the MGF from
(30).

Furthermore we stipulate that the ψk are independent, identically distributed, positive-definite random
variables with PDF ρ(ψ). In other words, we take that Ψt at each discrete time instant (k − 1)δ attains a new
random value, taken from the common distribution, and stays constant and equal to this value up to the
next discrete instant kδ. For a given realisation of the process Ψt we thus have

τT =

∫ T

0
dtΨt = δ

N∑
k=1

ψk, (33)

and hence

Υ(T;λ) =

(∫ ∞

0
dψρ(ψ)e−λδψ

)T/δ

. (34)

Evaluating explicitly the derivatives ∂λΥ(T;λ) and ∂2
λΥ(T;λ) at λ = 0, we get

〈τT〉 = T E{ψk}, (35)

when the first moment E{ψk} exists. From this we infer
〈

x2
T

〉
Ψ

and thus the respective ageing behaviour.

Moreover, the coefficient of variation becomes

γ =

[
9

4

(
1 − δ

T
+

δ

T

E{ψ2
k}

E{ψk}2

)
− 1

]1/2

, (36)

when the first two moments E{ψk} and E{ψ2
k} exist.

Modelling the diffusivity as a jump process can be seen as a way to describe the model in section 4
through a different parametrisation. Indeed, we define a time scale, which is given by the duration δ of each
step interval, and we then introduce a random variability of the diffusivity from one interval to the next.
These diffusivity fluctuations are chosen according to the PDF ρ(ψ). Of course, the main difference comes
from the fact that in this model we do not have any correlation between successive diffusivities. In what
follows we analyse two examples in detail. In the first one we select a Gamma distribution for ρ(ψ), in
analogy with the diffusing-diffusivity model in section 4, where the diffusion coefficient shows a Gamma
distribution as well. In the second example we select a Lévy–Smirnov distribution for ρ(ψ). This allows us
to model a system in which a high probability of having small values of the diffusivity is combined with the
presence of few outliers, which can be related, for instance, to values of the diffusivity at boundaries of the
system.

8
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5.1. Example I: Gamma distribution
First, we consider the Gamma distribution,

ρ(ψ) =
ψν−1

Γ(ν)ψν
0

exp
(
−ψ/ψ0

)
(37)

with the shape parameter ν > 0 and the scale parameter ψ0 > 0. From (34), we deduce

Υ(T;λ) = (1 + λδψ0)−νT/δ. (38)

Position-PDF Π(x, t)
A direct calculation of the PDF for this model can be performed. Starting from (7) and recalling that

Φw = Υ(T;D0w
2), we get

Π(x, t) = Nt

(
|x|

2
√

D0δψ0

) νt
δ − 1

2

K 1
2 −

νt
δ

(
|x|√

D0δψ0

)
, (39)

where the normalisation coefficient is

Nt =

√
2

π

/(
(D0δψ0)3/4Γ

(νt

δ

))
. (40)

With the properties

zνK−ν(z) ∼ 2ν−1Γ(ν) − 2ν−3Γ(ν)

ν − 1
z2 (41)

for |z| → 0 and ν > 1, as well as

K−ν ∼
√

π

2z
e−z (42)

for |z| →∞, the asymptotic behaviours of the PDF are given by

Π(x, t) ∼ Nt 2
νt
δ − 3

2 Γ

(
νt

δ
− 1

2

)[
1 − x2

4
(
νt
δ
− 3

2

)
D0δψ0

]
(43)

for |x| → 0 and νt > 3δ/2, as well as

Π(x, t) ∼ 2√
D0δψ0Γ

(
νt
δ

)( |x|
2
√

D0δψ0

) νt
δ −1

exp

(
− |x|√

D0δψ0

)
(44)

for |x| →∞.
The functional behaviour of the PDF Π(x, t) is shown in figure 2. We see that by changing δ we can

observe different shapes of Π(x, t). When δ = 1 [panels (a) and (c)] the Gaussian approximation (51)
already provides a good estimate of the PDF over a wide range. We start observing discrepancies only far
out in the tails, for values which can hardly be reached with real data. When δ = 100 [panels (b) and (d)],
in contrast, the exponential tails are distinct. The behaviours at small and large x are well described by the
asymptotic expansions in (43) and (44). Note that the value of δ in here plays a role similar to the
correlation time τ� in the diffusing-diffusivity model defined in section 4. The only difference is that by
changing τ� in the model above we also change the average diffusivity while, in this case, changes in the
value of δ do not affect the average diffusivity, which is fixed once we choose the jumps PDF in (37).
Amplitude-PDF P(A)

The MGF of the amplitude A of the jump process-diffusivity model is given by

Φλ =
2√
3

∫ ∞

0
dp

exp
(
−4p/3

)
I0(2p/3)(

1 + pψ0λδ/T
)νT/δ , (45)

so that

P(A) =
2√
3

∫ ∞

0
dz

J0

((
1 + 1/

√
3
)√

2zA
)

(
1 + zψ0δ/T

)νT/δ J0

((
1 − 1/

√
3
)√

2zA
)
. (46)

In particular one has E{ψk} = νΨ0 and E{ψ2
k} = Ψ2

0ν(ν + 1), thus from (35) we readily obtain〈
x2

T

〉
Ψ
� T, demonstrating that in this process no ageing behaviour is displayed. Moreover, from (36) we

get

γ =

[
9

4

(
1 +

δ

νT

)
− 1

]1/2

. (47)

9
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Figure 2. Position-PDF at a fixed time t = 50 for diffusivity modelled as a jump process with Gamma distribution (ψ0 = 1 and
ν = 0.5). Panels (a) and (c) correspond to δ = 1, and panels (b) and (d) to δ = 100. Panels (a) and (b) show a comparison
between the numerical and the analytic result in (39) (black dashed lines). Panel (c) shows a comparison between the analytic
result (39) for δ = 1 and its Gaussian approximation (51). Panel (d) compares between the analytical result (39) for δ = 100 and
its asymptotic behaviours in (43) and (44).

In the limit δ → 0 and N →∞, with δN = T fixed, we have

Υ(T;λ) ∼ exp (−νψ0Tλ) . (48)

Hence,

Φλ =
2√
3

∫ ∞

0
dp exp

(
−
(

4

3
+ νψ0λ

)
p

)
I0

(
2p

3

)

=

(
1 + 2νψ0λ+

4

3
(νψ0λ)2

)−1/2

(49)

and

P(A) =
2√
3

∫ ∞

0
dzJ0

((
1 + 1/

√
3
)√

2zA
)

J0

((
1 − 1/

√
3
)√

2zA
)

e−νψ0z

=
2√

3νψ0
exp

(
− 4A

3νψ0

)
I0

(
2A

3νψ0

)
. (50)

This means that we have essentially the same behaviour as for standard one-dimensional Brownian motion,
however, with renormalised coefficients (compare with the result in [76]), in agreement also with what we
obtained for the diffusing-diffusivity model in section 4, when selecting τ� � T. Indeed, if we use (48) and
recall that Φw = Υ (T;D0w

2), we readily obtain

Π(x, t) ∼ 1

2
√
πνψ0D0t

exp

(
− x2

4νψ0D0t

)
. (51)

In figure 3 we show a direct comparison between the numerical and theoretical results for the Gamma
distribution with ψ0 = 1 and ν = 0.5. We observe that the average value of the power spectrum is not
affected by the value of δ. Nevertheless, when we plot some sample single-trajectory power spectra we
notice a larger amplitude scatter for larger values of δ. This may be clearly seen in the distribution of the
random variable A, which is broader for larger values of δ, and consequently in the different limiting
values of the coefficient of variation. Thus, the fluctuations are sensitive to different parameters of the
distribution (37), while the mean behaviour is not.

10
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Figure 3. Diffusivity modelled as a jump process with Gamma distribution (ψ0 = 1 and ν = 0.5), for varying δ and with
trajectory length T = 102. Panels (a)–(c) show a few realisations of the power spectra from individual trajectories and the mean
value for δ = 102, 5 × 101, and 100, respectively. Panel (d) shows the coefficient of variation for three values of δ—the black
dashed lines represent the theoretical result (36). Panels (e) and (f) depict the distribution of the random amplitude A in linear,
semi-log (inset) and log–log scale. Here the black dashed line corresponds to the theoretical result (50).

Figure 4. Position-PDF at fixed time t = 50 for diffusivity modelled as a jump process with Lévy–Smirnov distribution,
Ψ0 = 0.5, for a) δ = 1 and b) δ = 100. The black dashed line represents the analytical result (54).

5.2. Example II: Lévy-Smirnov distribution
In our second example we consider the Lévy–Smirnov distribution

ρ(ψ) =

√
ψ0

π

exp
(
−ψ0/ψ

)
ψ3/2

, (52)

for which equation (34) yields

Υ(T;λ) = exp
(
−2T
√
ψ0λ/δ

)
. (53)

Note that in this case E{ψk} and E{ψ2
k} are not defined, such that

〈
x2

T

〉
Ψ

does not exist either. This

suggests that a clear ageing behaviour cannot be defined and that fluctuations are what dominates the
system.

Position-PDF Π(x, t)
As a consequence, we obtain the following analytical expression for the PDF,

Π(x, t) =
2t
√

D0ψ0/δ

π

1

4t2D0ψ0/δ + x2
, (54)

where we recognise the power-law behaviour, that is already built into relation (52). Note that expression
(54) represents the Cauchy distribution, whose median grows with time t.

The PDF is shown for two different values of δ in figure 4. We observe that, differently from the case
with the Gamma distribution above, we do not see significant changes in the shape of the distribution when
varying δ. For both cases, δ = 1 and δ = 100, the power-law behaviour (54) is readily discernible.

Amplitude-PDF P(A)

11
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Figure 5. Diffusivity modelled as a jump process with Lévy–Smirnov distribution with ψ0 = 0.5, for varying δ and with
trajectory length T = 102. Panels (a)–(c) show a few realisations of the power spectra from individual trajectories and the mean
value for δ = 102, 101, and 100, respectively. Panel (d) compares the mean values of the power spectrum. Panels (e) and (f) show
the distribution of the random amplitude A in linear, semi-log (inset) and log–log scale—the black dashed line corresponds to
the analytical result (56).

The MGF for the random amplitude A reads

Φλ =
2√
3

∫ ∞

0
dp exp

(
−4

3
p − 2

√
pψ0λT/δ

)
I0

(
2p

3

)
(55)

and

P(A) =
2√
3

∫ ∞

0
dzJ0

((
1 + 1/

√
3
)√

2zA
)

J0

((
1 − 1/

√
3
)√

2zA
)

exp
(
−2
√

zψ0T/δ
)

=
δ√

3ψ0T

1

(1 + ξ)3/2 2F1

(
3

4
,

5

4
; 1;

ξ2

4(1 + ξ)2

)
, (56)

with ξ = (4Aδ)/(3ψ0T). Note that in the limit A →∞, the leading behaviour of P(A) follows

P(A) ∼ 1

A3/2
. (57)

Thus, the PDF P(A) inherits the property of diverging moments from the parental Lévy–Smirnov
distribution.

Figure 5 summarises the properties of the PSD for the jump process with Lévy–Smirnov distribution
(ψ0 = 0.5). We observe that, despite the fat-tailed PDF in (54) we still observe the universal 1/f 2 scaling of
the PDF. Concurrently, the PDF of the random amplitude A features the power-law behaviour according to
(56). Note that the non-existence of the moments of P(A) generates a pronounced scatter in the amplitude
of the average power spectrum.

6. Diffusivity modelled as a functional of Brownian motion

We now focus on the case when Ψt is a genuine ‘diffusing-diffusivity’ in the sense that it is subordinated to
Brownian motion Bt starting at the origin at t = 0, with zero mean and covariance function

〈BtBt′ 〉 = 2DB min{t, t′}. (58)

We here choose Ψt = V[Bt], where V is some prescribed, positive-definite function. Note that random
variables of the form

∫ T
0 dtV[Bt] appear across many disciplines, including probability theory, statistical

analysis, computer science, mathematical finance and physics. Starting from earlier works [87–92], much
effort has been invested in the analysis of the PDF and the corresponding Laplace transforms of these
processes. A large body of exact results has been obtained within the last seven decades (see, e.g., [93–98]
and further references therein). In the following, we consider three particular examples of V[Bt],
for which we can carry out exact calculations and obtain insightful results.

12
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6.1. Example I: Ψt = Θ(Bt)
First, we choose the cut-off Brownian motion

Ψt = Θ(Bt), (59)

where Θ(x) is the Heaviside theta function. The process xt exhibits standard diffusive motion, once Bt > 0,
and pauses, remaining at the position it has reached when Bt goes to negative values. The random variable∫ T

0 dtΨt defines the time spent by a Brownian trajectory, starting at the origin, on the positive
real line within the time interval (0, T). The time intervals between any two ‘diffusion tours’, as well as their
duration, are random variables with a broad distribution.

This example is of particular interest as it represents an alternative to other standard models describing
waiting times and trapping events. One could think, for instance, of the comb model, where a particle,
while performing standard Brownian motion along one direction, gets stuck for a random time in branches
perpendicular to the direction of the diffusive motion [99,100].

The MSD of the process xt, as one can straightforwardly check, is just〈
x2

t

〉
Ψ
= D0t, (60)

that is, a standard diffusion law in which the diffusion coefficient is reduced by the factor 1/2. This means
that no ageing behaviour is observed. For higher order moments one expects, of course, significant
departures from the standard diffusive behaviour.

Position-PDF Π(x, t)
The MGF of the random variable τT =

∫ T
0 dtΘ(Bt), which has a bounded support on (0, T), was first

derived by Kac [90], and Erdös and Kac [91]. Rewriting their result in our notation we have

Υ(T;λ) =

〈
exp

(
−λ

∫ T

0
dtΘ(Bt)

)〉
Ψ

= e−λT/2I0

(
λT

2

)
. (61)

Note that the inverse Laplace transform of this expression produces the celebrated Lévy arcsine law [101].
With result (61), the desired PDF is given by

Π(x, t) =
1

π

∫ ∞

0
dw cos(wx) exp

(
−D0t

2
w2

)
I0

(
D0t

2
w2

)

=
exp
(
−x2/(8D0t)

)
2
√
π3D0t

K0

(
x2

8D0t

)
. (62)

Recalling that K0(z) ∼ −ln(z/2) − γEM for |z| → 0, where γEM is the Euler–Mascheroni constant, for small
x we have

Π(x, t) ∼
− ln
(

x2

8D0t

)
− γEM

2
√
π3D0t

, |x| → 0. (63)

For large x we use (42) and obtain the asymptotic behaviour for the PDF,

Π(x, t) ∼ 1

π|x| exp

(
− x2

4D0t

)
, |x| →∞. (64)

The PDF for this process is shown in figure 6. We see that the central part of the PDF is strongly
non-Gaussian, while the tails are Gaussian, in agreement with the asymptotic behaviours (63) and (64).

Amplitude-PDF P(A)
Inserting expression (61) into (16) and performing the integration over z, we arrive at the following,

remarkably compact expression for the MGF,

Φλ =
2
√

2

π
√

2 + 3λ
K

(
2λ

2 + 3λ

)
(65)

where K(x) is the complete elliptic integral of the first kind,

K(x) =

∫ π/2

0

dφ√
1 − x sin2(φ)

. (66)

Note that the high-f asymptotic form in (65) is independent of the observation time T.
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Figure 6. Position-PDF at fixed time t = 50 for diffusivity modelled as Heaviside function of Brownian motion, with DB = 1.
Panel (a) compares the numerical results with the analytical expression (62) (black solid line). Panel (b) shows a comparison
between the analytical result and its asymptotic behaviours (63) and (64).

To proceed we take advantage of the definition of the complete elliptic integral and perform the inverse
Laplace transform of (65). After some formal manipulations this yields the following expression for the
PDF,

P (A) = 2

√
2

3π3 A

∫ π/2

0

dφ√
1 − 2

3 sin2(φ)
exp

(
− 2A

3
(
1 − 2

3 sin2(φ)
)) . (67)

Multiplying both sides of the latter equation by An and integrating over A from 0 to ∞, we get the following
simple expression for the moments of the random amplitude A of arbitrary order,

E{An} =
Γ
(
n + 1

2

)
√
π

(
3

2

)n

2F1

(
−n,

1

2
; 1;

2

3

)
. (68)

Then, from (25), we readily get the coefficient of variation, γ =
√

19/8.
Note that the integrals

∫∞
0 dλλnΥ(T;λ) diverge for any n > 0, which means that τT does not have

negative moments. One therefore expects that P(A) is a non-analytic, diverging function in the limit A → 0.
The small-A asymptotic behaviour of P(A) can be deduced directly from (67). Expanding the exponential
function in the integral into the Taylor series in powers of A and expressing the emerging generalised elliptic
integrals via their representations in terms of the toroidal functions Pn−1/2 (cosh(η)) (see (C.3) in appendix
C), we get

P (A) =

√
2√
3πA

∞∑
n=0

(−1)n

n!

(
2√
3

)n

Pn−1/2

(
2√
3

)
An. (69)

For the opposite limit A →∞, we conveniently rewrite equation (56) in the form

P(A) = 2

√
2

3π3 A
exp

(
−2A

3

)∫ π/2

0

dφ√(
1 − 2

3 sin2(φ)
) exp

(
−2A

3

2
3 sin2(φ)

1 − 2
3 sin2(φ)

)

= 2

√
2

3π3 A
exp

(
−2A

3

) ∞∑
n=0

(∫ π/2

0
sin2n(φ)

)(
2

3

)n

L(−1/2)
n

(
2A

3

)

=
2

3π

√
3

2A
exp

(
−2A

3

) ∞∑
n=0

Γ(n + 1/2)

n!

(
2

3

)n

L(−1/2)
n

(
2A

3

)
, (70)

where L(−1/2)
n (x) are associated Laguerre polynomials. We focus next on the asymptotic behaviour of the

function

g(u) = u−1/2
∞∑

n=0

Γ(n + 1/2)

n!

(
2

3

)n

L(−1/2)
n (u) (71)

in the limit u →∞. Performing a Laplace transform of g(u) we readily get

Ls {g(u)} =

∫ ∞

0
du exp (−su) g(u)

=
1

s1/2

∞∑
n=0

Γ2(n + 1/2)

(n!)2

(
2(s − 1)

3s

)n

=
2

s1/2
K

(
2(s − 1)

3s

)
, (72)
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Figure 7. Diffusivity modelled as Heaviside theta function of Brownian motion, with DB = 1 and trajectory length T = 102.
Panel (a) shows the mean power spectrum along with a few realisations of power spectra from individual trajectories. In the inset
the coefficient of variation is shown, the black dashed line indicates the theoretical value

√
19/8 ≈ 1.54. Panel (b) shows the

distribution of the random amplitude A. Here the black dashed line corresponds to the numerical evaluation of (67).

where K is the complete elliptic integral defined in equation (66). In the limit s → 0 (corresponding to
A →∞),

Ls {g(u)} ∼ 2

s1/2
K

(
− 2

3s

)
= 2

∫ π/2

0

dφ√
s + 2

3 sin2(φ)
. (73)

Inverting the Laplace transform and integrating over φ, we find

g(u) ∼ π√
u

exp
(
−u

3

)
I0

(u

3

)
→
√

3

2

1

u
. (74)

Thus, in the limit A →∞, the leading behaviour of the PDF P(A) yields in the form

P(A) ∼ 1

πA

√
3

2
exp

(
−2A

3

)
. (75)

Figure 7 summarises the numerical results for this case. Again we observe excellent agreement with the
theoretical results.

6.2. Example II: Ψt = exp(−Bt/a)
As the second example, we link the process Ψt to so-called geometric Brownian motion. Random variables
of this form have been widely studied in the mathematical finance literature (see, e.g., [93]). Within the
latter domain, they emerge very naturally as representation of the solution of the celebrated Black–Scholes
equation. Their time-averaged counterpart is related to the so-called asian options [102–104] (see also
[105,106]) and also appears in different contexts in the analysis of transport phenomena in disordered
media (see, e.g., [107–113]) as well as characterises some features of the melting transition of
heteropolymers [114].

In our notation, we set

Ψt = exp

(
−Bt

a

)
, (76)

where a is a parameter of unit length. In this case, xt exhibits an anomalously strong superdiffusion such
that

〈
x2

t

〉
= 2D0

∫ t

0
dτ〈Ψτ 〉Ψ = 2D0

∫ t

0
dτ exp

(
DBτ/a2

)

=
2D0a2

DB

(
exp
(
DBt/a2

)
− 1
)
. (77)

Note that when DBt/a2 � 1 we have
〈

x2
t

〉
∼ 2D0t. These results for the MSD demonstrate that for this

model, in general, we observe ageing behaviour, though the latter may be hidden while analysing very short
trajectories.

Position-PDF Π(x, t)
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Figure 8. PDF at time t = 50 for diffusivity modelled as geometric Brownian motion, with DB = 1 and a = 10. Panel (a)
compares the numerical result and the analytical expression (79) (black solid line). Panel (b) shows a comparison between the
analytical result and its asymptotic behaviours (81) and (82).

The Laplace transform of the time-averaged geometric Brownian motion in our notation reads
[108–110]

Υ(T;λ) =

〈
exp

(
−λ

∫ T

0
dt exp

(
−Bt

a

))〉
Ψ

=
2a√
πDBT

∫ ∞

0
dx exp

(
− a2x2

DBT

)
cos

(
2a

√
λ

DB
sinh(x)

)

=
2

π

∫ ∞

0
dx exp

(
−DBT

4a2
x2

)
cosh
(πx

2

)
Kix

(
2a

√
λ

DB

)
, (78)

where Kix is the modified Bessel function of the second kind with purely imaginary index. As a
consequence, the PDF is given by

Π(x, t) =

(
2

π

)3/2∫ ∞

0
dz exp

(
−DBt

4a2
z2

)
cosh
(πz

2

)∫ ∞

0
dw cos(wx)Kiz

(
2a|w|

√
D0

DB

)

=
1

2
√
πb2t(b2

1 + x2)
exp

(
−arcsinh2(x/b1)

4b2t

)
, (79)

where

b1 = 2a

√
D0

DB
, b2 =

DB

4a2
. (80)

Recalling that arcsinh(z) ∼ z for z → 0 and arcsinh(z) ∼ ln(2z) for z →∞, we express the asymptotic
behaviour of the PDF as

Π(x, t) ∼ 1

2
√
πb2t(b2

1 + x2)
exp

(
− x2

4b2tb2
1

)
(81)

for |x| → 0 and

Π(x, t) ∼ 1

2
√
πb2t(b2

1 + x2)
exp

(
− ln2(2x/b1)

4b2t

)
(82)

for |x| →∞.
The PDF is shown in figure 8. In this case, according to the asymptotic expansions (81) and (82) we

observe that the central part of the PDF is approximately Gaussian, while the tails follow a log-normal
shape.

Amplitude-PDF P(A)
Evaluating explicitly ∂λΥ(T;λ) and ∂2

λΥ(T;λ) at λ = 0, we get

γ =

[
3

8

(
3 + eDBT/a2

(
2 + eDBT/a2

))
− 1

]1/2

. (83)

Figure 9 summarises our numerical results, which show excellent agreement with the theoretical prediction.
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Figure 9. Diffusivity modelled as geometric Brownian motion, with DB = 1, a = 10, and trajectory length T = 102. Panel (a)
shows the mean power spectrum and a few realisations of the power spectra from individual trajectories. In the inset the
coefficient of variation is shown—the black dashed line corresponds to the theoretical result (83). Panel (b) shows the
distribution of the random amplitude A. Here the black dashed line corresponds to the numerical evaluation of (20), by making
use of (78) also.

6.3. Example III: Ψt = B2
t /a2

Finally, we consider squared Brownian motion

Ψt =
B2

t

a2
, (84)

where a is a parameter of unit length. Note that here the process xt in (3) is superdffusive, such that its
mean-squared displacement obeys 〈

x2
t

〉
Ψ
=

2D0DB

a2
t2, (85)

and thus a pronounced ageing behaviour occurs.
This example, similarly to the diffusing-diffusivity model in section 4, defines the diffusivity as the

squared of an auxiliary variable, though in this case the variable follows a Brownian motion instead of the
OU process. This choice implies that there is no crossover time, in contrast to the standard
diffusing-diffusivity model, and thus we obtain a model which is always non-stationary. In particular, we
introduce a larger separation between small and large values of the diffusivity, which may be interpreted as
non-linear effects of the heterogeneity. Note that, if we were to define a random duration δ of the intervals,
this model could be linked to a correlated CTRW [85,86].

Position-PDF Π(x, t)
The Laplace transform of the PDF of integrated squared Brownian motion was first calculated in the

classical paper by Cameron and Martin [88,89] (see also [90]). In our notation,

Υ(T;λ) =

〈
exp

(
− λ

a2

∫ T

0
dtB2

t

)〉
Ψ

=
1√

cosh
(√

4DBT2 λ/a2
) , (86)

and the PDF Π(x, t) for this process is given by

Π(x, t) =
1

π

∫ ∞

0

dw cos (wx)√
cosh
(
w
√

4DBD0t2/a2
)

=
1√
2ct

sech
(πx

ct

)
P ix

ct −
1
2

(0) , (87)

where c = 2
√

D0DB/a and Pν(z) is the Legendre function of the first kind. The latter admits the
representation

Pix/ct−1/2(0) =
√
π

/[
Γ

(
ix

2ct
+

3

4

)
Γ

(
− ix

2ct
+

3

4

)]
, (88)

such that

Π(x, t) =

√
π

ct
√

2

sech( πx
ct )

Γ
(

ix
2ct +

3
4

)
Γ
(
− ix

2ct +
3
4

) . (89)
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Figure 10. Position-PDF at fixed time t = 50 for diffusivity modelled as squared Brownian motion, with DB = 1 and a = 1.
Panel (a) compares between the numerical result and expression (87) (black solid line). Panel (b) shows a comparison between
the analytical result and its asymptotic behaviour (92) and the small x behaviour of sech(z) form discussed in the text.

In the limits,

Γ

(
ix

2ct
+

3

4

)
Γ

(
− ix

2ct
+

3

4

)
∼ Γ

(
3

4

)2

(90)

for |x| → 0, and

Γ

(
ix

2ct
+

3

4

)
Γ

(
− ix

2ct
+

3

4

)
∼ π

√
2|x|
ct

exp

(
−π|x|

2ct

)
(91)

for |x| →∞. As a consequence, the behaviour of the PDF for small x is approximately Gaussian,
� exp(−const.x2), where const. is a constant that can be expressed via the polylogarithm function.
Conversely,

Π(x, t) ∼ 1

πct|x| exp

(
−π|x|

2ct

)
(92)

for |x| →∞. The shape of the PDF is shown in figure 10. We clearly observe that the central part is
approximately Gaussian while the tails have an exponential trend, as expressed explicitly by the asymptote
(92).

Amplitude-PDF P(A)
Using (86) we then find that the MGF of the random amplitude A and the corresponding PDF are given

by the integrals

Φλ(A) =
2√
3

∫ ∞

0
dp

exp
(
−4p/3

)
I0(2p/3)√

cosh
(√

4DBTλp/a2
) (93)

and

P(A) =
2√
3

∫ ∞

0
dz

J0

(
(1 + 1/

√
3)
√

2Az
)√

cosh
(√

4DBTz/a2
) J0

(
(1 − 1/

√
3)
√

2Az
)
. (94)

The series representation of P(A) in (94) can be found directly by taking advantage of expansion (C.2) in
appendix C and our result (56), to yield

P(A) =
1

2
√

6π

a2

DBT

∞∑
n=0

(−1)nΓ
(
n + 1/2

)
(
n + 1/4

)2
n!(1 + ξn)3/2 2F1

(
3

4
,

5

4
; 1;

ξ2
n

4(1 + ξn)2

)
(95)

with

ξn =
a2A

3
(
n + 1/4

)2
DBT

. (96)

Note that the integrals ∫ ∞

0
dλλnΥ(T;λ) (97)

exist for any n > 0 and, hence, all negative moments of
∫ T

0 dtB2
t exist, as well. As a consequence, P(A) is an

analytic function of A. We immediately obtain the coefficient of variation from (25) as γ =
√

17/2.
Figure 11 displays numerical results for which we observe excellent agreement with the theoretical
expressions.
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Figure 11. Diffusivity modelled as squared Brownian motion, with DB = 1, a = 1, and trajectory length T = 102. Panel (a)
shows the mean power spectrum along with a few realisations of power spectra from individual trajectories. In the inset the
coefficient of variation is displayed—the black dashed line indicates the theoretical value

√
17/2 ≈ 2.06. Panel (b) shows the

distribution of the random amplitude A. Here the black dashed line corresponds to the numerical evaluation of (94).

Table 1. Collection of the main results for the different random-diffusivity models with respective equation numbers. Next to the
definitions of the models we refer to the MGF of the integrated diffusivity τT, the coefficient of variation γ, which can play the role of an
indicator for each model, and the ageing behaviour.

Random-diffusivity model MGF of τT γ Ageing

Ψt = Y2
t , Yt = OU process equation (30) equation (31) ×

Ψt = ψk ρ(ψ) gamma distr. equation (38) equation (47) ×
ρ(ψ) Lévy–Smirnov distr. equation (53) not defined not defined

Ψt = V[Bt] V[Z] = θ(Z) equation (61)
√

19/8 ×
V[Z] = exp(−Z) equation (78) equation (83) �
V[Z] = Z2 equation (86)

√
17/2 �

7. Conclusions

Quite typically stochastic time series are evaluated in terms of the ensemble averaged MSD
〈

x2
t

〉
Ψ

. It has

the advantage that fluctuations are reduced due to the averaging over many individual trajectories.
However, this is not always possible. Namely, for the by-now routine results from single particle tracking
experiments typically rather few, finite time series are obtained. These are then evaluated in terms of the
time-averaged MSD. While this quantity may also be averaged over the available individual trajectories, it is
increasingly realised that the amplitude fluctuations between individual trajectories in fact harbours
important quantitative information characteristic for a given stochastic process [14,15,115–117].

Similar to the consideration of time averaged MSDs for trajectories of finite measurement time T, we
here analysed the single-trajectory PSD of stochastic trajectories characterised by random diffusivities.
Following our previous work on standard Brownian motion [76], as well as fractional [77] and scaled
Brownian motion [78], we here investigated the detailed behaviour of single-trajectory PSDs of a broad
class of diffusing-diffusivity models. These have recently gained considerable attention as simple models for
diffusion processes in heterogeneous media. We described a general procedure to obtain the position PDF
Π(x, t) for all such models. The main ingredient in the calculation is the MGF of the integrated diffusivity,
showing explicitly that different choices of the underlying diffusivity Ψt lead to distinctly different emerging
behaviours, as summarised in table 1.

We started our discussion from the by-now well-established and widely studied model of
‘diffusing-diffusivity’, namely the case when Ψt is chosen as the squared of the Ornstein–Uhlenbeck
process. We then discussed the second case, in which Ψt is defined as a jump process. The properties of this
model depend strongly on the exact distribution chosen for the increment variables. We considered two
examples, a Gamma distribution and a Lévy–Smirnov distribution. Finally, three cases in which the
diffusivity is modelled as a functional of Brownian motion were discussed.

The main result of this work is that, regardless of the different properties of all these diffusing-diffusivity
models we obtained a universal high-f asymptote of the PSD. This behaviour is characterised by a 1/f 2

scaling, in analogy to Brownian motion [76] and scaled Brownian motion [78]. A first way to discriminate
among models lies in the study of the ageing behaviour of the PSD, as already discussed in [78]. Indeed, we
showed that the dependence of the PSD on the trajectory length T appears only for those
random-diffusivity models that are characterised by an anomalous scaling of the MSD. We also showed that
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differences from one model to another appear in higher order moments. In particular, we obtained exact
expressions for the coefficient of variation in all cases, proving that the latter can be a good indicator of the
specific model (see table 1).

Finally, we established that the PDF of the random amplitude A carries most of the meaningful
information. Namely, the coefficient of variation may be directly calculated from its moments. Moreover, its
MGF is tightly related to that of the integrated diffusivity, thus reflecting the particular properties of the
process Ψt. As we showed before [76,77], the distribution P(A) can even be evaluated meaningfully from
experimental data of fairly short trajectories. In its useful role in data analysis the single-trajectory PSD
approach thus complements other methods such as the time-averaged MSD and its amplitude variation
[14,115,118–124], ageing analyses [77,115], or, in the context of non-Gaussian diffusion, the codifference
methods [125].

The role of distinguishing different physical processes from measured single trajectory data therefore
heavily lies on the amplitude fluctuations and the coefficient of variation encoded in them. This improved
understanding of the single-trajectory PSD should therefore replace a common claim in many textbooks
according to which the 1/f 2-dependence of the spectrum was a fingerprint of Brownian motion. In line to
previous works [76–78], in which we already alerted that this may be a deceptive concept, we have shown
here that a wide range of random-diffusivity models with distinctly different behaviour and showing
anomalous diffusion, exhibit precisely the 1/f 2-dependence. Therefore, any experimental observation of the
spectral density varying as 1/f 2 alone cannot be taken as proof of standard Brownian motion. One
necessarily needs to consider the ageing behaviour of the spectral density, as in the case of superdiffusive
fractional Brownian motion or scaled Brownian motion, evaluate the coefficient of variation of the spectral
density, or determine the functional form of the PDF P(A) of the amplitude fluctuations.

In light of this the relevance of the presented results is twofold. First, they provide new and useful
insights into the increasingly popular class of stochastic processes with random diffusivity used in the
description of Fickian yet non-Gaussian diffusion in heterogeneous systems. Second, the results continue
our ongoing analysis based on the single-trajectory PSD for different classes of stochastic processes, showing
in particular the persistence of the 1/f 2-scaling of the PSD, which appears to be robust—as long as we do
not introduce correlations in the driving noise of the system, as studied in [77].

We note that if we redefine ẋt in the Langevin equation (3) as Ṡt/St, we recover the seminal
Black–Scholes (or Black–Scholes–Merton) equation for an asset price St with zero-constant trend and
stochastic volatility

√
D0Ψt used in financial market models [126–128]. The relevance of

diffusing-diffusivity approaches to economic and financial modelling was also discussed for the case of the
squared Ornstein–Uhlenbeck process [61]. Namely, the resulting stochastic equation for D0Ψt in this case is
nothing else than the Heston model [83], a special class of the Cox–Ingersson–Ross model [82,129], and as
such specifies the time evolution of the stochastic volatility of a given asset [63,83,130]. We note in this
context that diffusing-diffusivity models are intimately related to random-coefficient autoregressive
processes used in financial market analysis [131].

We finally note that realisation-to-realisation fluctuations of a stochastic process also turn out to be
relevant in many scenarios of first-passage time statistics [132,133]. These fluctuations are connected to the
typically broad (‘defocused’) PDFs of first-passage times even in simple geometries and the related feature
of geometry-control [134–136]. It will be interesting to extend the existing first-passage time analyses of
diffusing-diffusivity models [64,68] to the different processes studied herein, and to more complex
geometries. In particular, given that for fractional Brownian motion the first-passage time distributions and
the return-intervals distribution (the times between consecutive crossings of the diffusion process through a
given level) have power-law exponents that are directly related to the scaling exponent of the power
spectrum [137,138], one might speculate whether the corresponding distributions here are universal.
However, the universal spectral behaviour predicted in this paper for a variety of random-diffusing models
does not necessarily imply that the first-passage time properties will be the same for all the models. In fact,
we expect that the first-passage time densities will exhibit different behaviours for the various models, to the
same extent as the position PDFs unveiled here are significantly different from each other. The detailed
analysis of the first-passage time properties of the new random-diffusivity models studied here constitutes
one of the main directions of our future research.
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Appendix A. Derivation of the moment-generating function of the power spectral
density

It is convenient to rewrite formally the definition of the PSD in (8) in the form

ST(f ) =
1

T

(∫ T

0
dt cos(ft)xt

)2

+
1

T

(∫ T

0
dt sin(ft)xt

)2

. (A.1)

Our first step then consists in a standard linearisation of the expression in the exponential in (9). Taking
advantage of the integral identity

exp
(
−b2/(4c)

)
=

√
c

π

∫ ∞

−∞
dz exp(−cz2 + ibz) (A.2)

for c > 0, we formally recast (9) into the form

φλ =
1

4πλ

∫ ∞

−∞
dz1

∫ ∞

−∞
dz2 exp

(
− z2

1 + z2
2

4λ

)〈
exp
(

i∫T
0 dtQtxt

)〉
Ψ

, (A.3)

where Qt is defined in (11). Now, the averaging over thermal noise realisations can be performed
straightforwardly, yielding

exp
(
i∫T

0 dtQtxt

)
= exp

(
i
√

2D0∫T
0 dt
√
Ψtξt∫T

t dτQτ

)

= exp

(
−D0

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2
)

, (A.4)

where we integrated by parts and used (3). Combining (A.3) and (A.4) we arrive at our general result (10).
The derivation of our main result (13) takes advantage of the explicit form of Q in (11) and the

following calculation,

∫ T

0
dtΨt

(∫ T

t
dτQτ

)2

=
z2

1

f 2T

∫ T

0
dtΨt

(
sin(f T) − sin(ft)

)2
+

z2
2

f 2T

∫ T

0
dtΨt

(
cos(ft) − cos(f T)

)2

+
2z1z2

f 2T

∫ T

0
dtΨt

(
sin(f T) − sin(ft)

) (
cos(ft) − cos(f T)

)
. (A.5)

Inserting the latter expression into (10) and performing the integrations over z1 and z2 we find the
expression in (13) with Lf(t1, t2) explicitly defined by

Lf (t1, t2) =
1

2
cos(2f t2) − 1

2
cos(2f t1) − 1

2
cos(f (T − t1)) − 1

2
cos(f (T − t2)) − 1

4
cos(2f (T − t1))

− 1

2
cos(2f (T − t2)) +

1

4
cos(f (3T − t2)) − 1

4
cos(f (3T − t1)) +

3

4
cos(f (T + t1)) − 3

4
cos(f (T + t2))

− 1

2
cos(f (t1 − t2)) − 1

4
cos(2f (t1 − t2)) +

1

4
cos(f (T − 2t1 − t2)) − 1

4
cos(f (T − t1 − 2t2))

+
1

2
cos(f (T + t1 − 2t2)) +

1

2
cos(f (T − 2t1 + t2)) +

1

4
cos(f (T + 2t1 − t2))

− 1

4
cos(f (T − t1 + 2t2)) +

1

2
cos(f (2T − t1 − t2)) − 1

2
cos(f (2T + t1 − t2))

+
1

2
cos(f (2T − t1 + t2)). (A.6)
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Appendix B. High-f behaviour of the Riemann-integrable diffusivities

For Riemann-integrable functions, according to the Riemann–Lebesgue lemma we have

lim
f→∞

∫ T

0
dtΨt cos(f (T − t)) = 0 (B.1)

with probability 1 (however, nothing can be said about how fast zero is approached in the general case).
Once (B.1) holds, one finds that for Lf(t1, t2) defined in (A.6),

lim
f→∞

∫ T

0
dt1Ψt1

∫ T

0
dt2Ψt2 Lf (t1, t2) = 0. (B.2)

Appendix C. Useful formulae

Our expression for the PDF P(A) in (26) and (27) rely on the following series expansion of the product of
two Bessel functions,

J0

((
1 +

1√
3

)√
2zA

)
J0

((
1 − 1√

3

)√
2zA

)
=

∞∑
n=0

(−1)n

(n!)2

(√
3 + 1√

6

)2n

2F1

(
−n,−n; 1;

1 −
√

3/2

1 +
√

3/2

)
(zA)n.

(C.1)
The form of the PDF in (95) stems from the expansion

1√
cosh
(√

4DBTz/a2
) =

√
2

∞∑
n=0

(
−1/2

n

)
exp

(
−2

√
DBTz

a2

(
2n +

1

2

))
. (C.2)

The result in (69) involves toroidal functions defined by

Pn−1/2 (cosh(η)) =
2

π
e−(n+1/2)η

∫ π/2

0

dφ(
1 − 2e−η sinh(η) sin2(φ)

)n+1/2 . (C.3)

Setting exp(−η)sinh(η) = 1/3, i.e., η = ln(
√

3), we obtain expression (69).

ORCID iDs

Vittoria Sposini https://orcid.org/0000-0003-0915-4746
Denis S Grebenkov https://orcid.org/0000-0002-6273-9164
Ralf Metzler https://orcid.org/0000-0002-6013-7020
Gleb Oshanin https://orcid.org/0000-0001-8467-3226

References

[1] Brown R 1828 A brief account of microscopical observations made in the months of june, july and august 1827, on the particles
contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies Philos. Mag. 4
161

[2] Fick A 1855 Über Diffusion (On diffusion) Ann. Phys. 170 59
[3] Einstein A 1905 Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten

suspendierten Teilchen (On the motion of small particles suspended in liquids at rest required by the molecular-kinetic theory of
heat) Ann. Phys. 322 549

[4] von Smoluchowski M 1906 Zur kinetischen Theorie der Brownschen molekularbewegung und der Suspensionen (On the kinetic
theory of Brownian molecular motion and suspensions) Ann. Phys. 21 756

[5] Sutherland W 1905 A dynamical theory of diffusion for non-electrolytes and the molecular mass of albumin Philos. Mag. 9 781
[6] Pearson K 1905 The problem of the random walk Nature 72 294
[7] Langevin P 1908 On the theory of Brownian motion C. R. Acad. Sci. Paris 146 530
[8] Höfling F and Franosch T 2013 Anomalous transport in the crowded world of biological cells Rep. Prog. Phys. 76 046602
[9] Nørregaard K, Metzler R, Ritter C M, Berg-Sørensen K and Oddershede L B 2017 Manipulation and motion of organelles and

single molecules in living cells Chem. Rev. 117 4342
[10] Xie X S, Choi P J, Li G-W, Lee N K and Lia G 2008 Single-molecule approach to molecular biology in living bacterial cells Annu.

Rev. Biophys. 37 417
[11] Bräuchle C, Lamb D C and Michaelis J 2012 Single Particle Tracking and Single Molecule Energy Transfer (New York: Wiley)
[12] Javanainen M, Martinez-Seara H, Metzler R and Vattulainen I 2017 Diffusion of integral membrane proteins in protein-rich

membranes J. Phys. Chem. Lett. 8 4308

22

https://orcid.org/0000-0003-0915-4746
https://orcid.org/0000-0003-0915-4746
https://orcid.org/0000-0002-6273-9164
https://orcid.org/0000-0002-6273-9164
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0002-6013-7020
https://orcid.org/0000-0001-8467-3226
https://orcid.org/0000-0001-8467-3226
https://doi.org/10.1080/14786442808674769
https://doi.org/10.1080/14786442808674769
https://doi.org/10.1002/andp.18551700105
https://doi.org/10.1002/andp.18551700105
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19053220806
https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1002/andp.19063261405
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1080/14786440509463331
https://doi.org/10.1038/072294b0
https://doi.org/10.1038/072294b0
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1088/0034-4885/76/4/046602
https://doi.org/10.1021/acs.chemrev.6b00638
https://doi.org/10.1021/acs.chemrev.6b00638
https://doi.org/10.1146/annurev.biophys.37.092607.174640
https://doi.org/10.1146/annurev.biophys.37.092607.174640
https://doi.org/10.1021/acs.jpclett.7b01758
https://doi.org/10.1021/acs.jpclett.7b01758


New J. Phys. 22 (2020) 063056 V Sposini et al

[13] Hu X, Hong L, Smith M D, Neusius T, Cheng X and Smith J C 2016 The dynamics of single protein molecules is
non-equilibrium and self-similar over thirteen decades in time Nat. Phys. 12 171

[14] Barkai E, Garini Y and Metzler R 2012 Strange kinetics of single molecules in living cells Phys. Today 65 29
[15] Krapf D and Metzler R 2019 Strange interfacial molecular dynamics Phys. Today 72 48
[16] Metzler R 2019 Brownian motion and beyond: first-passage, power spectrum, non-Gaussianity, and anomalous diffusion J. Stat.

Mech.: Theor. Exp. 2019 114003
[17] Klafter J, Shlesinger M F and Zumofen G 1996 Beyond Brownian Motion Phys. Today 49 33
[18] Shlesinger M, Zaslavsky G and Klafter J 1993 Strange kinetics Nature 363 31
[19] Scher H, Shlesinger M F and Bendler J T 1991 Time-scale invariance in transport and relaxation Phys. Today 44 26
[20] Saxton M J and Jacobsen K 1997 Single-particle tracking: applications to membrane dynamics Annu. Rev. Biophys. Biomol.

Struct. 26 373
[21] Golding I and Cox E C 2006 Physical nature of bacterial cytoplasm Phys. Rev. Lett. 96 098102
[22] Weber S C, Spakowitz A J and Theriot J A 2010 Bacterial chromosomal loci move subdiffusively through a viscoelastic cytoplasm

Phys. Rev. Lett. 104 238102
[23] Burnecki K, Kepten E, Janczura J, Bronshtein I, Garini Y and Weron A 2012 Universal algorithm for identification of fractional

Brownian motion. A case of telomere subdiffusion Biophys. J. 103 1839
[24] Bronstein I, Israel Y and Garini Y 2009 Transient anomalous diffusion of telomeres in the nucleus of mammalian cells Phys. Rev.

Lett. 103 018102
[25] Jeon J-H, Tejedor V, Burov S, Barkai E, Selhuber-Unkel C, Berg-Sørensen K, Oddershede L and Metzler R 2011 In vivo

anomalous diffusion and weak ergodicity breaking of lipid granules Phys. Rev. Lett. 106 048103
[26] Bertseva E, Grebenkov D S, Schmidhauser P, Gribkova S, Jeney S and Forro L 2012 Optical trapping microrheology in cultured

human cells Eur. Phys. J. E 35 63
[27] Weigel A V, Simon B, Tamkun M M and Krapf D 2011 Ergodic and nonergodic processes coexist in the plasma membrane as

observed by single-molecule tracking Proc. Natl. Acad. Sci. 108 6438
[28] Manzo C, Torreno-Pina J A, Massignan P, Lapeyre G J Jr, Lewenstein M and Garcia Parajo M F 2015 Weak ergodicity breaking

of receptor motion in living cells stemming from random diffusivity Phys. Rev. X 5 011021
[29] Szymanski J and Weiss M 2009 Elucidating the origin of anomalous diffusion in crowded fluids Phys. Rev. Lett. 103 038102
[30] Jeon J-H, Leijnse N, Oddershede L B and Metzler R 2013 Anomalous diffusion and power-law relaxation in wormlike micellar

solution New J. Phys. 15 045011
[31] Di Rienzo C, Piazza V, Gratton E, Beltram F and Cardarelli F 2014 Probing short-range protein Brownian motion in the

cytoplasm of living cells Nat. Commun. 5 5891
[32] Chen K, Wang B and Granick S 2015 Memoryless self-reinforcing directionality in endosomal active transport within living cells

Nat. Mater. 14 589
[33] Robert D, Nguyen T H, Gallet F and Wilhelm C 2010 In vivo determination of fluctuating forces during endosome trafficking

using a combination of active and passive microrheology PLoS One 4 e10046
[34] Caspi A, Granek R and Elbaum M 2000 Enhanced diffusion in active intracellular transport Phys. Rev. Lett. 85 5655
[35] Song M S, Moon H C, Jeon J-H and Park H Y 2018 Neuronal messenger ribonucleoprotein transport follows an aging Lévy walk

Nat. Commun. 9 344
[36] Reverey J F, Jeon J-H, Bao H, Leippe M, Metzler R and Selhuber-Unkel C 2015 Superdiffusion dominates intracellular particle

motion in the supercrowded space of pathogenic Acanthamoeba castellanii Sci. Rep. 5 11690
[37] Wang B, Kuo J, Bae S C and Granick S 2012 When Brownian diffusion is not Gaussian Nat. Mater. 11 481
[38] Wang B, Anthony S M, Bae S C and Granick S 2009 Anomalous yet Brownian Proc. Natl. Acad. Sci. 106 15160
[39] Guan J, Wang B and Granick S 2014 Single-molecule observation of long jumps in polymer adsorption ACS Nano 8 3331
[40] He K, Khorasani F B, Retterer S T, Tjomasn D K, Conrad J C and Krishnamoorti R 2013 Diffusive dynamics of nanoparticles in

arrays of nanoposts ACS Nano 7 5122
[41] Xue C, Zheng X, Chen K, Tian Y and Hu G 2016 Probing non-Gaussianity in confined diffusion of nanoparticles J. Phys. Chem.

Lett. 7 514
[42] Wang D, Hu R, Skaug M J and Schwartz D 2015 Temporally anticorrelated motion of nanoparticles at a liquid interface J. Phys.

Chem. Lett. 6 54
[43] Dutta S and Chakrabarti J 2016 Anomalous dynamical responses in a driven system Europhys. Lett. 116 38001
[44] Leptos K C, Guasto J S, Gollub J P, Pesci A I and Goldstein R E 2009 Dynamics of enhanced tracer diffusion in suspensions of

swimming eukaryotic microorganisms Phys. Rev. Lett. 103 198103
[45] Hapca S, Crawford J W and Young I M 2009 Anomalous diffusion of heterogeneous populations characterized by normal

diffusion at the individual level J. R. Soc. Interface 6 111
[46] Witzel P, Götz M, Lanoiselée Y, Franosch T, Grebenkov D S and Heinrich D 2019 Heterogeneities shape passive intracellular

transport Biophys. J. 117 203
[47] Cherstvy A G, Nagel O, Beta C and Metzler R 2018 Non-Gaussianity, population heterogeneity, and transient superdiffusion in

the spreading dynamics of amoeboid cells Phys. Chem. Chem. Phys. 20 23034
[48] Jeon J-H, Javanainen M, Martinez-Seara H, Metzler R and Vattulainen I 2016 Protein crowding in lipid bilayers gives rise to

non-Gaussian anomalous lateral diffusion of phospholipids and proteins Phys. Rev. X 6 021006
[49] Beck C and Cohen E G D 2003 Superstatistics Phys. A 332 267
[50] Beck C 2007 Statistics of three-dimensional Lagrangian turbulence Phys. Rev. Lett. 98 064502
[51] Beck C 2006 Stretched exponentials from superstatistics Phys. A 365 96
[52] van der Straeten E and Beck C 2009 Superstatistical fluctuations in time series: applications to share-price dynamics and

turbulence Phys. Rev. E 80 036108
[53] Metzler R 2020 Superstatistics and non-Gaussian diffusion Eur. Phys. J. Spec. Top. 229 711–28
[54] Baldovin F, Orlandini E and Seno F 2019 Polymerization induces non-Gaussian diffusion Front. Phys. 7 124
[55] Mura A, Taqqu M S and Mainardi F 2008 Non-Markovian diffusion equations and processes: analysis and simulations Phys. A

387 5033
[56] Mura A and Pagnini G 2008 Characterizations and simulations of a class of stochastic processes to model anomalous diffusion J.

Phys. A 41 285003
[57] Molina-García D, Minh Pham T, Paradisi P, Manzo C and Pagnini G 2016 Fractional kinetics emerging from ergodicity

breaking in random media Phys. Rev. E 94 052147

23

https://doi.org/10.1038/nphys3553
https://doi.org/10.1038/nphys3553
https://doi.org/10.1063/pt.3.1677
https://doi.org/10.1063/pt.3.1677
https://doi.org/10.1063/pt.3.4294
https://doi.org/10.1063/pt.3.4294
https://doi.org/10.1088/1742-5468/ab4988
https://doi.org/10.1088/1742-5468/ab4988
https://doi.org/10.1063/1.881487
https://doi.org/10.1063/1.881487
https://doi.org/10.1038/363031a0
https://doi.org/10.1038/363031a0
https://doi.org/10.1063/1.881289
https://doi.org/10.1063/1.881289
https://doi.org/10.1146/annurev.biophys.26.1.373
https://doi.org/10.1146/annurev.biophys.26.1.373
https://doi.org/10.1103/physrevlett.96.098102
https://doi.org/10.1103/physrevlett.96.098102
https://doi.org/10.1103/physrevlett.104.238102
https://doi.org/10.1103/physrevlett.104.238102
https://doi.org/10.1016/j.bpj.2012.09.040
https://doi.org/10.1016/j.bpj.2012.09.040
https://doi.org/10.1103/physrevlett.103.018102
https://doi.org/10.1103/physrevlett.103.018102
https://doi.org/10.1103/physrevlett.106.048103
https://doi.org/10.1103/physrevlett.106.048103
https://doi.org/10.1140/epje/i2012-12063-4
https://doi.org/10.1140/epje/i2012-12063-4
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1073/pnas.1016325108
https://doi.org/10.1103/physrevx.5.011021
https://doi.org/10.1103/physrevx.5.011021
https://doi.org/10.1103/physrevlett.103.038102
https://doi.org/10.1103/physrevlett.103.038102
https://doi.org/10.1088/1367-2630/15/4/045011
https://doi.org/10.1088/1367-2630/15/4/045011
https://doi.org/10.1038/ncomms6891
https://doi.org/10.1038/ncomms6891
https://doi.org/10.1038/nmat4239
https://doi.org/10.1038/nmat4239
https://doi.org/10.1371/journal.pone.0010046
https://doi.org/10.1371/journal.pone.0010046
https://doi.org/10.1103/physrevlett.85.5655
https://doi.org/10.1103/physrevlett.85.5655
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1038/s41467-017-02700-z
https://doi.org/10.1038/srep11690
https://doi.org/10.1038/srep11690
https://doi.org/10.1038/nmat3308
https://doi.org/10.1038/nmat3308
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1073/pnas.0903554106
https://doi.org/10.1021/nn405476t
https://doi.org/10.1021/nn405476t
https://doi.org/10.1021/nn4007303
https://doi.org/10.1021/nn4007303
https://doi.org/10.1021/acs.jpclett.5b02624
https://doi.org/10.1021/acs.jpclett.5b02624
https://doi.org/10.1021/jz502210c
https://doi.org/10.1021/jz502210c
https://doi.org/10.1209/0295-5075/116/38001
https://doi.org/10.1209/0295-5075/116/38001
https://doi.org/10.1103/physrevlett.103.198103
https://doi.org/10.1103/physrevlett.103.198103
https://doi.org/10.1098/rsif.2008.0261
https://doi.org/10.1098/rsif.2008.0261
https://doi.org/10.1016/j.bpj.2019.06.009
https://doi.org/10.1016/j.bpj.2019.06.009
https://doi.org/10.1039/c8cp04254c
https://doi.org/10.1039/c8cp04254c
https://doi.org/10.1103/physrevx.6.021006
https://doi.org/10.1103/physrevx.6.021006
https://doi.org/10.1016/s0378-4371(03)00019-0
https://doi.org/10.1016/s0378-4371(03)00019-0
https://doi.org/10.1103/physrevlett.98.064502
https://doi.org/10.1103/physrevlett.98.064502
https://doi.org/10.1016/j.physa.2006.01.030
https://doi.org/10.1016/j.physa.2006.01.030
https://doi.org/10.1103/physreve.80.036108
https://doi.org/10.1103/physreve.80.036108
https://doi.org/10.1140/epjst/e2020-900210-x
https://doi.org/10.1140/epjst/e2020-900210-x
https://doi.org/10.1140/epjst/e2020-900210-x
https://doi.org/10.3389/fphy.2019.00124
https://doi.org/10.3389/fphy.2019.00124
https://doi.org/10.1016/j.physa.2008.04.035
https://doi.org/10.1016/j.physa.2008.04.035
https://doi.org/10.1088/1751-8113/41/28/285003
https://doi.org/10.1088/1751-8113/41/28/285003
https://doi.org/10.1103/physreve.94.052147
https://doi.org/10.1103/physreve.94.052147


New J. Phys. 22 (2020) 063056 V Sposini et al

[58] Chubynsky M V and Slater G W 2014 Diffusing diffusivity: a model for anomalous, yet Brownian, diffusion Phys. Rev. Lett. 113
098302

[59] Jain R and Sebastian K L 2016 Diffusion in a crowded, rearranging environment J. Phys. Chem. B 120 3988
[60] Jain R and Sebastian K L 2016 Diffusing diffusivity: survival in a crowded rearranging and bounded domain J. Phys. Chem. B

120 9215
[61] Chechkin A V, Seno F, Metzler R and Sokolov I M 2017 Brownian yet non-Gaussian diffusion: from superstatistics to

subordination of diffusing diffusivities Phys. Rev. X 7 021002
[62] Tyagi N and Cherayil B J 2017 Non-Gaussian Brownian diffusion in dynamically disordered thermal environments J. Phys.

Chem. B 121 7204
[63] Lanoiselée Y and Grebenkov D S 2018 A model of non-Gaussian diffusion in heterogeneous media J. Phys. A. 51 145602
[64] Lanoiselée Y, Moutal N and Grebenkov D S 2018 Diffusion-limited reactions in dynamic heterogeneous media Nat. Commun. 9

4398
[65] Sposini V, Chechkin A V, Seno F, Pagnini G and Metzler R 2018 Random diffusivity from stochastic equations: comparison of

two models for Brownian yet non-Gaussian diffusion New J. Phys. 20 043044
[66] Grebenkov D S 2019 A unifying approach to first-passage time distributions in diffusing diffusivity and switching diffusion

models J. Phys. A 52 174001
[67] Lanoiselée Y and Grebenkov D S 2019 Non-Gaussian diffusion of mixed origins J. Phys. A 52 304001
[68] Sposini V, Chechkin A V and Metzler R 2019 First passage statistics for diffusing diffusivity J. Phys. A 52 04LT01
[69] Hidalgo-Soria M and Barkai E 2019 The Hitchhiker model for Laplace diffusion processes in the cell environment

arXiv:1909.07189
[70] Chakraborty I and Roichman Y 2019 Two coupled mechanisms produce Fickian, yet non-Gaussian diffusion in heterogeneous

media arXiv:1909.11364
[71] Shephard N 2010 Stochastic volatility models Macroeconometrics and Time Series Analysis. The New Palgrave Economics

Collection ed S N Durlauf and L E Blume (London: Palgrave Macmillan)
[72] Barndorff-Nielsen O and Shephard N 2001 Non-Gaussian OU based models and some of their uses in financial economics J. R.

Stat. Soc. B 63 167–241
[73] Sadegh S, Barkai E and Krapf D 2014 1/f noise for intermittent quantum dots exhibits non-stationarity and critical exponents

New J. Phys. 16 113054
[74] Leibovich N, Dechant A, Lutz E and Barkai E 2016 Aging Wiener–Khinchin theorem and critical exponents of 1/f noise Phys.

Rev. E 94 052130
[75] Leibovich N and Barkai E 2017 Conditional 1/f α noise: from single molecules to macroscopic measurement Phys. Rev. E 96

032132
[76] Krapf D, Marinari E, Metzler R, Oshanin G, Xu X and Squarcini A 2018 Power spectral density of a single Brownian trajectory:

what one can and cannot learn from it New J. Phys. 20 023029
[77] Krapf D et al 2019 Spectral content of a single non-brownian trajectory Phys. Rev. X 9 011019
[78] Sposini V, Metzler R and Oshanin G 2019 Single-trajectory spectral analysis of scaled Brownian motion New J. Phys. 21 073043
[79] Lim S C and Muniandy S V 2002 Self-similar Gaussian processes for modeling anomalous diffusion Phys. Rev. E 66 021114
[80] Jeon J-H, Chechkin A V and Metzler R 2014 Scaled Brownian motion: a paradoxical process with a time dependent diffusivity

for the description of anomalous diffusion Phys. Chem. Chem. Phys. 16 15811
[81] Feller W 1951 Two singular diffusion problems Ann. Math. 54 173
[82] Cox J C, Ingersoll J E and Ross S A 1985 A theory of the term structure of interest rates Econometrica 53 385
[83] Heston S L 1993 A closed-form solution for options with stochastic volatility with applications to bond and currency options

Rev. Financ. Stud. 6 327
[84] Dankel T 1991 On the distribution of the integrated square of the Ornstein–Uhlenbeck process SIAM J. Appl. Math. 5 568
[85] Tejedor V and Metzler R 2010 Anomalous diffusion in correlated continuous time random walks J. Phys. A 43 082002
[86] Magdziarz M, Metzler R, Szczotka W and Zebrowski P 2012 Correlated continuous-time random walks—scaling limits and

Langevin picture J. Stat. Mech. 2012 P04010
[87] Lévy P 1940 Sur certains processus stochastiques homogènes (On certain homogeneous stochastic processes) Compos. Math. 7

283
[88] Cameron R H and Martin W T 1945 Transformations of Wiener integrals under a general class of linear transformation Trans.

Am. Math. Soc. 58 184
[89] Cameron R H and Martin W T 1945 Evaluation of various Wiener integrals by use of certain Sturm–Liouville differential

equations Bull. Am. Math. Soc. 51 73
[90] Kac M 1949 On distributions of certain Wiener functionals Trans. Am. Math. Soc. 65 1
[91] Erdös P and Kac M 1947 On the number of positive sums of independent random variables Bull. Am. Math. Soc. 53 1011
[92] Lamperti J 1958 An occupation time theorem for a class of stochastic processes Trans. Am. Math. Soc. 88 380
[93] Yor M 2000 Exponential Functionals of Brownian Motion and Related Processes (Berlin: Springer)
[94] Majumdar S N 2005 Brownian functionals in physics and computer science Curr. Sci. 89 2076
[95] Perret A, Comtet A, Majumdar S N and Schehr G 2015 On certain functionals of the maximum of brownian motion and their

applications J. Stat. Phys. 161 1112
[96] Boyer D, Dean D S, Mejía-Monasterio C and Oshanin G 2013 Distribution of the least-squares estimators of a single Brownian

trajectory diffusion coefficient J. Stat. Mech. 2013 P04017
[97] Boyer D, Dean D S, Mejía-Monasterio C and Oshanin G 2012 Optimal estimates of the diffusion coefficient of a single Brownian

trajectory Phys. Rev. E 85 031136
[98] Borodin A N and Salminen P 1996 Handbook of Brownian Motion: Facts and Formulae (Basel: Birkhäuser)
[99] Arkhincheev V E and Baskin E M 1991 Anomalous diffusion and drift in a comb model of percolation clusters Sov. Phys. JETP

73 161
[100] Sandev T, Iomin A, Kantz H, Metzler R and Chechkin A 2016 Comb model with slow and Ultraslow diffusion Math. Model. Nat.

Phenom. 11 18
[101] Lévy P 1939 Sur certains processus stochastiques homogènes Compos. Math. 7 283
[102] Geman H and Yor M 1993 Bessel processes, asian options, and perpetuities Math. Finance 3 349
[103] Wilmott P, Dewynne J and Howison S 2000 Option Pricing: Mathematical Models and Computation (Oxford: Oxford Financial

Press)

24

https://doi.org/10.1103/physrevlett.113.098302
https://doi.org/10.1103/physrevlett.113.098302
https://doi.org/10.1021/acs.jpcb.6b01527
https://doi.org/10.1021/acs.jpcb.6b01527
https://doi.org/10.1021/acs.jpcb.6b06094
https://doi.org/10.1021/acs.jpcb.6b06094
https://doi.org/10.1103/physrevx.7.021002
https://doi.org/10.1103/physrevx.7.021002
https://doi.org/10.1021/acs.jpcb.7b03870
https://doi.org/10.1021/acs.jpcb.7b03870
https://doi.org/10.1088/1751-8121/aab15f
https://doi.org/10.1088/1751-8121/aab15f
https://doi.org/10.1038/s41467-018-06610-6
https://doi.org/10.1038/s41467-018-06610-6
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1088/1367-2630/aab696
https://doi.org/10.1088/1751-8121/ab0dae
https://doi.org/10.1088/1751-8121/ab0dae
https://doi.org/10.1088/1751-8121/ab2826
https://doi.org/10.1088/1751-8121/ab2826
https://doi.org/10.1088/1751-8121/aaf6ff
https://doi.org/10.1088/1751-8121/aaf6ff
https://arxiv.org/abs/1909.07189
https://arxiv.org/abs/1909.11364
https://doi.org/10.1111/1467-9868.00282
https://doi.org/10.1111/1467-9868.00282
https://doi.org/10.1111/1467-9868.00282
https://doi.org/10.1088/1367-2630/16/11/113054
https://doi.org/10.1088/1367-2630/16/11/113054
https://doi.org/10.1103/physreve.94.052130
https://doi.org/10.1103/physreve.94.052130
https://doi.org/10.1103/physreve.96.032132
https://doi.org/10.1103/physreve.96.032132
https://doi.org/10.1088/1367-2630/aaa67c
https://doi.org/10.1088/1367-2630/aaa67c
https://doi.org/10.1103/physrevx.9.011019
https://doi.org/10.1103/physrevx.9.011019
https://doi.org/10.1088/1367-2630/ab2f52
https://doi.org/10.1088/1367-2630/ab2f52
https://doi.org/10.1103/physreve.66.021114
https://doi.org/10.1103/physreve.66.021114
https://doi.org/10.1039/c4cp02019g
https://doi.org/10.1039/c4cp02019g
https://doi.org/10.2307/1969318
https://doi.org/10.2307/1969318
https://doi.org/10.2307/1911242
https://doi.org/10.2307/1911242
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1093/rfs/6.2.327
https://doi.org/10.1137/0151029
https://doi.org/10.1137/0151029
https://doi.org/10.1088/1751-8113/43/8/082002
https://doi.org/10.1088/1751-8113/43/8/082002
https://doi.org/10.1088/1742-5468/2012/04/p04010
https://doi.org/10.1088/1742-5468/2012/04/p04010
https://doi.org/10.1090/s0002-9947-1945-0013240-1
https://doi.org/10.1090/s0002-9947-1945-0013240-1
https://doi.org/10.1090/s0002-9904-1945-08275-5
https://doi.org/10.1090/s0002-9904-1945-08275-5
https://doi.org/10.1090/s0002-9947-1949-0027960-x
https://doi.org/10.1090/s0002-9947-1949-0027960-x
https://doi.org/10.1090/s0002-9904-1947-08928-x
https://doi.org/10.1090/s0002-9904-1947-08928-x
https://doi.org/10.1090/s0002-9947-1958-0094863-x
https://doi.org/10.1090/s0002-9947-1958-0094863-x
https://doi.org/10.1007/s10955-015-1377-8
https://doi.org/10.1007/s10955-015-1377-8
https://doi.org/10.1088/1742-5468/2013/04/p04017
https://doi.org/10.1088/1742-5468/2013/04/p04017
https://doi.org/10.1103/physreve.85.031136
https://doi.org/10.1103/physreve.85.031136
https://doi.org/10.1051/mmnp/201611302
https://doi.org/10.1051/mmnp/201611302
https://doi.org/10.1111/j.1467-9965.1993.tb00092.x
https://doi.org/10.1111/j.1467-9965.1993.tb00092.x


New J. Phys. 22 (2020) 063056 V Sposini et al

[104] Oshanin G and Schehr G 2012 Two stock options at the races: Black–Scholes forecasts Quant. Finance 12 1325
[105] Peters O and Klein W 2013 Ergodicity breaking in geometric Brownian motion Phys. Rev. Lett. 110 100603
[106] Cherstvy A G, Vinod D, Aghion E, Chechkin A V and Metzler R 2017 Time averaging, ageing and delay analysis of financial time

series New J. Phys. 19 063045
[107] Burlatsky S F, Oshanin G, Mogutov A and Moreau M 1992 Non-Fickian steady flux in a one-dimensional Sinai-type disordered

system Phys. Rev. A 45 R6955
[108] Oshanin G, Mogutov A and Moreau M 1993 Steady flux in a continuous-space Sinai chain J. Stat. Phys. 73 379
[109] Monthus C and Comtet A 1994 On the flux distribution in a one dimensional disordered system J. Phys. I. 4 635
[110] Comtet A, Monthus C and Yor M 1998 Exponential functionals of Brownian motion and disordered systems J. Appl. Probab. 35

255
[111] Oshanin G, Rosso A and Schehr G 2013 Anomalous fluctuations of currents in Sinai-type random chains with strongly

correlated disorder Phys. Rev. Lett. 110 100602
[112] Cherstvy A G, Chechkin A V and Metzler R 2013 Anomalous diffusion and ergodicity breaking in heterogeneous diffusion

processes New J. Phys. 15 083039
[113] Cherstvy A G and Metzler R 2014 Non-ergodicity, fluctuations, and criticality in heterogeneous diffusion processes Phys. Rev. E

90 012134
[114] Oshanin G and Redner S 2009 Helix or coil? Fate of a melting heteropolymer Europhys. Lett. 85 10008
[115] Metzler R, Jeon J-H, Cherstvy A G and Barkai E 2014 Anomalous diffusion models and their properties: non-stationarity,

non-ergodicity, and ageing at the centenary of single particle tracking Phys. Chem. Chem. Phys. 16 24128
[116] Stefani F D, Hoogenboom J P and Barkai E 2009 Beyond quantum jumps: blinking nanoscale light emitters Phys. Today 62 34
[117] Lanoiselée Y and Grebenkov D S 2016 Revealing nonergodic dynamics in living cells from a single particle trajectory Phys. Rev. E

93 052146
[118] Weron A, Janczura J, Boryczka E, Sungkaworn T and Calebiro D 2019 Statistical testing approach for fractional anomalous

diffusion classification Phys. Rev. E 99 042149
[119] Bo S, Schmidt F, Eichhorn R and Volpe G 2019 Measurement of anomalous diffusion using recurrent neural networks Phys. Rev.

E 100 010102
[120] Thapa S, Lomholt M A, Krog J, Cherstvy A G and Metzler R 2018 Bayesian nested sampling analysis of single particle tracking

data: maximum likelihood model selection applied to stochastic diffusivity data Phys. Chem. Chem. Phys. 20 29018
[121] Cherstvy A G, Thapa S, Wagner C E and Metzler R 2019 Non-Gaussian, non-ergodic, and non-Fickian diffusion of tracers in

mucin hydrogels Soft Matter 15 2526
[122] Jeon J-H and Metzler R 2010 Analysis of short subdiffusive time series: scatter of the time averaged mean squared displacement

J. Phys. A 43 252001
[123] Grebenkov D S 2011 Probability distribution of the time-averaged mean-square displacement of a Gaussian process Phys. Rev. E

84 031124
[124] Andreanov A and Grebenkov D S 2012 Time-averaged MSD of Brownian motion J. Stat. Mech. 2012 P07001
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