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Abstract. Scheduling an agile optical Earth Observation satellite (AEOS)
requires to choose a limited number of images to take among a large set
of possibilities. It is a NP-hard problem which is made even more dif-
ficult by the presence of uncertainties: an image is useless if it is too
cloudy and weather uncertainty cannot be removed, no matter the ac-
curacy of the forecasts. Moreover, among the various types of customer
requests of commercial satellites, we focus here on large area acquisitions
that cover a country or a continent. Such requests require several months
or years to complete even with a constellation of satellites. Considering
such long time frames, the completion time highly depends on weather
uncertainties and there are currently no trustworthy forecasts. Therefore
the selection of the requests is crucial to speed up the completion using
a long-term strategy. Reinforcement Learning is an interesting solution
to explore when it comes to uncertain environments. We propose to use
the well-known Actor Critic (A2C) algorithm combined with Transfer
Learning, Domain Knowledge and Domain Randomization (TDDR). We
demonstrate how transfer learning is a way to address real-world prob-
lem. We find that TDDR method challenge state-of-the-art heuristics for
satellite scheduling on various real weather conditions.

Keywords: Satellite scheduling · Reinforcement Learning · Weather
forecast uncertainty · Transfer Learning

1 Introduction

Optical Earth Observation (EO) systems are broadly used to acquire cloud-
free images and deliver them to various customers on a daily basis. Acquisition
scheduling for EO satellites is a growing topic with the emergence of satellite
constellations and the ability to interoperate different systems. The objective of
the scheduling algorithms is to maximize the number and quality of acquired
images while satisfying various satellite and system constraints.
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In this article we focus on the acquisition of large areas, which can typi-
cally cover countries or even continents, using Agile Earth Observation Satel-
lites (AEOS). Large area coverages require several months to complete even with
multiple satellites. Considering such long time frames, weather uncertainty is one
of the major issue. None of the current forecasting systems can reliably predict
cloud cover dynamics, especially far in the future. Thus, the problem we are
trying to solve is both highly combinatorial but also stochastic.

A review of agile EO satellite scheduling literature over the last 20 years [14]
shows that most systems currently rely on heuristic approaches. Heuristics have
the advantage of being explainable, have small execution run-times and are com-
patible with multi-criteria optimization. While exact methods and metaheuris-
tics are also often explored in academic works [5], those methods have two major
drawbacks: firstly, exact methods do not scale to realistic use cases. Secondly,
these methods are usually not designed to take uncertainties into account. A
short review of traditional approaches for satellite constellation scheduling is
proposed in Section 2.

In this article, we explore a Deep Reinforcement Learning (DRL) approach
to tackle the EO scheduling problem. RL is well tailored to our problem as
it provides robust long-term strategies in uncertain environment that outper-
form traditional short-term heuristics [9]. Besides, it requires no fine-tuning by
human-experts and its computation time, after training, is often similar to sim-
ple heuristic methods. A review of already existing solutions based on DRL is
done in Section 3.

Applying Reinforcement Learning to EO satellite scheduling has already been
studied in [6]. The solution proposed is applied on a simplified environment where
weather uncertainties are entirely simulated using a normal law and the satel-
lite capacity is limited to one mesh acquired per pass. This work proposes an
innovative solution to apply DRL to a higher fidelity environment, detailed in
Section 4, based on real weather forecasts and observations, and allowing to ac-
quire more than one mesh during each satellite pass, paving the way towards
operational transfer. Our solution, presented in Section 5, uses transfer learn-
ing and domain knowledge to build realistic observed weather distributions and
domain randomization. The results are presented and discussed in Section 6.

2 Satellite constellation scheduling and traditional
approaches

AEOS can perform attitude maneuvers and thus offer multiple opportunities
to acquire images depending on their orientation. A constellation of EO satel-
lites is therefore capable of taking hundreds up to thousand images every day.
Scheduling for EO satellites consists in selecting acquisitions to be made based
on priorities, weather forecasts, system constraints and other mission-dependent
criteria. The plan, which consists in a series of attitude maneuvers that the satel-
lite shall execute to take images, is computed from the ground by the Mission
Planning Facility (MPF) before the corresponding telecommands are uploaded
to the satellite.
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Fig. 1. France completion in
progress.

Among the various types of imagery requests,
we focus on large area coverage requests as rep-
resented on Figure 1. Each requests consists in a
set of meshes covering the area to acquire. It re-
quires months or even a year to acquire them all.
Moreover, uncertainties have a huge impact on the
validation of the image acquired. On such long
time-frames, weather uncertainty is even more
crucial since there are no accurate weather fore-
casts. The selection of acquisitions according to
the weather forecasts directly impacts the overall
time-to-completion of the request.

The MPF within the satellite ground segment aims at delivering cloud-free
images as fast as possible to attract new customers. In order to be reactive and
handle last minute requests, mission planning algorithms are often based on
simple heuristics. Greedy algorithms in mission planning are commonly used [8].
Several authors have explored genetic algorithm [8, 11] or Mixed-Integer Linear
Programming (MILP) [5]. Such algorithms on real world scenarios take a long
time to compute a schedule. Furthermore, they are not intrinsically designed to
manage uncertainties which is a crucial point for large area coverage.

Deep Reinforcement Learning has the potential to deal with uncertain envi-
ronments and to generalize well to new situations [10]. DRL can excel in deter-
mining efficient long-term strategies and it has recently achieved breakthrough
results on many tasks including complex video-games [13]. The purpose of this
paper is to find such a long-term strategy for our large area coverage problem.

3 Background on DRL application to EO satellite
scheduling

Application of machine learning to EO scheduling is quite new according to
[14]. Papers investigating the benefits of Reinforcement Learning for satellite
scheduling are scarce. Besides an application to satellite telecommunications [4],
we only know of two papers related to scheduling EO satellites using DRL:

– The application in [6] is similar to our problem but the demonstration is
done in a very simplified environment: the weather data for the validation
are simulated using a normal law and the satellite capacity is limited to a
single mesh acquired per satellite pass over the area of interest.

– Authors in [15] use a two-phase method where a policy selects acquisitions
while another policy optimizes the satellite maneuvers for the selected ac-
quisitions. Experiments are done on a public EO dataset (ROADEF’2003)
and therefore it contains multiple request types. Their focus is on the exact
computation of the mission plan to upload to the satellite. Thus, they do
not focus on a long-term strategy tackling weather uncertainties.

In this paper, we focus on learning a policy that selects acquisitions part
of a large-area request in a view to minimize the completion duration, taking
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into account weather uncertainties. One of the major improvements of this work
over [6] is the application of DRL on an environment using real weather forecasts
and observations. In order to generalize to unseen data, DRL needs to perform a
substantial amount of episodes during learning. Unfortunately, available weather
archives are limited, thus the learning process cannot yield a proper policy if the
dataset is limited to real weather data. We consequently introduce a new method
to simulate weather during learning, while the evaluation is still performed on
real archive weather data. We also improve representativity by allowing multiple
meshes to be acquired during each pass of a given satellite.

4 Reinforcement Learning formulation

The problem formulation is a generalization of the one described in [6]. We
first remind the definition of the problem and then provide its Reinforcement
Learning formulation.

4.1 Problem definition

We consider the problem of acquiring a set of meshes using multiple satellites.
The meshes are positioned in a regular grid covering the area to acquire, as
represented on Figure 1. Some cells of the grid need not be acquired. Each time
the satellite passes over the area of interest, it can acquire a subset of the meshes
(based on its orbit and agility). The goal of the algorithm is to decide, for each
satellite and each pass, which meshes should be acquired in order to minimize
the time required to acquire all meshes.

To ease the use of a neural network, the observation space is enclosed in
a rectangular box containing the Area Of Interest (AOI) using a Mercator
projection. Without loss of generality, we consider that this box is containing
Nlat ×Nlon meshes. Let M = {m1, . . . , mK} be the set of meshes to acquire
with K ≤ Nlat × Nlon since the AOI is included in this box. Each mesh m is
identified by the location of its center, thus we denote mk = (latk, lonk).

A satellite pass t ∈ {1, · · · , T} corresponds to a time interval during which a
satellite orbit overflies the area to acquire. Because each pass is linked to a given
satellite, the accesses and the steps will only be indexed by its corresponding
pass. During each pass t, only a subset of the meshes is accessible. LetMt ⊆M
be the subset of meshes in the AOI that can be acquired by the corresponding
satellite knowing its orbit and agility.

We assume that the agent can acquire a fixed number of meshes Nm > 0
during each pass. This accounts for the agility of the satellite and acquisition
durations. This is a generalization of the use case presented in [6] since the MPF
can decide to allocate more than one mesh to this large area coverage at each
satellite pass. The agent has to choose which of those meshes will be acquired
at each pass.

Considering optical remote sensing, a mesh and the associated image is vali-
dated only if the observed cloud cover is under a given threshold cmax. When the
plan is computed, only cloud cover forecasts are available. We denote by cft (m)
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the forecast cloud cover over mesh m during pass t, and by cot (m) the observed
cloud cover. This last value is then used to decide if the acquisition is validated
or not. In case of rejection and because each of the meshes has to be validated
only once, the mesh remains candidate for future passes.

4.2 Application of Reinforcement learning to large coverage with
Earth Observation satellites

The above problem can be formalized as a Markov Decision Process (MDP)
which is an intuitive and fundamental formulation for Reinforcement Learning
(RL). This formulation is inspired by the one defined in [1]. It models a problem
composed of an agent interacting with an environment through actions.

A MDP can therefore be defined as a tuple 〈S,A, P ,R〉, where the agent is in
a state st ∈ S and takes an action at ∈ A at each pass t ∈ N. From the state st
after taking action at, the agent moves to a new state st+1 with a probability of
transition P (st, at, st+1) = P(st+1|st, at). For each transition, the current state
is updated. It takes the value of the next pass date in the chronological order.
The list of meshes to acquire is updated: if a mesh m is taken, it is validated if
cft (m) ≤ cmax and still to acquire otherwise. Section 5.2 details the distribution
used to validate meshes during learning. At each step a reward R(st, at, st+1) is
given. Since a client cannot wait indefinitely to receive the requested images, we
assume the horizon is finite. Therefore, there is a finite number of discrete time
steps t during an episode. Each episode comprises a maximum of T ∈ N∗ steps.

The goal of RL is to find an optimal policy π? : S → A maximizing the
expected discounted reward over this finite horizon:

π? = arg max
π

{
T∑
t=0

γtR(st, π(st), st+1)

}

where 0 ≤ γ < 1 is the discount factor

State space In DRL, this corresponds to the input of the neural network used
to derive the policy. In our case, it provides information about the mesh status
(whether a mesh has already been acquired or not) and the forecasted cloud

cover cft (m) for the next Npass passes. The first pass corresponds to the one
for which the agent has to decide which meshes to acquire. The state is thus
defined as a tensor of size (Nlat, Nlon, Npass + 1) where the third dimension
corresponds to the validation frame, following by the Npass forecast frames. More
explicitly, the validation frame is a matrix of size (Nlat, Nlon) where each entry
is set to 0 if the mesh has already been validated, and 1 otherwise. The other
Npass matrices correspond to the forecasted clear sky fraction extracted from

the weather archives for time step t, which is equal to 1 − cft (m). A clear sky
forecast of 0 is used to indicate that a mesh is not accessible during a given pass.

Action space As mentioned in Section 4.1, Nm meshes have to be selected at
each pass t. Thus, each action at is a tuple at = (a1t , . . . , aNm

t ) where each
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akt ∈ {0, . . . , K} corresponds to a mesh to acquire, with 0 being the do-nothing
sub-action (to allow the agent to acquire less than Nm meshes). In addition, it
is possible to have several do-nothing sub-actions but it is impossible at a given
step to take more than once the same mesh.

Reward To train the agent to acquire meshes that have a higher probability
of validation, a reward of 1 is given for each mesh validated during the pass.
Therefore:

R(st, at, st+1) =
∑

1≤k≤Nm

1
(
cft (makt

) ≤ cmax
)

For the sake of simplicity, we consider that cft (m0) ≤ cmax is always false.

4.3 Limits to learn an off-the-shelf DRL model on a realistic
environment

To be representative of reality, we use ERA-Interim [2] to obtain values for cft (•)
and cot (•). To evaluate the DRL method, it is therefore the source used to deter-

mine cft (•) and cot (•). ERA-Interim is an archive of global atmospheric reanalysis
with a spatial resolution of approximately 80km and a temporal resolution of 6
hours. It provides forecasts from 6 hours ahead to 10 days. It is sufficient for our
use-case to build the observation tensor for the neural network and to validate
the chosen meshes.

However, learning on an environment picking directly cft (•) and cot (•) in the
dataset is not straightforward. Archive weather data available is limited and this
causes overfitting when the agent learns on too few different scenarios. Section
5.2 details a way to simulate observed weather from weather forecasts. This
allows us to increase the diversity of the learning samples.

Another improvement in the fidelity of the environment compared to [6] is to
choose multiple meshes per satellite passes. Nevertheless, the high combinatory
drastically increases the action space size. The dimension of the action space
directly impacts the number of weights of the policy NN, it is thus important
to control it. To get around this and use a similar A2C algorithm as the one
proposed in [6], Section 5.3 details a workaround to limit the neural network
output size without changing the action space size.

5 Using TDDR for generalization to a realistic
environment

TDDR stands for Transfer learning, Domain knowledge and Domain Randomiza-
tion method [12]. It proposes a modification of the DRL methodology to address
the limits identified in Section 4.3.

To overcome the limited number of training samples while learning on real
weather data, we propose to learn the model on simulated weather data before
evaluating it on real data, as explained in Section 5.1. The generation of weather
data is made with a Bernoulli distribution, function of the cloud cover forecast,
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and derived from a statistical analysis of a weather archive. To increase diver-
sity of the learning samples, several distributions can be built, using subsets of
the weather archive, in order to sample differently observed cloud cover during
learning. We detail in Section 5.2 a way to build such distributions.

Algorithm 1 sums up the way TDDR globally works.

5.1 Transfer Learning

Transfer Learning aims at reusing an agent competence to a task that is slightly
different from the one encountered during training. A well-known example of
application is to learn an agent on a simulated environment because it is im-
possible to do so on a ”real” one (for instance in robotics) and then expose this
trained agent to the real environment.

In our context, transfer learning can be a solution to overfitting: training
with a real weather archive (for forecast and observation) yields inefficient neural
networks when evaluated on weather data not seen during learning. We therefore
propose to learn the agent on simulated weather data before evaluating it on
real weather data as described in Section 4.3. For the sake of simplicity, forecast
weather data cft (•) is taken from ERA-Interim weather archives as in Section
4.3. To easily keep spatial and temporal consistency on weather data, the only
simulated part is the observed weather data cot (•) which is randomly derived
from the forecast.

5.2 Weather modeling: Domain Knowledge and Domain
Randomization

To make transfer learning successful, we have to design a realistic weather model.
The article [6] proposes a way to simulate observed weather data cot (m) from the

forecast cft (m) by adding to it a ”noise” term following a zero-mean normal

distribution. This normal law standard deviation varies linearly with cft (m): the

more cft (m) is important, the more the standard deviation increases. However,
there is little to no physical justification for such a normal law.

Furthermore, for Earth observation applications, it is not important to sim-
ulate accurately the observed cloud cover percentage cot (m). The only thing that

matters is the probability P
(
cot (m) ≤ cmax | cft (m)

)
that the mesh m will be

validated if acquired during pass t. We therefore propose to base our simulated
weather model on a Bernoulli distribution based on this probability. Note that
this probability also depends on the time delta between the date at which the
forecast is computed and the date at which the cloud cover is predicted by the
forecast. Using ERA-Interim data, the most accurate weather prediction have a
6 hours delta. The assumption is made here that the satellite plan will be com-
puted and updated in less than 6 hours before the acquisition date. To generate
the observed weather, we therefore choose to assume this time delta is fixed and
equal to 6 hours and we get rid of it in the notations.

The distribution we choose to use is then a Bernoulli law to determine if a
mesh is validated. The only necessary information is thus the probability of this



8 A. Hadj-Salah, J. Guerra and al

event f(cf ) = P
(
co ≤ cmax | cf

)
which only depends on the most recent forecast

cloud cover. Here are the steps used to build this distribution function.

Extract histograms from the weather archive Let W be the weather
archive containing past observation and weather forecasts and D be the discrete
set of dates at which this data is available. For any d ∈ D and m ∈M, a forecast
cfd(m) and the corresponding observed weather cod(m) is available in the weather
archive. Let b0 = 0 < b1 < · · · < bNb

= 1 be a decomposition of [0, 1]. Because

cfd(m) ∈ [0, 1], we can therefore deduce the value of f on each of those subsets
of [0, 1], so ∀i ∈ {1, · · ·Nb}:

f

(
bi − bi−1

2

)
=

∑
d∈D

∑
m∈M 1

({
bi−1 ≤ cfd(m) < bi

}
∧ {cod(m) ≤ cmax}

)
∑
d∈D

∑
m∈M 1

(
bi−1 ≤ cfd(m) < bi

)
Deduce a distribution function for each forecast value To define a value
to f(cf ) ∀cf ∈ [0, 1], a linear interpolation is applied using the known values for

each bi−bi−1

2 . Regarding the value in 0 and 1, we choose to take a value of b1 and

bNb−1 as close as possible to respectively 0 and 1 and take f(0) ' f
(
b1
2

)
and

f(1) ' f
(

1−bNb−1

2

)
Application during learning At each learning step t the neural network
chooses a mesh m ∈ M. The forecast used to make this choice cft (m) is known

and f(cft (m)) can then be computed. A uniform value between 0 and 1 is sam-

pled. If it is inferior to f(cft (m)), the mesh is validated otherwise it is rejected.

Create several distribution functions for randomization Instead of cre-
ating only one function from the whole weather archive, it is possible to build
one for any subset of the weather archive Dl ⊂ D. If this subset has a sufficient
amount of data, a function of probability of validation can be built fl(c

f
t (m)).

Let L be the set of subsets of weather archive used. In the experiments, for l ∈ L,
Dl can correspond to a given year in the archive, or to all the dates correspond-
ing to a given season. This means that for (l, l′) ∈ L2, l 6= l′, it is possible to
have Dl ∩ Dl′ 6= ∅.

As algorithm 1 illustrates it, when the environment is reset, the function fl
used to validate meshes is changed. This is what we call domain randomization:
at each episode, the environment uncertainties are generated differently.

5.3 Generalization to multiple meshes per satellite pass

To select multiple meshes per satellite pass, we propose to use a policy network
that chooses only one mesh instead of a sequence of meshes but that is re-
executed as many times as there are meshes to choose at each step. Between
each NN execution at a given MDP step, the validation frame in the state space
is updated in order to prevent the NN to pick the same mesh twice during the
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Algorithm 1: TDDR training description

input : EO system description, weather archive for learning W ′ with dates
D′, and observed weather distributions (fl)l∈L

output: Neural network N

for it← 1 to 200× 106 do
Reset episode:
1. Select randomly a date d ∈ D′.
2. Select a weather validation model fl with l ∈ L (see Section 5.2)

Execute an A2C iteration on episodes starting from d using fl for
observation generation:
1. Collect batch of experiments (Rt, st, at, st+1)
2. Update neural network N with Adam [7] optimizer

end

same pass. This way, the NN output size is controlled and is equal to the size
of M instead of MNm . This has an important advantage: in a realistic case,
the number of meshes per pass that can be taken for the large coverage can
vary. If the actual number of meshes to take is smaller than Nm used to train
the network, the one-mesh-choice neural network is more easy to adapt than
theMNm -output-size neural network: the last one would rate and return a Nm-
tuple and there is no easy way to choose a subset of the Nm with the information
returned by the policy and value neural networks.

6 Experiments

Based on the hypotheses from Section 4.2, we have implemented a simulator
using the OpenAI Gym framework. Our goal is to compare the trained model
with the reference algorithm defined in [6] on the same episodes.

6.1 Earth Observation system and scenario definition

The EO system is defined by 4 SSO (Sun Synchronous Orbit) satellites. All satel-
lites have an altitude of 660 km and an inclination of 98.23 degree. The satellite
orbits are on two different local hours to increase the chances of encountering
clear sky conditions from one pass to another.

The steps of the MDP correspond to satellite passes, as explained in section
4. With the following configuration, we have an average of 4 satellites passes per
day over France.

The requested area in the experiments corresponds to France. We consider
satellite sensors with a swath of 60 km. We thus have K = 122 meshes to acquire.

We use ERA-Interim dataset [2] to obtain archived cloud cover forecasts. We
use ground-truth cloud cover observation only during model validation. During
training, the realistic weather distribution is used to validate the meshes selected
as described in section 5.2. Nb = 12 bins to build the weather distribution have
been used.
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6.2 Reference algorithms

The benchmark of our agent is done against a simple heuristic. We use the heuris-
tic defined in [6] with a parameter α set to 0.0. This corresponds to a heuristic
that always chooses the meshes with the smallest forecasted cloud cover on the
next pass. The long-term component of the heuristic did not improve results
with real weather data regardless of the fine-tuning of the α and β parameters.

6.3 Train and test methodology

The A2C agent is trained using weather forecasts from 2015 and a weather
observation model (see section 5.2) built using data from 2008 to 2013. We build
a different weather observation model per year, for a total of 5 models that can
be chosen randomly during training (see Algorithm 1). During evaluation, we
use archive data from 2014 and 2016. This evaluation of separate weather year
period allows to assess policy generalization.

The observation space is a concatenation of 20 frames of weather forecast for
the next 20 satellites passes and the validation frame (Npass = 21) as described in
4.2. We used the A2C implementation from the OpenAI baselines framework [3]
and a convolutional network similar to the one used in [6]. We train the agent
using 8 parallel environments. The training takes about 20 days using a computer
with 8 vCPUs and a K80 GPU.

For evaluation, the model is transferred to the realistic environment where
observations are taken directly from the ERA-Interim dataset (instead of using
domain knowledge model). To compare the model with the heuristic, we run 250
episodes for each evaluation year and each acquisition capacity Nm. For a given
year and acquisition capacity, those runs use a different starting date, chosen
randomly, for each episode but all the methods are compared on the same dates.
It aims at providing variable weather conditions throughout the year.

Furthermore, to assess the gain of domain randomization, we present results
using the TD method without domain randomization. This means that there is
only one distribution used to generate observed weather f , computed using all
the dates D available in the weather archive W.

6.4 Experimental results and discussion

The TDDR agent performs better than the heuristic in most of the cases (weather,
acquisition capacity). The Figure 2 illustrates the importance of domain random-
ization. TD method has similar results than the heuristic one. The gain of TDDR
method decreases when the satellite capacity increases. The network is trained
to select a single mesh, we suspect the workaround described in Section 5.3 is
not adapted to a scenario with high acquisition capacity. When satellite capacity
increases (more meshes per pass), the completion duration reaches an asymp-
tote: the bottleneck becomes the delay needed to obtain clear sky conditions in
difficult areas.

The difference between Figure 2 and Figure 3 shows that the model perfor-
mance is higher on cloudy weather conditions since the gain in percentage rel-
ative to the heuristic increases on years with longer episode duration. Besides,
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Fig. 2. France mean completion on episodes evaluated in 2014 depending on number of
meshes taken per satellite pass. The percentage given is the gain of TDDR vs heuristic.
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Fig. 3. France mean completion on episodes evaluated in 2016 depending on number of
meshes taken per satellite pass. The percentage given is the gain of TDDR vs heuristic.

we evaluated the model on the training period (2015) and the gains observed
were the same as the ones obtained on 2014 evaluation. This proves the capacity
of the agent to generalize on multiple and unseen weather conditions and that
there is no overfitting.

7 Conclusion

In this work, we have proposed to apply Reinforcement Learning in a realistic
Earth Observation satellite scheduling environment. The TDDR method uses a
mix of existing techniques to apply DRL to a real world problem. It prevents
from overfitting and allows us to deal with complex action space and realistic
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weather data. In a series of simulation-based experiments, our method challenges
existing methods used in operational missions with a gain up to 10% compared
to state-of-the-art heuristic.

Our method is however limited to a single AOI: the agent is trained using a
specific configuration, and changing the AOI requires re-training the agent. In
future research, we will look at combining TDDR with a multi-agent approach,
where each agent would correspond to a mesh to acquire. Such combination
would allow us to generalize further and train a single agent capable of handling
any kind of area, with various shape and size.
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