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COMMON FREQUENT HYPERCYCLICITY

S. CHARPENTIER, R. ERNST, M. MESTIRI, A. MOUZE

Abstract. We provide with criteria for a family of sequences of operators to share a fre-
quently universal vector. These criteria are variants of the classical Frequent Hypercyclicity
Criterion and of a recent criterion due to Grivaux, Matheron and Menet where periodic
points play the central role. As an application, we obtain for any operator T in a specific
class of operators acting on a separable Banach space, a necessary and sufficient condition
on a subset Λ of the complex plane for the family {λT : λ ∈ Λ} to have a common fre-
quently hypercyclic vector. In passing, this permits us to easily exhibit frequent hypercyclic
weighted shifts which do not possess common frequent hypercyclic vectors. We also provide
with criteria for families of the recently introduced operators of C-type to share a com-
mon frequently hypercyclic vector. Further, we prove that the same problem of common
α-frequent hypercyclicity may be vacuous, where the notion of α-frequent hypercyclicity ex-
tends that of frequent hypercyclicity replacing the natural density by more general weighted
densities. Finally, it is already known that any operator satisfying the classical Frequent
Universality Criterion is α-frequently universal for any sequence α satisfying a suitable con-
dition. We complement this result by showing that for any such operator, there exists a
vector x which is α-frequently universal for T , with respect to all such α.

1. Introduction

For two separable Fréchet spaces X and Y , let us denote by L(X, Y ) the set of all con-
tinuous operators from X to Y . If X = Y , we simply write L(X) = L(X, Y ). A sequence
T = (Tn)n∈N ⊂ L(X, Y ) (where N := {0, 1, 2, . . .}) is said to be universal provided there
exists a vector x ∈ X such that for any non-empty open subset U of Y , the set

N(x, U, T ) := {n ∈ N : Tnx ∈ U}
is infinite. The vector x is also called universal and the set of all universal vectors for T is
denoted by U(T ). A single operator T ∈ L(X) is called hypercyclic if the sequence (T n)n∈N of
its iterates is universal. In this case, we write N(x, U, T ) = N(x, U, T ) and U(T ) = HC(T ).
In 2006, Bayart and Grivaux [4] introduced the important notion of frequently hypercyclic
operator. An operator T ∈ L(X) is said to be frequently hypercyclic if there exists x ∈ X such
that for any non-empty open subset U of X, the lower density d(N(x, U, T )) of N(x, U, T )
is positive, where for any E ⊂ N,

d(E) := lim inf
n

card([0, n] ∩ E)

n+ 1
> 0.

Such a vector x is a frequently hypercyclic vector for T and the set of such vectors is denoted
by FHC(T ). The notion of frequent universality for a sequence T of operators in L(X, Y )
can obviously be defined (see, for e.g., [11]). The set of frequently universal vectors for T will
be denoted by FU(T ). For a rich source of information about Linear Dynamics, we refer to
the monographs [7, 26].

A problem which has been extensively studied during the last decades is that of common
hypercyclicity. For a given family (Tλ)λ∈Λ of hypercyclic operators in L(X), it asks when the
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set of common hypercyclic vectors,
⋂
λ∈ΛHC(Tλ), is empty and when it is not. [7, Chapter

7] and [26, Chapter 11] are entirely devoted to this topic. On the one hand, since HC(T )
is a dense Gδ subset of X whenever it is non-empty, the Baire Category Theorem trivially
ensures that

⋂
λ∈ΛHC(Tλ) is non-empty whenever Λ is countable. On the other hand,

it is not difficult to exhibit families of hypercyclic operators with no common hypercyclic
vectors (for example the family of all hypercyclic operators on a given space X). The
first positive important result in this direction was given by Abakumov and Gordon [1]
who showed that

⋂
λ>1HC(λB) 6= ∅, where B is the backward shift on `2(N) defined by

B(x0, x1, x2, . . .) = (x1, x2, x3, . . .). Later on, Costakis and Sambarino [18] provided with the
first criterion of common hypercyclicity that they applied to show the residuality of the set of
common hypercyclic vectors for multiples of the backward shift or differential operators, and
for uncountable families of translation operators or specific weighted shifts. Constructions or
the approach used by Costakis and Sambarino, based on the Baire Category Theorem, were
developed by many authors to produce new criteria or prove common hypercyclicity for other
uncountable families of classical operators, such as adjoint of multipliers, or composition and
convolution operators (see, for e.g., [2, 5, 6, 13, 16, 24]). A second approach to the problem,
more algebraic, produced some of the most striking results. León and Müller proved that
for any T ∈ L(X) and any λ ∈ C, |λ| = 1, HC(T ) = HC(λT ). Their idea, which exploits
the group structure of the torus T = {z ∈ C : |z| = 1}, was extended by several authors to
families of operators forming groups or semigroups, and then combine with the first approach
to produce some new and strong results (for e.g., [3, 9, 15, 32, 34]). We should say that the
non-existence of common universal vectors has also been studied (see, for e.g., [3, 7, 19, 26]).

In comparison, common frequent hypercyclicity has been considered in only a very few
amount of papers. Probably, it is partly because the Baire Category approach drastically
fails for this notion: by [8, Corollary 19], the set FHC(T ) is always meager (i.e., contained
in the complement of a residual set). Moreover, for any T ∈ L(X), it turns out that the
set
⋂
λ∈Λ FHC(λT ) is empty, as soon as Λ ⊂ (0,+∞) is uncountable ([3, Proposition 6.4]).

However, the algebraic approach to common hypercyclicity perfectly fits to frequent hyper-
cyclicity. For example, Bayart and Matheron proved that FHC(λT ) = FHC(T ) for any
λ ∈ T , obtaining a frequent version of León-Müller’s result. This approach has been pursued
further in [3] (see also [15]) and led to several nice results of common frequent hypercyclicity
for families of operators forming strongly continuous groups or semigroups (translation op-
erators on H(Cd), composition operators induced by non-constant Heisenberg translations
on the Hardy space of the Siegel half-space, etc...). Moreover, in specific classes of opera-
tors, hypercyclic basically means frequently hypercyclic in a strong sense. For example, if
Λhyp denotes the set of all hyperbolic automorphisms of the unit disc D having the same
boundary attractive point, then the same argument as in [7, Example 7.3] gives that there
exists φ0 ∈ Λhyp such that for any φ ∈ Λhyp, FHC(Cφ0) ⊂ FHC(Cφ), where Cφ denotes
the composition operator with symbol φ on the Hardy space H2 of D. Combined with the
algebraic approach, this yields

⋂
φ∈Λ FHC(Cφ) 6= ∅ where Λ stands for the set of all auto-

morphisms having a common boundary attractive point. All in all, except when action by
strongly continuous groups or semigroups is involved, so far no criteria for common frequent
hypercyclicity are known. In particular, we do not know under which non-trivial conditions
on Λ ⊂ (0,+∞) and T ∈ L(X) the set

⋂
λ∈Λ FHC(λT ) may be non-empty.

In this paper we aim to contribute in filling these gaps. Our first result is a criterion of
common frequent universality (Theorem 2.3) which is a natural strengthening of the Frequent
Universality Criterion given in [12] (and of the classical Frequent Hypercyclicity Criterion
[4]). As an application, we get necessary and/or sufficient conditions on a subset Λ of C for
the set

⋂
λ∈Λ FHC(λT ) to be non-empty, when X is a Banach space and T ∈ L(X). For

example, we will get the following:
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Theorem. Let B be the backward shift on `2(N) and let Λ ⊂ C. The set
⋂
λ∈C FHC(λT )

is non-empty if and only if the set {|λ| : λ ∈ Λ} is a countable relatively compact subset of
(1,+∞).

This theorem is obtained for more general classes of (unilateral) weighted shifts on `2(N).
For any operator T ∈ L(X), sufficient or necessary conditions on Λ are given, involving the
spectral or the local spectral radius of T . In full generality, our sufficient condition exactly
coincides with the assumption of a criterion of common hypercyclicity given by Bayart and
Matheron [6, Proposition 4.2]. Our general criterion of common frequent universality is also
applied to countable families of weighted shifts, differential operators or adjoint of multipliers
(which may not be multiples of a single operator). In passing, we deduce a simple way to
produce two frequently hypercyclic weighted shifts without common frequently hypercyclic
vectors.

Recently, Grivaux, Matheron and Menet provided with a new frequent hypercyclicity cri-
terion, based on the periodic points of the operator [25]. They prove that this criterion is
theoretically better than the classical Frequent Hypercyclicity Criterion since any operator
satisfying the assumptions of the latter automatically satisfies that of the new one. In prac-
tice, the classical criterion turns out to be much simpler to apply to most of the explicit and
usual operators. However, Menet introduced a new class of operators, the so-called operators
of C-type [27], conceived as a very rich source of counter-examples to difficult problems (such
as the exhibition of a chaotic operator on `p which is not frequently hypercyclic [27], see also
[25]), to which their new criterion for frequent hypercyclicity is very well adapted. In the
present paper, based on this criterion, we establish another general criterion for common
frequent hypercyclicity, involving the periodic points of the family of operators. Once again,
we show how this can be easily applied to classes of operators of C-type.

Furthermore, Ernst and Mouze recently proved [20, 21] that any operator satisfying the
usual Frequent Universality Criterion in fact enjoys a stronger form of frequent universality.
Let α = (αk)k≥1 be a sequence of non-negative real numbers with

∑
k≥1 αk = +∞. In [23],

Freedman and Sember show that if a matrix (αn,k)n,k≥1 is given by

αn,k =

{
αk/(

∑n
j=1 αj) for 1 ≤ k ≤ n,

0 otherwise.

then the function dα : P(N) → [0, 1] (P(N) denotes the set of all subsets of N) defined for
E ⊂ N by

dα(E) = lim inf
n

(∑
k≥1

αn,k1E(k)

)
is a generalized lower density (see [23] for the abstract definition of a (generalized lower)
density). We call dα(E) the lower α-density of E. The usual lower density encountered
above corresponds to the constant sequence (1, 1, 1, . . .). Moreover, if α . β (meaning αk/βk
is eventually decreasing to 0), then dβ(E) ≤ dα(E), E ⊂ N ([20, Lemma 2.8]). The order
. thus allows to define (ordered) scales of generalized lower densities. We refer to [20, 21]
for examples of sequences α defined by usual functions and well-ordered with respect to ..
It then appears natural to define α-frequent universality as the usual frequent universality,
replacing the sequence (1, 1, 1, . . .) by any α as above. One of the main results of [20, 21]
is that any operator T ∈ L(X) which satisfies the Frequent Universality Criterion is dα-
frequently universal whenever there exists s ≥ 2 such that α . (exp(k/(log(s)(k))))k≥1 where
log(s) = log ◦ log ◦ . . . ◦ log, log appearing s times. Moreover, they prove that no operator
can be α-frequent hypercyclic for αk = ek. In view of the topic of the paper, two natural
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questions arise. For T ∈ L(X) we denote by FHCα(T ) the set of all α-frequent hypercyclic
vectors for T .

Questions. Let A denote the set of sequences α such that α . ds for some s ≥ 2 and let
T ∈ L(X).
1) Let Λ ∈ (0,+∞) and B ⊂ A be non-trivial. Do we have

⋂
(λ,β)∈Λ×B FHCβ(λT ) 6= ∅?

2) If T satisfies the Frequent Hypercyclicity Criterion, do we have
⋂
α∈A FHCα(T ) 6= ∅?

We will give a positive answer to the second question (Proposition 4.6) and show that
the first one has a strongly negative answer if Λ is any non-trivial subset of (0,+∞) and B
is reduced to a single generalized density which grows faster than (ek

ε
)k≥1 for some ε > 0

(Proposition 4.2). We should mention that, by [20, Lemma 2.10], FHCβ(T ) = FHC(T )
whenever β has a growth at most polynomial (i.e., β . (kr)k≥1 for some r ≥ −1). Combined
with our first common frequent hypercyclicity criterion, this thus gives a positive answer to
(1) for some non-trivial Λ and the set B of sequences with at most polynomial growth.

We should conclude by mentioning that the problem of common hypercyclicity has been
considered for the upper (or U -)frequent hypercyclicity. This intermediate notion between
hypercyclicity and frequent hypercyclicity was introduced by Shkarin [33]. A sequence T ⊂
L(X, Y ) is said to be U -frequently universal if for some x ∈ X and any non-empty open
set U in Y , d(N(x, U, T )) is positive. By definition, d(E) = 1 − d(N \ E) is the upper
density of E ⊂ N. In some sense, U -frequent hypercyclicity is closer to hypercyclicity than
to frequent hypercyclicity. For example, Bayart and Ruzsa proved that the set UFHC(T ) of
all U -frequently hypercyclic vectors for T is residual whenever it is non-empty [8, Proposition
21]. Common U -frequent hypercyclicity has been rather well-studied and criteria have been
given. We refer to [28, 29] and the references therein for an up-to-date and complete overview
on the subject. In the sequel, we shall (almost) not come back to this notion.

The paper is organized as follows. Section 2 is devoted to our first general criteria of
common frequent universality and their applications. In Section 3, we focus on the statement
of our second criterion for common frequent hyperyclicity involving periodic points. We
finally give the answers to the last two questions in Section 4.

2. Common frequent universality for countable families of operators

2.1. A general criterion. For the proof of the main result of this section, we will make
use of the following refinement of [7, Lemma 6.19] and of ideas developed in [8].

Lemma 2.1. For every K > 1 and every countable family (Np(i))p, i ∈ N, of increasing
sequences of positive integers, there exists a countable family (Ep(i))p, i ∈ N, of sequences of
sets Ep(i) ⊂ N with positive lower density, such that for every (p, i), (q, j) ∈ N2,

(1) min(Ep(i)) ≥ Np(i);
(2) For every n ∈ Ep(i), m ∈ Eq(j), [n 6= m =⇒ |n − m| ≥ Np(i) + Nq(j) ≥

max(Np(i), Nq(j))];
(3) If (p, i) 6= (q, j), then for every n ∈ Ep(i), m ∈ Eq(j), [n > m =⇒ n ≥ Km];

Proof. Let K > 1 and for every i ∈ N, let (Np(i))p be an increasing sequences of positive
integers. Moreover, for every i ∈ N, let us denote by (Ap(i))p a sequence of syndetic sets
forming a partition of N. Let also 0 < ε < 1

2
and a > 1 be such that

1− 2ε

1 + 2ε
a > K.

For every u ∈ N, we pose:
Ia,εu = [(1− ε)au; (1 + ε)au]
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and we set:
Ep(i) = ∪u∈Ap(i) (Ia,εu ∩ (2Np(i)N)) .

Remark that by definition, (2) is satisfied when (p, i) = (q, j). Remark also that for every
u ∈ Ap(i), we have the following equivalence:

Ia,εu + [−Np(i);Np(i)] ⊆ Ia,2εu ⇔ Np(i) ≤ εau.

Thus, it suffices to remove a finite number of elements in each Ap(i) to ensure that both con-
ditions above are satisfied. Moreover, such a modification of the sets Ap(i) has no influence
on rest the proof.

In the same spirit, one may check that for every u > v,

Ia,2εu ∩ Ia,2εv = ∅ ⇔ 1 <
1− 2ε

1 + 2ε
au−v.

Moreover, the choice we made on a and ε gives

1 < K <
1− 2ε

1 + 2ε
a <

1− 2ε

1 + 2ε
au−v.

Therefore, for every u > v, Ia,2εu ∩ Ia,2εv = ∅. This last relation and the previous one prove
that (2) is satisfied.

To check that (3) is satisfied, remark first that our assumptions on a and ε implies that
1−ε
1+ε

a > K. Then, for every n > m with n ∈ Ep(i) and m ∈ Eq(j), there exists u ∈ Ap(i) and
v ∈ Aq(j) with u > v so that: {

(1− ε)au ≤ n ≤ (1 + ε)au

(1− ε)av ≤ m ≤ (1 + ε)av

Thus, we have:
Km ≤ K(1 + ε)av < (1− ε)av+1 ≤ (1− ε)au ≤ n.

This proves (3)
Condition (1) is easy to obtain, up to removing a finite number of elements from each set

Ep(i) which does not modify the other conditions.
Finally, it remains to prove that each set Ep(i) has positive lower density. Let p, i ∈ N and

(nk)k∈N be an enumeration of the set Ap(i) and M be the maximal size of a gap in Ap(i).
Then,

d(Ep(i)) = lim inf
k→∞

#(Ep(i) ∩ [0; (1 + ε)ank ])

(1− ε)ank+1

≥ lim inf
k→∞

(
2εank

2Np(i)
− 2

)
1

ank+1

≥ lim inf
k→∞

(
εank

Np(i)
− 2

)
1

ank+M

=
ε

Np(i)aM
> 0

This ends the proof of the lemma. �

We recall the definition of uniform unconditional convergence.
Definition 2.2. Let Λ be a set. We say that the series

∑
xλ,n, λ ∈ Λ in X converges

unconditionally uniformly for λ ∈ Λ if, for every ε > 0, there is some N ∈ N such that for
any finite set F ⊂ {N,N + 1, . . .}, one has∥∥∥∥∥∑

n∈F

xλ,n

∥∥∥∥∥ < ε
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for every λ ∈ Λ.

Our general common frequent universality criterion for countable families of operators
states as follows.

Theorem 2.3. Let X be an F -space, Y a separable F -space and (Ti,n)n∈N, i ∈ N, be countably
many sequences of continuous linear operators from X to Y . We assume that there exists a
dense subset Y0 of Y , mappings Si,n : Y0 → X, i, n ∈ N, and a real number c > 1 such that
for every y ∈ Y0,

(1) The series
∑m

n=0 Ti,m(Si,m−n(y)) converges unconditionally, uniformly for m ∈ N and
i ∈ N;

(2) The series
∑

n≥0 Ti,m(Si,m+n(y)) converges unconditionally, uniformly for m ∈ N and
i ∈ N;

(3) The series
∑

n≥(c−1)m Ti,m(Sj,m+n(y)) converges unconditionally, uniformly for m ∈ N
and i 6= j ∈ N;

(4) The series
∑

c−1
c
m≤n≤m Ti,m(Sj,m−n(y)) converges unconditionally, uniformly for m ∈

N and i 6= j ∈ N;
(5) The series

∑
n≥0 Si,n(y) converges unconditionally, uniformly for i ∈ N;

(6) The sequence (Ti,n(Si,n(y))) converges to x, uniformly for every i ∈ N.
Then there exists a vector x ∈ X frequently universal for every (Ti,n)n, i ∈ N.

One can easily check that each (Ti,n)n, i ∈ N satisfies (1), (2), (5) and (6) if and only if it
satisfies the Frequent Universality Criterion given in [12].

Proof. Since Y is separable, we can assume that Y0 = {y0, y1, . . .}. Let (εp)p∈N be a decreasing
sequence of positive real numbers such that

∑
p εp < 1 and pεp → 0 as p → ∞. We also

fix an increasing sequence (Jp)p such that
∑

i≥Jp εi < εp. The assumptions of the theorem
imply the existence of a sequence (Np(i))i,p∈N such that for every i, p ∈ N, every finite set
F ⊂ {Np(i), Np(i) + 1, . . .}, every m ∈ N, every q ∈ {0, . . . , p}, every k ∈ N and every
n ≥ Np(i),

(i) ‖
∑
n∈F
n<m

Tk,m(Sk,m−n(yq))‖ < εp;

(ii) ‖
∑
n∈F

Tk,m(Sk,m+n(yq))‖ < εp;

(iii) ‖
∑
n∈F

n≥(c−1)m

Tk,m(Sl,m+n(yq))‖ < εpεi for

every l 6= k ∈ N;
(iv) ‖

∑
n∈F

n≥(c−1)m

Tk,m(Sl,m+n(yq))‖ < εJpεp for

every l ∈ {0, . . . , Jp} and l 6= k ∈ N;

(v) ‖
∑
n∈F

c−1
c
m≤n≤m

Tk,m(Sl,m−n(yq))‖ < εpεi for

every l 6= k ∈ N;
(vi) ‖

∑
n∈F

c−1
c
m≤n≤m

Tk,m(Sl,m−n(yq))‖ < εJpεp

for every l ∈ {0, . . . , Jp} and l 6= k ∈ N;
(vii) ‖

∑
n∈F

Sk,n(yq)‖ < εpεi;

(viii) ‖Tk,n(Sk,n(yq))− yq‖ < εq.

Let (Ep(i))i,p∈N be a sequence of sets given by Lemma 2.1 applied to the sequence (Np(i))i,p
and to K = c. We put

x =
∑
i∈N

∑
p∈N

∑
n∈Ep(i)

Si,n(yp).

One easily checks that x ∈ X. Indeed, since min(Ep(i)) ≥ Np(i), (vii) gives∑
i∈N

∑
p∈N

‖
∑

n∈Ep(i)

Si,n(yp)‖ <
∑
i∈N

∑
p∈N

εpεi <∞.
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Note that x is even unconditionally convergent. Our goal is now to prove that x is a frequently
universal vector for each sequence (Ti,n)n, i ∈ N. We fix j ∈ N. Let (rq)q be a sequence
of positive real numbers with rq → 0 as q → ∞, to be chosen later. Since the sets Ep(i),
i, p ∈ N, have positive lower density, it is sufficient to prove that

(2.1) ‖Tj,m(x)− yq‖ < rq for every j ∈ N, q ∈ N and every m ∈ Eq(j).

Using that Ep(i) ∩ Eq(j) = ∅ if (i, p) 6= (j, q) and that x is unconditionally convergent in
X, if m ∈ Eq(j) then we can decompose Tj,m(x) as follows:

Tj,m(x) = Tj,m(Sj,m(yq)) +

Am︷ ︸︸ ︷∑
p∈N

∑
n∈Ep(j)
n6=m

Tj,m(Sj,n(yp)) +

Bm︷ ︸︸ ︷∑
i∈N
i 6=j

∑
p∈N

∑
n∈Ep(i)
n6=m

Tj,m(Si,n(yp)) .

First, since m ≥ Nq(j) for any m ∈ Eq(j), (viii) gives

(2.2) ‖Tj,m(Sj,m(yq))− yq‖ < εq.

We next estimate Am:

‖Am‖ ≤
∑
p∈N

‖ ∑
n∈Ep(j)
n<m

Tj,m(Sj,m−(m−n)(yp))‖+ ‖
∑

n∈Ep(j)
n>m

Tj,m(Sj,m+(n−m)(yp))‖

 .

Given that |n −m| ≥ max(Np(j), Nq(j)) for any n ∈ Ep(j) and m ∈ Eq(j), n 6= m, (i) and
(ii) yield

(2.3) ‖Am‖ < 2
∑
p≤q

εq + 2
∑
p>q

εp =: r1,q.

We now turn to estimating Bm. Again, by unconditional convergence of the series, we
have

‖Bm‖ ≤

B1
m︷ ︸︸ ︷∑

p∈N

∑
i∈N
i 6=j

‖
∑

n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))‖+

B2
m︷ ︸︸ ︷∑

p∈N

∑
i∈N
i 6=j

‖
∑

n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))‖ .

We deal first with B2
m. We have

‖B2
m‖ ≤

∑
p>q

∑
i∈N
i 6=j

‖
∑

n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))‖+

+
∑
p≤q

∑
i≤Jq
i 6=j

‖
∑

n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))‖+
∑
i>Jq
i 6=j

‖
∑

n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))‖

(2.4)

We recall that Lemma 2.1 was applied to K = c. So, for n ∈ Ep(i) and m ∈ Eq(j) with
(i, p) 6= (j, q), we have |n − m| ≥ max(Np(i), Nq(j)). Moreover, n > m implies n ≥ cm,
hence n−m ≥ (c− 1)m. In particular, n−m ≥ max(Np(i), (c− 1)m). It follows from (iii)
that

(2.5)
∑
p>q

∑
i∈N
i 6=j

‖
∑

n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))‖ ≤
∑
p>q

∑
i∈N

εiεp ≤
∑
p>q

εp
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and that

(2.6)
∑
p≤q

∑
i>Jq
i 6=j

‖
∑

n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))‖ ≤
∑
p≤q

εp
∑
i>Jq

εi ≤ qεq.

In the last inequality, we use that 0 < εp < 1 and the definition of (Jp)p (i.e.,
∑

i>Jq
εi ≤ εq).

Now, using that n−m ≥ Nq(j), we get from (iv) that

(2.7)
∑
p≤q

∑
i≤Jq
i 6=j

‖
∑

n∈Ep(i)
n>m

Tj,m(Si,m+(n−m)(yp))‖ ≤
∑
p≤q

∑
i≤Jq

εJqεq ≤ qεqJqεJq .

Thus, (2.4), (2.5), (2.6) and (2.7) altogether give, for any m ∈ Eq(j),

(2.8) ‖B2
m‖ ≤

∑
p>q

εp + qεq + qεqJqεJq =: r2,q.

To finish, we consider B1
m. We have

‖B1
m‖ ≤

∑
p>q

∑
i∈N
i 6=j

‖
∑

n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))‖+

+
∑
p≤q

∑
i≤Jq
i 6=j

‖
∑

n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))‖+
∑
i>Jq
i 6=j

‖
∑

n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))‖

(2.9)

For n ∈ Ep(i) and m ∈ Eq(j) with (i, p) 6= (j, q), we have |n − m| ≥ max(Np(i), Nq(j)).
Moreover, n < m gives n ≤ m/c, hence c−1

c
m ≤ m− n ≤ m. So (v) implies

(2.10)
∑
p>q

∑
i∈N
i 6=j

‖
∑

n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))‖ ≤
∑
p>q

∑
i∈N

εiεp ≤
∑
p>q

εp

and

(2.11)
∑
p≤q

∑
i>Jq
i 6=j

‖
∑

n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))‖ ≤
∑
p≤q

εp
∑
i>Jq

εi ≤ qεq.

Now, since n−m ≥ Nq(j), (vi) yields

(2.12)
∑
p≤q

∑
i≤Jq
i 6=j

‖
∑

n∈Ep(i)
n<m

Tj,m(Si,m−(m−n)(yp))‖ ≤
∑
p≤q

∑
i≤Jq

εJqεq ≤ qεqJqεJq .

Thus, (2.9), (2.10), (2.11) and (2.12) imply, for any m ∈ Eq(j), ‖B1
m‖ ≤ r2,q (see (2.8) for

the definition of r2,q).
The previous inequality, together with (2.2), (2.3) and (2.8) give (2.1), setting rq = εq +

r1,q + 2r2,q which, by assumption, tends to 0 as q → +∞. �

In Linear Dynamics, it often happens that in the assumptions of Theorem 2.3, Si are
self-mappings of X0 and right inverses of the operators Ti on X0. It is in particular the case
if T satisfies the so-called Frequent Hypercyclicity Criterion ([7, Theorem 6.18]). In this
context, Theorem 2.3 reads as follows.

Corollary 2.4. Let (Ti)i∈N be countably many bounded linear operators on X. We assume
that there exists a dense subset X0 of X, mappings Si : X0 → X0, i ∈ N, and a real number
c > 1 such that for every x ∈ X0,
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(1) The series
∑

n≥0 T
n
i (x) and

∑
n≥0 S

n
i (x) converge unconditionally, uniformly for i ∈

N;
(2) The sequence TiSi(x) = x for every i ∈ N;
(3) The series

∑
n≥(c−1)m T

m
i (Sm+n

j (x)) converges unconditionally, uniformly for m ∈ N
and i 6= j ∈ N;

(4) The series
∑

c−1
c
m≤n≤m T

m
i (Sm−nj (x)) converges unconditionally, uniformly for m ∈ N

and i 6= j ∈ N.
Then there exists a vector x ∈ X frequently hypercyclic for every Ti, i ∈ N.

In the previous statement, (1) and (2) exactly say that each Ti satisfies the Frequent
Hypercyclicity Criterion. Note that the second part of (1) is a consequence of (3) by taking
m = 0.

These two results apply to many situations, that we describe below.

2.2. Application to multiples of a single operator. Let fix a continuous linear operator
T on X. Given X0 a dense subset of X and S : X0 → X0 such that TS(x) = x for x ∈ X0,
we denote by

aT (X0, S) = inf{λ :
∑ Sn

λn
(x) converges unconditionally for all x ∈ X0}

= inf{λ : (λ−nSn(x))n∈N is bounded for all x ∈ X0}.
and

bT (X0, S) = sup{λ :
∑

(λT )n(x) converges unconditionally for all x ∈ X0}
= sup{λ : ((λT )n(x))n∈N is bounded for all x ∈ X0}.

One easily checks that

aT (X0, S) = sup
x∈X0

lim sup
n
‖Sn(x)‖1/n and bT (X0, S) = inf

x∈X0

1

lim supn ‖T n(x)‖1/n
.

In particular, if X is a Banach space and r(T ) denotes the spectral radius of T ,

(2.13) aT (X0, S) ≥ 1

infn ‖T n‖1/n
=

1

limn ‖T n‖1/n
=

1

r(T )
≥ 1

‖T‖
,

where the equality follows from the spectral radius formula. Also note that bT (X0, S) may be
infinite, for e.g., if X0 =

⋃
n≥0 kerT n is dense in X. This is for example the case if T is any

weighted backward shift acting on the Fréchet space X with an unconditional basis. Even
more specifically, if T is the unweighted backward shift B on `2(N), then S can be taken as
the unweighted forward shift F and we have equalities in (2.13) with aB(X0, F ) = 1/‖B‖ = 1
(see Paragraph 2.3 for a focus on weighted shifts).

It is not difficult to check (see Lemma 2.7 below) that if aT (X0, S) < λ < bT (X0, S)
then λT satisfies the Frequent Hypercyclicity Criterion ([7, Theorem 6.18]). The following
criterion of common hypercyclicity, due to Bayart and Matheron ([6, Proposition 4.2]), can
be rephrased as follows.
Theorem 2.5 (Bayart-Matheron). Let X be a separable Fréchet space and let T : X → X be
a continuous linear operator. Assume that there exist X0 ⊂

⋃
n∈N ker(T n) and S : X0 → X0

such that X0 is dense in X and TS(x) = x for all x ∈ X0. Then
⋂
λ>aT (X0,S) HC(λT ) is a

dense Gδ subset of X.

It is known that for any continuous operator T onX,
⋂
λ∈Λ FHC(λT ) = ∅ whenever Λ is an

uncountable subset of (0,+∞) (of course, even if λT is frequently hypercyclic for any λ ∈ Λ),
see [26, Exercise 9.2.7]. Under the same (in fact, a bit weaker) assumptions as in Bayart-
Matheron’s criterion, we have the following countably common frequent hypercyclicity.
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Theorem 2.6. Let X be a separable Banach space and let T : X → X be a continu-
ous linear operator. Assume that there exists a dense subset X0 of X and S : X0 → X0

such that TS(x) = x for all x ∈ X0. If Λ is a countable relatively compact subset of
(aT (X0, S), bT (X0, S)), then

⋂
λ∈Λ FHC(λT ) 6= ∅.

The proof of this theorem is based on the following easy lemma, where it is assumed that
E ⊂ (a, b) with b < a means E = ∅.

Lemma 2.7. With the notations of Theorem 2.6, let E be a relatively compact subset of
(aT (X0, S), bT (X0, S)). Then there exists c > 1 such that for any x ∈ X0,
(i) The series

∑
n≥0(λT )n(x) converges unconditionally, uniformly for λ ∈ E;

(ii) The series
∑

n≥0

(
S
λ

)n
(x) converges unconditionally, uniformly for λ ∈ E;

(iii) The series
∑

n≥(c−1)m(λ
µ
)m(S

µ
)n(x) converges unconditionally, uniformly for m ∈ N and

λ, µ ∈ E.
(iv) The series

∑
n≥ c−1

c
m(λ

µ
)m−n(λT )n(x) converges unconditionally, uniformly for m ∈ N

and λ, µ ∈ E.

Proof. For notational simplicity, we shall denote a = aT (X0, S) and b = bT (X0, S). We only
prove (ii) and (iv). (i) and (iii) are respectively proved in the same way. To get (ii), let
a < d < inf(E). Then, it is enough to write, for λ ∈ E, (S

λ
)n(x) = ( d

λ
)n(S

d
)n(x), and use that

d
λ
≤ d

inf(E)
< 1 and that (S

d
)n(x) is bounded for any x ∈ X0 by some constant independent

of λ ∈ E and n ∈ N.
To prove (iv), let us now fix d ∈ (a, b) such that sup(E) < d < b. Then

∑
(dT )n(x) is

convergent in X0 and the sequence ((dT )n(x))n is bounded for any x ∈ X0 by some constant
M independent of m and λ, µ ∈ E. Then, for any c > 1 and any λ, µ ∈ E, we have, writing
n = c−1

c
m+ s+ k with k ∈ N and 0 ≤ s < 1 which does depend on m and c but not on n,(

λ

µ

)m−n
‖(λT )n(x)‖ =

λm

µm−( c−1
c
m+s+k)d

c−1
c
m+s+k

‖(dT )n(x)‖

≤M

(
λ

(µdc−1)1/c

)m(
sup(E)

d

)k+s

.

Now, one can observe that λ
(µdc−1)1/c

is less than 1 uniformly for λ, µ ∈ E whenever ( sup(E)
d

)c <
a
b
, which in turn holds true whenever c is large enough. �

Let us now finish the proof of Theorem 2.6.

Proof of Theorem 2.6. It is enough to check that the sequences ((λT )n)n and ((S/λ)n)n,
λ ∈ Λ, satisfy the assumptions (1)–(6) of Theorem 2.3. (6) is trivial, while (1), (2) and (5)
are direct consequences of (i) and (ii) of Lemma 2.7. Now, (3) and (4) follow from (iii) and
(iv) of Lemma 2.7, after observing that for any λ 6= µ ∈ Λ, x ∈ X0,∑

n≥(c−1)m

(λT )m
(
S

µ

)m+n

(x) =
∑

n≥(c−1)m

(
λ

µ

)m(
S

µ

)n
(x)

and ∑
c−1
c
m≤n≤m

(λT )m
(
S

µ

)m−n
(x) =

∑
c−1
c
m≤n≤m

(
λ

µ

)m−n
(λT )n(x).

�

Remark 2.8. 1) The first two points of Lemma 2.7 tell us that, whenever aT (X0, S) <
bT (X0, S), then for any λ ∈ (aT (X0, S), bT (X0, S)), the sequences ((λT )n)n and ((S/λ)n)n
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satisfy the assumptions of the Frequent Universality Criterion given in [12] for X0, where
(S/λ)n : X0 → X is well-defined by (S/λ)n(x) = Sn(x)/λn, x ∈ X0. Yet observe that
S/λ may not map X0 into itself, so λT may not satisfy the usual Frequent Hypercyclicity
Criterion with S/λ as a right inverse. However it does if X0 can be chosen as a dense vector
subspace of X.

2)An easy modification of the proof of Theorem 2.6 yields to the following universal
version:

Proposition 2.9. Let X0 be a dense subset of X and S : X0 → X0 such that TS(x) = x for
all x ∈ X0. Let also (λin)n, i ∈ N, be a countable family of sequences in (a, b). We assume
that

(1) There exist c, d ∈ (a, b) such that λin ∈ (cn, dn) for any i ∈ N, n ≥ 1;
(2) There exists C > 0 such that C−1λin+m ≤ λinλ

i
m ≤ Cλin+m for any n,m, i ∈ N.

Then ⋂
i∈N

FHC((λinT
n)n) 6= ∅.

The next proposition tells us that, when X is a Banach space, Theorem 2.6 is not so
far from being optimal. We will see in the next paragraph that it is optimal for a rather
standard class of weighted shifts.

Proposition 2.10. We keep the notations of Theorem 2.6. Let us assume that X is a
Banach space. If Λ ⊂ [1/r(T ),+∞) is unbounded or 1/r(T ) ∈ Λ, then⋂

λ∈Λ

FHC(λT ) = ∅.

Proof. We only prove the case where 1/r(T ) ∈ Λ, the case Λ unbounded being treated very
similarly. To start with, let us first assume that 1/r(T ) is an accumulation point of Λ. We
fix λ0 ∈ Λ. Upon taking a subsequence, we can assume that Λ = (λk)k∈N is decreasing to
1/r(T ). By contradiction, we assume that there exists x ∈ X which is frequently hypercyclic
for all λkT , k ∈ N. We fix e0 ∈ X \ {0} and denote by Nk, k ≥ 0, the sets respectively given
by

N0 := {n ∈ N : ‖λn0T nx‖ < 1} and Nk := {m ∈ N : ‖λmk Tmx− e0‖ <
‖e0‖

2
}, k ≥ 1.

By assumption, d(N0) ≥ ε > 0 and each Nk, k ∈ N, is infinite. So there exists an increasing
sequence (mk)k≥1 with mk ∈ Nk such that mk → +∞, and one can define (nk)k≥1 by

nk := max{n < mk : n ∈ N0}.

Note that (mk)k can be chosen so that (nk)k is also increasing and tends to +∞. Moreover,
from the definition of nk, k ≥ 1, we get

(2.14) ε ≤ d(N0) ≤ lim sup
k

card(N0 ∩ {0, . . . ,mk − 1})
mk

≤ lim sup
k

nk
mk

.

Now, by construction, we have for any k ≥ 1,

‖T nkx‖ < λ−nk0 and λ−mkk

‖e0‖
2

< ‖Tmkx‖ ≤ ‖Tmk−nk‖‖T nk(x)‖.

It follows,
2

‖e0‖
‖Tmk−nk‖ > λnk0

λmkk
,
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whence

(2.15)
(
λ0

λk

)nk
≤ 2

‖e0‖
λmk−nkk ‖Tmk−nk‖ ≤ 2

‖e0‖
(λ0‖T‖)mk−nk .

Since (λk)k is decreasing and nk → +∞, we first deduce from the last inequality that
mk − nk → +∞. This gives r(T ) = limk ‖Tmk−nk‖1/(mk−nk). We also derive from (2.15) the
following: (

λ0

λk

)nk/mk
≤
(

2

‖e0‖

)1/mk

λ
1−nk/mk
k ‖Tmk−nk‖1/mk ,

which implies, using that mk → +∞ and mk − nk → +∞,

lim sup
k

nk
mk

≤ 1

ln(r(T )λ0)
lim
k

(
ln(λk‖Tmk−nk‖

1
mk−nk )

)
= 0,

since by assumption (λk)k is decreasing to 1/r(T ). This contradicts (2.14) and concludes
the proof when 1/r(T ) is an accumulation point of Λ.

Let us deal with the remaining case, i.e., 1/r(T ) ∈ Λ but 1/r(T ) is not an accumulation
point of Λ. We will in fact prove the stronger fact that, if 1/r(T ) 6= λ are both in Λ, then
r(T )−1T and λT share no frequent hypercyclic vectors. The proof goes along the same lines
as above. Let us denote µ = 1/r(T ). By assumption λ/µ > 1. We assume by contradiction
that x is hypercyclic for λT and µT and we set

Nλ := {n ∈ N : ‖λnT nx‖ < 1} and Nµ := {m ∈ N : ‖µmTmx− e0‖ <
‖e0‖

2
}, k ≥ 1.

As above, since these sets are infinite, one can define an increasing sequence of integers
(mk)k∈N ⊂ Nµ, tending to ∞, such that the sequence (nk)k∈N defined by

nk := max{n < mk : n ∈ Nλ}

is increasing. We have d(Nλ) ≤ lim supk
nk
mk

and, proceeding exactly as in the first part of
the proof, mk − nk →∞ and(

λ

µ

)nk
≤ 2

‖e0‖
(µ‖T‖)mk−nk , k ∈ N.

Therefore

d(Nλ) ≤ lim sup
k

nk
mk

≤ 1

ln(r(T )λ)
lim
k

(
ln(µ‖Tmk−nk‖

1
mk−nk )

)
= 0,

and x is not frequently hypercyclic for λT . �

Remark 2.11. The proof of the previous proposition tells us a bit more than its statement.
More precisely, we have shown that, if Λ is unbounded or if 1/r(T ) ∈ Λ, and if x ∈ X is
a common hypercyclic vector for all λT , then it can be a frequently hypercyclic vector for
none of the λT . This complements for instance the result saying that the set

⋂
λ>1HC(λB)

is different from the set HC(µB) for any µ > 1. Indeed, for µ > 1, we have

FHC(µB) ⊂ HC(µB) \
⋂
λ>1

HC(λB).

Another interesting feature of the previous result (more precisely of the one proved in
the second part of the proof) is the idea that it gives to build two frequently hypercyclic
operators (in fact satisfying the Frequent Hypercyclicity Criterion) sharing no frequently
hypercyclic vectors. This will be detailed in the end of the next Paragraph, see Corollary
2.23).
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In the whole paragraph, we have considered positive real scalar multiples of a single oper-
ator T . In virtue of the León-Müller theorem for frequent hypercyclicity ([7, Theorem 6.28]),
FHC(λT ) = FHC(T ) for any λ ∈ C, |λ| = 1. It is also known that the Ansari theorem for
frequent hypercyclicity holds true: For any positive integer p, FHC(T ) = FHC(T p) (see
[4]). This with Theorem 2.6 thus implies:

Corollary 2.12. Let X0 be a dense set of X and S : X0 → X0 such that TS(x) = x
for all x ∈ X0. Let also T be a bounded linear operator on X and Λ ⊂ {z ∈ C :
aT (X0, S) < |z| < bT (X0, S)}. If {|λ| : λ ∈ Λ} is a countable relatively compact subset
of (aT (X0, S), bT (X0, S)), then ⋂

λ∈Λ

FHC(λT ) 6= ∅.

If in addition {|λ|1/p : p ∈ N∗, λ ∈ Λ} is a relatively compact subset of (aT (X0, S), bT (X0, S)),
then ⋂

λ∈Λ, p∈N∗
FHC(λT p) 6= ∅.

Note that the additional assumption above occurs for example if aT (X0, S) < 1 and
bT (X0, S) = +∞ (for e.g., for a large class of weighted shifts, see the next paragraph).

2.3. Application to weighted shifts.

Theorem 2.13. Let X be a Fréchet space with unconditional basis (en)n, and let {w(λ) =
(wn(λ))n, λ ∈ Λ} be a countable family of weights. We assume that there exist a weight
ω = (ωn)n and constants 0 < η < 1 and M > 1 such that for any λ ∈ Λ and any n ≥ 0,
m ≥ 1,
(i) The series

∑
n≥0(ω1 . . . ωn)−1en is convergent in X;

(ii) ωn . . . ωn+m ≤ ηmwn . . . wn+m(λ);
(iii) M−m ≤ wn . . . wn+m(λ) ≤Mm.
Then

⋂
λ∈Λ FHC(Bw(λ)) is non-empty.

Proof. For notational simplicity, let us denote {w(λ) = (wn(λ))n, λ ∈ Λ} = (w(i))i∈N. We
consider

X0 = span(ek : k ≥ 0) =
⋃
n≥0

ker(T n)

and, for a weight w, the operator Fw on X given by

Fw(ek) =
1

wk+1

(ek+1).

By definition of X0, we need only check that {Bw(i) : i ∈ N} satisfies the assumptions (1)–(4)
of Corollary 2.4 for any x = ek, k ∈ N. Observe that (2) is trivially satisfied. From now on,
for l < 0, we use the notations el = 0 and wl(i) = 0, i ∈ N. For any i, j,m, l ∈ N, let us write

Bm
w(i)F

l
w(j)(ek) =

wk+l(i) . . . wk+l−m+1(i)

wk+l(j) . . . wk+1(j)
ek+l−m.

Note that Bn
w(i)(ek) = 0 whenever n is large enough, uniformly for i ∈ N. This gives the first

part of (1) in Corollary 2.4. Moreover,

(2.16)
∑
n≥0

F n
w(i)(ek) =

∑
n≥0

1

wk+n(i) . . . wk+1(i)
ek+n

By assumption (ii), we have wk+n(i) . . . wk+1(i) > ωk+n . . . ωk+1. So, by assumption (i) and
using that (ek)k is an unconditional basis, we get that the left-hand side term in (2.16) is



14 S. CHARPENTIER, R. ERNST, M. MESTIRI, A. MOUZE

unconditionally convergent in X, uniformly for i, hence the second part of (1) in Corollary
2.4.

Let us now turn to proving that (3) in Corollary 2.4 holds. By the assumption (i) and
unconditionality of (ek)k, the sequence (ωk+1 . . . ωk+n)−1ek+n is bounded uniformly for n ≥ 0.
We denote by ‖ · ‖ the F -norm associated to the Fréchet distance of X. Then, for some
constant K (depending only on k and the constant of unconditionality of (ek)k) and by the
assumptions (ii) and (iii), we have

‖Bm
w(i)F

m+n
w(j) (ek)‖ = ‖wk+m+n(i) . . . wk+n+1(i)

wk+m+n(j) . . . wk+1(j)
ek+n‖

(2.17)

= ‖ wk+m+n(i) . . . wk+n+1(i)

wk+m+n(j) . . . wk+n+1(j)

ωk+1 . . . ωk+n

wk+1(j) . . . wk+n(j)
(ωk+1 . . . ωk+n)−1ek+n‖(2.18)

≤ KM2mηn.(2.19)

So, after writing n = (c− 1)m + l, l ≥ 0, we easily check that there exists some c > 1 such
that M2mη(c−1)m ≤ 1 for any m ≥ 0. Since η < 1, the series

∑
n≥(c−1)mB

m
w(i)F

m+n
w(j) (ek) is

absolutely convergent, uniformly for m ∈ N, which implies (3).
The proof of Corollary 2.4, (4) is left to the reader. �

At this point, we shall make a remark.

Remark 2.14. Bayart-Ruzsa [8] proved in 2015 that, when acting on `p spaces, 1 ≤ p <∞,
weighted shifts are frequently hypercyclic if and only if they satisfy the Frequent Hyper-
cyclicity Criterion (i.e., they are chaotic). This result was extended to more general classes
of spaces in [14]. For instance, it is proved there that Bayart-Ruzsa theorem extends to any
Banach space with unconditional basis (ek)k whenever (ek)k is boundedly complete. We recall
that a basis (ek)k in X is called boundedly complete if, for any sequence of scalars (xk)k,
whenever the sequence (

K∑
k=0

xkek

)
K≥0

is bounded in X, then it is convergent in X. Examples of such Banach spaces are given
among Köthe sequences spaces (including of course `p spaces). Note that the usual basis of
c0 is not boundedly complete.

Anyway, in the situation given by Remark 2.14, Theorem 2.13 can be rephrased as follows.

Corollary 2.15. Let X be a Banach space with boundedly complete unconditional basis
(en)n, and let {w(λ) = (wn(λ))n, λ ∈ Λ} be a countable family of weights. We assume that
there exist a frequently hypercyclic weighted shift Bω, ω = (ωn)n, and constants 0 < η < 1
and M > 0 such that for any λ ∈ Λ and any n ≥ 0, m ≥ 1,
(i) ωn . . . ωm+n ≤ ηmwn . . . wm+n(λ);
(ii) M−m ≤ wn . . . wm+n(λ) ≤Mm.
Then

⋂
λ∈Λ FHC(Bw(λ)) is non-empty.

In Fréchet spaces, bounded completeness of the unconditional basis (en)n is not sufficient
any more, and some other conditions are given in [14]. As an application, it is shown that
on the space H(D) of analytic functions in the unit disc D, endowed with the locally uniform
Fréchet topology, a weighted shift is frequently hypercyclic if and only if it satisfies the
Frequent Hypercyclicity Criterion. Thus the previous corollary holds if the Banach space X
is replaced with H(D).

Let us give an example.
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Example 2.16. For λ ∈ (0,+∞), let Bw(λ) be the weighted shift on `2(N) defined by
wn(λ) = 1 + λ/n. In [18], it is proven that

⋂
λ>1HC(Bw(λ)) is residual. We can easily

deduce from Corollary 2.15 that for any countable relatively compact subset Λ of (1
2
,+∞),

one has ⋂
λ∈Λ

FHC(Bw(λ)) 6= ∅.

Furthermore Theorems 2.7 or 2.13 can be applied to a family of multiples of a single
weighted shift. We keep the notations of Paragraph 2.2. We fix a weight w = (wn)n and
consider X0 = span(ek : k ≥ 0). First observe that b(Bw, X0, Fw) = +∞. Let us simply
denote λw = a(Bw, X0, Fw), that is

λw = inf{λ > 0 : the series
∑ λ−n

w1 . . . wn
en is convergent in X}.

Note that λw = lim supn( ‖en‖
w1...wn

)1/n. We recall that a slight generalization of Abakumov-
Gordon theorem states that

⋂
λ>λw

HC(λBw) is a dense Gδ subset of X, see [7, p. 178] or
[6]. In this context, Theorem 2.6 reads as follows.

Corollary 2.17. Let Bw be a weighted shift on a Fréchet space X with unconditional basis
(en)n. Then

⋂
λ∈Λ FHC(λBw) is non-empty for any countable relatively compact subset Λ

of (λw,+∞).

As already said, countability in the previous corollary is necessary. A natural question is
whether it is possible to get common frequent hypercyclicity in the case Λ is bounded but
λw ∈ Λ. We can give partial answers in two different directions. First of all, as mentioned in
Remark 2.14, if we additionally assume that X is a Banach space and that the unconditional
basis (en)n is boundedly complete, then the convergence of the series λ−n

w1...wn
en is necessary

for Bw to be frequently hypercyclic [14]. So, in such a case, for any weighted shift Bw,⋂
λ∈Λ

FHC(λBw) = ∅

whenever λw > inf Λ. Second, for any X with unconditional basis (en)n and any Bw such
that λw = r−1

w (where rw denotes the spectral radius r(Bw) of Bw)⋂
λ∈Λ

FHC(λBw) = ∅

whenever λw ∈ Λ (Proposition 2.10).
Altogether, these two observations thus give the following:

Proposition 2.18. Let X be a separable Banach space with unconditional basis (en)n, w a
bounded weight and Λ ⊂ [λw,+∞). We assume that (en)n is boundedly complete and that
λw = r−1

w . Then ⋂
λ∈Λ

FHC(λBw) 6= ∅

if and only if Λ is countable, bounded and λw /∈ Λ.

Special case of `p spaces. There of course exist many general situations where the assump-
tions of Proposition 2.18 do not hold. However, bounded completeness of course holds when
X = `p, 1 ≤ p <∞. In this context, it makes sense to examine in which extend the condition
λw = r−1

w can be relaxed. From now on, p is fixed in [1,∞).
Observe that for a weighted shift Bw acting (boundedly) on `p, one has

λw =
1

lim inf(w1 . . . wn)1/n
.
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It is not difficult to check that λw = r−1
p,w with rp,w := rp(Bw) where

rp(T ) := sup{λ : λ ∈ σp(T )}.
Here σp(T ) denotes the point spectrum of an operator T (see for e.g., [31, Theorem 8, P.
70]). We consider that there cannot be confusion due to the notation p in `p and the other
p appearing in rp,w(T ) (where it is for pointwise). Thus λw is in general larger than r−1

w .
Moreover, it is easily seen that, whenever the weight sequence (wn)n is bounded,

rw = lim
n

(
sup
k
wk . . . wk+n

)1/n

= lim sup
n

(
sup
k
wk . . . wk+n

)1/n

.

Proposition 2.10 then tells us that if

Λ ⊂ (1/rw,∞)

is unbounded or admits 1/rw as an accumulation point, then
⋂
λ∈Λ FHC(Bw) = ∅. Of

course, by Corollary 2.17 (or as in Proposition 2.18), this is only interesting when λw = r−1
w .

This equality happens quite often, but this can also fail to occur (see Example 2.20 below).
In fact, for weighted shifts, one can get a little improvement of Proposition 2.10. To state
it, let us introduce the quantity

λ0
w =

1

lim sup(w1 . . . wn)1/n
.

We observe that r−1
w ≤ λ0

w ≤ λw. Examples of weights w for which r−1
w 6= λ0

w = λw or
r−1
w 6= λ0

w 6= λw are easily built (Example 2.20).

Corollary 2.19. Let Bw be a weighted shift acting on `p and let Λ be a countable subset of
[λ0
w,+∞). If Λ is unbounded or λ0

w ∈ Λ, then⋂
λ∈Λ

FHC(λT ) = ∅.

Proof. It is very similar to that of Proposition 2.10. Let us only give the outline of the
proof in the case where Λ is any sequence (λk)k∈N decreasing to λ0

w. By contradiction, let us
assume that x = (xn)n∈N ∈ `p is some frequent hypercyclic vector for each λkBw, k ∈ N. As
in the proof of Proposition 2.10, we introduce the sets

N0 := {n ∈ N : ‖λn0Bn
wx‖ < 1} and Nk := {m ∈ N : ‖λmk Bm

w x− e0‖ <
1

2
}, k ≥ 1.

Then, replacing T by Bw, we similarly define increasing sequences (nk)k≥1 ⊂ N0 and (mk)k≥1,
tending to +∞, with mk ∈ Nk and such that d(N0) ≤ lim supk nk/mk and, for any k ≥ 1,

λnk0 wmk−nk+1 . . . wmkxmk < 1 and λmkk w1 . . . wmkxmk >
1

2
.

It follows
λnk0

λmkk
< 2w1 . . . wmk−nk ;

In particular mk − nk → +∞ and

(λ0/λk)
nk/mk < 21/mkλ

1−nk/mk
k (w1 . . . wmk−nk)

1/mk

hence
lim sup

k

nk
mk

≤ C(lim sup
k

ln(λk)− ln(λ0
w)) = 0,

for some constant C ≥ 0. This contradicts d(N0) > 0. �

Let us provide with some examples.
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Example 2.20. 1) For the class W0 of bounded weights w satisfying λw = λ0
w, then Corol-

laries 2.17 and 2.19 give the following necessary and sufficient condition:

Proposition 2.21. Let w ∈ W0 and Λ ⊂ [λw,+∞). The set
⋂
λ∈Λ FHC(λBw) is non-empty

if and only if Λ is countable, bounded and λw /∈ Λ.

The class W0 contains, for e.g., all weights w = (wn)n such that (wn)n is convergent. Yet,
for such weights, we even have λw = r−1

w and Proposition 2.18 applies.
It is in fact not difficult to provide with a set of examples of weights w which allows to

distinguish all the quantities ‖Bw‖−1, r−1
w , λ0

w and λw. Indeed, let a ≤ b ≤ c ≤ d be four
positive real numbers, and let us define

wn :=


a if n ∈ {1, . . . , 4} ∪ {k2(k−1)2 , . . . , 2k

2 − 1}
d if n = 2k

2

c if n ∈ {2k2 + 1, 2k
2

+ k + 1}
b if n ∈ {2k2 + k + 2, (k + 1)2k

2}

, k ≥ 2.

Then one easily checks that

‖Bw‖−1 = 1/d ≤ r−1
w = 1/c ≤ λ0

w = 1/b ≤ λw = 1/a.

Therefore, if we choose a = b 6= c, then Proposition 2.21 tells us that
⋂
λ∈Λ FHC(λBw) is

non-empty if and only if Λ is countable, bounded and λw /∈ Λ. Yet Proposition 2.18 cannot
be used here.

In view of the previous discussion, it seems to be reasonable to wonder whether 1/r(T )
could be replaced by 1/rp(T ) in Proposition 2.10. More precisely, for the weighted shifts on
`p, one can pose the following:

Question 2.22. Do there exist weighted shifts Bw on `p, 1 ≤ p < ∞, with λ0
w < λw and

some countable Λ ⊂ (λw,+∞) such that λw ∈ Λ and
⋂
λ∈Λ FHC(λBw) is non-empty?

We conclude the paragraph by showing how the results of this paragraph permit to easily
exhibit two (or more) explicit frequently hypercyclic weighted shifts which share no frequently
hypercyclic vector. We can then state the following.

Corollary 2.23. There exist two frequently hypercyclic weighted shifts on `p, 1 ≤ p < +∞
(hence satisyfing the Frequent Hypercyclicity Criterion), with no common frequent hypercyclic
vector.

Proof. Let wn = (n+1
n

)2. Since (wn)n is decreasing to 1, one has r−1
w = λ0

w = λw = 1.
Moreover, Bw is frequently hypercyclic, since

∑
n≥1(w1 . . . wn)−1 < ∞. Thus, applying

Proposition 2.21 with Λ = {1, λ}, λ > 1, we get FHC(Bw) ∩ FHC(λBw) = ∅. �

2.4. Other examples. In this paragraph, we apply our general common frequent hy-
percyclicity criteria to classical frequently universal sequences of operators which are not
weighted shifts.

Since almost all the classical examples of frequent hypercyclic operators satisfy the Fre-
quent Hypercyclicity Criterion, the range of applications of Theorem 2.6 is almost the largest.
Let us give one example.

Example 2.24 (Differential operators on H(C)). Let D be the differentiation operator on
H(C), Df(z) = f ′(z). Costakis and Mavroudis showed [17] that for any non-constant poly-
nomial P , P (D) satisfies the Bayart-Matheron criterion (Theorem 2.5) with aP (D)(X0, S) = 0
and bP (D)(X0, S) = +∞ for some dense subset X0 of X and some right inverse S of P (D) on
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X0. Thus, with the frequent hypercyclicity version of the León-Müller theorem and Theorem
2.6, we can deduce that ⋂

λ∈Λ

FHC(λP (D)) 6= ∅,

for any countable relatively compact subset Λ of C∗.

We shall now focus on applications of Theorem 2.3 to families of operators which are not
multiples of a single one.

Example 2.25 (Adjoint of multipliers on the Hardy space). We denote by D := {z ∈ C :
|z| < 1} the unit disc, by H∞ the space of bounded analytic functions in D, and by H2 the
classical Hardy space,

H2 :=

{
f =

∑
k≥0

akz
k ∈ H(D) : ‖f‖2 := (

∑
k≥0

|ak|2)1/2 <∞

}
.

We recall that H∞ and H2 are Banach spaces, endowed respectively by the sup-norm ‖ · ‖∞
and the ‖ · ‖2. Let Φ ∈ H∞ and Φ∗ ∈ L∞(T) its boundary value. Let us assume that Φ is
not outer and that 1/Φ ∈ H∞. We denote by MΦ : H2 → H2 the multiplication operator
with symbol Φ, MΦ(f) = Φf , and by M∗

Φ its adjoint. It is known [7] that λM∗
Φ is frequently

hypercyclic on H2 for any λ > ‖1/Φ‖∞ and that⋂
λ>‖1/Φ‖∞

HC(λM∗
Φ)

is a Gδ-subset of H2 [24].
Now, let us write the inner-outer decomposition Φ = uθ, with u outer and θ the non-

constant inner part of Φ. Let us define X0 := ∪n≥1Kn with Kn := H2 	 θnH2. Then X0 is
the generalized kernel of M∗

Φ and is dense in X0. Moreover, if we define S := M∗
1/uMθ, then

M∗
ΦS = Id and ‖S‖ = ‖1/Φ‖∞. We refer, for e.g., to the proof of [24, Theorem 3.1] for the

details concerning the previous claims. So, with the notations introduced before Theorem
2.6, we have a(M∗

Φ, X0, S) ≤ ‖S‖ = ‖1/Φ‖∞ and b(T,X0, S) = +∞. Therefore, Theorem
2.6 directly implies that ⋂

λ∈Λ

FHC(λM∗
Φ) 6= ∅,

whenever Λ is a countable relatively compact subset of (‖1/Φ‖∞,+∞).

In fact, we can deduce from Corollary 2.4 the following more general result.

Proposition 2.26. Let {Φλ : λ ∈ Λ} be a countable family of bounded analytic functions
on D with the same non-constant inner factor θ. We assume that

a := sup{‖Φ−1
λ ‖∞ : λ ∈ Λ} < 1 and M := sup{‖Φλ/Φµ‖∞ : λ ∈ Λ} <∞.

Then ⋂
λ∈Λ

FHC(M∗
φλ

) 6= ∅.

Proof. We aim to apply Corollary 2.4. By the comment after its statement, we need only
check items (2)–(4). Since the functions Φλ share the same non-constant inner factor, the set
X0 := ∪n≥1Kn with Kn := H2 	 θnH2 is the generalized kernel of each M∗

φλ
. Let uλ denote

the outer factor of Φλ. As recalled above, setting Sλ := M∗
1/uλ

Mθ, we have T nλ Snλ = Id for
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any n ∈ N. So (2) and (4) of Corollary 2.4 are satisfied. Let λ 6= µ ∈ Λ and f ∈ X0. By
assumption, there exists b ∈ (a, 1) such that for any m ∈ N, writing n = (c−1)m+k, k ∈ N,

‖Tmλ Sm+n
µ (f)‖2 = sup

‖g‖2=1

〈
Tmλ S

m+n
µ (f), g

〉
= sup
‖g‖2=1

〈
f,

(
uλ
uµ

)m(
θ̄

uµ

)n
g

〉
≤ ‖f‖2

∥∥∥∥uλuµ
∥∥∥∥m
∞

∥∥∥∥ 1

uµ

∥∥∥∥n
∞

≤ ‖f‖2

(
M(a/b)(c−1)

)m (a
b

)k
.

Since a/b < 1, (3) of Corollary 2.4 then follows by taking c > 1 such thatM ≤ (b/a)(c−1). �

3. Periodic points at the service of common frequent hypercyclicity

Despite its apparent unpleasant formulation, the classical Frequent Hypercyclicity Crite-
rion turns out to be very useful for checking that natural operators are frequently hypercyclic
(and chaotic). We saw in the previous section that it fits well to formulating easy-to-use suf-
ficient conditions for common frequent hypercyclicity. In [25], the authors provided a quite
appealing new criterion for frequent hypercyclicity and chaos involving the periodic points
of the operator [25, Theorem 5.31]. It is shown there that all the operators which satisfy
the Frequent Hypercyclicity Criterion satisfy the assumptions of this new one. However, it
quickly appears from its statement that it is not so simple to use when dealing with natural
operators (for e.g., weighted shifts). Yet it is very well adapted to certain type of operators
which were introduced by Menet in [27] to build chaotic operators on `p which are not fre-
quently hyperyclic. These operators have been extensively developed - and called operators
of C-type - in [25, Section 6] to build several counter-examples.

In this section, we provide with a sufficient condition for common frequent hypercyclicity
derived from [25, Theorem 5.31]. We recall that a vector x ∈ X is a periodic point for
T ∈ L(X) if there exists p ∈ N such T px = x. Let us denote by Per(T ) the set of all periodic
points for T . For x ∈ Per(T ) we denote by pT (x) the period of x for T (i.e., the smallest
positive integer p such that T px = x).

Theorem 3.1. Let {Ts : s = 1, 2, 3, . . .} be a countable family in ∈ L(X). We assume that
there exists a dense linear subspace X0 of X with Ts(X0) ⊂ X0 and X0 ⊂ Per(Ts) for any
s ≥ 1, and a constant α ∈ (0, 1) such that the following property holds true: For every s ≥ 1,
every ε > 0, every x, y ∈ X0, every q ≥ 1 and every t1, . . . , tq ≥ 1, there exist z ∈ X0 and
integers n, d ≥ 1 such that

(1) d is a multiple of pTti (y) and of pTti (z) for each i = 1, . . . , q;
(2) ‖T kt z‖ < ε for every 0 ≤ k ≤ αd and every t ≥ 1;
(3) ‖T n+k

s z − T ks x‖ < ε for every 0 ≤ k ≤ αd.
Then there exists a vector in X which is frequently hypercyclic for each Ts, s ≥ 1.

If the family {Ts : s ∈ N \ 0} is reduced to a single operator, Theorem 3.1 is exactly [25,
Theorem 5.31]. Yet one should mention that the previous statement does not only mean
"each Ts satisfies the assumptions of [25, Theorem 5.31]". It would be interesting to know
whether two operators satisfying the assumptions of [25, Theorem 5.31] automatically have
a frequently hypercyclic vector in common. Note that we already saw that two operators
T1 and T2 may have no common frequently hypercyclic vector, even if they both satisfy the
classical Frequent Hypercyclicity Criterion (see Corollary 2.23). Finally note that Theorem
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3.1 does not apply to families of multiples of a single operator, since Per(T ) ∩ Per(λT ) = ∅
in general.

Proof of Theorem 3.1. As one could expect, the proof is greatly inspired by that of [25,
Theorem 5.31]. Let (xl)l≥1 be a sequence of vectors in X0, dense in X, and let (Ip(s))p,s≥1

be a partition of N such that each set Ip(s) is infinite and has bounded gaps. Let us denote
by rp(s) the maximal size of a gap for Ip(s) . We also let (yj)j∈N be given by yj = xp if
j ∈ Ip(s). Now we use the assumptions of the theorem to build, by induction on j ∈ N a
sequence (zj)j∈N of vectors in X0 and increasing sequences of positive integers (dj)j∈N and
(nj)j∈N such that the following properties hold, if j ∈ Ip(s):
(i) dj is a multiple of pTt(

∑j−1
k=1 zk) and pTt(zj) for every t so that there exist q ≥ 1 and

1 ≤ i ≤ j with i ∈ Iq(t);
(ii) ‖T kt (zj)‖ < 2−j for every 0 ≤ k ≤ αdj and every t ≥ 1;
(iii) ‖T nj+ks zj − T ks (yj −

∑j−1
i=1 zi)‖ < 2−j for every 0 ≤ k ≤ αdj;

(iv) nj is a multiple of pTs(
∑j−1

i=1 zi) and αdj < nj ≤ dj;
(v) αdj > 4dj−1.

By (ii), the sum z :=
∑

i≥1 zi defines a vector in X. Let us check that z is frequently
hypercyclic for every Ts, s ≥ 1.

Let p, s ≥ 1 be fixed. We set Ip(s) := {jm : m ≥ 1}, where (jm)m≥1 is increasing and
satisfies jm+1 − jm ≤ rp(s) for every m ≥ 1. Then, for every m ≥ 1 we define by induction
on j ∈ N a family of sets (Am,j,s)0≤j<jm+1−jm as follows:

Am,0,s := {njm + kdjm + k′pTs(xp) : 0 ≤ k′ ≤ αdjm
pTs(xp)

, 0 ≤ k ≤ αdjm+1

djm
− 2},

and, for 1 ≤ j < jm+1 − jm,

Am,j,s :=
⋃

1≤k≤
αdjm+j+1
djm+j

−1

(Am,j−1 + kdjm+j).

As in the proof of [25, Theorem 5.31, Equation (16)], one easily checks by induction that
max(Am,j,s) ≤ αdjm+j+1. Moreover, by [25, Fact 5.35] (in fact exactly reproducing its proof),
we have d(As) > 0 where

As :=
⋃
m≥1

⋃
0≤j<jm+1−jm

Am,j,s.

Thus to finish the proof of the theorem, we need only prove that for every m ≥ 1 and
every 0 ≤ j < jm+1 − jm, we have

‖T ns z − xp‖ ≤ 2−(jm−1), n ∈ Am,j,s.

This shall be proven as in [25, Fact 5.34] up to some modifications. For m ≥ 1 and 0 ≤ j <
jm+1 − jm, we first observe that for any n ∈ Am,j,s we have

‖T ns z − xp‖ ≤ ‖T ns (

jm+j∑
i=1

zi)− xp‖+
∑

i>jm+j

‖T ns zi‖.

Since max(Am,j,s) ≤ αdjm+j+1, we have n ≤ αdjm+j+1 ≤ αdi for every i > jm + j, and it
follows from (ii) that ∑

i>jm+j

‖T ns zi‖ <
∑

i>jm+j

2−i ≤ 1

2jm+j
.
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To conclude we now turn to proving that for every n ∈ Am,j,s

(3.1) ‖T ns

(
jm+j∑
i=1

zi

)
− xp‖ ≤

j∑
i=0

2−(jm+i).

To do so, we proceed by induction on 0 ≤ j < jm+1 − jm. If n ∈ Am,0,s, then j = 0 and
n = njm + kdjm + k′pTs(xp) with 0 ≤ k ≤ αdjm+1

djm
− 2 and 0 ≤ k′ ≤ αdjm

pTs (xp)
and by (i) and (iv)

T ns

(
jm∑
i=1

zi

)
− xp = T njm+kdjm+k′pTs (xp)

s

(
jm∑
i=1

zi

)
− xp

= T njm+k′pTs (xp)
s (zjm)− T k′pTs (xp)

s

(
xp −

jm−1∑
i=1

zi

)
.

By (iii) we get

‖T ns

(
jm∑
i=1

zi

)
− xp‖ ≤ 2−jm .

Assume now that (3.1) has been proven up to j − 1 for some 1 ≤ j < jm+1 − jm. For
n ∈ Am,j,s, we write n = kdjm+j + l with l ∈ Am,j−1,s and

0 ≤ k ≤ αdjm+j+1

djm+j

− 1.

Then, by (i) we have

T ns

(
jm+j∑
i=1

zi

)
− xp = T kdjm+j+l

s

(
jm+j∑
i=1

zi

)
− xp

= T ls

(
jm+j−1∑
i=1

zi

)
− xp + T ls (zjm+j)

Since l ∈ Am,j−1,s, we deduce from the induction hypothesis and (ii) that

‖T ns

(
jm+j∑
i=1

zi

)
− xp‖ ≤

j−1∑
i=0

2−(jm+i) + 2−(jm+j),

and (3.1) as desired. �

Application to operators of C-type. We will apply Theorem 3.1 to operators of C-type on
`p(N). First we shall recall their definition, following the formalism of [25, Section 6]. As
usual, we denote by (ek)k∈N the canonical basis of `p(N). An operator of C-type is associated
a data of four parameters v, w, ϕ and b:

• v = (vn)n≥1 is a sequence of non-zero complex numbers with
∑

n≥1 |vn| <∞;
• w = (wn)n≥1 is a sequence of complex numbers such that

0 < inf
n≥1
|wn| ≤ sup

n≥1
|wn| <∞;

• ϕ : N → N is such that ϕ(0) = 0, ϕ(n) < n for every n ≥ 1, and the set {n ∈ N :
ϕ(n) = l} is infinite for every l ≥ 0;
• b = (bn)n≥0 is a strictly increasing sequence of positive integers with b0 = 0 and
bn+1 − bn is a multiple of 2(bϕ(n)+1 − bϕ(n)) for every n ≥ 1.
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Now, for a data v, w, ϕ and b as above, the operator of C-type Tv,w,ϕ,b is defined by

Tv,w,ϕ,bek =


wk+1ek+1 if k ∈ [bn, bn+1 − 1), n ≥ 0

vnebϕ(n) −
(∏bn+1−1

j=bn+1wj

)−1

ebn if k = bn+1 − 1, n ≥ 1

−
(∏b1−1

j=b0+1 wj

)−1

e0 if k = b1 − 1.

Here, by convention, en empty product is equal to 0. From now on, we assume that the
condition

inf
n≥0

∏
bn<j<bn+1

|wj| > 0

is satisfied. As shown by [25, Fact 6.2], this assumption ensures that Tv,w,ϕ,b is a bounded
operator from `p(N) into itself. It can also be checked that each element of c00 is a periodic
point for Tv,w,ϕ,b, see [25, Fact 6.4].

In order to deal with frequent hypercyclicity, the authors of [25] introduce a subclass
of operators of C-type. As we are interested in common frequent hypercyclicity, we will
work within this subclass. It consists in operators of C-type for which the data has a
special structure. More precisely, an operator of C-type Tv,w,ϕ,b is of C+-type if the following
conditions hold for every k ≥ 1:

• ϕ(n) = n− 2k−1 for every n ∈ [2k−1, 2k);
• There exists ∆(k) ∈ N such that the size of the block [bn, bn+1), i.e. the quantity
bn+1 − bn, is equal to ∆(k) for every n ∈ [2k−1, 2k);
• There exists v(k) ∈ C \ {0} such that vn = v(k) for every n ∈ [2k−1, 2k);
• There exists a sequence (w

(k)
i )1≤i<∆(k) such that wbn+i = w

(k)
i for every 1 ≤ i < ∆(k)

and every n ∈ [2k−1, 2k).
An operator of C-type which satisfies the previous conditions is called an operator of C+-

type. The following result is a criterion for a countable family of operators of C+-type to
share a common frequently hypercyclic vector.

Theorem 3.2. Let {Tv(s),w(s),ϕ,b : s ∈ N} be a countable family of operators of C+-type on
`p(N) where b does not depend on s. We assume that there exists a constant α > 0 such that
for every s ≥ 1, every C ≥ 1 and every k0 ≥ 1, there exists an integer k ≥ k0 such that, for
every 0 ≤ n ≤ α∆(k),

(3.2) |v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C.

If there exists a constant K > 0 such that for any s, t ≥ 1 and any r ≥ p ≥ 1,

(3.3)
∣∣∣∣wp(s)wp+1(s) . . . wr(s)

wp(t)wp+1(t) . . . wr(t)

∣∣∣∣ ≤ K,

then
⋂
s≥1 FHC(Tv(s),w(s),ϕ,b) is non-empty.

Note that since b does not depend on s, by definition the ∆(k), k ≥ 1, do not depend on s
either. It is plainly checked that condition (3.2) is equivalent to saying that each Ts satisfies
the assumption of [25, Theorem 6.9]. In particular, if {Tv(s),w(s),ϕ,b : s ∈ N} is reduced to
a single operator (i.e., v(s) and w(s) do not depend on s), then the previous criterion is
exactly [25, Theorem 6.9].

For the proof of Theorem 3.2, we recall [25, Fact 6.8] below.
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Fact 1. Let T be an operator of C+-type on `p(N) and k ≥ 1. For any l < 2k−1 and
1 ≤ m ≤ ∆(k), we have

Tmeb
2k−1+l+1

−m = v(k)

 ∆(k)−1∏
i=∆(k)−m+1

w
(k)
i

 ebl −

∆(k)−m∏
i=1

w
(k)
i

−1

eb
2k−1+l

.

Proof of Theorem 3.2. Without loss of generality, we can assume that 0 < α < 1. It suffices
to check that the assumptions of Theorem 3.1 are satisfied. Let us define X0 := span(ek; k ∈
N) and fix x, y ∈ X0, ε > 0 and s ≥ 1. There exists k0 ≥ 1 such that

x =
∑
l<2k0

bl+1−1∑
j=bl

xjej.

By (3.2), for any C > 0, there exists k ≥ k0 such that

|v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C, 0 ≤ n ≤ α∆(k).

Since v(s) and w(s) are bounded, upon choosing C large enough, we may assume that k is
so large that the following holds true:
(a) ∆(k) is a multiple of pTt(y) for any t ≥ 1;
(b) ∆(k0) ≤ min((1− α

2
)∆(k), α

2
∆(k) − 1).

Note that, by the definition of b and ϕ for operators of C+-type, and since the period of
any vector in X0 depends only on the sequence b, (a) is satisfied whenever y is supported in
[0, b2k−1 [. Let us now set n := ∆(k) − 1, d := 2∆(k) and

z :=
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

eb
2k−1+l+1

−n+j−bl .

Like for (a) above, d is a multiple of pTs(z) for any s ≥ 1. Thus condition (1) of Theorem
3.1 is satisfied.

Let us now fix 0 ≤ m ≤ αd
4

and t ≥ 1. We observe that for every l < 2k0 and bl ≤ j ≤
bl+1 − 1, we have

b2k−1+l+1 − n+ j − bl +m ∈ [b2k−1+l, b2k−1+l+1).

Indeed, by definition b2k−1+l+1 − b2k−1+l = ∆(k) and by (b), −∆(k) ≤ −n + j − bl + m ≤ 0.
So for every t ≥ 1, we have

Tmt eb2k−1+l+1
−n+j−bl =

 ∆(k)−n+j−bl+m∏
i=∆(k)−n+j−bl+1

w
(k)
i (t)

 eb
2k−1+l+1

−n+j−bl+m,

hence the expression

(3.4) Tmt (z) =
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏

i=j−bl+m+2

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

(
j−bl+m+1∏
i=j−bl+2

w
(k)
i (t)

w
(k)
i (s)

)
eb

2k−1+l+1
−n+j−bl+m.
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Using (b), we know that 0 ≤ j− bl +m+ 1 ≤ α∆(k) which, by (3.2), (3.3) and the definition
of C+-type operators, implies that for some constant A > 0 (independent of k),

‖Tmt (z)‖ ≤ ‖x‖C−1KA∆(k0) .

Up to choose C large enough, we get (2) in Theorem 3.1.
Let us now estimate the norm of T n+m

s z − Tms (x) for 0 ≤ m ≤ αd
4
. By Fact 1, we obtain

T n−(j−bl)
s eb

2k−1+l+1
−n+j−bl = v(k)(s)

 ∆(k)−1∏
i=∆(k)−n+j−bl+1

w
(k)
i (s)

 ebl

−

∆(k)−n+j−bl∏
i=1

w
(k)
i (s)

−1

eb
2k−1+l

.

Applying T j−bls yields

T ns eb2k−1+l+1
−n+j−bl =

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

(j−bl∏
i=1

wbl+i(s)

)
ej

−
(
w

(k)
j−bl+1(s)

)−1

eb
2k−1+l

+j−bl .

Moreover, since m+ j − bl < ∆(k), we have

Tms eb2k−1+l
+j−bl =

(
j−bl+m∏
i=j−bl+1

w
(k)
i (s)

)
eb

2k−1+l
+j−bl+m,

hence

T n+m
s eb

2k−1+l+1
−n+j−bl =

v(k)(s)
∆(k)−1∏
i=j−bl+2

w
(k)
i (s)

(j−bl∏
i=1

wbl+i(s)

)
Tms ej

−
(
w

(k)
j−bl+1(s)

)−1
(

j−bl+m∏
i=j−bl+1

w
(k)
i (s)

)
eb

2k−1+l
+j−bl+m.

By definition of z, it follows that

T n+m
s (z)

= Tms (x)−
∑
l<2k0

bl+1−1∑
j=bl

xj

v(k)(s)
∆(k)−1∏

i=j−bl+m+1

w
(k)
i (s)

−1(
j−bl∏
i=1

wbl+i(s)

)−1

eb
2k−1+l

+j−bl+m

By assumption, we thus get

‖T n+m
s (z)− Tms (x) ≤ ‖x‖C−1A∆(k0)

and condition (3) of Theorem 3.1 with α′ = α
4
, as desired. �

Remark 3.3. 1) It is clear from the proof that the conclusion of Theorem 3.2 remains true
if condition (3.3) is replaced by the following weaker (but less nice) one:

(3.5) sup
t≥1

0≤j<∆(k0)

0≤m≤α∆(k)

|v(k)(s)|
∆(k)−1∏
i=j+2

|w(k)
i (s)|

−1(
j+m+1∏
i=j+2

|w(k)
i (t)|

)
<

1

C
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2) Moreover, if (3.3) is replaced by the following two conditions:
(a) For some A > 1, supi,t≥1 max

(
|wi(t)|; 1

|wi(t)|

)
≤ A,

(b)

(3.6) sup
t≥1

0≤m≤α∆(k)

|v(k)(s)|
∆(k)−1∏
i=1

|w(k)
i (s)|

−1(
m+1∏
i=1

|w(k)
i (t)|

)
<

1

C

then it is also clear that (3.5) holds, and the conclusion of Theorem 3.2 is still true.

It turns out that for a certain subclass of operators of C+-type, for which (2a) holds true,
some rather simple condition for frequent hypercyclicity is given in [25]. We shall now see
that a similar condition for a family of operators in this subclass implies (3.6) and thus
common frequent hypercyclicity.

Application to operators of C+,1-type. Operators of C+,1-type are introduced in [25, Section
6.5] as those for which the parameters v and w satisfy the following extra condition: For
every k ≥ 1,

v(k) = 2−τ
(k)

and w
(k)
i =

{
2 if 1 ≤ i ≤ δ(k)

1 if δ(k) < i < ∆(k) ,

where τ := (τ (k))k≥1 and δ := (δ(k))k≥1 are two strictly increasing sequences of integers such
that δ(k) < ∆(k), k ≥ 1. Within this class of operators of C+,1-type, that we simply denote
by Tτ,δ,ϕ,b, examples of frequently hypercyclic operators which are not ergodic were provided
in [25].

Theorem 3.4. Let {Tτ(s),δ(s),ϕ,b : s ≥ 1} be a countable family of operators of C+,1-type on
`p(N) where b does not depend on s. If

inf
t≥1

lim sup
k→∞

δ(k)(t)− τ (k)(t)

∆(k)
> 0,

then
⋂
s≥1 FHC(Tτ(s),δ(s),ϕ,b) is non-empty.

Proof. Remark that (2a) in Remark 3.3 trivially holds, thus it is enough to check (2b). To
do so, we define

α < min

(
1,

1

2
inf
t≥1

lim sup
k→∞

δ(k)(t)− τ (k)(t)

∆(k)

)
.

Let s, k0 ≥ 1 and C ≥ 1, and let us set n = ∆(k) − 1. Since ∆(k) → ∞ as k → ∞, there
exists k ≥ k0 such that:

δ(k)(s)− τ (k)(s)

∆(k)
> 2α and α∆(k) > ln2(C).

Then it follows from the definition of operators of C+,1-type that (2b) in Remark 3.3 is
equivalent to

2τ
(k)(s)−δ(k)(s) sup

t≥1
0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| < 1

C
.

Now, we have

sup
t≥1

0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| ≤ 2α∆(k) ≤ 2

1
2

(δ(k)(s)−τ (k)(s)).
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Hence,

2τ
(k)(s)−δ(k)(s) sup

t≥1
0≤m≤α∆(k)

m+1∏
i=1

|w(k)
i (t)| ≤ 2

1
2

(τ (k)(s)−δ(k)(s)) < 2−α∆(k)

<
1

C

It remains to check that for every 0 ≤ n ≤ α∆(k),

|v(k)(s)|
∆(k)−1∏
i=n+1

|w(k)
i (s)| > C

which works the same as in the proof of [25, Theorem 6.17]. �

Remark 3.5. When one considers only a single operator, Theorem 3.4 is exactly [25, The-
orem 6.17].

4. Common frequent hypercyclicity with respect to densities

We refer to [23] for the abstract definitions and the study of generalized lower/upper
densities. In particular it is proven there that to any sequence of non-negative real numbers
α such that

∑
k≥1 αk = +∞, one can associate generalized lower and upper densities dα and

dα by the formulae

dα(E) = lim inf
n

∑
k≥1

αn,k1F (k) and dα(E) = 1− dα(N \ E), E ⊂ N,

where (αn,k)n,k≥1 is the matrix given by

αn,k =

{
αk/(

∑n
j=1 αj) for 1 ≤ k ≤ n,

0 otherwise.

Then we also have dα(E) = lim supn
∑+∞

k=1 αn,k1F (k). Let us also introduce the notation ϕα
for the function defined by ϕα(x) =

∑
k≤x αk, x ∈ [0,+∞).

For α and β two sequences as above, let us write α . β if there exists k0 ∈ N such that
(αk/βk)k≥k0 is decreasing to 0. As recalled in the introduction, we have

dβ(E) ≤ dα(E) ≤ dα(E) ≤ dβ(E), E ⊂ N,

whenever α . β (see [20, Lemma 2.8]). Thus one can define scales of well-ordered densities
with respect to the type of growth of the defining sequences. In this section, two types of
sequences will play an important role.

(1) For 0 ≤ ε ≤ 1, Eε := (exp(kε))k≥1. By a summation by parts, one can see that for
0 < ε < 1, ϕEε(n) ∼ n1−ε

ε
exp(nε) (where uk ∼ vk means uk/vk → 1);

(2) For s ∈ N ∪ {∞}, Ds := (exp(k/ log(s)(k)))k≥1 where log(s) = log ◦ · · · ◦ log, log
appearing s times, with the conventions log(0)(x) = x and log(∞)(x) = 1 for any
x > 0. One can check that ϕDs(n) ∼ log(s)(n) exp(x/ log(s)(n)) for s ∈ N (see [21,
Remark 3.10]) and ϕD∞(n) ∼ e

e−1
exp(n).

For r ≥ 1 we shall also write Pr := (kr)k≥1. More examples of generalized densities can
be found in [20, 21]. Observe that the usual lower density d (associated to the constant
sequence (1, 1, 1, . . .)) corresponds to dE0 , dD0

and dP1
. Note that E1 shall simply be denoted

by E and dE1 = dD∞ by dE . For any 0 < δ ≤ ε ≤ 1, any s ≤ t ∈ N and any r ≥ 1, we thus
have

dE ≤ dDt ≤ dDs ≤ dEε ≤ dEδ ≤ dPr ≤ d ≤ d ≤ dPr ≤ dEδ ≤ dEε ≤ dDs ≤ dDt ≤ dE .
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As for (U -)frequently hypercyclic operators, we now say that T ∈ L(X) is α-frequently
hypercyclic (resp. Uα-frequently hypercyclic) if there exists x ∈ X such that for any non-
empty open set U in X, dα(N(x, U, T )) (resp. dα(N(x, U, T ))) is positive. We denote by
FHCα(T ) (resp. UFHCα(T )) the set of all α-frequently (resp. Uα-frequently) hypercyclic
vectors for T . As proven in [20], no operator can be E-frequently hypercyclic (and hence
α-frequently hypercyclic whenever E . α).

A first natural question arises:

Question 4.1. Does the work done in Section 2 extend to α-frequent hypercyclicity for some
α?

Let us recall that any operator satisfying the Frequent Universality Criterion is automat-
ically α-universal whenever α . Ds for some s ≥ 1 [21]. Since each of the criteria given
in Section 2 are natural strengthenings of the Frequent Hypercyclicity Criterion, we could
expect a positive answer to this question for any such α. Moreover, it is easily seen that
FHCPr(T ) = FHC(T ) for any r ≥ 1 (see [20, Lemma 2.10]), so Question 4.1 has at least
an obvious positive answer for sequences with polynomial growth.

Yet the next proposition shows that Theorem 2.6 for the multiples of a single operator
completely fails to extend to α-frequent hypercyclicity as soon as Eε . α for some ε > 0.
We will denote by B(a, r) the open ball centered at a with radius r.

Proposition 4.2. Let 0 < ε ≤ 1, T ∈ L(X) and 0 < λ 6= µ < +∞. Then for any
x ∈ HC(µT ) ∩HC(λT ) and any r > 0,

(1) If µ > λ, then dEε(N(x,B(0, r), λT )) = 1;
(2) If λ > µ, then dEε(N(x,B(0, r), λT )) = 0.

In particular, HC(µT ) ∩ FHCEε(λT ) = ∅.

Proof. Of course, we shall assume that HC(λT )∩HC(µT ) 6= ∅. Throughout the proof, r > 0
is fixed. We first prove (1). By assumption, there exists an increasing sequence (pk)k∈N ⊂ N
such that ‖µpkT pkx‖ < r for any k ∈ N. Writing

λpk+iT pk+ix = λiT i
(
λ

µ

)pk
µpkT pkx, i ∈ N,

we easily check that ‖λpk+iT pk+ix‖ < r whenever (λ‖T‖)i < (µ/λ)pk . Since by assumption
λT is hypercyclic, we have λ‖T‖ > 1. Thus there exists a constant C > 0 (depending on
λ, µ and T , but not on k) such that for any i < Cpk, ‖λpk+iT pk+ix‖ < r. Therefore,⋃

k∈N

{pk, . . . , b(1 + C)pkc} ⊂ N(x,B(0, r), λT ).

It follows that

dEε(N(x,B(0, r), λT )) ≥ 1− lim
k

(
ϕEε(pk)

ϕEε((1 + C)pk)

)
= 1.

(2) is proved similarly. Since x ∈ HC(µT ), there exists an increasing sequence (pk)k∈N ⊂ N
such that ‖µpkT pkx‖ > r. Writing T iλpk−iT pk−i = λ−i(λ/µ)pkµpkT pk , 1 ≤ i ≤ pk, one can
easily check that ‖λpk−iT pk−ix‖ ≥ r(λ‖T‖)−i(λ/µ)pk , 1 ≤ i ≤ pk. Thus ‖λpk−iT pk−ix‖ > r
whenever (λ‖T‖)i > (λ/µ)pk . Since µ‖T‖ > 1, the last inequality is equivalent to i ∈
{bCpkc+ 1, . . . , pk} for some constant 0 < C < 1 not depending on k. Therefore,

dEε(N(x,X \B(0, r), λT )) ≥ 1− lim
k

(
ϕEε(bCpkc+ 1)

ϕEε(pk)

)
= 1.

�
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Remark 4.3. 1) A trivial argument shows that any hypercyclic operator is automatically
UE -frequently hypercyclic. This comes from the fact that any infinite subset of N has positive
upper E-density. Indeed, if E = (nk)k∈N is an increasing sequence, then

dE(E) ≥ lim
k

(
enk

ϕE(nk)

)
= 1− 1

e
.

At the opposite, it turns out that for any sequence of non-negative real numbers α = (αk)
with

∑
αk = +∞ such that αn/(

∑n
k=1 αk) tends to 0 as n tends to infinity, there exists a

hypercyclic operator T ∈ L(X) which is not Uα-frequently hypercyclic. This can be deduced
from the fact that for such α, Uα-frequent hypercyclicity implies reiterative hypercyclicity
[22] and that reiteratively hypercyclic weighted shifts on `p, 1 ≤ p < +∞ are automatically
frequently hypercyclic [10] (and, of course, some hypercyclic weighted shifts are not fre-
quently hypercyclic). For the definition of reiterative hypercyclicity, we refer to [10]. Thus,
in particular, this observation applies to the weights Eε for all 0 ≤ ε < 1 and Ds for all s ∈ N.

2) The algebraic approach to common (frequent) hypercyclicity mentioned in the intro-
duction is still efficient when dealing with α-frequent hypercyclicity. In particular, the same
proof as that of [7, Theorem 6.28] shows that for any weight sequence α of non-negative real
numbers satisfying

∑
k∈N αk = +∞ and such that αn/(

∑n
k=1 αk) decreases to 0 as n goes to

infinity and any λ with modulus 1, FHCα(λT ) = FHCα(T ).
Indeed, it suffices to follow the same lines as in the proof for frequent hypercyclic operators

that one may find in [7] replacing Lemma 6.29 by the following.

Lemma 4.4. Let A ⊂ N have positive lower α-density with a non-decreasing weight sequence
(αk)k∈N so that

∑
k∈N αk = +∞ and αn/(

∑n
k=1 αk) decreases to zero as n tends to infinity.

Let also I1, . . . , Iq ⊂ N be such that ∪qj=1Ij = N and n1, . . . , nq ∈ N. Then, B := ∪qj=1(nj +
A ∩ Ij) has positive lower α-density.

Proof. Let N := max1≤i≤q(ni). Then, for any M ≥ N ,∑M+N
k=1 αk1B(k)∑M+N

k=1 αk
≥ 1

q

∑q
j=1

∑M+N
k=1 αk1nj+A∩Ij(k)∑M+N

k=1 αk

≥ 1

q

∑q
j=1

∑M
k=1 αk1A∩Ij(k)∑M+N
k=1 αk

since αk+nj ≥ αk

≥ 1

q

∑M
k=1 αk1A(k)∑M+N
k=1 αk

=
1

q

∑M
k=1 αk1A(k)∑M

k=1 αk

∑M
k=1 αk∑M+N
k=1 αk

On the other hand,∑M
k=1 αk∑M+N
k=1 αk

= 1−
∑M+N

k=M+1 αk∑M+N
k=1 αk

≥ 1−

(
M+N∑
j=M+1

αj∑j
k=1 αk

)
−→
M→∞

1.

Hence,

dα(B) = lim inf
M→∞

∑M+N
k=1 αk1B(k)∑M+N

k=1 αk
≥ lim inf

M→∞

1

q

∑M
k=1 αk1A(k)∑M

k=1 αk
=

1

q
dα(A) > 0.

�

We conclude by an answer to the following natural question:
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Question 4.5. Does there exist an operator which is α-frequently hypercyclic for any α . E?

This question is clearly a question of common frequent universality except that, this time,
common refers to an uncountable family of densities. The following proposition strengthens
one of the main results of [21] and gives an almost positive answer to Question 4.5.

Proposition 4.6. We denote by D the set of all sequences α (with
∑

k≥1 αk = +∞) such
that α . Ds for some s ∈ N. If T ∈ L(X) satisfies the Frequent Hypercyclicity Criterion,
then ⋂

α∈D

FHCα(T ) 6= ∅.

Proof. It is clearly enough to prove that
⋂
s∈N FHCDs(T ) is non-empty. The proof is based

on the calculations led in [21, Section 3]. Let us consider the function f : N→ N defined by
f(j) = m for all j ∈ {am, . . . , am+1 − 1} with

am = 22.
. .
2m

where 2 appears m times.

Then we define the sequence (nk(f))k≥1 as follows:

n1(f) = 2 and nk(f) = 2
k−1∑
i=1

f(δi) + f(δk) for k ≥ 2,

where δj is the index of the first zero in the dyadic representation of j (for e.g., if k = 11 =
1.20 + 1.21 + 0.22 + 1.23, then δk = 3). Lemma 3.8 of [21] ensures that for all s ≥ 1 there
exist C1, C2, C3 > 0 such that for all integer k large enough

C1k − C2 log(s)(k) ≤ nk(f) ≤ C1k + C3 log(s)(k).

A similar calculation as that of [20, Lemma 4.10] allows to conclude that for all s ≥ 1
dDs((nk(f))) > 0. Therefore this sequence (nk(f)) allows to construct a hypercyclic vector
for T which will be Ds-frequently hypercyclic for all s ≥ 1 (we refer the reader to the
beginning of Section 2 of [21]). �
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