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COMMON FREQUENT HYPERCYCLICITY

S. CHARPENTIER, R. ERNST, M. MESTIRI, A. MOUZE

Abstract. We provide with criteria for a family of sequences of operators to share a fre-
quently universal vector. These criteria are variants of the classical Frequent Hypercyclicity
Criterion and of a recent criterion due to Grivaux, Matheron and Menet where periodic
points play the central role. As an application, we obtain for any operator T in a specific
class of operators acting on a separable Banach space, a necessary and sufficient condition on
a subset Λ of the complex plane for the family {λT : λ ∈ Λ} to have a common frequently
hypercyclic vector. In passing, this allows us to exhibit frequently hypercyclic weighted
shifts which do not possess common frequently hypercyclic vectors. We also provide with
criteria for families of the recently introduced operators of C-type to share a common fre-
quently hypercyclic vector. Further, we prove that the same problem of common α-frequent
hypercyclicity may be vacuous, where the notion of α-frequent hypercyclicity extends that
of frequent hypercyclicity replacing the natural density by more general weighted densities.
Finally, it is already known that any operator satisfying the classical Frequent Universality
Criterion is α-frequently universal for any sequence α satisfying a suitable condition. We
complement this result by showing that for any such operator, there exists a vector x which
is α-frequently universal for T , with respect to all such densities α.

1. Introduction

For two separable Fréchet spaces X and Y , let us denote by L(X, Y ) the set of all con-
tinuous operators from X to Y . If X = Y , we simply write L(X) = L(X, Y ). A sequence
T = (Tn)n∈N ⊂ L(X, Y ), where N stands for the set {0, 1, 2, . . .}, is said to be universal
provided there exists a vector x ∈ X such that for any non-empty open subset U of Y , the
set

N(x, U, T ) := {n ∈ N : Tn(x) ∈ U}
is infinite. The vector x is also called universal and the set of all universal vectors for T is
denoted by U(T ). A single operator T ∈ L(X) is called hypercyclic if the sequence (T n)n∈N of
its iterates is universal. In this case, we write N(x, U, T ) = N(x, U, T ) and U(T ) = HC(T ).
In 2006, Bayart and Grivaux [4] introduced the important notion of frequently hypercyclic
operator. An operator T ∈ L(X) is said to be frequently hypercyclic if there exists x ∈ X
such that for any non-empty open subset U of X, the lower density d(N(x, U, T )) is positive,
where for any E ⊂ N,

d(E) := lim inf
n→∞

card([0, n] ∩ E)

n+ 1
> 0.

Such a vector x is said to be frequently hypercyclic vector for T and the set of such vectors
is denoted by FHC(T ). The notion of frequent universality for a sequence T of operators
in L(X, Y ) can be similarly defined (see, for e.g., [10]) and we denote by FU(T ) the set of
universal vectors. For a rich source of information about linear dynamics, we refer to the
monographs [7, 24].

A problem which has been extensively studied during the last decades is that of common
hypercyclicity. For a given family (Tλ)λ∈Λ of hypercyclic operators in L(X), it asks when the
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set of common hypercyclic vectors,
⋂
λ∈ΛHC(Tλ), is empty and when it is not. Chapter 7 of

[7] and Chapter 11 of [24] are entirely devoted to this topic. On the one hand, since HC(T )
is a dense Gδ subset of X whenever it is non-empty, the Baire Category Theorem ensures
that

⋂
λ∈ΛHC(Tλ) is non-empty whenever Λ is a countable non-empty set and each Tλ is

hypercyclic. On the other hand, it is not difficult to exhibit families of hypercyclic operators
with no common hypercyclic vectors (for example the family of all hypercyclic weighted
shifts on `2(N), see [7, Example 7.1]). The first positive important result in this direction
was given by Abakumov and Gordon [1] who showed that

⋂
λ>1HC(λB) 6= ∅, where B is the

backward shift on `2(N) defined by B(x0, x1, x2, . . .) = (x1, x2, x3, . . .). Later on, Costakis
and Sambarino [17] provided with the first criterion of common hypercyclicity that they
applied to show the residuality of the set of common hypercyclic vectors for multiples of the
backward shift or differential operators, and for uncountable families of translation operators
or specific weighted shifts. Constructions or the approach used by Costakis and Sambarino,
based on the Baire Category Theorem, were developed by many authors to produce new
criteria or prove common hypercyclicity for other uncountable families of classical operators,
such as adjoint of multiplication operators, or composition and convolution operators (see,
for e.g., [2, 5, 6, 12, 15, 22]). A second approach to the problem, more algebraic, produced
some of the most striking results. This approach is based on an interpretation in terms of
common hypercyclicity of a result by León and Müller which asserts that for any T ∈ L(X)
and any λ ∈ C, |λ| = 1, HC(T ) = HC(λT ) [25]. Their idea, which exploits the group
structure of the torus T = {z ∈ C : |z| = 1}, was extended by several authors to families
of operators forming groups or semigroups, and then combined with the first approach to
produce some new and strong results (for e.g., [3, 9, 14, 31, 33]). We should say that the
non-existence of common universal vectors has also been studied (see, for e.g., [3, 7, 18, 24]).

In comparison, the existence of common frequently hypercyclic vectors for families of op-
erators has been considered in only a very few amount of papers. Probably, it is partly
because the Baire Category approach drastically fails for this notion: by [8, Corollary 19],
the set FHC(T ) is always meager (i.e., contained in the complement of a residual set).
Moreover, it turns out that the frequently hypercyclic multiples λB, λ ∈ Λ ⊂ (0,+∞), of
the backward shift on `2(N) have no common frequently hypercyclic vectors as soon as Λ is
uncountable [4, Theorem 4.5]. This result has a straightforward extension to any T ∈ L(X)
instead of B [3, Proposition 6.4]. However, the algebraic approach to common hypercyclic-
ity perfectly fits to frequent hypercyclicity. For example, Bayart and Matheron proved that
FHC(λT ) = FHC(T ) for any λ ∈ T, obtaining a frequent hypercyclicity version of León-
Müller’s result [7, Theorem 6.28]. This approach has been pursued further in [3] (see also
[14]) and led to several nice results of common frequent hypercyclicity for families of op-
erators forming strongly continuous groups or semigroups (translation operators on H(Cd),
composition operators induced by non-constant Heisenberg translations on the Hardy space
of the Siegel half-space, etc...). Furthermore, in specific classes of operators, hypercyclic
basically means frequently hypercyclic in a strong sense. For example, if Λhyp denotes the
set of all hyperbolic automorphisms of the unit disc D having the same boundary attractive
point, then the same argument as in [7, Example 7.3] gives that there exists φ0 ∈ Λhyp

such that for any φ ∈ Λhyp, FHC(Cφ0) ⊂ FHC(Cφ), where Cφ denotes the composition
operator with symbol φ on the Hardy space H2(D). Combined with the algebraic approach,
this yields

⋂
φ∈Λ FHC(Cφ) 6= ∅ where Λ stands for the set of all automorphisms having a

common boundary attractive point. All in all, except when actions by strongly continuous
groups or semigroups are involved, so far no criteria for common frequent hypercyclicity are
known. In particular, we do not know under which non-trivial conditions on Λ ⊂ (0,+∞)
and T ∈ L(X) the set

⋂
λ∈Λ FHC(λT ) may be non-empty.
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In this paper we aim to contribute in filling these gaps. Our first result is a criterion of
common frequent universality (Theorem 2.2) which is a natural strengthening of the Frequent
Universality Criterion given in [11] (and of the classical Frequent Hypercyclicity Criterion
[4]).

Theorem. Let X be a Fréchet space, Y a separable Fréchet space and let Ti = (Ti,n)n∈N,
i ∈ N, be countably many sequences of continuous linear operators from X to Y . We assume
that there exist a dense subset Y0 of Y , mappings Si,n : Y0 → X, i, n ∈ N, and a real number
c > 1 such that for every y ∈ Y0,

(1) the series
∑

0≤n≤m Ti,m(Si,m−n(y)) converges unconditionally, uniformly for m ∈ N
and i ∈ N;

(2) the series
∑

n≥0 Ti,m(Si,m+n(y)) converges unconditionally, uniformly for m ∈ N and
i ∈ N;

(3) the series
∑

n≥(c−1)m Ti,m(Sj,m+n(y)) converges unconditionally, uniformly for m ∈ N
and i 6= j ∈ N;

(4) the series
∑

c−1
c
m≤n≤m Ti,m(Sj,m−n(y)) converges unconditionally, uniformly for m ∈

N and i 6= j ∈ N;
(5) the series

∑
n≥0 Si,n(y) converges unconditionally, uniformly for i ∈ N;

(6) the sequence (Ti,n(Si,n(y)))n∈N converges to y, uniformly for i ∈ N.
Then there exists a vector x ∈ X which is frequently universal for every Ti, i ∈ N.

As an application, we get necessary or sufficient conditions on a subset Λ of C for the set⋂
λ∈Λ FHC(λB) to be non-empty, when X is a Banach space and T ∈ L(X). For example,

we will get the following:

Theorem. Let B be the backward shift on `2(N) and let Λ ⊂ C. The set
⋂
λ∈Λ FHC(λB) is

non-empty if and only if the set {|λ| : λ ∈ Λ} is a countable relatively compact non-empty
subset of (1,+∞).

This theorem is obtained for more general classes of (unilateral) weighted shifts on `2(N).
For any operator T ∈ L(X), sufficient or necessary conditions on Λ are given, involving,
for e.g., the spectral radius of T . In full generality, our sufficient condition coincides with
the assumption of a criterion of common hypercyclicity given by Bayart and Matheron [6,
Proposition 4.2]. Our general criterion of common frequent universality is also applied to
countable families of weighted shifts, differential operators or adjoint of multiplication oper-
ators (which may not be multiples of a single operator). In passing, we easily produce two
frequently hypercyclic weighted shifts without common frequently hypercyclic vectors.

Recently, Grivaux, Matheron and Menet provided with a new frequent hypercyclicity
criterion, based on the periodic points of the operator [23]. They proved that this criterion is
theoretically better than the classical Frequent Hypercyclicity Criterion since any operator
satisfying the assumptions of the latter automatically satisfies that of the new one. In
practice, the classical criterion turns out to be much simpler to apply to most of the explicit
and usual operators. However, Menet introduced a new class of operators, the so-called
operators of C-type [26], conceived as a very rich source of counter-examples to difficult
problems, such as the exhibition of a chaotic operator on `p(N) which is not frequently
hypercyclic [26] (see also [23]), to which their new criterion for frequent hypercyclicity is
very well adapted. In the present paper, based on this criterion, we establish another general
criterion for common frequent hypercyclicity, involving the periodic points of the operators
of the family. We show how this can be applied to classes of operators of C-type.

Furthermore, Ernst and Mouze recently proved [19, 20] that any operator satisfying the
usual Frequent Universality Criterion in fact enjoys a stronger form of frequent universality
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related to generalized lower density dα where α is a sequence of non-negative real numbers
satisfying suitable conditions. The usual lower density corresponds to any constant sequence
(a, a, a, . . .), a > 0. Moreover, if α . β (meaning αk/βk is eventually decreasing to 0),
then dβ(E) ≤ dα(E) for every E ⊂ N. The relation . thus allows oneself to define scales
of generalized lower densities. It then appears natural to define α-frequent universality as
the usual frequent universality, replacing the sequence (1, 1, 1, . . .) by any α as above. One
of the main results of [19, 20] tells us that any operator T ∈ L(X) which satisfies the
Frequent Universality Criterion is α-frequently universal whenever there exists s ≥ 2 such
that α . Ds, where Ds := (exp(k/(log(s)(k))))k≥k0 for some k0 ≥ 1 depending on s, and
log(s) = log ◦ log ◦ . . . ◦ log, log appearing s times. Moreover, they proved that no operator
can be α-frequently hypercyclic for α = (ek)k≥1. In view of the topic of the paper, two
natural questions arise. For T ∈ L(X) we denote by FHCα(T ) the set of all α-frequently
hypercyclic vectors for T .

Questions. Let A denote the set of sequences α such that α . Ds for some s ≥ 2 and let
T ∈ L(X).

(1) Let Λ ⊂ (0,+∞) and B ⊂ A be non-trivial. Do we have
⋂

(λ,β)∈Λ×B FHCβ(λT ) 6= ∅?
(2) If T satisfies the Frequent Hypercyclicity Criterion, do we have

⋂
α∈A FHCα(T ) 6= ∅?

We will give a positive answer to the second question (Proposition 4.8) and show that
the first one has a strongly negative answer if Λ is any non-trivial subset of (0,+∞) and
B is reduced to a single generalized density which grows faster than (elog(k) log(s)(k))k≥k0 for
some positive integer s (Proposition 4.2). We should mention that, by [19, Lemma 2.10],
FHCβ(T ) = FHC(T ) whenever β has a growth at most polynomial (i.e., β . (kr)k≥1 for
some r > −1). Combined with our first common frequent hypercyclicity criterion, this gives
a positive answer to (1) for some non-trivial Λ and the set B of sequences with at most
polynomial growth.

We should conclude by mentioning that the problem of common hypercyclicity has also
been considered for U -frequent hypercyclicity. This intermediate notion between hypercyclic-
ity and frequent hypercyclicity was introduced by Shkarin [32]. A sequence T ⊂ L(X, Y ) is
said to be U -frequently universal if for some x ∈ X and any non-empty open set U in Y ,
d(N(x, U, T )) is positive. By definition, d(E) = 1− d(N \E) is the upper density of E ⊂ N.
In some sense, U -frequent hypercyclicity is closer to hypercyclicity than to frequent hyper-
cyclicity. For example, Bayart and Ruzsa proved that the set UFHC(T ) of all U -frequently
hypercyclic vectors for T is residual whenever it is non-empty [8, Proposition 21]. However,
they also proved that any U -frequently hypercyclic weighted shift on `p(N), 1 ≤ p < +∞, is
frequently hypercyclic. Common U -frequent hypercyclicity has been rather well-studied and
criteria have been given. We refer to [27, 28] and the references therein for a complete and
up-to-date overview on the subject.

The paper is organized as follows. Section 2 is devoted to our first general criteria of
common frequent universality and their developments in various directions. In Section 3,
we focus on our criterion for common frequent hypercyclicity involving periodic points. We
finally give answers to the above two questions in Section 4.

2. Common frequent universality for countable families of operators

2.1. A general criterion. The main result of this section is a general common frequent
universality criterion. We state it for F -spaces, i.e., for complete and metrizable topological
vector spaces. In this setting, the notation ‖ · ‖ will stand for any F -norm defining the
topology of the F -space. By definition, a Fréchet space is a locally convex F -space (see for
e.g., [29]).
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We recall the definition of uniform unconditional convergence.

Definition 2.1. Let Λ be a set. We say that the series
∑
xλ,n, λ ∈ Λ in X converges

unconditionally uniformly for λ ∈ Λ if, for every ε > 0, there is some N ∈ N such that for
any finite set F ⊂ {N,N + 1, . . .}, one has∥∥∥∥∥∑

n∈F

xλ,n

∥∥∥∥∥ < ε

for every λ ∈ Λ.

Our general criterion of common frequent universality for countable families of operators
states as follows.

Theorem 2.2. Let X be a F -space, Y a separable F -space and Ti = (Ti,n)n∈N, i ∈ N, be
countably many sequences of continuous linear operators from X to Y . We assume that there
exist a dense subset Y0 of Y , mappings Si,n : Y0 → X, i, n ∈ N, and a real number c > 1
such that for every y ∈ Y0,

(1) the series
∑

0≤n≤m Ti,m(Si,m−n(y)) converges unconditionally, uniformly for m ∈ N
and i ∈ N;

(2) the series
∑

n≥0 Ti,m(Si,m+n(y)) converges unconditionally, uniformly for m ∈ N and
i ∈ N;

(3) the series
∑

n≥(c−1)m Ti,m(Sj,m+n(y)) converges unconditionally, uniformly for m ∈ N
and i 6= j ∈ N;

(4) the series
∑

c−1
c
m≤n≤m Ti,m(Sj,m−n(y)) converges unconditionally, uniformly for m ∈

N and i 6= j ∈ N;
(5) the series

∑
n≥0 Si,n(y) converges unconditionally, uniformly for i ∈ N;

(6) the sequence (Ti,n(Si,n(y)))n∈N converges to y, uniformly for i ∈ N.
Then there exists a vector x ∈ X which is frequently universal for every Ti, i ∈ N.

One may check that each Ti, i ∈ N, satisfies (1), (2), (5) and (6) if and only if it satisfies
the Frequent Universality Criterion given in [11].

For the proof, we will make use of the following refinement of [7, Lemma 6.19] and of ideas
developed in [8].

Lemma 2.3. For every K > 1 and every countable family (Np(i))p∈N, i ∈ N, of increasing
sequences of positive integers, there exists a countable family (Ep(i))p∈N, i ∈ N, of sequences
of subsets of N with positive lower density, such that for every (p, i), (q, j) ∈ N2 and every
(n,m) ∈ Ep(i)× Eq(j),

(1) min(Ep(i)) ≥ Np(i);
(2) if n 6= m, then |n−m| ≥ max(Np(i), Nq(j));
(3) if (p, i) 6= (q, j) and n > m, then n ≥ Km.

Proof. Let K > 1 and for every i ∈ N, let (Np(i))p∈N be an increasing sequence of positive
integers. For every i ∈ N, let us denote by (Ap(i))p∈N a sequence of pairwise disjoint syndetic
subsets of N. We recall that a subset A ⊂ N is syndetic if it has bounded gaps, that is

N =
⋃
n∈F

A− n

for some finite set F ⊂ N. We fix two real numbers 0 < ε < 1/2 and a > 1 satisfying

(2.1)
1− 2ε

1 + 2ε
a > K.
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For 0 < η < 1, let us set Iηu = [(1− η)au, (1 + η)au], u ∈ N. Then, for every (p, i) ∈ N2, we
define

Ep(i) =
⋃

u∈Ap(i)

(Iεu ∩ (Np(i)N)) .

By definition, (1) clearly holds and (2) is satisfied whenever (p, i) = (q, j). To prove that (2)
also holds for any (p, i) 6= (q, j), we first remark that for every u ∈ Ap(i), the inclusion

Iεu + [−Np(i), Np(i)] ⊆ I2ε
u

is equivalent to Np(i) ≤ εau. From now on we assume, up to removing finitely many elements
from each set Ap(i), that the previous inclusion holds for any (p, i) ∈ N2 and any u ∈ Ap(i).

Now, we observe that I2ε
u ∩ I2ε

v = ∅ for every u 6= v. Indeed, one may check that if u > v,
I2ε
u and I2ε

v are disjoint if and only if
1− 2ε

1 + 2ε
au−v > 1

which holds by (2.1). Altogether we deduce that the sets Ep(i), p, i ∈ N, are disjoint and
that (2) is satisfied.

To check that (3) also holds, observe first that (2.1) implies that K(1 + ε) < (1− ε)a. Let
(p, i), (q, j) ∈ N2, n ∈ Ep(i) and m ∈ Eq(j) such that n > m. Then, there exist u ∈ Ap(i)
and v ∈ Aq(j) with u > v so that:{

(1− ε)au ≤ n ≤ (1 + ε)au

(1− ε)av ≤ m ≤ (1 + ε)av.

Thus, we have
Km ≤ K(1 + ε)av < (1− ε)av+1 ≤ (1− ε)au ≤ n.

This proves (3).
Finally, it remains to prove that each set Ep(i) has positive lower density. Let p, i ∈ N

and (uk)k∈N be an enumeration of the set Ap(i) and let M be the maximal size of a gap in
Ap(i). Then,

d(Ep(i)) ≥ lim inf
k→∞

card(Ep(i) ∩ [0, d(1 + ε)auke])
d(1 + ε)auk+1e

≥ lim inf
k→∞

(
2εauk

2Np(i)
− 2

)
1

auk+1 + 1

≥ lim inf
k→∞

(
εauk

Np(i)
− 2

)
1

auk+M + 1

=
ε

Np(i)aM + 1
> 0.

This ends the proof of the lemma. �

We are now ready to prove Theorem 2.2.

Proof of Theorem 2.2. Within the proof, the notation ‖·‖ will be indifferently used to denote
an F -norm defining the topologies of X or Y . Since Y is separable, we can assume that
Y0 = {y0, y1, . . .}. Let (εp)p∈N be a decreasing sequence of positive real numbers such that∑

p≥0 εp < 1 and pεp → 0 as p → ∞. We also fix an increasing sequence (Jp)p∈N such
that

∑
i≥Jp εi < εp. The assumptions of the theorem imply the existence of a sequence

(Np(i))i,p∈N, increasing with respect to p ∈ N such that for every i, p ∈ N, every finite set
F ⊂ {Np(i), Np(i)+1, . . .}, every m ∈ N, every q ∈ {0, . . . , p}, every k ∈ N, every l 6= k ∈ N,
and every N ≥ Np(i),
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(i)
∥∥∑
n∈F
n<m

Tk,m(Sk,m−n(yq))
∥∥ < εp;

(ii)
∥∥∑
n∈F

Tk,m(Sk,m+n(yq))
∥∥ < εp;

(iii)
∥∥ ∑

n∈F
n≥(c−1)m

Tk,m(Sl,m+n(yq))
∥∥ < εpεi;

(iv)
∥∥ ∑

n∈F
n≥(c−1)m

Tk,m(Sl,m+n(yq))
∥∥ < εJpεp;

(v)
∥∥ ∑

n∈F
c−1
c
m≤n≤m

Tk,m(Sl,m−n(yq))
∥∥ < εpεi;

(vi)
∥∥ ∑

n∈F
c−1
c
m≤n≤m

Tk,m(Sl,m−n(yq))
∥∥ < εJpεp;

(vii)
∥∥∑
n∈F

Sk,n(yq)
∥∥ < εpεi;

(viii)
∥∥Tk,N(Sk,N(yp))− yp

∥∥ < εp.

Let (Ep(i))i,p∈N be a sequence of sets given by Lemma 2.3 applied to the sequence (Np(i))i,p∈N
and to K = c. We put

x =
∑
i∈N

∑
p∈N

∑
n∈Ep(i)

Si,n(yp).

One easily checks that x ∈ X. Indeed, since for every p, i ∈ N, min(Ep(i)) ≥ Np(i), (vii)
gives ∑

i∈N

∑
p∈N

∥∥∥∥ ∑
n∈Ep(i)

Si,n(yp)

∥∥∥∥ <∑
i∈N

∑
p∈N

εpεi <∞.

Note that x is even unconditionally convergent. Our goal is now to prove that x is a frequently
universal vector for each sequence (Ti,n)n∈N, i ∈ N. We fix j ∈ N. Let (rq)q∈N be a sequence
of positive real numbers with rq → 0 as q → ∞, to be chosen later. Since the sets Ep(i),
i, p ∈ N, have positive lower density, it is sufficient to prove that
(2.2) ‖Tj,m(x)− yq‖ < rq for every q ∈ N and every m ∈ Eq(j).

Let us then fix q ∈ N and m ∈ Eq(j). Using that Ep(i) ∩ Eq(j) = ∅ if (i, p) 6= (j, q) and
that x is unconditionally convergent in X, we can decompose Tj,m(x) as follows:

Tj,m(x) = Tj,m(Sj,m(yq)) +

Am︷ ︸︸ ︷∑
p∈N

∑
n∈Ep(j)
n6=m

Tj,m(Sj,n(yp)) +

Bm︷ ︸︸ ︷∑
i∈N
i 6=j

∑
p∈N

∑
n∈Ep(i)
n6=m

Tj,m(Si,n(yp)) .

First, since m ≥ Nq(j), (viii) gives
(2.3) ‖Tj,m(Sj,m(yq))− yq‖ < εq.

We next estimate ‖Am‖:

‖Am‖ ≤
∑
p∈N

∥∥∥∥ ∑
n∈Ep(j)
n<m

Tj,m(Sj,m−(m−n)(yp))

∥∥∥∥+

∥∥∥∥ ∑
n∈Ep(j)
n>m

Tj,m(Sj,m+(n−m)(yp))

∥∥∥∥
 .

Given that |n−m| ≥ max(Np(j), Nq(j)) for any n ∈ Ep(j), n 6= m, (i) and (ii) yield

(2.4) ‖Am‖ < 2
∑
p<q

εq + 2
∑
p≥q

εp =: r1,q.

We now turn to estimating ‖Bm‖. Again, by unconditional convergence of the series, we
have

‖Bm‖ ≤

B1
m︷ ︸︸ ︷∑

p∈N

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥+

B2
m︷ ︸︸ ︷∑

p∈N

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ .
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We deal first with B2
m. We have

B2
m ≤

∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥

+
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥+
∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥
 .(2.5)

We recall that Lemma 2.3 was applied to K = c. So, for n ∈ Ep(i) with (i, p) 6= (j, q), we
have |n−m| ≥ max(Np(i), Nq(j)). Moreover, n > m implies n ≥ cm, hence n−m ≥ (c−1)m.
In particular, n−m ≥ max(Np(i), (c− 1)m). It follows from (iii) that

(2.6)
∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ ≤∑
p≥q

∑
i∈N

εiεp ≤
∑
p≥q

εp

and that

(2.7)
∑
p<q

∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ ≤∑
p<q

εp
∑
i≥Jq

εi ≤ qεq.

In the last inequality, we use that 0 < εq < 1 and the fact that
∑

i≥Jq εi ≤ εq. Now, using
that n−m ≥ Nq(j) for any n ∈ Ep(i) with (i, p) 6= (j, q), we get from (iv) that

(2.8)
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))

∥∥∥∥ ≤∑
p<q

∑
i<Jq

εJqεq ≤ qεqJqεJq .

Thus, (2.5), (2.6), (2.7) and (2.8) altogether give

(2.9) B2
m ≤

∑
p≥q

εp + qεq + qεqJqεJq =: r2,q.

To finish, we consider B1
m. We have

B1
m ≤

∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥

+
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥+
∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥
 .(2.10)

For n ∈ Ep(i) with (i, p) 6= (j, q), we have |n −m| ≥ max(Np(i), Nq(j)). Moreover, n < m
gives n ≤ m/c, hence c−1

c
m ≤ m− n ≤ m. So (v) implies

(2.11)
∑
p≥q

∑
i∈N
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥ ≤∑
p≥q

∑
i∈N

εiεp ≤
∑
p≥q

εp

and

(2.12)
∑
p<q

∑
i≥Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥ ≤∑
p<q

εp
∑
i≥Jq

εi ≤ qεq.



COMMON FREQUENT HYPERCYCLICITY 9

Now, since m− n ≥ Nq(j), for n ∈ Ep(i), (p, i) ∈ N2, (vi) yields

(2.13)
∑
p<q

∑
i<Jq
i 6=j

∥∥∥∥ ∑
n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))

∥∥∥∥ ≤∑
p<q

∑
i<Jq

εJqεq ≤ qεqJqεJq .

Thus, (2.10), (2.11), (2.12) and (2.13) imply B1
m ≤ r2,q (see (2.9) for the definition of r2,q).

The previous inequality, together with (2.3), (2.4) and (2.9) give (2.2), setting rq = εq +
r1,q + 2r2,q which, by assumption, tends to 0 as q → +∞. �

It will often happen that in the assumptions of Theorem 2.2, Si will be self-mappings of
X0 and right inverses of the operators Ti on X0. It is in particular the case if T satisfies the
so-called Frequent Hypercyclicity Criterion. Because we will refer to it several times in the
paper, we recall its statement below.

Theorem 2.4 (Frequent Hypercyclicity Criterion (see Theorem 6.18 in [7])). Let X be a
separable F -space and T a continuous linear operator on X. We assume that there exist a
dense subset X0 of X and a mapping S : X0 → X0 such that for every x ∈ X0,

(1) the series
∑

n≥0 T
n(x) and

∑
n≥0 S

n(x) converge unconditionally;
(2) the equality T n(Sn(x)) = x holds.

Then T is frequently hypercyclic.

In this context, Theorem 2.2 reads as follows.

Corollary 2.5. Let X be a separable F -space and let (Ti)i∈N be countably many continuous
linear operators on X. We assume that there exist a dense subset X0 of X, mappings
Si : X0 → X0, i ∈ N, and a real number c > 1 such that for every x ∈ X0,

(1) the series
∑

n≥0 T
n
i (x) and

∑
n≥0 S

n
i (x) converge unconditionally, uniformly for i ∈

N;
(2) the series

∑
n≥(c−1)m T

m
i (Sm+n

j (x)) converges unconditionally, uniformly for m ∈ N
and i 6= j ∈ N;

(3) the series
∑

c−1
c
m≤n≤m T

m
i (Sm−nj (x)) converges unconditionally, uniformly for m ∈ N

and i 6= j ∈ N;
(4) the sequence Ti(Si(x)) = x for every i ∈ N.

Then there exists a common frequently hypercyclic vector for the family (Ti)i∈N.

Note that Corollary 2.5 coincides with the Frequent Hypercyclicity Criterion when the
family (Ti)i∈N is reduced to a single operator. Moreover, observe that the second part of (1)
is a consequence of (2) by taking m = 0.

These two results apply to many situations and are sometimes sharp. This is described in
the next paragraphs.

2.2. Common frequent hypercyclicity for multiples of a single operator. Let us
first give necessary conditions for the existence of common frequently hypercyclic vectors for
multiples of a given operator.

2.2.1. Necessary conditions. In this paragraph, we assume that X is a Banach space.
We recall that if T is a bounded linear operator on X and Λ ⊂ (0,+∞), then for the
family (λT )λ∈Λ to have a common frequently hypercyclic vector, Λ has to be countable [3,
Proposition 6.4]. The following proposition shows that Λ must also satisfy two other non-
trivial conditions. We will denote by r(T ) the spectral radius of T and we recall the spectral
radius formula [29]:

r(T ) = inf
n≥1
‖T n‖1/n = lim

n→∞
‖T n‖1/n.
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Proposition 2.6. Let X be a Banach space, T a bounded linear operator on X and Λ ⊂
(0,+∞) be a set with at least two elements. If Λ is unbounded or 1/r(T ) ≥ inf(Λ), then⋂

λ∈Λ

FHC(λT ) = ∅.

Proof. First of all, let us recall that if λ < 1/r(T ), then λT is not hypercyclic. We only
prove the case where 1/r(T ) = inf(Λ), the case Λ unbounded being treated very similarly.
To start with, let us first assume that 1/r(T ) is an accumulation point of Λ. We fix λ0 ∈ Λ.
Upon taking a subsequence, we can suppose that Λ = (λk)k∈N is decreasing to 1/r(T ). We
may and shall also assume that there exists x ∈ X which is hypercyclic for all λkT , k ∈ N.
We fix x0 ∈ X \ {0} with ‖x0‖ = 1 and denote by Nk, k ≥ 0, the sets respectively given by

N0 :=

{
n ∈ N : ‖λn0T n(x)‖ < 1

}
and Nk :=

{
m ∈ N : ‖λmk Tm(x)− x0‖ <

1

2

}
, k ≥ 1.

By assumption, each Nk, k ≥ 0, is infinite. So there exist two increasing sequences (mk)k≥1

and (nk)k≥1 such that for every k ≥ 1, mk ∈ Nk and

nk = max{n < mk : n ∈ N0}.

Then, from the definition of nk, k ≥ 1, we get

(2.14) d(N0) ≤ lim sup
k→∞

card(N0 ∩ {0, . . . ,mk − 1})
mk

≤ lim sup
k→∞

nk
mk

.

Now, by construction, we have for any k ≥ 1,

‖T nk(x)‖ < λ−nk0 and
λ−mkk

2
< ‖Tmk(x)‖ ≤ ‖Tmk−nk‖‖T nk(x)‖.

It follows for any k ≥ 1,
λnk0

λmkk
< 2‖Tmk−nk‖,

whence

(2.15)
(
λ0

λk

)nk
≤ 2λmk−nkk ‖Tmk−nk‖ ≤ 2(λ0‖T‖)mk−nk .

Since (λk)k∈N is decreasing and nk → +∞, we first deduce from the last inequality that
mk − nk → +∞. This gives r(T ) = limk→∞ ‖Tmk−nk‖1/(mk−nk). We also derive from (2.15)
the following: (

λ0

λk

)nk/mk
≤ 21/mkλ

1−nk/mk
k ‖Tmk−nk‖1/mk for any k ≥ 1,

which implies, using that mk → +∞ and mk − nk → +∞,

lim sup
k→∞

nk
mk

≤ 1

ln(r(T )λ0)
lim sup
k→∞

(
ln(λk‖Tmk−nk‖

1
mk−nk )

)
= 0,

since, by assumption, (λk)k∈N is decreasing to 1/r(T ). This with (2.14) shows that x is not
frequently hypercyclic for λ0T when 1/r(T ) is an accumulation point of Λ.

Let us deal with the remaining case, i.e., 1/r(T ) ∈ Λ but 1/r(T ) is not an accumulation
point of Λ. We will in fact prove the stronger fact that, if 1/r(T ) and λ are distinct and
both in Λ, then r(T )−1T and λT share no frequently hypercyclic vectors. The proof goes
along the same lines as above. Let us denote µ = 1/r(T ). Let λ ∈ Λ such that λ 6= µ. By
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assumption λ/µ > 1. We may and shall assume that some x ∈ X is hypercyclic for λT and
µT and we set, for some vector x0 ∈ X with ‖x0‖ = 1,

Nλ :=

{
n ∈ N : ‖λnT n(x)‖ < 1

}
and Nµ :=

{
m ∈ N : ‖µmTm(x)− x0‖ <

1

2

}
, k ≥ 1.

As above, since these sets are infinite, one can define an increasing sequence of integers
(mk)k∈N ⊂ Nµ, tending to +∞, such that the sequence (nk)k∈N defined by

nk := max{n < mk : n ∈ Nλ}
is increasing. We have d(Nλ) ≤ lim supk→∞

nk
mk

and, proceeding exactly as in the first part
of the proof, mk − nk → +∞ and(

λ

µ

)nk
≤ 2µmk−nk‖Tmk−nk‖, k ∈ N.

Therefore

d(Nλ) ≤ lim sup
k→∞

nk
mk

≤ 1

ln(r(T )λ)
lim sup
k→∞

(
ln(µ‖Tmk−nk‖

1
mk−nk )

)
= 0,

so x is not frequently hypercyclic for λT . �

Let us make two remarks.

Remark 2.7. The proof of the previous proposition tells us a bit more than its statement.
More precisely, we have shown that, if Λ is unbounded or if 1/r(T ) ∈ Λ, and if x ∈ X is
a common hypercyclic vector for all λT , then it is not frequently hypercyclic for any λT ,
λ 6= 1/r(T ). If, for e.g., T is the backward shift B on `2(N), this is not difficult to see
that the set

⋂
λ>1HC(λB) is different from the set HC(µB) for any µ > 1. In fact, by the

previous, we have, for µ > 1,

FHC(µB) ⊂ HC(µB) \
⋂
λ>1

HC(λB).

Another interesting feature of Proposition 2.6 (more precisely of the second part of its
proof) is that it gives an idea of how to build two frequently hypercyclic operators having
no common frequently hypercyclic vectors. This will be detailed later, see Corollary 2.28).

Remark 2.8. One can wonder whether non-trivial conditions for common frequent hyper-
cyclicity of families of non-zero real multiples of a single operator remain true for more
general families of operators.

Recall that Bayart proved in [3] that a family of multiples of a single operator can admit
a common frequently hypercyclic vector only this family is countable. However, we already
know that some uncountable families of operators may have common frequently hypercyclic
vectors (e.g., translation operators or composition operators, see [3, 4]). Moreover, the
León-Müller theorem for frequent hypercyclicity ([7, Theorem 6.28]), which asserts that
FHC(λT ) = FHC(T ) for any λ ∈ C, |λ| = 1, shows that uncountable families of complex
multiples of an operator on a complex separable Banach space may have common frequently
hypercyclic vector.

Now, let us focus on the necessary conditions given by Proposition 2.6. Note that requiring
the index set to be bounded is equivalent to impose the family of real numbers (‖λT‖)λ∈Λ

to be bounded. Besides, the second condition is equivalent for the family (r(λT ))λ∈Λ to be
bounded away from 1. Therefore, our question can be rephrased as follow: for a given family
(Ti)i∈N of bounded linear operators on X to share common frequently hypercyclic vectors, is
it necessary for the families (‖Ti‖)i∈N and (r(Ti))i∈N to be respectively bounded and bounded
away from 1? The answer is no: consider the family (T p)p≥1 of the positive iterates of a
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frequently hypercyclic operator T on X. By Ansari’s theorem for frequent hypercyclicity,
FHC(T ) = FHC(T p) for any p ≥ 1. Since a hypercyclic operator cannot be power-bounded,
the family (‖T p‖)p≥1 is not bounded. Moreover, if r(T ) = 1, then by the spectral radius
formula, r(T p) = r(T )p = 1 for any p ≥ 1. Note that, if X is complex, by León-Müller’s
theorem, the multiples λT with |λ| = 1 also have spectral radii equal to 1 and yet have common
frequently hypercyclic vectors. An example of a frequently hypercyclic operator whose spectral
radius is one is given in Corollary 2.28.

Given any bounded linear operator T on X and any λ > 1/r(T ), there is no reason in
general for λT to be frequently hypercyclic and, even if λT is frequently hypercyclic, it
may not satisfy the Frequent Hypercyclicity Criterion. In the next paragraph we search
for condition on a countable set Λ ⊂ (0,+∞) for multiples λT of some operator T to have
common frequently hypercyclic vectors.

2.2.2. Sufficient conditions. Let us fix a separable Fréchet spaceX and a continuous linear
operator T on X. We introduce some quantities which will play an important role in the
sequel. Given X0 a dense subset of X and a mapping S : X0 → X0 such that T (S(x)) = x
for x ∈ X0, we denote by

aT (X0, S) = inf
{
λ > 0 :

∑
n≥0

Sn

λn
(x) converges unconditionally for all x ∈ X0

}
= inf{λ > 0 : (λ−nSn(x))n∈N is bounded for all x ∈ X0}

and

bT (X0, S) = sup
{
λ > 0 :

∑
n≥0

(λT )n(x) converges unconditionally for all x ∈ X0

}
= sup{λ > 0 : ((λT )n(x))n∈N is bounded for all x ∈ X0}.

When X is a Banach space, one easily checks that

aT (X0, S) = sup
x∈X0

lim sup
n→∞

‖Sn(x)‖1/n and bT (X0, S) = inf
x∈X0

1

lim supn→∞ ‖T n(x)‖1/n
.

So, by the spectral radius formula, we have

(2.16) aT (X0, S) ≥ r(T )−1 and bT (X0, S) ≥ r(T )−1.

Note that bT (X0, S) may be infinite, for e.g., if X0 =
⋃
n≥0 ker(T n) is dense in X. This is for

example the case if T is any weighted backward shift acting on a Fréchet space X with an
unconditional basis. More specifically, if T is the backward shift B on `2(N), then S can be
taken as the forward shift F and we have equalities in (2.16) with aB(X0, F ) = 1/‖B‖ = 1
(see Paragraph 2.3 for a focus on weighted shifts).

With these notations, a criterion of common hypercyclicity, due to Bayart and Matheron,
can be rephrased as follows.

Theorem 2.9 (Proposition 4.2 in [6]). Let X be a separable Fréchet space and let T be a
continuous linear operator on X. We assume that there exist X0 ⊂

⋃
n∈N ker(T n) and a

mapping S : X0 → X0 such that X0 is dense in X and T (S(x)) = x for all x ∈ X0. Then⋂
λ>aT (X0,S) HC(λT ) is a dense Gδ subset of X.

Now let us observe that, by definition, for any aT (X0, S) < λ < bT (X0, S) the family
(λnT n)n∈N satisfies the Frequent Universality Criterion [11]. So it is natural to wonder
under which extra condition the family λT , aT (X0, S) < λ < bT (X0, S), has a common
frequently hypercyclic vector. In virtue of the necessary conditions given in Paragraph 2.2.1,
the following criterion is a quite natural extension of Bayart and Matheron’s result.
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Theorem 2.10. Let X be a separable Fréchet space and T a continuous linear operator on
X. We assume that there exist a dense subset X0 of X and a mapping S : X0 → X0 such
that T (S(x)) = x for all x ∈ X0. If Λ is a countable relatively compact non-empty subset of
(aT (X0, S), bT (X0, S)), then

⋂
λ∈Λ FHC(λT ) 6= ∅.

The proof is based on the following lemma, where it is assumed that E ⊂ (a, b) with a < b
means E = ∅.

Lemma 2.11. With the assumptions of Theorem 2.10, let Λ be a relatively compact subset
of (aT (X0, S), bT (X0, S)). Then there exists c > 1 such that for any x ∈ X0,
(i) the series

∑
n≥0(λT )n(x) converges unconditionally, uniformly for λ ∈ Λ;

(ii) the series
∑

n≥0

(
S
λ

)n
(x) converges unconditionally, uniformly for λ ∈ Λ;

(iii) the series
∑

n≥(c−1)m(λ
µ
)m(S

µ
)n(x) converges unconditionally, uniformly for m ∈ N and

λ, µ ∈ Λ;
(iv) the series

∑
m≥n≥ c−1

c
m(λ

µ
)m−n(λT )n(x) converges unconditionally, uniformly for m ∈ N

and λ, µ ∈ Λ.

Proof. Let us denote by ‖ · ‖ any continuous semi-norm on X. For notational simplicity, we
shall denote a = aT (X0, S) and b = bT (X0, S). We only prove (ii) and (iii). The conditions
(i) and (iv) are respectively proved in a similar way. Let a < d < inf(Λ). To get (ii), it is
enough to write, for λ ∈ Λ and m ∈ N, (S

λ
)n(x) = ( d

λ
)n(S

d
)n(x), and use that d

λ
≤ d

inf(Λ)
< 1

and that (S
d
)n(x) is bounded for any x ∈ X0 by some constant independent of λ ∈ Λ and

n ∈ N.
To prove (iii), let us fix x ∈ X0. By assumption, the series

∑
n≥0

(
S
d

)n
(x) is unconditionally

convergent. We also let c > 1 be such that

sup(Λ)

inf(Λ)

(
d

inf(Λ)

)c−1

≤ 1,

and we write∑
n≥(c−1)m

(
λ

µ

)m(
S

µ

)n
(x) =

∑
n≥(c−1)m

(
λ

µ

(
d

µ

)c−1
)m(

d

µ

)n−(c−1)m(
S

d

)n
(x).

Since the quantity (
λ

µ

(
d

µ

)c−1
)m(

d

µ

)n−(c−1)m

is bounded by 1 uniformly for λ, µ ∈ Λ,m ∈ N and n ≥ (c−1)m, we get (iii) by unconditional
convergence of the series

∑
n≥0

(
S
d

)n
(x). �

Let us now prove Theorem 2.10.

Proof of Theorem 2.10. It is enough to check that the sequences ((λT )n)n∈N and ((S/λ)n)n∈N,
λ ∈ Λ, satisfy the assumptions (1)–(6) of Theorem 2.2. (6) is trivial, while (1), (2) and (5)
are direct consequences of (i) and (ii) of Lemma 2.11. Now, (3) and (4) follow from (iii) and
(iv) of Lemma 2.11, after observing that for any λ 6= µ ∈ Λ, x ∈ X0,∑

n≥(c−1)m

(λT )m
(
S

µ

)m+n

(x) =
∑

n≥(c−1)m

(
λ

µ

)m(
S

µ

)n
(x)

and ∑
c−1
c
m≤n≤m

(λT )m
(
S

µ

)m−n
(x) =

∑
c−1
c
m≤n≤m

(
λ

µ

)m−n
(λT )n(x).
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�

A slight modification of the proof of Theorem 2.10 yields to the following universal version.

Proposition 2.12. Let X be a separable Fréchet space, T a bounded linear operator on X,
X0 a dense subset of X and a mapping S : X0 → X0 such that T (S(x)) = x for all x ∈ X0.
Let also (λi,n)n≥1, i ∈ N, be a countable family of sequences in (0,+∞). We assume that

(1) there exist c, d ∈ (aT (X0, S), bT (X0, S)) such that λi,n ∈ (cn, dn) for any i ∈ N, n ≥ 1;
(2) there exists C > 0 such that C−1λi,n+m ≤ λi,nλi,m ≤ Cλi,n+m for any n,m, i ∈ N.

Then ⋂
i∈N

FU((λi,nT
n)n) 6= ∅.

Together with the result of Paragraph 2.2.1, Theorem 2.10 gives a necessary and sufficient
condition on a set Λ ⊂ (0,+∞) for common frequent hypercyclicity of the family λT ,
λ ∈ Λ, for any T in a certain subclass of operator acting on a Banach space. Recall that if
λ < 1/r(T ), then λT is not hypercyclic.

Corollary 2.13. Let X be a separable Banach space, T be a bounded linear operator on X
and Λ ⊂ (0,+∞) with at least two elements. We assume that there exist a dense subset X0

of X and a mapping S : X0 → X0 such that T (S(x)) = x for all x ∈ X0. We also suppose
that aT (S,X0) = 1/r(T ) and bT (S,X0) = +∞. Then,⋂

λ∈Λ

FHC(λT ) 6= ∅

if and only if Λ is countable and relatively compact in (1/r(T ),+∞).

The following question arises. It will be investigated later for the class of weighted shifts,
see Paragraph 2.3.2.

Question 2.14. For those operators T such that aT (S,X0) > 1/r(T ) for some S and X0

as in Corollary 2.13, can one improve the necessary condition on Λ ⊂ (0,+∞), given in
Proposition 2.6, for the multiples λT to have common frequently hypercyclic vectors?

To conclude the paragraph, let us combine the previous results with León-Müller’s theorem
and Ansari’s theorem for frequent hypercyclicity, see respectively [7, Theorem 6.28] and [4,
Theorem 4.7]. We recall that they tell us that FHC(λT ) = FHC(T ) = FHC(T p) for any
λ ∈ C, |λ| = 1, and any positive integer p. These with Theorem 2.10 thus imply:

Corollary 2.15. Let X be a separable complex Fréchet space, T a bounded linear operator
on X and Λ a non-empty subset of C. We assume that there exist a dense subset X0 of X
and a mapping S : X0 → X0 such that T (S(x)) = x for all x ∈ X0. If the set {|λ| : λ ∈ Λ}
is a countable relatively compact subset of (aT (X0, S), bT (X0, S)), then⋂

λ∈Λ

FHC(λT ) 6= ∅.

Moreover, if the set {|λ|1/p : p ∈ N∗, λ ∈ Λ} is a countable relatively compact subset of
(aT (X0, S), bT (X0, S)), then ⋂

λ∈Λ, p∈N∗
FHC(λT p) 6= ∅.

Note that the second condition is a consequence of the first one if aT (X0, S) < 1 and
bT (X0, S) = +∞ (for e.g., for a large class of weighted shifts, see the next paragraph).
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Remark 2.16. WhenX is a separable Banach space, if aT (X0, S) = 1/r(T ) and bT (X0, S) =
+∞ and Λ has at least two elements, then the sufficient conditions on Λ ⊂ C given in
Corollary 2.15 are also necessary.

We shall make another remark.

Remark 2.17. It should be noticed that the definitions of aT (X0, S) and bT (X0, S) depend
a priori on X0 and S. In particular, it could happen that for some T ∈ L(X), there exist
couples (X0, S0) and (X1, S1) such that aT (X1, S1) < aT (X0, S0). Thus this is tempting to
introduce the quantities

aT := inf
(X0,S)

aT (X0, S) and bT := sup
(X0,S)

bT (X0, S),

where the infimum and the supremum are taken over all couples (X0, S) such thatX0 is dense
in X and S : X0 → X0 is such that T (S(x)) = x for every x ∈ X0. But the conclusions
of the previous results may not hold true replacing aT (X0, S) by aT and bT (X0, S) by bT .
Indeed, this might happen that for some (X0, S), aT (X0, S) is very close to aT but bT (X0, S)
is very small compared to bT .

However, if T := Bw is a frequently hypercyclic weighted shift acting on `p(N), 1 ≤ p <
+∞, it turns out that aT = aT (c00(N), Fw) and bT = bT (c00(N), Fw) = +∞, see the next
paragraph for the formal definitions of c00(N) and Fw. This is a consequence of Bayart and
Ruzsa’s theorem [8].

In the next section we concentrate our attention on common frequent hypercyclicity for
the important class of weighted shifts.

2.3. Common frequent hypercyclicity for weighted shifts. In this whole section, we
assume that X is a Fréchet space with an unconditional basis (en)n∈N. We call weight a
sequence of nonzero real numbers. Given a weight w = (wn)n∈N, the weighted shift Bw is
defined, for x =

∑
n≥0 xnen ∈ X, by

Bw(x) =
∑
n≥0

wn+1xn+1en.

The series
∑

n≥0wn+1xn+1en may not be convergent in X for all x ∈ X yet, by the Closed
Graph Theorem, Bw maps X into itself if and only if it is continuous on X. In this case, it
is equivalently defined by Bw(en) = wnen−1, n ≥ 0, with the convention e−1 = 0.

For any weight w, Bw admits a (formal) right inverse, that we denote Fw, given by

Fw(x) =
∑
n≥1

xn−1

wn
en

for x =
∑

n≥0 xnen ∈ X. The series
∑

n≥1
xn−1

wn
en may not belong to X, but Fw is well-defined

from c00(N) := span(en : n ≥ 0) into itself and Fw(en) = en+1/wn+1, n ≥ 0. Note that the
map Fw is referred to as the forward shift associated to the weight w−1 := (w−1

n )n≥0.

We recall that a continuous weighted shift Bw on X is frequently hypercyclic whenever
the series ∑

n≥1

(w1 . . . wn)−1en

is convergent in X, see [24, Corollary 9.14].
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2.3.1. General criteria. We first state a criterion of common frequent hypercyclicity for
general families of weighted shifts, derived from Corollary 2.5.

Theorem 2.18. Let X be a separable Fréchet space with an unconditional basis (en)n∈N and
w(i) = (wn(i))n∈N, i ∈ N, be countably many weights for which every Bw(i), i ∈ N, is a
continuous operator on X. We assume that there exist a weight ω = (ωn)n∈N, constants
M ≥ 1 and 0 < η ≤ 1 with either M = η = 1 or M 6= 1 and η 6= 1, and a constant C > 0,
such that for any i ∈ N and any n ≥ 0, m ≥ 1,
(i) the series

∑
k≥1(ω1 . . . ωk)

−1ek is unconditionally convergent in X;
(ii) |ωn . . . ωn+m| ≤ Cηm|wn(i) . . . wn+m(i)|;
(iii) C−1M−m ≤ |wn(i) . . . wn+m(i)| ≤ CMm.
Then there exists a common frequently hypercyclic vector for the family (Bw(i))i∈N.

Proof. We consider X0 = span(ek : k ≥ 0). Since X0 is dense in X, up to taking Si := Fw(i),
i ∈ N, we need only check that the assumptions (1)–(4) of Corollary 2.5 are satified for any
x = ek, k ∈ N. Let us then fix k ∈ N. Observe that (4) is trivially satisfied. From now on,
for l < 0, we use the notations el = 0 and wl(i) = 0, i ∈ N. For any i, j, l,m ∈ N, let us write

Bm
w(i)(F

l
w(j)(ek)) =

wk+l−m+1(i) . . . wk+l(i)

wk+1(j) . . . wk+l(j)
ek+l−m.

Note that Bn
w(i)(ek) = 0 whenever n > k. This gives the first part of (1) in Corollary 2.5.

Moreover, for every i ∈ N,

(2.17)
∑
n≥0

F n
w(i)(ek) =

∑
n≥0

1

wk+1(i) . . . wk+n(i)
ek+n.

By assumption (ii), we have |wk+1(i) . . . wk+n(i)| > |ωk+1 . . . ωk+n| for every n ≥ 1 and i ∈ N.
So, by condition (i) and using that (en)n∈N is an unconditional basis, we get that the left-
hand side term in (2.17) is unconditionally convergent in X, uniformly for i, hence the second
part of (1) in Corollary 2.5.

Let us now turn to proving that (2) in Corollary 2.5 holds. We write

Bm
w(i)(F

m+n
w(j) (ek)) =

wk+n+1(i) . . . wk+n+m(i)

wk+1(j) . . . wk+n+m(j)
ek+n

=
wk+n+1(i) . . . wk+n+m(i)

wk+n+1(j) . . . wk+n+m(j)

ωk+1 . . . ωk+n

wk+1(j) . . . wk+n(j)
(ωk+1 . . . ωk+n)−1ek+n.

Let us first assume that M = η = 1. By (i), (ii) and (iii), the series
∑

n≥0B
m
w(i)(F

m+n
w(j) (ek))

is unconditionally convergent uniformly with respect to m ≥ 1 and i, j ∈ N. Therefore, the
assumption (2) is satisfied for every c > 1.

Let us now suppose that M > 1 so that η < 1. Let % ∈ (η, 1) and c > 1 be such
that M2%c−1 ≤ 1. By the condition (i) and unconditionality of (en)n∈N, the sequence
((ωk+1 . . . ωk+n)−1ek+n)n∈N is bounded. We denote by ‖ · ‖ any continuous semi-norm on
X. Then, for some constant K (depending only on η, C, k and the constant of uncondition-
ality of (en)n∈N) and thanks to the assumptions (ii) and (iii), we have for any n, i, j ∈ N and
m ≥ 1, ∥∥∥Bm

w(i)(F
m+n
w(j) (ek))

∥∥∥ ≤ KM2mηn.

Let us now write

M2mηn = (M2%c−1)m%n−(c−1)m

(
η

%

)n
≤
(
η

%

)n
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for any n ≥ (c − 1)m and m ≥ 1. As % ∈ (η, 1), the series
∑

n≥(c−1)mM
2mηn is absolutely

convergent, uniformly for m ≥ 0, and so the series
∑

n≥(c−1)mB
m
w(i)(F

m+n
w(j) (ek)) converges

unconditionally, uniformly for m ≥ 0 and i, j ∈ N. This implies (2) from Corollary 2.5.
That (3) in Corollary 2.5 holds in this setting is left to the reader. �

Remark 2.19. As a corollary of the proof, one may check that Theorem 2.18 remains true
if we suppose that there exist a weight ω = (ωn)n∈N and a constant C > 0, such that for any
i, j ∈ N and any n ≥ 0, m ≥ 1,
(i) the series

∑
k≥1(ω1 . . . ωk)

−1ek is unconditionally convergent in X;
(ii) |ωn . . . ωn+m| ≤ C|wn(i) . . . wn+m(i)|;
(iii) C−1 ≤

∣∣ w0(i)...wn(i)
w0(j)...wn(j)

∣∣ ≤ C.

In particular, if the family is composed of a finite (non-zero) number of frequently hypercyclic
operators, then it suffices to check (iii). Moreover, if two such operators satisfy that the
product of their weights are equivalent then they share frequent hypercyclic operators.

Let us give an example.

Example 2.20. Let 1 ≤ p < +∞. For λ ∈ (0,+∞), let Bw(λ) be the weighted shift on
`p(N), defined by wn(λ) = 1 + λ/n, n ≥ 1. In [17], it is proven that

⋂
λ>1HC(Bw(λ)) is

residual. Now, one may check that the series∑
n≥1

1

w1(λ) . . . wn(λ)
en

is unconditionally convergent in `p(N) if and only if λ > 1/p (where (en)n∈N is the unit
sequence in `p(N)). We can thus deduce from Theorem 2.18, applied with M = η = 1, that
for any countable relatively compact subset Λ of (1

p
,+∞), one has⋂

λ∈Λ

FHC(Bw(λ)) 6= ∅.

Observe that, by Bayart and Ruzsa’s theorem (see Remark 2.22 below), Bw(λ) is not fre-
quently hypercyclic on `p(N) if λ ≤ 1/p.

The main result of Paragraph 2.2 can be also applied to weighted shifts. Let X be a
separable Fréchet space with an unconditional basis (en)n∈N and set c00(N) = span(en :
n ≥ 0). With the notations of Paragraph 2.2, a slight generalization of Abakumov and
Gordon’s theorem states that the set of common hypercyclic vectors for the multiples λBw

of a continuous weighted shift Bw on X, λ > aBw(c00(N), Fw), is Gδ and dense in X see [7,
p. 178] or [6]. Note that this result can also be deduced from Theorem 2.9.

In this context, Theorem 2.10 reads as follows.

Corollary 2.21. Let X be a separable Fréchet space with an unconditional basis (en)n∈N and
let Bw be a continuous weighted shift on X. Then the set

⋂
λ∈Λ FHC(λBw) is non-empty

whenever Λ is any countable relatively compact non-empty subset of (aBw(c00(N), Fw),+∞).

Similarly, Corollary 2.13 tells us that if in Corollary 2.21 we assume in addition that
(aBw(c00(N), Fw) = r(Bw) and Λ has at least two elements, then the condition becomes also
necessary . Moreover Question 2.14 makes sense, and seems to be a bit more accessible in this
setting, especially when X = `p(N), 1 ≤ p < +∞. This particular case will be investigated
in the next paragraph.

To finish, we shall make a remark.
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Remark 2.22. Bayart and Ruzsa [8] proved in 2015 that, when acting on `p(N) spaces,
1 ≤ p <∞, weighted shifts are frequently hypercyclic if and only if they satisfy the Frequent
Hypercyclicity Criterion (i.e., they are chaotic). This result was extended to more general
classes of spaces in [13]. For instance, it is proved there that Bayart-Ruzsa’s theorem extends
to any Banach space with an unconditional basis (en)n∈N whenever (en)n∈N is boundedly
complete. We recall that a basis (en)n∈N in X is called boundedly complete if, for any
sequence of scalars (xn)n∈N, whenever the sequence(

N∑
n=0

xnen

)
N≥0

is bounded in X, then it is convergent in X. Examples of such Banach spaces are given
among Köthe sequence spaces (including of course `p(N) spaces). Note that the usual basis
of c0 is not boundedly complete.

Therefore, if in Theorem 2.18 we assume in addition that X is a Banach space and that
(en)n∈N is boundedly complete, then the condition (i) can simply be replaced by “Bω fre-
quently hypercyclic on X”.

In Fréchet spaces, bounded completeness of the unconditional basis (en)n∈N is not sufficient
any more, and some other conditions are given in [13]. As an application, it is shown that
on the space H(D) of analytic functions in the unit disc D, endowed with the locally uniform
Fréchet topology, a weighted shift is frequently hypercyclic if and only if it satisfies the
Frequent Hypercyclicity Criterion. Thus the previous remark also holds if the Banach space
X is replaced with H(D).

Moreover, if we assume that X is a Banach space with (en)n∈N as a boundedly complete
unconditional basis, then in the statement of Corollary 2.21, the quantity aBw(c00(N), Fw)
can be replaced by 0. This occurs in particular when X = `p(N), 1 ≤ p < +∞; see the next
paragraph.

2.3.2. Common frequent hypercyclicity for multiples of weighted shifts on `p(N).
In this paragraph we specify the study led in Section 2.2 and in the previous paragraph to
multiples of a single weighted shift acting on `p(N), 1 ≤ p < +∞.

Let us fix 1 ≤ p < +∞. We recall that `p(N) stands for the space of all sequences
x = (xn)n∈N of scalars for which ‖x‖ := (

∑
n∈N |an|p)1/p < +∞. Endowed with the norm ‖·‖,

it is a Banach space. The unit sequence (en)n∈N is a boundedly complete unconditional basis
of `p(N) and the subspace X0 := c00(N) = span(en : n ≥ 0) is dense in `p(N). A weighted
shift Bw is bounded on `p(N) if and only if the sequence w is bounded, i.e. supn∈Nwn < +∞,
in which case ‖Bw‖ = supn∈Nwn.

Most of the important quantities introduced in Section 2.2 can be explicitly computed
when working with weighted shifts on `p(N). We keep the notations of Paragraph 2.2.2
except for the spectral radius r(Bw) of a weighted shift Bw that we will simply denote by
rw. We also set

rp,w := sup{|λ| : λ ∈ σp(Bw)},
where σp(Bw) denotes de point spectrum of Bw (i.e., the eigenvalues of Bw). Then some
calculations give:

• X0 := ∪n≥1 ker(Bn
w), hence bBw(X0, Fw) = +∞;

• aBw(X0, Fw) = r−1
p,w = lim supn→∞(w1 . . . wn)−1/n, see e.g., [30, Theorem 8, p. 70];

• rw = limn→∞ (supk wk . . . wk+n)1/n.
Let us also introduce the quantity:

• λw := lim supn→∞(w1 . . . wn)1/n.
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We thus have
‖Bw‖−1 ≤ r−1

w ≤ λ−1
w ≤ r−1

p,w.

On the one hand, if w is a monotonic sequence (hence a convergent sequence to some
positive real number w∞), then r−1

w = λ−1
w = r−1

p,w = w−1
∞ . Note that if w is increasing, then

these quantities are also equal to ‖Bw‖−1. On the other hand, as shown by the next example,
it is not difficult to provide with weights w which allows to distinguish all or some of the
quantities ‖Bw‖−1, r−1

w , λ−1
w and r−1

p,w.

Example 2.23. Let a ≤ b ≤ c ≤ d be four positive real numbers, and let us define, for any
n ∈ N,

wn :=


a if n ∈ {1, . . . , 4} ∪ {k2(k−1)2

, . . . , 2k
2 − 1}

d if n = 2k
2

c if n ∈ {2k2
+ 1, 2k

2
+ k + 1}

b if n ∈ {2k2
+ k + 2, (k + 1)2k

2}

, k ≥ 2.

Then, one may check that

‖Bw‖−1 = 1/d ≤ r−1
w = 1/c ≤ λ−1

w = 1/b ≤ r−1
p,w = 1/a.

We recall that by Bayart and Ruzsa’s theorem [8], a weighted shift is frequently hypercyclic
on `p(N), 1 ≤ p < +∞, if and only if it satisfies the Frequent Hypercyclicity Criterion. Then,
for any 0 ≤ λ < r−1

p,w, λBw is not frequently hypercyclic. Together with Proposition 2.6 and
Corollary 2.13, we thus have the following so far:

Corollary 2.24. Let Bw be a bounded weighted shift on `p(N), 1 ≤ p < +∞, and let
Λ ⊂ (0,+∞) be a non-empty set. Then

(1) the set
⋂
λ∈Λ FHC(λBw) is non-empty whenever Λ is a countable relatively compact

subset of (r−1
p,w,+∞);

(2) the set
⋂
λ∈Λ FHC(λBw) is empty whenever Λ is unbounded, or Λ has at least two

elements and r−1
w ≥ inf(Λ).

In particular, if rp,w = rw and Λ has at least two elements, then the sufficient condition in
(1) is also necessary.

The next proposition is a slight improvement of (2) in the previous corollary, and a partial
answer to Question 2.14 in the present context.

Proposition 2.25. Let Bw be a weighted shift acting on `p(N) and let Λ be a subset of
(0,+∞) with at least two elements. If λ−1

w ≥ inf(Λ), then⋂
λ∈Λ

FHC(λT ) = ∅.

Proof. It is very similar to that of Proposition 2.6, so we only give the outline in the case
where Λ is a sequence (λk)k∈N decreasing to some λ∞ ≤ λ−1

w , and that there exists x =
(xn)n∈N ∈ `p(N) which is a hypercyclic vector for each λkBw, k ∈ N. As in the proof of
Proposition 2.6, we introduce the sets

N0 :=

{
n ∈ N : ‖λn0Bn

w(x)‖ < 1

}
and Nk :=

{
m ∈ N : ‖λmk Bm

w (x)− e0‖ <
1

2

}
, k ≥ 1.

Then we similarly define increasing sequences (nk)k≥1 ⊂ N0 and (mk)k≥1, tending to +∞,
with mk ∈ Nk, for k ≥ 1, and such that d(N0) ≤ lim supk→∞ nk/mk and, for any k ≥ 1,

λnk0 |wmk−nk+1 . . . wmk ||xmk | < 1 and λmkk |w1 . . . wmk ||xmk | >
1

2
.
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It follows, for any k ≥ 1,
λnk0

λmkk
< 2|w1 . . . wmk−nk |.

In particular mk − nk → +∞ and for any k ≥ 1,

(λ0/λk)
nk/mk < 21/mkλ

1−nk/mk
k |w1 . . . wmk−nk |1/mk ,

whence
d(N0) ≤ lim sup

k→∞

nk
mk

≤ C(lim sup
k→∞

ln(λk)− ln(λ−1
w )) ≤ 0,

for some constant C ≥ 0. Thus x is not frequently hypercyclic for λ0Bw. �

We then deduce the following.

Corollary 2.26. Let Bw be a weighted shift on `p(N) and let Λ be a non-empty subset of
(0,+∞) with at least two elements. We assume that λw = rp,w. Then⋂

λ∈Λ

FHC(λBw) 6= ∅

if and only if Λ is relatively compact in (r−1
p,w,+∞).

The question whether the last corollary holds true for any weighted shift remains open.
More precisely,

Question 2.27. Does the conclusion of Proposition 2.25 hold true if λ−1
w is replaced by r−1

p,w?

We conclude by applying the results of this paragraph in order to exhibit explicit frequently
hypercyclic weighted shifts which share no frequently hypercyclic vector.

Corollary 2.28. There exist two frequently hypercyclic weighted shifts on `p(N), 1 ≤ p <
+∞, with no common frequent hypercyclic vector.

Proof. Let (wn)n≥1 =
(
(n+1

n
)2
)
n≥1

. Since (wn)n≥1 is decreasing to 1, one has r−1
w = r−1

p,w =

λ−1
w = 1. Moreover, Bw is frequently hypercyclic, since

∑
n≥1(w1 . . . wn)−1 < ∞. Thus,

applying Proposition 2.25 with Λ = {1, λ}, λ > 1, we get FHC(Bw) ∩ FHC(λBw) = ∅. �

Remark 2.29. The proof of Proposition 2.25 shows a bit more striking fact: for any mono-
tonic weight w converging to w∞ > 0, w−1

∞ Bw shares a common frequently hypercyclic vector
with none of its multiple (different from itself).

2.4. Other examples. In this paragraph, we apply our general common frequent hyper-
cyclicity criterion (Theorem 2.2) to classical frequently universal sequences of operators which
are not weighted shifts.

Since almost all the classical examples of frequently hypercyclic operators satisfy the
Frequent Hypercyclicity Criterion, the range of applications of Theorem 2.10 is quite large.

Example 2.30 (Differential operators on H(C)). Let D be the differentiation operator on
H(C),Df(z) = f ′(z). Costakis and Mavroudis showed [16] that for any non-constant polyno-
mial P , P (D) satisfies Bayart and Matheron’s criterion (Theorem 2.9) with aP (D)(X0, S) = 0
and bP (D)(X0, S) = +∞ for some dense subset X0 of X and some right inverse S of P (D)
on X0. Thus, with the frequent hypercyclicity version of the León-Müller Theorem and
Theorem 2.10, we can deduce that⋂

λ∈Λ

FHC(λP (D)) 6= ∅,

for any countable relatively compact subset Λ of C∗.
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We shall now focus on applications of Theorem 2.2 to families of operators which are not
multiples of a single one.

Example 2.31 (Adjoint of a multiplication operator on the Hardy space). We denote by
D := {z ∈ C : |z| < 1} the unit disc, by H∞ the space of bounded analytic functions in D,
and by H2 the classical Hardy space,

H2 :=

{
f =

∑
k≥0

akz
k ∈ H(D) : ‖f‖2 :=

(∑
k≥0

|ak|2
)1/2

<∞

}
.

We recall that H∞ and H2 are Banach spaces, endowed respectively with the sup-norm
‖ · ‖∞ and ‖ · ‖2. Let Φ ∈ H∞ be such that Φ is not outer and 1/Φ ∈ H∞. We denote by
MΦ : H2 → H2 the multiplication operator with symbol Φ, MΦ(f) = Φf , and by M∗

Φ its
adjoint. It is known [7] that λM∗

Φ is frequently hypercyclic on H2 for any λ > ‖1/Φ‖∞ and
that ⋂

λ>‖1/Φ‖∞

HC(λM∗
Φ)

is a dense Gδ-subset of H2 [22].
Now, let us write the inner-outer decomposition Φ = uθ, with u outer and θ the non-

constant inner part of Φ. Let us define X0 := ∪n≥1Kn with Kn := H2 	 θnH2. Then X0 is
the generalized kernel of M∗

Φ and is dense in X0. Moreover, if we define S := M∗
1/uMθ, then

M∗
ΦS = Id and ‖S‖ = ‖1/Φ‖∞. We refer, for e.g., to the proof of [22, Theorem 3.1] for the

details concerning the previous claims. It is also known that r(M∗
Φ) = ‖Φ‖∞. Thus we have

‖Φ‖−1
∞ = r(M∗

Φ)−1 ≤ aM∗Φ(X0, S) ≤ ‖S‖ = ‖Φ−1‖∞

and bM∗Φ(X0, S) = +∞. Therefore, Theorem 2.10 directly implies that⋂
λ∈Λ

FHC(λM∗
Φ) 6= ∅,

whenever Λ is a countable relatively compact non-empty subset of (‖1/Φ‖∞,+∞).

In fact, we can deduce from Corollary 2.5 the following more general result.

Proposition 2.32. Let {Φλ : λ ∈ Λ} be a countable family of bounded analytic functions
on D with the same non-constant inner factor θ. We assume that

a := sup{‖Φ−1
λ ‖∞ : λ ∈ Λ} < 1 and M := sup{‖Φλ/Φµ‖∞ : λ ∈ Λ} <∞.

Then ⋂
λ∈Λ

FHC(M∗
φλ

) 6= ∅.

Proof. We aim to apply Corollary 2.5. By the comment after its statement, we need only
check items (2)–(4). Since the functions Φλ share the same non-constant inner factor, the set
X0 := ∪n≥1Kn with Kn := H2 	 θnH2 is the generalized kernel of each M∗

φλ
. Let uλ denote

the outer factor of Φλ. As recalled above, setting Sλ := M∗
1/uλ

Mθ, we have T nλ Snλ = Id for
any n ∈ N. So (2) and (4) of Corollary 2.5 are satisfied. Let λ 6= µ ∈ Λ and f ∈ X0. By
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assumption, there exists b ∈ (a, 1) such that for any m ∈ N, writing n = (c− 1)m+ s, s ≥ 0,

‖Tmλ (Sm+n
µ (f))‖2 = sup

‖g‖2=1

〈
Tmλ (Sm+n

µ (f)), g
〉

= sup
‖g‖2=1

〈
f,

(
uλ
uµ

)m(
θ̄

uµ

)n
g

〉
≤ ‖f‖2

∥∥∥∥uλuµ
∥∥∥∥m
∞

∥∥∥∥ 1

uµ

∥∥∥∥n
∞

≤ ‖f‖2

(
Mb(c−1)

)m
bn−(c−1)m

(a
b

)n
.

Since b ∈ (a, 1), (3) of Corollary 2.5 then follows by taking c > 1 such that Mb(c−1) ≤ 1. �

3. Periodic points at the service of common frequent hypercyclicity

Despite its apparent unpleasant formulation, the classical Frequent Hypercyclicity Crite-
rion turns out to be very useful for checking that natural operators are frequently hypercyclic
(and chaotic). We saw in the previous section that it fits well to formulating easy-to-use
sufficient conditions for common frequent hypercyclicity. In [23], the authors provided a
quite appealing new criterion for frequent hypercyclicity and chaos involving the periodic
points of the operator [23, Theorem 5.31]. It is shown there that all the operators which
satisfy the Frequent Hypercyclicity Criterion do also satisfy the assumptions of this new one.
However, it quickly appears from its statement that it is not so simple to use when dealing
with natural operators (for e.g., weighted shifts). Yet it is very well adapted to certain type
of operators which were introduced by Menet in [26] to build chaotic operators on `p(N)
which are not frequently hyperyclic. These operators have been extensively developed - and
called operators of C-type in [23, Section 6] to build several counter-examples.

In this section, we provide with a sufficient condition for common frequent hypercyclicity
derived from [23, Theorem 5.31]. In the whole section, X is a separable Banach space. We
recall that a vector x ∈ X is a periodic point for T ∈ L(X) if there exists p ∈ N such
T p(x) = x. Let us denote by Per(T ) the set of all periodic points for T . For x ∈ Per(T )
we denote by pT (x) the period of x for T (i.e., the smallest positive integer p such that
T p(x) = x).

Theorem 3.1. Let X be a separable Banach and let (Ts)s≥1 be a countable family of bounded
linear operators on X. We assume that there exist a dense linear subspace X0 of X with
Ts(X0) ⊂ X0 and X0 ⊂ Per(Ts) for any s ≥ 1, and a constant α ∈ (0, 1) such that the
following property holds true: for every s, q ≥ 1, every ε > 0 and every x, y ∈ X0, there exist
z ∈ X0 and integers n, d ≥ 1 such that, for every 1 ≤ t ≤ q,

(1) d is a multiple of pTt(y) and of pTt(z);
(2) ‖T kt (z)‖ < ε for every 0 ≤ k ≤ αd;
(3) ‖T n+k

s (z)− T ks (x)‖ < ε for every 0 ≤ k ≤ αd.
Then there exists a common frequently hypercyclic vector for the family (Ts)s≥1.

If the family (Ts)s≥1 is reduced to a single operator, Theorem 3.1 is exactly [23, Theorem
5.31]. Yet one should mention that the previous statement does not only mean "each Ts
satisfies the assumptions of [23, Theorem 5.31] with the same X0 and α". It would be
interesting to know whether two operators satisfying the assumptions of [23, Theorem 5.31]
with the same X0 and α automatically have a frequently hypercyclic vector in common.
Note that we already saw that an operator may share common frequently hypercyclic vectors
with none of its multiples (different from itself), even if they all satisfy the classical Frequent
Hypercyclicity Criterion (see Corollary 2.28). These operators satisfy [23, Theorem 5.31],
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but not with the same X0. Indeed, Per(T ) ∩ Per(λT ) = ∅ in general. In passing, observe
then that Theorem 3.1 does not apply to families of multiples of a single operator.

Proof of Theorem 3.1. The proof is greatly inspired by that of [23, Theorem 5.31]. Let (xl)l≥1

be a sequence of vectors in X0, dense in X, and let (Ip(s))p,s≥1 be a partition of N such that
each set Ip(s) is infinite and has bounded gaps. Let us denote by rp(s) the maximal size of
a gap for Ip(s). We set Ip(s) := {jm(p, s) : m ≥ 1}, where (jm(p, s))m≥1 is increasing and
satisfies jm+1(p, s)−jm(p, s) ≤ rp(s) for every m ≥ 1. We also let (yj)j∈N be given by yj = xp
if j ∈ Ip(s). Now we use the assumptions of the theorem to build, by induction on j ∈ N,
a sequence (zj)j∈N of vectors in X0 and increasing sequences of positive integers (dj)j∈N and
(nj)j∈N such that the following properties hold, if j ∈ Ip(s):
(i) dj is a multiple of pTt(

∑j−1
k=1 zk) and pTt(zj) for every t ≥ 1 so that there exist q ≥ 1

and 1 ≤ i ≤ j with i ∈ Iq(t);
(ii) ‖T kt (zj)‖ < 2−j for every 0 ≤ k ≤ αdj and every t ≥ 1 so that there exist q ≥ 1 and

1 ≤ i ≤ j with i ∈ Iq(t);
(iii) ‖T nj+ks (zj)− T ks (yj −

∑j−1
i=1 zi)‖ < 2−j for every 0 ≤ k ≤ αdj;

(iv) nj is a multiple of pTs(
∑j−1

i=1 zi) and αdj < nj ≤ dj;
(v) αdj > 4dj−1.

Note that the choice of nj is made possible thanks to several elementary facts, see the first
lines of the proof of Theorem 5.31 in [23]; (i) and (ii) are possible using the assumptions of
the theorem and the fact that the set⋃

q≥1

⋃
1≤i≤j

{t ≥ 1 : i ∈ Iq(t)}

is finite for any j ≥ 1. By (ii), the sum z :=
∑

i≥1 zi defines a vector in X. Let us check
that z is frequently hypercyclic for every Ts, s ≥ 1.

Let p, s ≥ 1 be fixed. For notational simplicity, we will denote jm(p, s) by jm. Then, for
every m ≥ 1 we define by induction on j ∈ N a family of sets (Am,j,s)0≤j<jm+1−jm as follows:

Am,0,s :=

{
njm + kdjm + k′pTs(xp) : 0 ≤ k′ ≤ αdjm

pTs(xp)
, 0 ≤ k ≤ αdjm+1

djm
− 2

}
,

and, for 1 ≤ j < jm+1 − jm,

Am,j,s :=
⋃

1≤k≤
αdjm+j+1
djm+j

−1

(Am,j−1 + kdjm+j).

As in the proof of [23, Theorem 5.31, Equation (16)], one easily checks by induction that
max(Am,j,s) ≤ αdjm+j+1. Moreover, by [23, Fact 5.35] (in fact exactly reproducing its proof),
we have d(As) > 0 where

As :=
⋃
m≥1

⋃
0≤j<jm+1−jm

Am,j,s.

Thus to finish the proof of the theorem, we need only prove that for every m ≥ 1 and
every 0 ≤ j < jm+1 − jm, we have

‖T ns (z)− xp‖ ≤ 2−(jm−1), n ∈ Am,j,s.
This shall be proven as in [23, Fact 5.34] up to some modifications. For m ≥ 1 and 0 ≤ j <
jm+1 − jm, we first observe that for any n ∈ Am,j,s we have

‖T ns (z)− xp‖ ≤
∥∥∥∥T ns ( jm+j∑

i=1

zi

)
− xp

∥∥∥∥+
∑

i>jm+j

∥∥∥∥T ns (zi)

∥∥∥∥.
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Since max(Am,j,s) ≤ αdjm+j+1, we have n ≤ αdjm+j+1 ≤ αdi for every i > jm + j, and it
follows from (ii) that ∑

i>jm+j

‖T ns (zi)‖ <
∑

i>jm+j

2−i ≤ 1

2jm+j
.

To conclude we now turn to proving that for every n ∈ Am,j,s,

(3.1)
∥∥∥∥T ns ( jm+j∑

i=1

zi

)
− xp

∥∥∥∥ ≤ j∑
i=0

2−(jm+i).

To do so, we proceed by induction on 0 ≤ j < jm+1 − jm. If n ∈ Am,0,s (i.e., j = 0) then
n = njm + kdjm + k′pTs(xp) with 0 ≤ k ≤ αdjm+1

djm
− 2 and 0 ≤ k′ ≤ αdjm

pTs (xp)
, and by (i) and (iv)

T ns

( jm∑
i=1

zi

)
− xp = T njm+kdjm+k′pTs (xp)

s

( jm∑
i=1

zi

)
− xp

= T njm+k′pTs (xp)
s (zjm)− T k′pTs (xp)

s

(
xp −

jm−1∑
i=1

zi

)
.

By (iii) we get ∥∥∥∥T ns ( jm∑
i=1

zi

)
− xp

∥∥∥∥ ≤ 2−jm .

Assume now that (3.1) has been proven up to j − 1 for some 1 ≤ j < jm+1 − jm. For
n ∈ Am,j,s, we write n = kdjm+j + l with l ∈ Am,j−1,s and

0 ≤ k ≤ αdjm+j+1

djm+j

− 1.

Then, by (i) we have

T ns

( jm+j∑
i=1

zi

)
− xp = T kdjm+j+l

s

( jm+j∑
i=1

zi

)
− xp

= T ls

( jm+j−1∑
i=1

zi

)
− xp + T ls(zjm+j)

Since l ∈ Am,j−1,s, we deduce from the induction hypothesis and (ii) that∥∥∥∥T ns ( jm+j∑
i=1

zi

)
− xp

∥∥∥∥ ≤ j−1∑
i=0

2−(jm+i) + 2−(jm+j),

and (3.1) as desired. �

Application to operators of C-type. We will apply Theorem 3.1 to operators of C-type
on `p(N). First we shall recall their definition, following the formalism of [23, Section 6]. As
usual, we denote by (ek)k∈N the unit sequence of `p(N). An operator of C-type is associated
with a data of four parameters v, w, ϕ and b:

• v = (vn)n≥1 is a sequence of non-zero complex numbers with
∑

n≥1 |vn| <∞;
• w = (wn)n≥1 is a sequence of complex numbers such that

0 < inf
n≥1
|wn| ≤ sup

n≥1
|wn| <∞;

• ϕ : N → N is such that ϕ(0) = 0, ϕ(n) < n for every n ≥ 1, and the set {n ∈ N :
ϕ(n) = l} is infinite for every l ≥ 0;
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• b = (bn)n≥0 is a strictly increasing sequence of positive integers with b0 = 0 and
bn+1 − bn is a multiple of 2(bϕ(n)+1 − bϕ(n)) for every n ≥ 1.

Now, for a data v, w, ϕ and b as above, the operator of C-type Tv,w,ϕ,b is defined by

Tv,w,ϕ,b(ek) =


wk+1ek+1 if k ∈ [bn, bn+1 − 1), n ≥ 0

vnebϕ(n)
−
(∏bn+1−1

j=bn+1wj

)−1

ebn if k = bn+1 − 1, n ≥ 1

−
(∏b1−1

j=b0+1wj

)−1

e0 if k = b1 − 1.

Here, by convention, en empty product is equal to 0. From now on, we assume that the
condition

inf
n≥0

∏
bn<j<bn+1

|wj| > 0

is satisfied. As shown by [23, Fact 6.2], this assumption ensures that Tv,w,ϕ,b is a bounded
operator from `p(N) into itself. It can also be checked that each element of c00 is a periodic
point for Tv,w,ϕ,b, see [23, Fact 6.4].

In order to deal with frequent hypercyclicity, the authors of [23] introduce a subclass of
operators of C-type. As we are interested in common frequent hypercyclicity, we will work
within this subclass. It consists in those operators of C-type for which the data v, w, ϕ, b
has the following special structure: for every k ≥ 1,

• ϕ(n) = n− 2k−1 for every n ∈ [2k−1, 2k);
• there exists ∆(k) ∈ N such that the size of the block [bn, bn+1), i.e. the quantity
bn+1 − bn, is equal to ∆(k) for every n ∈ [2k−1, 2k);
• there exists v(k) ∈ C \ {0} such that vn = v(k) for every n ∈ [2k−1, 2k);
• there exists a sequence (w

(k)
i )1≤i<∆(k) such that wbn+i = w

(k)
i for every 1 ≤ i < ∆(k)

and every n ∈ [2k−1, 2k).
An operator of C-type which satisfies the previous conditions is called an operator of C+-

type. The next result is a criterion for a countable family of operators of C+-type to share
a common frequently hypercyclic vector.

Theorem 3.2. Let (Tv(s),w(s),ϕ,b)s∈N be a countable family of operators of C+-type on `p(N)
where b does not depend on s. We assume that there exists a constant α > 0 such that for
every s ≥ 1, every C ≥ 1 and every k0 ≥ 1, there exists an integer k ≥ k0 such that, for
every 0 ≤ n ≤ α∆(k),

(3.2) |v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C.

If, for any s, t ≥ 1, there exists a constant Ks,t > 0 such that for any r ≥ p ≥ 1,

(3.3)
∣∣∣∣ wp(t)wp+1(t) . . . wr(t)

wp(s)wp+1(s) . . . wr(s)

∣∣∣∣ ≤ Ks,t,

then
⋂
s≥1 FHC(Tv(s),w(s),ϕ,b) is non-empty.

Note that since b does not depend on s, by definition the ∆(k), k ≥ 1, do not depend on s
either. It is plainly checked that condition (3.2) is equivalent to saying that each Ts satisfies
the assumption of [23, Theorem 6.9]. In particular, if {Tv(s),w(s),ϕ,b : s ∈ N} is reduced to
a single operator (i.e., v(s) and w(s) do not depend on s), then the previous criterion is
exactly [23, Theorem 6.9].

For the proof of Theorem 3.2, we recall [23, Fact 6.8] below.
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Fact 1. Let T be an operator of C+-type on `p(N) and k ≥ 1. For any l < 2k−1 and
1 ≤ m ≤ ∆(k), we have

Tm(eb
2k−1+l+1

−m) = v(k)

 ∆(k)−1∏
i=∆(k)−m+1

w
(k)
i

 ebl −

∆(k)−m∏
i=1

w
(k)
i

−1

eb
2k−1+l

.

Proof of Theorem 3.2. Without loss of generality, we can assume that 0 < α < 1. It suffices
to check that the assumptions of Theorem 3.1 are satisfied. Let us define X0 := span(ek :
k ∈ N) and fix x, y ∈ X0, ε > 0 and s, q ≥ 1. There exists k0 ≥ 1 such that

x =
∑
l<2k0

bl+1−1∑
j=bl

xjej.

By (3.2), for any C > 0, there exists k ≥ k0 such that

|v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C, 0 ≤ n ≤ α∆(k).

Since v(s) and w(s) are bounded, upon choosing C large enough, we may assume that k is
so large that the following holds true:
(a) ∆(k) is a multiple of pTt(y) for any t ≥ 1;
(b) ∆(k0) < min((1− α

2
)∆(k), α

2
∆(k) − 1).

Note that, by the definition of b and ϕ for operators of C+-type, and since the period of
any vector in X0 depends only on the sequence b, (a) is satisfied whenever y is supported in
[0, b2k−1 [. Let us now set n := ∆(k) − 1, d := 2∆(k) and

z :=
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

eb
2k−1+l+1

−n+j−bl .

Like for (a) above, d is a multiple of pTs(z) for any s ≥ 1. Thus condition (1) of Theorem
3.1 is satisfied.

Let us now fix 0 ≤ m ≤ αd
4

and 1 ≤ t ≤ q. We observe that for every l < 2k0 and
bl ≤ j ≤ bl+1 − 1, we have

b2k−1+l+1 − n+ j − bl +m ∈ [b2k−1+l, b2k−1+l+1).

Indeed, by definition b2k−1+l+1 − b2k−1+l = ∆(k) and by (b), −∆(k) ≤ −n + j − bl + m < 0.
So for every t ≥ 1, we have

Tmt (eb
2k−1+l+1

−n+j−bl) =

 ∆(k)−n+j−bl+m∏
i=∆(k)−n+j−bl+1

w
(k)
i (t)

 eb
2k−1+l+1

−n+j−bl+m,

hence the expression

(3.4) Tmt (z) =
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏

i=j−bl+m+2

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

(
j−bl+m+1∏
i=j−bl+2

w
(k)
i (t)

w
(k)
i (s)

)
eb

2k−1+l+1
−n+j−bl+m.
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Using (b), we know that 0 ≤ j− bl +m+ 1 ≤ α∆(k) which, by (3.2), (3.3) and the definition
of C+-type operators, implies that for some constant A > 0 (independent of k),

‖Tmt (z)‖ ≤ ‖x‖C−1 max
1≤t′≤q

(Ks,t′)A
∆(k0)

.

Up to choose C large enough, we get (2) in Theorem 3.1.
Let us now estimate the norm of T n+m

s z − Tms (x) for 0 ≤ m ≤ αd
4
. By Fact 1, we obtain

T n−(j−bl)
s (eb

2k−1+l+1
−n+j−bl) = v(k)(s)

 ∆(k)−1∏
i=∆(k)−n+j−bl+1

w
(k)
i (s)

 ebl

−

∆(k)−n+j−bl∏
i=1

w
(k)
i (s)

−1

eb
2k−1+l

.

Applying T j−bls yields

T ns (eb
2k−1+l+1

−n+j−bl) =

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

(j−bl∏
i=1

wbl+i(s)

)
ej

−
(
w

(k)
j−bl+1(s)

)−1

eb
2k−1+l

+j−bl .

Moreover, since m+ j − bl < ∆(k), we have

Tms (eb
2k−1+l

+j−bl) =

(
j−bl+m∏
i=j−bl+1

w
(k)
i (s)

)
eb

2k−1+l
+j−bl+m,

hence

T n+m
s (eb

2k−1+l+1
−n+j−bl) =

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

(j−bl∏
i=1

wbl+i(s)

)
Tms (ej)

−
(
w

(k)
j−bl+1(s)

)−1
(

j−bl+m∏
i=j−bl+1

w
(k)
i (s)

)
eb

2k−1+l
+j−bl+m.

By definition of z, it follows that

T n+m
s (z)

= Tms (x)−
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏

i=j−bl+m+1

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

eb
2k−1+l

+j−bl+m.

By assumption, we thus get

‖T n+m
s (z)− Tms (x)‖ ≤ ‖x‖C−1A∆(k0)

and condition (3) of Theorem 3.1 with α′ = α
4
, as desired. �

Remark 3.3. It is clear from the proof that the conclusion of Theorem 3.2 remains true
under the following weaker (but less nice) assumption: we assume that there exists a constant
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0 < α < 1 such that for every integers s, q ≥ 1, every C ≥ 1 and every k0 ≥ 1, there exists
k ≥ k0 such that for every 0 ≤ n ≤ α∆(k),

(3.5) |v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C;

(3.6) sup
1≤t≤q

0≤j<∆(k0)

0≤m≤α∆(k)

|v(k)(s)|
∆(k)−1∏
i=j+2

|w(k)
i (s)|

−1(
j+m+1∏
i=j+2

|w(k)
i (t)|

)
<

1

C
.

Moreover, it is clear that (3.6) is satisfied whenever there exists a constant 0 < α < 1
such that for every integers s, q ≥ 1, every C ≥ 1 and every k0 ≥ 1, there exists k ≥ k0 and
A > 1 such that

(3.7) sup
i,t≥1

max

(
|wi(t)|;

1

|wi(t)|

)
≤ A;

and

(3.8) sup
1≤t≤q

0≤m≤α∆(k)

|v(k)(s)|
∆(k)−1∏
i=1

|w(k)
i (s)|

−1(
m+1∏
i=1

|w(k)
i (t)|

)
<

1

C
.

Thus the conclusion of Theorem 3.2 holds true under the assumptions of Remark 3.3 with
(3.6) replaced by (3.7) and (3.8).

It turns out that for a certain subclass of operators of C+-type, for which (3.7) automat-
ically holds true, some rather simple condition for frequent hypercyclicity is given in [23].
We shall now see that a similar condition for a family of operators in this subclass implies
(3.8) and thus common frequent hypercyclicity.

Application to operators of C+,1-type. Operators of C+,1-type are introduced in [23,
Section 6.5] as those operators of C+-type for which the parameters v and w satisfy the
following extra condition: for every k ≥ 1,

v(k) = 2−τ
(k)

and w
(k)
i =

{
2 if 1 ≤ i ≤ δ(k)

1 if δ(k) < i < ∆(k) ,

where τ := (τ (k))k≥1 and δ := (δ(k))k≥1 are two strictly increasing sequences of integers such
that δ(k) < ∆(k), k ≥ 1. Within this class of operators of C+,1-type, that we simply denote
by Tτ,δ,ϕ,b, examples of frequently hypercyclic operators which are not ergodic were provided
in [23].

Theorem 3.4. Let (Tτ(s),δ(s),ϕ,b)s≥1 be a countable family of operators of C+,1-type on `p(N)
where b does not depend on s. If

inf
t≥1

lim sup
k→∞

δ(k)(t)− τ (k)(t)

∆(k)
> 0,

then
⋂
s≥1 FHC(Tτ(s),δ(s),ϕ,b) is non-empty.

Proof. Remark that (3.7) in Remark 3.3 trivially holds, thus it is enough to check (3.8) and
(3.5). To do so, we define

α < min

(
1,

1

2
inf
t≥1

lim sup
k→∞

δ(k)(t)− τ (k)(t)

∆(k)

)
.
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Let s, k0 ≥ 1 and C ≥ 1, and let us set n = ∆(k) − 1. Since ∆(k) → ∞ as k → ∞, there
exists k ≥ k0 such that

δ(k)(s)− τ (k)(s)

∆(k)
> 2α and α∆(k) > log2(C).

Then it follows from the definition of operators of C+,1-type that (3.8) in Remark 3.3 is
equivalent to

2τ
(k)(s)−δ(k)(s) sup

t≥1
0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| < 1

C
.

Now, we have

sup
t≥1

0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| ≤ 2α∆(k) ≤ 2

1
2

(δ(k)(s)−τ (k)(s)).

Hence,

2τ
(k)(s)−δ(k)(s) sup

t≥1
0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| ≤ 2

1
2

(τ (k)(s)−δ(k)(s)) < 2−α∆(k)

<
1

C
.

It remains to check that for every 0 ≤ n ≤ α∆(k),

|v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C

which works the same as in the proof of [23, Theorem 6.17]. �

Remark 3.5. When the family is reduced to a single operator, Theorem 3.4 is exactly [23,
Theorem 6.17].

4. Common frequent hypercyclicity with respect to densities

We refer to [21] for the abstract definitions and the study of generalized lower and upper
densities. In particular it is proven there that to any sequence of non-negative real numbers
α = (αk)k≥1 such that

∑
k≥1 αk = +∞, one can associate generalized lower and upper

densities dα and dα by the formulae

dα(E) = lim inf
n→∞

∑
k≥1

αn,k1E(k) and dα(E) = 1− dα(N \ E), E ⊂ N,

where (αn,k)n,k≥1 is the matrix given by

αn,k =

{
αk/(

∑n
j=1 αj) for 1 ≤ k ≤ n,

0 otherwise.

Then we also have dα(E) = lim supn→∞
∑+∞

k=1 αn,k1E(k). By [19, Lemma 2.7], if we assume
in addition that the sequence (αn/(

∑n
j=1 αj))n≥1 converges to 0, then for any set E ⊂ N

enumerated by an increasing sequence (nk)k≥1, we have

dα(E) = lim inf
k→∞

∑k
j=1 αnj∑nk
j=1 αj

.

For α and β two sequences as above, let us write α . β if there exists k0 ∈ N such that
(αk/βk)k≥k0 is non-increasing. Then we have

dβ(E) ≤ dα(E) ≤ dα(E) ≤ dβ(E), E ⊂ N,
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whenever α . β (see [19, Lemma 2.8]). Thus one can define scales of well-ordered densities
with respect to the type of growth of the defining sequences. As we aim to study densities
dα which are less than or equal to the natural one, it will be natural to assume that α is
non-decreasing.

From now on, a sequence α = (αk)k≥1 of non-negative numbers will be called completely
admissible if it satisfies the following two properties:

•
∑

k≥1 αk = +∞;
• α is non-decreasing;
• (αn/(

∑n
j=1 αj))n≥1 → 0 as n→∞.

A generalized density dα or dα will be also called completely admissible if it is associated to
a completely admissible sequence α. Finally, the function ϕα : (0,+∞) → (0,+∞) defined
by ϕα(x) =

∑
k≤x αk, n ≥ 1, will play an important role in the sequel.

Several examples of generalized densities can be found in [19, 20]. In this work, we will
mainly be interested in four types of such sequences.

(1) For 0 ≤ ε ≤ 1, Eε := (exp(kε))k≥1. By a summation by parts, one can see that for
0 < ε < 1, ϕEε(n) ∼ n1−ε

ε
exp(nε) (where uk ∼ vk means uk/vk → 1);

(2) For s ∈ N ∪ {∞}, Ds := (exp(k/ log(s)(k)))k≥k0 with k0 large enough, where log(s) =
log ◦ · · ·◦log, log appearing s times, with the conventions log(0)(x) = x and log(∞)(x) =
1 for any x > 0. One can check that ϕDs(n) ∼ log(s)(n) exp(x/ log(s)(n)) for s ∈ N
(see [20, Remark 3.10]) and ϕD∞(n) ∼ e

e−1
exp(n);

(3) For all l ≥ 1, let us consider the sequence Ll = (elog(k) log(l)(k))k≥k0 , with k0 large
enough. A simple calculation leads to ϕLl(n) ∼ ne

log(n) log(l)(n)

log(l)(n)
;

(4) For r ≥ −1 we shall also write Pr := (kr)k≥1. Then ϕPr(k) ∼ kr+1

r+1
.

Notice that for any 0 ≤ ε < 1, any s ∈ N, any l > 1 and any r ≥ 0, the sequences Eε, Ds,
Ll and Pr are completely admissible. Observe that the usual lower density d (associated to
any constant sequence (a, a, a, . . .), a > 0) corresponds to dE0 , dD0

and dP0
. Later on, the

sequence E1 shall be simply denoted by E ; note that dE = dD∞ . For any 0 < δ ≤ ε ≤ 1, any
s ≤ t ∈ N, any r ≥ 0 and any positive integer l ≤ l′, we thus have

dE ≤ dDt ≤ dDs ≤ dEε ≤ dEδ ≤ dLl ≤ dLl′ ≤ dPr ≤ d.

Let X be a separable Fréchet space. As for frequently hypercyclic operators, we now say
that a continuous linear operator on T is α-frequently hypercyclic if there exists x ∈ X such
that for any non-empty open set U in X, dα(N(x, U, T )) is positive. We denote by FHCα(T )
the set of all α-frequently hypercyclic vectors for T . As proven in [19], no operator can be
E-frequently hypercyclic (and hence α-frequently hypercyclic whenever E . α).

A first natural question arises:

Question 4.1. Does common α-frequent hypercyclicity exist for some α?

Let us recall that any operator satisfying the Frequent Universality Criterion is automat-
ically α-universal whenever α . Ds for some s ≥ 1 [20]. Since each of the criteria given
in Section 2 are natural strengthenings of the Frequent Hypercyclicity Criterion, we could
expect a positive answer to this question for any such α. Moreover, it is easily seen that
FHCPr(T ) = FHC(T ) for any r > −1 (see [19, Lemma 2.10]). So Question 4.1 has a strong
positive answer for sequences with polynomial growth. In fact, the next proposition shows
that for multiples of a single operator, the answer is either strongly positive, either strongly
negative.
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We will say that an increasing function ϕ : (0,+∞)→ (0,+∞) satisfies the ∆2-condition
if there exists a constant K > 0 such that ϕ(2x) ≤ Kϕ(x) for any x large enough.

Proposition 4.2. Let X be a separable Banach space, T a bounded linear operator on X
and let α = (αk)k≥1 be a completely admissible sequence. Then

(1) If ϕα satisfies the ∆2-condition, then FHC(T ) = FHCα(T );
(2) If ϕα does not satisfy the ∆2-condition, then HC(λT ) ∩ FHCα(µT ) = ∅ for any

0 < λ < µ < +∞.

Proof. To prove (1), let us assume that ϕα satisfies the ∆2-condition. We need only check
that for any E ⊂ N, if d(E) is positive then dα(E) is also positive. Let us enumerate some
E ⊂ N with d(E) > 0 by some increasing sequence (nk)k≥1. Thus, there exists M > 0
with k ≤ nk ≤ Mk for any k ≥ 1. Since α is completely admissible and ϕα satisfies the
∆2-condition, it is easy to check that there exists a constant K depending on M , such that

nk∑
j=1

αj ≤
Mk∑
j=1

αj ≤ K

k∑
j=1

αj ≤ K

k∑
j=1

αnj ,

for k large enough, whence

dα(E) = lim inf
k→∞

∑k
j=1 αnj∑nk
j=1 αj

≥ 1

K
.

Let us now prove (2) and let us then fix α such that ϕα does not satisfy the ∆2-condition.
It is not difficult to check that ϕα equivalently satisfies that for all C > 0,

(4.1) lim inf
k→∞

(
ϕα(k)

ϕα((1 + C)k)

)
= 0,

Let us also fix 0 < λ < µ < +∞. We shall assume that there exists x ∈ HC(λT )∩HC(µT ).
Throughout the proof, r > 0 is fixed. It is enough to prove the following:
(a) dα(N(x,B(0, r), λT )) = 1;
(b) dα(N(x,B(0, r), µT )) = 0.
We first prove (a). By assumption, there exists an increasing sequence (pk)k∈N ⊂ N such
that ‖µpkT pk(x)‖ < r for any k ∈ N. Writing

λpk+iT pk+i(x) = λiT i
((

λ

µ

)pk
µpkT pk(x)

)
, i ∈ N,

we easily check that ‖λpk+iT pk+i(x)‖ < r whenever (λ‖T‖)i < (µ/λ)pk . Since by assumption
λT is hypercyclic, we have λ‖T‖ > 1. Thus there exists a constant C > 0 (depending on
λ, µ and T , but not on k) such that for any i < Cpk, ‖λpk+iT pk+i(x)‖ < r. Therefore,⋃

k∈N

{
pk, . . . , b(1 + C)pkc

}
⊂ N(x,B(0, r), λT ).

It follows thanks to (4.1) that

dα(N(x,B(0, r), λT )) ≥ 1− lim inf
k→∞

(
ϕα(pk)

ϕα((1 + C)pk)

)
= 1.

(b) is proved similarly. Since x ∈ HC(λT ), there exists an increasing sequence (pk)k∈N ⊂ N
such that ‖λpkT pkx‖ > r. Writing T iµpk−iT pk−i = µ−i(µ/λ)pkλpkT pk , 1 ≤ i ≤ pk, one
can check that ‖µpk−iT pk−ix‖ ≥ r(µ‖T‖)−i(µ/λ)pk , 1 ≤ i ≤ pk. Thus ‖µpk−iT pk−ix‖ > r
whenever (µ‖T‖)i > (µ/λ)pk . Since λ‖T‖ > 1, the last inequality is equivalent to i ∈
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{bCpkc + 1, . . . , pk} for some constant 0 < C < 1 not depending on k. Therefore we get,
using (4.1) again,

dα(N(x,X \B(0, r), µT )) ≥ 1− lim inf
k→∞

(
ϕα(bCpkc+ 1)

ϕα(pk)

)
= 1.

�

Remark 4.3. We shall mention that if the function ϕα is assumed to be convex and satisfies
that there exists β > 1 such that ϕα(βx) ≥ 2βϕα(x) for any x large enough, then ϕα satisfies
the ∆2-condition if and only if it has a growth controlled from below and from above by some
polynomials; i.e., if and only if there exist r, r′ ≥ 1 such that

cxr
′ ≤ ϕα(x) ≤ Cxr

for some constants c, C > 0 and any x ∈ (1,+∞). Next observe that on the scale of weighted
densities given above the only class of sequences α for which ϕα satisfies the ∆2-condition is
given by polynomials Pr.

We can illustrate the preceding Proposition on our examples.

Corollary 4.4. Let X be a separable Banach space, T a bounded linear operator on X and
l ≥ 1. Then for any 0 < λ < µ < +∞,

HC(λT ) ∩ FHCLl(µT ) = ∅.

We shall mention that the non-existence of common frequently hypercyclic vectors in
Proposition 4.2 concerns multiples λT and µT of the same operator T with |λ| 6= |µ|. So
we can still wonder whether common frequently hypercyclicity may exist for other kinds of
families. Actually, this is the case if we consider families of unimodular multiples of a single
operator, as the following extension of León-Müller’s Theorem [7, Theorem 6.28] shows.

Theorem 4.5. Let X be a complex F -space, T a α-frequently hypercyclic operator on X
where α is a completely admissible sequence. Then λT is α-frequently hypercyclic for any
λ ∈ C with |λ| = 1, and FHCα(λT ) = FHCα(T ).

The proof goes along the same lines as that of [7, Theorem 6.28], replacing Lemma 6.29
by the following.

Lemma 4.6. Let A ⊂ N be a set of positive lower α-density where α is completely admissible.
Let also I1, . . . , Iq ⊂ N be such that ∪qj=1Ij = N and n1, . . . , nq ∈ N. Then B := ∪qj=1(nj +
A ∩ Ij) has positive lower α-density.

Proof. Let N := max1≤i≤q(ni). On the one hand, for any M ≥ N ,∑M+N
k=1 αk1B(k)∑M+N

k=1 αk
≥ 1

q

∑q
j=1

∑M+N
k=1 αk1nj+A∩Ij(k)∑M+N

k=1 αk

≥ 1

q

∑q
j=1

∑M
k=1 αk1A∩Ij(k)∑M+N
k=1 αk

≥ 1

q

∑M
k=1 αk1A(k)∑M+N
k=1 αk

=
1

q

∑M
k=1 αk1A(k)∑M

k=1 αk

∑M
k=1 αk∑M+N
k=1 αk

.
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On the other hand,∑M
k=1 αk∑M+N
k=1 αk

= 1−
∑M+N

k=M+1 αk∑M+N
k=1 αk

≥ 1−

(
M+N∑
j=M+1

αj∑j
k=1 αk

)
−→ 1, as M → +∞.

Hence,

dα(B) = lim inf
M→∞

∑M+N
k=1 αk1B(k)∑M+N

k=1 αk
≥ lim inf

M→∞

1

q

∑M
k=1 αk1A(k)∑M

k=1 αk
=

1

q
dα(A) > 0.

�

To conclude, we come back to the main result of [20]: any operator satisfying the Frequent
Universality Criterion [11] is automatically α-universal if α . Ds for some s ≥ 1. The
following question naturally arises:

Question 4.7. For any operator T ∈ L(X) satisfying the Frequent Universality Criterion,
does there exist a vector x ∈ X which is α-frequently universal for T and for any α . E?

The following proposition gives a positive answer.

Proposition 4.8. We denote by D the set of all completely admissible sequences of non-
negative numbers α = (αk)k≥1 such that α . Ds for some s ∈ N. If T ∈ L(X) satisfies the
Frequent Universality Criterion, then⋂

α∈D

FHCα(T ) 6= ∅.

Proof. It is enough to prove that
⋂
s∈N FHCDs(T ) is non-empty. The proof is based on

the calculations led in [20, Section 3]. Let us consider the function f : N → N defined by
f(j) = m for all j ∈ {am, . . . , am+1 − 1} with

am = 22.
. .

2m

where 2 appears m times.

Then we define the sequence (nk(f))k≥1 as follows:

n1(f) = 2 and nk(f) = 2
k−1∑
i=1

f(δi) + f(δk), k ≥ 2,

where δj is the index of the first zero in the dyadic representation of j (for e.g., if k = 11 =
1.20 + 1.21 + 0.22 + 1.23, then δk = 3). Lemma 3.8 of [20] ensures that for all s ≥ 1 there
exist C1, C2, C3 > 0 such that for all integers k large enough,

C1k − C2 log(s)(k) ≤ nk(f) ≤ C1k + C3 log(s)(k).

A similar calculation as that of [19, Lemma 4.10] allows us to conclude that dDs((nk(f))) > 0
for all s ≥ 1. Now one can use this sequence (nk(f))k≥1 to construct a universal vector for
T which will be Ds-frequently universal for all s ≥ 1 (we refer the reader to the beginning
of Section 2 of [20]). �

5. Remark: an ergodic approach?

We shall conclude this paper by a word on the possible approach to common frequent
hypercyclicity by ergodic theory. The most natural way to conceive frequent hypercyclicity
is probably through Birkhoff’s ergodic theorem: if T is a bounded linear operator on some
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separable Banach space X, which is an ergodic measure-preserving transformation with
respect to some measure m with full support, then

lim
N→∞

card(N(x, U, T ) ∩ [0, N ])

N + 1
= m(U) > 0,

for any non-empty open set U of X. In particular T is frequently hypercyclic. We recall that
T is measure-preserving form if for any measurable set A ⊂ X, we havem(A) = m(T−1(A)),
and that T is ergodic with respect to m if for every measurable subsets A and B of X, with
m(A),m(B) > 0, there exists an integer n such that m(T−n(A) ∩ B) > 0 (see [34] for
instance).

Now, if T1 and T2 are two ergodic measure-preserving transformations ofX for respectively
two measures m1 and m2 which are absolutely continuous with respect to each other, then
T1 and T2 automatically share a common frequently hypercyclic vector. Theorem 3.22 in [4]
gives a sufficient condition for an operator T on X to be ergodic and measure-preserving
for some Gaussian measure mT . In general, for two operators T1 and T2 satisfying this
condition, mT1 and mT2 are not absolutely continuous with respect to each other and one
cannot conclude whether they share a common frequently hypercyclic vector or not.

But the opposite situation can also occur: for example, let Bw1 and Bw2 be two weighted
shifts on `2(N) such that the supremum rp,wi of their point spectrum is greater than 1,
i = 1, 2 (see Paragraph 2.3.2 where rp,wi appears). Then by [4, Theorem 3.22], Bw1 and Bw2

are ergodic and measure-preserving with respect to some Gaussian measures mw1 and mw2 .
For i = 1, 2, let us define wi,n =

∏n
k=0wi(k). Now, as explained in [4, Pages 5111-5112], mw1

and mw2 are absolutely continuous with respect to each other if and only if the sequence
(1−

√
w1,n/w2,n)n∈N is in `2(N). This condition is much stronger than the condition derived

from the proof of Theorem 2.18 (see Remark 2.19) which ensures the existence of common
frequently hypercyclic vectors for more general families of weighted shifts. Note also that
an ergodic approach has not permitted so far to obtain common frequent hypercyclicity
for general multiples of a single operator. Yet, the fact that (1 −

√
w1,n/w2,n)n∈N is in

`2(N) implies that mw1(FHC(Bw1)∩FHC(Bw2)) = 1, while our results give no quantitative
information on the size of the set of common frequently hypercyclic vectors.

It would be of interest to investigate further the problem of common frequent hypercyclicity
from the point of view of ergodicity.
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