N

N

A publish/subscribe approach for implementing GAG’s
distributed collaborative business processes with high
data availability
Maurice Tchoupé Tchendji, Joskel Ngoufo Tagueu

» To cite this version:

Maurice Tchoupé Tchendji, Joskel Ngoufo Tagueu. A publish/subscribe approach for implementing
GAG’s distributed collaborative business processes with high data availability. CARI 2020 - African
Conference on Research in Computer Science and Applied Mathematics, Oct 2020, Thies, Senegal.
hal-02925745

HAL Id: hal-02925745
https://hal.science/hal-02925745
Submitted on 30 Aug 2020

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://hal.science/hal-02925745
https://hal.archives-ouvertes.fr

A publish/subscribe approach for implementing
GAG’s distributed collaborative business processes
with high data availability

Maurice TCHOUPE TCHENDJI! and Joskel NGOUFO TAGUEU?

Department of Mathematics and Computer Science
University of Dschang, PO Box 67, Dschang-Cameroon
LIRIMA, FUCHSIA associate team

! maurice.tchoupe @univ-dschang.org, ttchoupe @yahoo.fr
2 jngoufotagueu@yahoo.com

ABSTRACT. With the ever-increasing development of the Internet and the diversification of communication me-
dia, there is a growing interest in distributed business process models that focus on exchanged data (or artifact)
to control and pilot processes. The Guarded Attribute Grammars (GAG) is one such model; it stands out from the
others by the fact that it emphasizes the central place occupied by user decisions during the process execution:
it is both data-driven and user-centric. In this paper we present an approach to implementing distributed collab-
orative business processes modeled using GAG in which communications are done by publish/subscribe with
redirection of subscriptions (pub/sub-RS). Pub/sub-RS—which we propose—guarantees high data availability
during the process execution, by ensuring that an actor, perceived as a subscriber, will always receive a data he
needs to perform a task as soon as it is produced. Moreover, if the data is semi-structured, and is produced col-
laboratively and incrementally by several actors, its subscribers will be notified as soon as one of its components
(a prefix) is produced at the same time they will be subscribed in a transparent way to the remaining components
(the suffix).

RESUME. Avec le développement toujours croissant d'internet et la diversification des moyens de communi-
cation, il est un interét croissant pour les modéles de processus métiers distribués qui mettent I'accent sur les
données échangées (ou artefacts) pour controler et piloter les processus. Les grammaires attribuées avec gardes
(GAG) est I'un de ces modeles; il se démarque des autres par le fait qu’il met 'emphase sur la place centrale
qu’occupe les décisions des utilisateurs lors de I'exécution d’un processus: il est a la fois centré sur les données
et sur l'utilisateur. Dans ce papier, nous présentons une approche de mise en ceuvre de processus métiers col-
laboratifs distribués modélisés a I'aide des GAG dans lesquels les communications se font par publish/subscribe
avec redirection de souscriptions (pub/sub-RS). Le pub/sub-RS (que nous proposons), garantit une haute dispo-
nibilité des données pendant I'exécution des processus en assurant qu’un acteur (vu comme un abonné), recevra
toujours une donnée dont il a besoin pour effectuer une tache des qu’elle est produite. De plus, si la donnée est
semi-stucturée, et produite collaborativement et incrémentalement par plusieurs acteurs, les abonnés seront no-
tifiés des qu’une de ses composantes (un préfixe) est produite en méme temps qu’ils seront abonnés de maniere
transparente a ses composantes résiduelles (le sufixe).

KEYWORDS : Collaborative business processes, GAG, Artifact, Publish/Subscribe, Subscription redirection,
Semi-structured data, Service oriented computing.

MOTS-CLES : Processus métiers collaboratifs, GAG, Artifact, Publish/subscribe, Redirection de souscriptions,
Données semi-structurées, Calcul orienté service.

Proceedings of CARI 2020 Ecole Polytechnique de Thiés, Sénégal
Bruce Watson, Eric Badouel, Oumar Niang, Eds. October 2020

Proceedings of CARI 2020

1. Introduction

Business processes are processes that represent the activities of companies. Their pur-
pose is to orchestrate activities that contribute to the achievement of organizational goals.
The ever-increasing development of the Internet and the diversification of means of com-
munication has led to the emergence of new needs, including the need for distributed
process execution. Most business tasks in large organizations are performed collabora-
tively by actors possibly positioned in remote geographical locations, requiring therefore,
the need for rapid information transfer for consistent decision-making.

Generally, collaborative business process management models are either based on the
process activity flow [11, 10]; or on the documents exchanged during the process [12, 6,
13]; or on both, as in models centered on the artifact! [8, 4, 9, 5]. A disadvantage of these
models is that they model the users of the process as second-class actors, when they are
not simply ignored. Indeed, although they are very often the main actors of collaboration,
they are usually modelled as plain resources performing specific tasks in a context [3]. It
is entirely appropriate that collaborative business process models explicitly highlight the
roles played by users, as long as their implications would be predominant in collaboration:
this is what Badouel et al. propose in the GAG (Guarded Attribute Grammars) model
[3, 2], which is a grammatical approach to model collaborative, distributed, data-driven
and user-centric business processes.

Intuitively, a GAG is a collection of semantic rules 2 or business rules describing for
a business process how to produce data (synthesized attribute values) from information
of the environment (inherited attribute values and user inputs). In the GAG execution
model, the artifacts are used to represent and manage the flow of activities, data and the
life cycle of processes. They are intentionally modeled by trees whose nodes represent the
tasks and have attributes to contain all the information about a process from its creation
in the system to its completion. These nodes can be divided into two subsets: the one
of the closed nodes corresponding to the completed tasks, and the one of the open nodes
corresponding to the pending or running tasks. The choice of how to perform a task
associated with a given open node is left to the discretion of the user who performs it,
by selecting one of the business rules (from the GAG) applicable to that open node (see
section 2). The business rules applicable to an open node at any given time are a function
of data previously generated in the process, and data provided by users: it is in this sense
that the GAG model is said to be data-driven and user-centric.

The objective of this paper is to present an approach for implementing distributed col-
laborative business processes modeled using GAG 3 and communicating through a new
variant of publish/subscribe * called: publish/subscribe with redirection of subscriptions
abbreviated as pub/sub-RS. We are therefore specifically interested in collaborative busi-
ness processes involving several actors located on different geographical sites, who work
in parallel and communicate asynchronously. With the pub/sub-RS protocol, we want to

1. “An artifact is a document that conveys all the information concerning a particular case from its inception in
the system until its completion. It contains all the relevant information about the entity together with a lifecycle that
models its possible evolutions through the business process” [3]. So we can assimilate it to an active document

[1] combining data and processing.

2. A variant of the semantic rules of attribute grammars.

3. In the rest of this manuscript, we will name “GAG processes” business processes modeled using GAG.

4. The publish/subscribe is an asynchronous communication scheme between publishers and subscribers.
Subscribers express their interest in data through subscriptions and publishers publish data for subscribers. A

subscriber is notified each time a publication corresponds to a subscription he has made.

A Publish/Subscribe approach for implementing GAG's distributed
collaborative business process with high data availability

guarantee a high availability of information (even if it is only partially produced) in order
to allow the actors to start processing as soon as possible.

Paper contributions: the major contribution of this paper is the proposal of a scheme
of implementation of GAG processes communicating via pub/sub-RS. The pub/sub-RS
allows the exchange of potentially semi-structured data (if necessary, its components can
even be produced by different peers) asynchronously, incrementally and without interme-
diaries .

Manuscript organization: section 2 provides an overview of business process mod-
eling with GAG. Some formal definitions are also given. The pub/sub-RS protocol as
well as our approach to implementing the coupled model GAG - Pub/sub-RS is presented
in section 3. Section 4 presents a detailed illustration of the approach, while section 5 is
devoted to the conclusion.

2. Business process modeling with GAG

In this section, we present some fundamental concepts of the GAG model for business
process modeling. The interested reader can find a more complete presentation of GAG
in [3, 2].

2.1. Business process, business rule and artifact

A business process can be interpreted as a task (7o) to be executed which, depending
on its complexity, can be branched/decomposed into subtasks (¢, ...,#,) potentially ex-
ecuted by different actors. Conceptually, this decomposition can be modeled by a rule
called business rule that can be represented by a production of the form P : sy — s1...5,
expressing the fact that the service sp to be invoked to execute the task 7o must invoke
the (sub)services s1,...,s, which are the services to be invoked to execute the subtasks
t1,...,t, of ty respectively. We call s-production a production having s on the left hand
side. For a same service s, we can have several applicable business rules (i.e. several
ways to perform a task) and therefore several s-productions. In this case, the choice of the
business rule to be applied is up to the actor of the process responsible for executing the
task associated with the service (reminder: the execution of a GAG is user-centric).

Each process is associated with an artifact modeled by a tree whose nodes are sorted.
We write X :: s to indicate that the artifact node X is of sort s; this means that it is an
instance of the service s. An artifact is defined by a set of equations of the form X =
P(X,...,X,), indicating that X :: s is a node labeled by the production P : s — s1...s,
and has as successors, the nodes Xj :: s1,...,X, 2 5,. A node X :: s that is not defined
by any equation is called open node; it corresponds to a pending task and will have to be
refined (i.e. extended into a subtree, see figure 1) by applying a production corresponding
to its sort s (a s-production P : s — s7 ...S,). This refinement allows to “close” the node X
which is now defined by the equation X = P(Xj,...,X,) such that X;,...,X, are new open
nodes created; they have for respective sorts sy,...,s, (see figure 1).

To execute a process, we start from an initial artifact reduced to an open node (of
the sort of one of the axioms, see definition 2) and refine it by successive application of
business rules until we obtain an artifact containing only closed nodes: it is said closed
(closed artifact).

5. A data produced by a peer X to a peer Y is sent directly to it without passing through a peer Z.

Proceedings of CARI 2020

S S

P.
51/ \Sn
7 7)

Figure 1. Refinement of an open node [2]
2.2. Data flow and configuration of a GAG process

ol

To model the data exchanged between the different services associated with open
nodes, more information is attached to the open nodes using attributes. Each sort s is
then equipped with a set of inherited attributes and a set of synthesized attributes whose
values are terms defined over a ranked alphabet. Recall that a term in this case, is ei-
ther a variable or an expression of the form ¢(71,...,t,) where c is a n rank symbol, and
t1,...,t, are terms. The inherited attributes represent the input values of the services and
the synthesized attributes represent the output values. Taking into account the attributes,
the complete form of specifying a business rule is as follows:

R TR S L LTI
. [1]
k k k k
sk(t%)""7 '(lk))<y(1 >a---7)’l(nk)>

where pj, u;, and t; are terms and ylj are variables. This new form allows in addition
to represent the ramification of a service sg into services si,...,Sy,, to also specify the
existing dependencies between their data. For example, the rule so(po(x,y)){uo(z,1)) —
51(){(z)s2(x)(¢) means that the sy service must invoke the s; and s, services by providing
s> with the x parameter; much more, these services must respectively return the z and ¢
values after their execution. Let’s now introduce the notion of form which offers a simpler
notation for writing business rules.

Definition 1. A form of sort s is an expression F = s(ty,...,t,){u1, ..., uy) where t; and
u; are terms. The terms ty,...,t, (resp. uy,...,uy) give the values of the inherited (resp.
synthesized) attributes attached to the form F.

With this notion, the rule of the equation 1 for example can be rewritten simpler as
follows: Fy — Fj...F, where the F; are forms. Moreover it also allows us to define more
formally a GAG and its configuration at a given time as follows:

Definition 2. Guarded Attribute Grammar (GAG). Given a set of attribute sorts S, a
GAG G is defined by a set R_of rules R : Fy — F\...F such that F; :: s; (s; € S) are forms,
and a set of sorts A C S called axioms: G = (R, A). A sort is used (resp. defined) in
G if it appears in the right (resp. left) hand side of a rule. Axioms are the sorts that are
defined, but not used; they correspond to the services for starting processes. The sort that
are used but not defined are called terminals, they correspond to external services. We
note N the set of defined sorts and T the set of terminals.

Definition 3. Configuration of a GAG. A Configuration I of a GAG G = (R, A) is a set
of sorted nodes X where each node is associated with an equation written in one of the
following two forms depending on whether the node is closed or open: for closed nodes,

A Publish/Subscribe approach for implementing GAG's distributed
collaborative business process with high data availability

X =R(Xy,....,Xx) withR € R and Xy, ...,X,, the successor nodes of X. For open nodes,
X =s(t1,.. . tn) (X1, ..., x%) where X is of sort s; t1,...,t, are terms representing the values
of the inherited attributes of X, and x1, ..., xy are variables associated with the synthesized
attributes of X.

The configuration is an extended form of the artifact where data are also taken into
account. With the configuration concept, the execution of a GAG process consists of
starting from an initial configuration reduced to an open node (of the sort of one of the
axioms), and applying business rules to it successively until a configuration with only
closed nodes is obtained.

3. Implementation of distributed GAG processes communicating by
pub/sub-RS

3.1. The publish/subscribe with subscription redirection: an overview

In a distributed context, each actor in the process has a local GAG that defines how
he participates in the process. A local GAG of an actor defines the process services he
provides (his axioms), the way he proceeds to perform these services (his business rules)
and the services he might need (his terminals). The actor thus participates in the process
from his site by applying the business rules of his local GAG. As the process is distributed,
an actor may be responsible for executing a service for which certain input data must be
provided by other actors (they correspond to some outputs of their services). Similarly,
he may also be responsible for the execution of services whose output data are expected
by other actors.

To ensure the efficient and without intermediaries exchange of data between actors,
we have designed an asynchronous protocol for data exchange between actor based on
the publish/subscribe called publish/subscribe with redirection of subscriptions in short
pub/sub-RS. The pub/sub-RS is a new variant of the publish/subscribe protocol particu-
larly suitable for the exchange of semi-structured data whose components can be produced
incrementally by different actors. As in the classic publish/subscribe, any actor has the
possibility to subscribe to one or more events in order to be notified as soon as a pub-
lisher generates an occurrence of an event corresponding to one of his subscriptions [7].
However, unlike the traditional publish/subscribe, in the pub/sub-RS, since the exchanged
data are potentially semi-structured and can be produced incrementally (by collaboration
of several actors), they are also delivered incrementally. In fact, as soon as a prefix x of a
data to which an actor has subscribed is produced, it is immediately sent to him simulta-
neously as he (the actor) is subscribed (subscription redirection) in a transparent way to
the residue (the suffix) of the initial data.

The pub/sub-RS’s operating mode is therefore as follows: each time an actor needs
a data to be produced by another actor, he must subscribe to it; if it is produced incre-
mentally, the prefix produced must each time be sent to him at the same time as he is
subscribed to the residue. More concretely, if an actor A needs a data dj, to be produced
by an actor B, then a subscription of A to the data dj, must be stored on the actor B’s site in
a subscription list provided for this purpose and, A will be notified as soon as B produces
dp. If d, is semi-structured and is produced incrementally, then A will be notified as soon
as d, components are produced. For example, if d}, is a list of the form dj, = db : d,b,
then A will be notified as soon as d;b is generated by B and automatically subscribed to

Proceedings of CARI 2020

the residual data dyb (which will not necessary be produced by B). It is the fact that an
actor A subscribes to a data d and is then subscribed to the residual data of d (db in the
current example) that we call redirection of subscriptions.

3.2. Workspace of an actor

An actor’s workspace is represented by two data structures: the local configuration
I' of his local GAG and the list of subscriptions on the data he must produce called LS
(figure 2 shows an illustration of a workspace). The local configuration of an actor I
informs him about the tasks in which he participates and the data necessary to perform
them. Thus all the data he handles are associated with local variables of his configuration.
However, in case of sharing data, a same data can be associated with many variables
belonging to different configurations. We say in that case that those variables have the
same publication identifier. We define the publication identifier of a variable x—noted X
—as the global unique name of the data intended to be stored there. For example, in the
previous description, the data dj, can be stored in the configuration of A in the variable x,
and in the configuration of B in the variable x; the variables x, and x; in that case must
have the same publication identifier (X, = x},) since they correspond to local names of dp,.

The subscription list LS is the set of subscriptions on the data that the actor must
produce and publish. A subscription is a pair of the form (x,b) where X is the global
unique name (i.e a publication identifier) of the data to which the subscription relates and
b is the identifier of the remote actor who subscribes.

51 Ry S2| Ra ?j'z

/N

s3(z)(p yz)@ 34| Ry

AN
[B]

Configuration I' Subscription list LS

Figure 2. lllustration of an actor’s workspace with two subscriptions on output values

3.3. Local application of a business rule

Each actor in the process works locally using the business rules contained in his local
GAG. In the following, we will assimilate an actor to the site on which he operates by
designating him by the identifier of his site. Let’s consider a site named a with a con-
figuration I" and a list of subscriptions LS. Let’s also consider X = F' an open node of I
and R = Fy — F)...F; a business rule such that Fi’s variables are disjoint from those of I.
Apply a business rule R to X is equivalent to sequentially performing the following four
operations (see fig. 3): 1) update the local configuration I'; 2) notify the sites subscribing
to the data that have been produced; 3) update the subscription list LS; 4) Call remote
services (if necessary). Let’s now precisely present the treatments carried out by each of
these operations:

(1) Update from I' to I". The application of R to node X refines it into open child

A Publish/Subscribe approach for implementing GAG's distributed
collaborative business process with high data availability

nodes Xi,...,X, associated with sub-services sy, ...,s, of Fi,...,F,. Thus, it is necessary
to add to the configuration the new nodes created that can be refined by the current actor
(the other nodes will be transformed into remote service calls) and close the node X. The
new configuration is then I":

F/

{X =R(X1,...,X;)}
{Xi:E‘GlXiIZS,', S,'EN}
{X'=F|(X'=F)eT, X' #X}

Cc C

where © =match(Fy,X) is a substitution that matches the input values of Fy to the
input values of F and the output values of F' to the output values of Fy. For each variable
x of the forms F;, 0 < i < n, we assign its name to the data that will be stored there: X = x.
To ensure that this name is globally unique, one can simply use a local name generator
that creates variable names prefixed by the site identifier.

Remark. We consider that a business rule R is only applicable to an open node X =
S(t1y e tn) V1, ooy V) If the t;,1 < i < n are completely defined values, i.e. no longer
contain variables.

(2) Subscriber notifications. The application of the rule allows new data to be generated
using substitution 6. An equation of the form (x =¢) in 6 means that the variable x is now
assigned the value 7. By doing so, all sites that have subscribed to the data represented
by x must be notified. These are the sites b as it exists a subscription (X,b) in LS. All
notifications are therefore: NS = {(x=t, b) | (x=1) € 6 and (&,b) € LS}, where each
element (x =¢, b) is a notification meaning that the site b (when b # a) will receive the
equation (X = global(t)); x is the (local) variable associated with the data to which b had
subscribed and 7 is its value; the function global(t) renames the variables in ¢ by their
publication identifiers: global(t) =t[y/y]. When for an element (x =¢, b) of NS we have
b = a, no message is sent, it means that the current site a has produced a data to which it
is itself subscribed. In that case, we simply update the local configuration with the value
ofx: I/ =T|y/t|y=1x].

(3) Update of the subscription list LS to LS'. Once the notifications have been made,
the local subscription list must be updated: subscriptions on data that have already been
sent to subscribers (OLS) are removed, and new subscriptions (NLS) from sites related to
dependencies between the data defined in the rule are added. The new local subscription
list on the site a is therefore: LS’ = LS\ OLS U NLS where

OLS = {(xD)|(x=t,b)€eNS}and
NLS = U NLS(X;), N is the set of defined sorts;
Xj::si,85,€N

NLS(X;) is the set of subscriptions on the data to be produced by a new non-terminal

node X;. Itis defined by: NLS(X;) = U { (X,0) | b € SUBSg s ns(x) } where out(X)
x€out (X;)

is the set of variables associated with the synthesized attributes of X and SUBSg o ns(x)

is the set of sites that need the value of variable x; the following paragraph describes how

6. The function match is defined in [3]. It returns a substitution ¢ itself consisting in two main substitutions G;,
and G,,,;. For a specific refinement of a node X = F into child nodes X| = F} to X, = F,, viaarule Fp — F}...Fy,
G;, matches the input values of Fj to the input values of F and 6,,; matches the output values of F to the output
values of Fy. 6 = Gy UGinGour [3].

Proceedings of CARI 2020

this set is constructed.

Computation of subscriber sites to a variable. The set of sites to be subscribed to a
variable x of a new node is computed from three parameters: the business rule R whose
application allowed to create the variable x, the substitution ¢ produced following the
application of the rule and all notifications NS generated by the application of R. It is
noted SUBSg 5 ns(x) and is created from the combination of two sets:

SUBSgons(x) = Brothergs(x)
U Redirectys(x)

with :

— Brotherg s(x): all the sites that will execute a service with x as input variable. If
R = Fy — Fj...Fy then all the new nodes created by the rule application are Nodeg s =
{Xi=Fo | 1<i<k } and we have Brothergs(x) ={ b | (X =F) € Noderg, x €
in(X), provider(X) = b } where in(X) is the set of inherited attributes (input variables)
of X; for a node X :: s, provider(X) returns the identifier of the site that provides the
service s (it is equal to the current site when s is a defined sort).

— Redirectys(x): the set of subscriptions created by the redirection of subscriptions.
Since the redirection of subscriptions occurs when a data d to which sites had subscribed
is partially produced, sites that had subscribed to d (they are in NS’) must therefore be
subscribed to its residual data. If the term 7 is the partial produced value of d, then the
residual data of d correspond to the variables of 7: Redirectys(x) ={b | (y=t, b) € NS, x
is a variable of ¢ }.

(4) Remote service calls. For each new open node created X :: s such that s is a terminal,
a service call must be made to the site providing the service s (s is an axiom of its local
GAQG). This service call must also contain the subscription list for the data to be produced
by the service. A service call therefore consists in sending a message m = (X = F,LSTx),
where X is the node representing the service, F' the form associated with X and LSTy
the list of subscriptions to be transferred to the site that will refine the node X. Service
calls to be made are extracted from the set I = {(X; = F;0,LSTrsns(Xi),b) | X; :: si,

si € T, b = provider(X;)} where LSTrsns(X) = U {(X,b) | b € SUBSgsns(x)}.

x€out (X)
Each element (X = F,LST,b) € I means that the current site a will send the service call

(X = global (F),LST) to the site b.

O O)
S pIR4

. R Service calls
Notification events

s R
@ — s [Lg ' LS LS LS
- T R
O e e e e I o0 - B
sil?) =(7) - ey 1’?‘&) : T r :

r Updating subscriptions

Updating configuration

Figure 3. Different execution steps when applying rule

7. Recall that NS is the set of notifications created by the application of the rule.

A Publish/Subscribe approach for implementing GAG's distributed
collaborative business process with high data availability

3.4. Processing of messages

Messages received by a site correspond to service call messages or data production
notifications.

When a site receives a service call, (a) it updates its local configuration by creating
a new local node matching the remote node received via the service call. The variables
created in the new local node have the same publication identifiers as those of their cor-
respondents in the remote node received (this will be used for notifications). After that,
(b) subscriptions from remote sites are added to the local subscription list. The following
formulas (fa) and (fb) summarize these treatments in equational form:
ifm= (Y =s(t1,....ta)(1,.-.,q), LSy) is the service call message received, then :

(fa):T' =T U { Y =s(f1,....) V1,-...Yq) } With 7 =¢[x/x], ¥ a new local node
matching the node Y; the X and y; are new local variables created such that f=xy =Y
(fb): LS = LSULSy.

In the case of receiving a notification, the site merely updates its local configuration
using the publication identifier to know which variable of the configuration to update. The
following formula summarizes this treatment in equational form:
if m = (x =1) is the notification message received, then:

—I" =Ty/f | § = x] where T = t[z/Z], the Z being new variables such that 7 = z;
- LS =1LS.

4. lllustration

In this section we illustrate the use of the pub/sub-RS communication protocol in a
GAG process through an example. The figure 4 shows the different sites involved and
how the subscription computation is used to update their subscription lists when a rule is
applied.

Example. Let’s consider a process with five actors A, B, C, D and E such that the
actor A has the configuration Ty = { X = sa(){(da) } and the local GAG G4 con-
taining a business rule R : so()(sum(dp,5,dc)) — sp(){dg) sc(dp){dc) (sp provided
by B and sc provided by C). Suppose in addition that the subscription list of A is
LSy = { (da,D),(da,E) }. If A applies the business rule R on the node X of Ty then
we will have G;; = 0 and 6 = 6oy = { da = sum(dp,5,dc) }; dp and dc being new
variables with CZB = dg and cfc = dc. Since dy was partially produced, the actors D
and E must be notified of the production of this partial data. To do this, we use the set
NS = { (da = sum(dp,5,dc),D), (da = sum(dp,5,dc),E) } containing the notifica-
tions generated by the application of the rule. In addition, D and E must be subscribed to
the residual data dg and dc of dy : Redirectys(dg)= Redirectys(dc) = { D, E }. Finally,
as the actor C provides the service sc which has dg in its input, he must be subscribed to
dp : Brotherg s(dg) ={ C }.

5. Conclusion

In this paper, we have presented an approach of implementing GAG’s distributed
collaborative business processes in which communication is handled via a new variant

Proceedings of CARI 2020

Site A s Site A s [
A R LS
FAER
dA —> 7 54
@ (. Site B Site C
s/ulw% Sulﬁc:t)_f;un
Nds 5 dc computation
LS LS
O G \ 4| € %D]
sp(){d5} scfdﬂ)) A
@ [el= ®
Site B Site C SB()<d8> sc(d5)<dc)

Figure 4. lllustration of the application of a business rule in a distributed context with the pub/sub-RS
of publish/subscribe protocol called publish/subscribe with redirection of subscriptions

(pub/sub-RS). The main advantage of this protocol is that it permits, in real time, to
inform data subscribers on the evolution of the processing operations by incrementally
transferring to them any data they have subscribed to. This can encourage the early initi-
ation of other operations if they are lazy (lazy evaluation): the degree of parallelism and
the speed in decision-making are thus improved. A direct perspective of this work could
be to provide an environment that facilitates the edition and deployment of GAG business
processes communicating with pub/sub-RS. The idea would be to design a DSL (Domain
Specific Language) to easily write a GAG specification, and the tools for the generation
and deployment of the software components necessary for the distributed execution.

References

[1] Serge Abiteboul, Omar Benjelloun, and Tova Milo. Positive active xml. In PODS
’04: Proceedings of the twenty-third ACM SIGMOD-SIGACT-SIGART symposium
on Principles of database systems, pages 35-45, New York, NY, USA, 2004. ACM.

[2] Eric Badouel, Loic Hélouét, Georges-Edouard Kouamou, and Christophe Morvan.
A grammatical approach to data-centric case management in a distributed collabo-
rative environment. In Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, pages 1834-1839, New York, NY, USA, 2015. ACM.

[3] Eric Badouel, Loic Hélouét, Georges-Edouard Kouamou, Christophe Morvan, and
Nsaibirni Robert Fondze, Jr. Active workspaces: Distributed collaborative systems
based on guarded attribute grammars. SIGAPP Appl. Comput. Rev., 15(3):6-34,
October 2015.

[4] Elio Damaggio, Alin Deutsch, and Victor Vianu. Artifact systems with data depen-
dencies and arithmetic. ACM Trans. Database Syst., 37(3):22:1-22:36, 2012.

[5] Elio Damaggio, Richard Hull, and Roman Vaculin. On the equivalence of incre-
mental and fixpoint semantics for business artifacts with guard-stage-milestone life-
cycles. Inf. Syst., 38(4):561-584, 2013.

[6] J. Dang, C. Toklu, K. Hampel, and U. Enke. Human workflows via document-
driven process choreography. In 2008 International MCETECH Conference on e-
Technologies (mcetech 2008), pages 25-33, Jan 2008.

[7] Patrick Th. Eugster, Pascal Felber, Rachid Guerraoui, and Anne-Marie Kermarrec.
The many faces of publish/subscribe. ACM Comput. Surv., 35(2):114-131, 2003.

A Publish/Subscribe approach for implementing GAG's distributed
collaborative business process with high data availability

[8] Richard Hull. Artifact-centric business process models: Brief survey of research
results and challenges. In On the Move to Meaningful Internet Systems: OTM 2008,
OTM 2008 Confederated International Conferences, CooplS, DOA, GADA, IS, and
ODBASE 2008, Monterrey, Mexico, November 9-14, 2008, Proceedings, Part II,
pages 1152-1163, 2008.

[9] Anil Nigam and Nathan S. Caswell. Business artifacts: An approach to operational
specification. IBM Systems Journal, 42(3):428-445, 2003.

[10] OASIS. Web services business process execution language version 2.0. http:
//docs.oasis-open.org/wsbpel/2.0/0S/wsbpel-v2.0-0S.pdf, April 2007.

[11] OMG. Bpmn specification, business process model and notation. http://www.
bpmn.org/.

[12] Nelly Schuster, Christian Zirpins, Stefan Tai, Steve Battle, and Nils Heuer. A
service-oriented approach to document-centric situational collaboration processes.
In 18th IEEE International Workshops on Enabling Technologies: Infrastructures
for Collaborative Enterprises, WETICE 2009, Groningen, The Netherlands, 29 June
- I July 2009, Proceedings, pages 221-226, 2009.

[13] Lin Zhao, Jianping Xing, and Lingguo Meng. The research and realization of a new
workflow model with step-task two layers based on document. In Proceedings of The
Ist IEEE Asia-Pacific Services Computing Conference, APSCC 2006, December 12-
15, 2006, Guangzhou, China, pages 285-292, 2006.

