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A B S T R A C T

Multiple Sclerosis (MS) is the most common chronic inflammatory and neurodegenerative disease of the central
nervous system (CNS), which can lead to severe cognitive impairment over time. Magnetic resonance imaging (MRI)
is currently the best available biomarker to track MS pathophysiology in vivo and examine the link to clinical dis-
ability. However, conventional MRI metrics have limited sensitivity and specificity to detect direct associations
between symptoms and their underlying CNS substrates. In this study, we aimed to investigate structural and resting
state functional connectomes and subnetworks associated with neuropsychological (NP) performance using a graph
theoretical approach. A comprehensive NP test battery was administered in a sample of patients with relapsing
remitting MS (RRMS) and mild disability [n= 33, F/M= 20/13, age = 40.9 ± 9.7, median [Expanded Disability
Status Scale] (EDSS) = 2, range =0–4] and compared to healthy controls (HC) [n = 29, F/M = 19/10,
age = 41.0 ± 8.5] closely matched for age, sex, and level of education. The NP battery comprised the most relevant
domains of cognitive dysfunction in MS including attention, processing speed, verbal and spatial learning and
memory, and executive function. While standard MRI metrics showed good correlations with TAP Alertness test,
disease duration and neurological exams, structural networks showed closer associations with 9-hole peg test and
cognitive performances. Decreased graph strength was associated with two out of the 5 NP tests in the spatial
learning and memory domain specified by BVMT [Sum 1–3] and BVMT [Recall], and with also SDMT which is one
out of the 9 NP tests in the attention/processing speed domain, while no correlation was found between these scores
and functional connectivity. Nodal strength was decreased in all subnetworks based on Yeo atlas in patients com-
pared to HC; however, no difference was observed in nodal level of functional connectivity between the groups. The
difference in structural and functional nodal connectivity between the groups was also observed in the relationship
between structural and functional connectivity within the groups; the relationship between nodal degree and nodal
strength was reversed in patients but positive in controls. On a nodal level, structural and functional networks
(mainly the default mode network) were correlated with more than one cognitive domain rather than one specific
network for each domain within patients. Interestingly, poorer cognitive performance was mostly correlated with
increased functional connectivity but decreased structural connectivity in patients. Increased functional connectivity
in the default mode network had both positive as well as negative associations with verbal and spatial learning and
memory, possibly indicating adaptive and maladaptive mechanisms. In conclusion, our results suggest that cognitive
performance, even in patients with RRMS and very mild disability, may reflect a loss of structural connectivity. In
contrast, widespread increases in functional connectivity may be the result of maladaptive processes.
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1. Introduction

Multiple Sclerosis (MS) is the most common chronic inflammatory
and neurodegenerative disease of the central nervous system (CNS),
characterized by an accumulation of inflammatory and demyelinating
lesions in the brain and spinal cord (Filippi et al., 2018). Cognitive
dysfunction has been documented extensively even at the onset of
disease (Amato et al., 2010) and during the earliest stages of relapsing-
remitting MS (RRMS) (Deloire et al., 2005) and has a substantial ne-
gative impact on quality of life.

Currently, magnetic resonance imaging (MRI), one of the best
techniques for noninvasive whole brain investigation, is widely used to
evaluate MS (Reich et al., 2018) and standard MRI metrics (e.g. lesion
load volume, global atrophy) are routinely employed to track disease
activity and progression. However, it is becoming increasingly clear
that these markers are poorly correlated with clinical symptoms
(Wattjes et al., 2015). In contrast, network mapping may reflect neu-
ropsychological symptoms, cognitive or social dysfunctions much more
accurately (Fox, 2018). For example, in some cases, it is seen that re-
latively small lesions cause broader neuropsychological effects than
expected by their lesion size or location (Warren et al., 2014). This
might be explained by anterograde and retrograde neurodegeneration
spreading in the whole network as nicely demonstrated for the visual
system in MS (Balk et al., 2014). Therefore, analyzing connectivity or
integrity of brain networks might better reflect non-localized pathology
and take the fundamental topological organization of the brain into
account (Liu et al., 2017). However, it is still an unresolved issue
whether or not cognitive dysfunction in MS can be mapped to a global
connection model or could better be explained by a complex system of
distributed connection schemes (Zimmermann et al., 2018).

Graph theoretical approaches can be used to extract information on
networks of interacting brain regions and to provide insight into the
pathophysiological network changes underlying neurologic and psy-
chiatric symptoms (Fox, 2018). Previous studies have successfully uti-
lized structural and/or functional connectome analyses to interrogate
MS pathophysiology (Filippi et al., 2013; Fleischer et al., 2017;
Hardmeier et al., 2012; Hawellek et al., 2011; He et al., 2009; Li et al.,
2013; Pagani et al., 2019; Rocca et al., 2016; Schoonheim et al., 2013;
Shu et al., 2016, 2011, 2018; Stam, 2014; Stellmann et al., 2017;
Tewarie et al., 2015). Some of these cross-sectional studies have shown
that network analysis is capable of characterizing neuropsychological
impairment and physical disability in MS (Hawellek et al., 2011;
Pagani et al., 2019; Pardini et al., 2015; Rocca et al., 2016; Shu et al.,
2018, 2016; Stam, 2014; Stellmann et al., 2017). However, there is still
substantial inconsistency between clinical disabilities and findings on
brain networks. For example, some investigators suggest that decreased
structural (charalambous et al., 2018; Llufriu et al., 2018;
Stellmann et al., 2017) and/or functional connectivity is correlated
with lower performance in several clinical tests and functions in MS
(Rocca et al., 2016). In contrast, other studies have indicated that in-
creased functional connectivity in certain networks is associated with
poorer performance in cognitive tests (Hawellek et al., 2011;
Meijer et al., 2017; Schoonheim et al., 2015).

Whether alterations in functional connectivity represent an adaptive
or maladaptive process in the context of MS, however, is hotly debated
in the field (Rocca and Filippi, 2017) (Penner and Aktas, 2017). Part of
the inconsistencies in the literature may be caused by the temporal
kinetics of such alterations during disease evolution and progression
(Schoonheim et al., 2015). In addition, some might stem from the
limited clinical assessments typically done in such studies, where cog-
nition is often measured with just a few screening tests such as the
Symbol Digit Modalities Test (SDMT) or Paced Auditory Serial Addition
Test (PASAT). Moreover, only few studies have combined measures of
both structural and functional connectivity with comprehensive quan-
tification of cognitive function in MS. Although there are some studies
that related several cognition domains to both structural and functional

connectivity (Hawellek et al., 2011; Meijer et al., 2017), the relation-
ship between a wide range of cognitive domains and functional as well
as structural brain networks remains incompletely understood.

Therefore, in this study, we provide a comprehensive exploration of
the association between neuropsychological performance and both
structural and functional networks in mildly disabled RRMS patients
compared to healthy controls (HC). To this end, we compared network
metrics of functional and structural networks first on a global level, i.e.
graph theoretical summary metrics for the whole network, and second
on a nodal level representing region wise and subnetwork analyses
including seven main functional networks.

2. Material and methods

2.1. Subjects

We recruited thirty-three patients and twenty-nine age-, sex-, and
education matched HC. For the MS group, the following exclusion/in-
clusion criteria were applied: (1) RRMS according to McDonald criteria
2017 (Thompson et al., 2018) (2) no relapse or steroid treatments for at
least 3 months; (3) no change in disease-modifying therapies within the
last 3 months; (4) within the range of Expanded Disability Status Scale
(EDSS) = 0–4.

Additional criteria for all participants were (1) no evidence of
medical illness or substance abuse that may affect cognitive func-
tioning; (2) no psychiatric or neurological diseases (based on medical
history and neurological exam). All subjects underwent neurological
exam, comprehensive neuropsychological assessment, and neuroima-
ging within one week.

2.2. Neuropsychological and neurological examinations

For this study, we administered a comprehensive neuropsycholo-
gical test battery. 20 different NP tests were categorized into 4 domains
as attention and processing speed, verbal learning and memory, spatial
learning and memory and executive functioning. Since the processing
speed, sustained, divided and selective attention have been involved in
a domain of the complex attention (Islas and Ciampi, 2019), we merged
the attention and processing speed as an only domain. To assess at-
tention/processing speed, we used the Test battery of Attentional Per-
formance (TAP; (Zimmermann et al., 2004)), the Paced Auditory Serial
Addition Test (PASAT 3″; (Gronwall and Sampson, 1974)), and the
Symbol Digit Modalities Test (SDMT; (Smith, 1982)). To measure
verbal learning and memory functions we used the Verbal Learning and
Memory Task (VLMT; (Helmstaedter and Durwen, 1990)). For spatial
learning and memory the Block Tapping Task of the Wechsler Memory
scale (WMS; (Wechsler, 1997)) and the Brief Visuospatial Memory Test
(BVMT)) were used. Executive function was measured by the Re-
gensburger Word Fluency Task (RWT; (Aschenbrenner et al., 2000)).

EDSS (Kurtzke, 1983), the 9-Hole Peg Test (NHPT) (Backman et al.,
1992; Chan, 2000), and the Timed-25 food walk (T25FW) were used for
neurological assessment.

For the analyses in this study, test scores were inverted if needed so
that for all domains, higher values indicate better performance. This
study was approved by the appropriate ethics committee of the
Hamburg Chamber of Physicians (Registration Number PV4356) and all
participants provided written informed consent prior to enrolment.

2.3. MRI data acquisition

All subjects underwent neuroimaging using a 3T MRI Scanner
equipped with 32-channel head coil (Skyra, Siemens Medical Systems,
Erlangen, Germany). All participants received the same protocol in-
cluding diffusion tensor imaging (DTI), resting state (RS) functional
MRI (fMRI) and conventional MR imaging.

DTI scans were collected using a single-shell with 32 independent
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directions with non-collinear diffusion gradients (b=1000s/mm2) and
1 non-diffusion-weighted (b=0 s/mm2) (TR/TE = 7200 ms/90 ms;
voxel size 1.9 × 1.9 × 2.0 mm, FOV 240 mm, matrix 128×128, 54
axial sections, without intersection gap).

For RS fMRI, a T2*-weighted (W) BOLD-sensitized echo planer
imaging (EPI) sequence (TR/TE = 2500 ms/25 ms; TI=900 ms; 40
slices, voxel size 2.7 × 2.7 × 3.0 mm, without intersection gap, ma-
trix=256×256, FOV = 250 mm, FA=90°, number of volumes = 250)
was acquired for 10 min while subjects were asked to stay motionless,
keeping eyes open and fixating on a cross during scanning.

3D T1-W high resolution magnetization prepared rapid acquisition
gradient-echo (MPRAGE) sequences (TR/TE = 2500 ms/2.12 ms;
TI=1100 ms; 256 slices, voxel size 0.8 × 0.8 × 0.9 mm, no intersec-
tion gap, matrix=288×288, FOV = 240 mm) and T2-W (TR/
TE = 2800 ms/90 ms; 43 slices, voxel size 0.5 × 0.5 × 3.0 mm, no
intersection gap, matrix=256×256, FOV = 240 mm) were also ob-
tained from each subject.

2.4. Processing of MRI data

Processing of MR images included the following steps: In order to
obtain lesion maps, first, T1-W images were registered to T2-W images
after performing the standard space reorientation for each sequence
using functional imaging software library (FSL, version 5.0, www.
fmrib.ox.ac.uk). Then, T1-hypo- and T2-hyper intensities were specified
with Analyze 11.0 software (AnalyzeDirect, www.analyzedirect.com).
Before volumetric post-processing, lesion filling on T1 images was done
to avoid segmentation errors. Following lesion masking, we calculated
total lesion volume.

An automated procedure for volume and thickness measurements
was performed for each subject using FreeSurfer (https://surfer.nmr.
mgh.harvard.edu) as described in (Fischl et al., 2002). The automated
algorithm included removal of non-brain tissue (skull, eyeballs and
skin) to successfully segment the whole brain. Cortical surface re-
construction methods were included to obtain regional measures of
cortical volumes as well. Destrieux atlas was registered to each subject
using spherical registration following the removal of white matter re-
sidual as included in autorecon processing stages in Freesurfer (https://
surfer.nmr.mgh.harvard.edu/fswiki/recon-all).

To normalize the calculated parenchymal fraction, white matter and
gray matter volume, each measurement was divided by total in-
tracranial volume of each subject. In addition, brain masks and gray/
white matter segmentations were manually corrected for each subjects.
Finally, gray-matter parcellation of 80 regions (total: 160) for each
hemisphere was determined based on the Destrieux atlas (2009)
(Destrieux et al., 2010) to perform structural and functional con-
nectivity analysis. The location of each node in one of seven functional
networks (Yeo atlas) was determined on the FreeSurfer fsaverage sub-
ject (Yeo et al., 2011). Seven networks in Yeo atlas were default mode
(involved 44 nodes), visual (27 nodes), somatomotor (22 nodes),
frontoparietal (9 nodes), dorsal attention (15 nodes), ventral attention
(14 nodes) and limbic (16 nodes) network.

2.5. Structural connectivity

Individual structural networks were formed based on whole brain
probabilistic fiber tracking using MRtrix3 (www.mrtrix.org) in subject
space as described in Besson et al. (2014a). Briefly, in order to compute
the fractional anisotropy (FA) and mean diffusivity maps, diffusion
tensor fitting was applied to DTI data following correction for head
motion and eddy currents and skull stripping procedures using the
diffusion toolbox of FSL (Behrens et al., 2007).

To get accurate estimation of the fiber orientation distribution
(FOD) while performing constrained spherical deconvolution, the re-
sponse function was determined by FOD at the FA values of higher than
0.7 (Tournier et al., 2007). Then, to build the fibers, we used

probabilistic tractography algorithms (Behrens et al., 2003) which
generated 150,000 fibers with a minimum length threshold of 20 mm
(default parameters: step size: 0.2 mm, minimum radius of curvature:
1 mm, FOD cut-off: 0.1). Seeds were specified by all voxels of 1 mm
dilated white matter masks. Then, the tracking of seeds were limited by
the edge of mask and pre-defined FA or FOD threshold. We then cal-
culated the average FA for each fiber following the estimation of the FA
values at each point of the fiber.

2.6. Functional connectivity

Individual functional networks were built as described
(Wirsich et al., 2016). First, we performed preprocessing of the RS fMRI
data including motion distortion and slice timing correction and cor-
egistration with T1 volume and regional parcellation using SPM12.
Then, all voxels of each region and time points were averaged after
applying the regression procedure for head movement, cerebrospinal
fluid signals, white matter signals, and global mean signal. After the
preprocessing step, output data acquired from averaged region-time
series was used to perform wavelet analysis (frequency band range:
0.1 Hz - 0.05 Hz, TR=2.5 s) (Achard et al., 2012) using the brainwaver
package in R. To compute raw functional connectivity, we calculated
absolute Pearson-correlations between the wavelet coefficient time
series of each region. For better comparability of networks, the top 15%
of connections defined the connectivity matrices (Achard et al., 2012).

2.7. Global and nodal graph metrics

The global parameters of structural networks (Gstruc) were global
strength (i.e. the sum of edge weights in each network), average
shortest path length (APL) between all nodes and global clustering
coefficient using the arithmetic mean method. In addition, we also
computed global degree (i.e. the sum of connections per node in each
network), APL and clustering coefficient for functional networks
(Gfunc). Moreover, we calculated the nodal strength and degree for
structural and functional networks, respectively, as nodal graph me-
trics.

2.8. Statistics

According to the nature of the data, we performed descriptive sta-
tistics as mean with standard deviation or as median with range. Group
differences between patients and HC were assessed by Student t-test for
continuous data and Fisher's exact-test for categorical data. To in-
vestigate associations between graph metrics and clinical data, we
computed Pearson correlation coefficients. After applying false dis-
covery rate corrections, p-values below 0.05 were considered statisti-
cally significant. The analyses were performed with statistics in R 3.2.3,
including the igraph (Csárdi and Nepusz, n.d.) and tnet (Opsahl, 2009)
packages.

4. Results

4.1. Neurological and neuropsychological characteristics of the cohort

Descriptive statistics are presented in Table 1. Due to the close
matching, patients with RRMS (n= 33) and HC (n= 29) did not differ
with respect to age (p= 0.991) sex distribution (p= 0.794), or level of
education. Patient's median EDSS was 2 with 3 patients scoring 0 on the
scale. Patients’ mean disease duration since first symptoms (approx. 10
years) and a median EDSS of 2 indicated mild to moderate disability. As
excepted, global brain volume (p = 0.031) and white matter volume
(p = 0.014) were significantly lower in MS patients compared to HC.
However, no significant differences were found in both groups con-
cerning walking abilities (T25FW) and hand function (NHPT).

The neuropsychological profile of MS patients showed worse
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performance in several subtests including the following domains:
Verbal learning and memory, spatial learning and memory, and ex-
ecutive functioning (Table 2) (Fig. 1). Specifically, compared to HC, the
patients had poorer results in short term memory (p = 0.006) and
verbal learning (p< 0.001) as measured by VLMT, in visual short-term
memory and learning assessed by the forward Block-Tapping-Task
(p = 0.008) and the BVMT learning trials (p = 0.014) as well as in
executive functioning measured by lexical category change in the RWT
(p < 0.001). Except for BVMT, all of these remained significant after
FDR correction.

In the TAP, patients’ reaction time was significantly longer than HC
for alertness without warning tone (p = 0.047) and covert shift of at-
tention (invalid) (p = 0.024). However, these findings were not sig-
nificant after FDR-correction. There were no significant differences in
regarding performances in other neuropsychological tests.

Association between MRI volumes, neurological exams and neu-
ropsychological tests

First, we investigated the associations of conventional MRI metrics
with neurological ratings and / or neuropsychological tests. We found
that T1 lesion, gray matter and total brain volume (p = 0.04, FDR

Table 1
Descriptive statistics.

RRMS, n = 33 HC, n = 29 P
Female Male Female Male

Sex n 20 13 19 10 0.794
>12 years <12 years > 12 years <12 years

Education n 21 12 18 11 0.524
Mean (SD) Mean (SD)

Age years 40.9 (9.7) 41.0 (8.5) 0.991
Disease Duration years 10.4 (8.1) –
EDSS median (range) 2 (0 – 4) – –
Timed 25-Foot Walk sec 4.7 (0.8) 4.4 (0.7) 0.096
9-Hole Peg Test sec 19.5 (2.6) 18.4 (2.0) 0.073
Brain volume mm3 1,463,208 (151,402) 1,533,153 (88,911) 0.031
White matter volume mm3 665,651 (74,313) 705,454 (44,869) 0.014
Gray matter volume mm3 797,557 (84,619) 827,698 (56,682) 0.107
T2 lesion volume mm3 (log) 3.98 (4.04) – –
T1 lesion volume mm3 (log) 4.61 (5.18) –

Abbreviations: RRMS = Relapsing Remitting Multiple Sclerosis; HC = Healthy Control; (disease duration since first symptoms, tissue and lesion
volumes normalized based on SIENAX results); EDSS = Expanded Disability Status Scale, log=Logarithmic.
Data presented as mean (SD) or median (range). Except from sex (Fisher's exact test), group differences were compared with the Student t-test.

Table 2
Summary of neuropsychological test results.

RRMS (n = 33) HC (n = 29)
Cognitive functions Test Mean SD Mean SD p-value

Attention/Information processing
Selective attention and working memory PASAT (points) 49.1 9.5 51.9 6.9 0.198
Processing speed and attention SDMT (points) 56.9 14.3 63 11.9 0.076
Tonic alertness TAP [tonic Alertness] (ms) 261.1 41.6 243.3 24.9 0.047a

Phasic alertness TAP [phasic Alertness (ms) 256.8 40.3 242.7 24.5 0.102
Shifted attention TAP [CSA valid] (ms) 309.8 49.1 297.1 45.3 0.302
Shifted attention TAP [CSA invalid] (ms) 361.2 50.3 331.1 50.1 0.024a

Incompatibility attention TAP [compatible] (ms) 464.4 83.5 447.8 55.9 0.365
Incompatibility attention TAP [incompatible] (ms) 509.2 83.5 502.2 62.8 0.712
Incompatibility total attention TAP [total] (ms) 485.7 80.8 472.1 51.1 0.432
Verbal learning and memory
Verbal short term memory VLMT [STM] (points) 7.3 2.6 9 2 0.006a,b

Verbal learning VLMT [VL] (points) 52.4 10.5 61 6.1 <0.001a,b

Verbal memory VLMT [VM] (points) 1.1 1.9 0.4 1.5 0.179
Spatial learning and memory
Visuo-spatial short term memory Block-Tapping Task [FWD] (points) 8.3 1.6 9.6 1.9 0.008a,b

Visuo-spatial working memory Block-Tapping Task [BWD] (points) 7.8 1.9 8.8 1.9 0.063
Total learning BVMT [Sum 1–3] (points) 21.8 7.4 26 5.3 0.014a

Delayed recall BVMT [recall] (points) 8.8 2.6 9.8 2.0 0.077
Recognition BVMT [recognition] (points) 5.8 1.1 5.9 2.2 0.308
Executive functioning
Word fluency RWT [VF] (percentile rank) 55.8 30 63.7 27.1 0.292
Lexical category change RWT [CC] (percentile rank) 34.5 27.7 59.1 26.5 0.001a,b

Word fluency RWT [categories] (percentile rank) 48.4 32.5 59.9 26 0.135

Test Abbreviations: PASAT = Paced Auditory Serial Addition Test; SDMT= Symbol Digit Modalities Test; VLMT = verbal learning memory test;
RWT = Regensburger Word Fluency Task; TAP = Test Battery of attentional performance; BVMT= Brief Visuospatial Memory Test.
Abbreviations: STM = short term memory, VL = verbal learning, VM = verbal memory, FWD = forward, BWD = backward, VF = verbal fluency, CC= category
change, CSA = Covert Shift of Attention, incomp total = incompatibility total.
Data presented as mean and SD, group differences were compared with the Student t-test.

a p values below 0.05.
b False discovery rate–corrected p values below 0.05.

A.C. Has Silemek, et al. NeuroImage: Clinical 25 (2020) 102177

4



corrected) was related with only one of the attention/processing speed
functioning tests (TAP [Alertness w/o W]) in patients. There was no
relationship between the other MRI volumes and neuropsychological
tests (see Supplementary Table S1). In contrast, disease duration, EDSS
and Timed 25-food- walk test were strongly correlated with both gray
matter (pDD=0.001, pEDSS = 0,003, pT25FW <0,001, FDR corrected)
and total brain (pDD=0.001, pEDSS = 0,004, pT25FW =0,001, FDR
corrected) volume.

4.2. Structural and functional global network organizations

First, we explored if global network alterations can be detected in
MS and whether they might be associated with cognitive performance.
For structural networks, we computed global strength (indicating total
connectivity in a network) for each individual and detected a lower
total connectivity (p < 0.001) in patients compared to HC. Structural
average path length and clustering, however, were not significantly

Fig. 1. Figure indicates the effect of the cognitive data presented by Z-scores in Relapsing Remitting Multiple Sclerosis (yellow) and Healthy Controls (blue).
Abbreviations: PASAT = Paced Auditory Serial Addition Test; SDMT= Symbol Digit Modalities Test; VLMT = verbal learning memory test; RWT = Regensburger
Word Fluency Task; TAP = Test Battery of attentional performance; BVMT= Brief Visuospatial Memory Test. STM = short term memory, VL = verbal learning,
VM = verbal memory, FWD = forward, BWD = backward, VF = verbal fluency, CC= category change, CSA = Covert Shift of Attention, incomp total = in-
compatibility total.(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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different between patients and HC (p = 0.057, p = 0.057 and
p= 0.172, respectively) as shown in Table 3. In addition, we observed
no significant differences between patients and HC for global functional
network metrics including degree, average shortest path length and
clustering coefficient.

4.3. Global network alterations related with MRI volumes, neurological
examinations and neuropsychological tests

To elucidate the relation between structural and functional global
networks and cognitive performance, we explored the association be-
tween the graph metrics and MRI volumes, neurological examinations
and neuropsychological tests in patients and healthy controls separately
(see Table 4 in patients: Supplementary Table S2 in HC). For the as-
sociation between the MRI volumes and structural networks, larger T2
lesion volume in patients was inversely correlated with the global
strength (r= −0.52, p= 0.002) while there was a positive correlation
between larger gray matter volume and the increased global strength
(r = 0.46, p = 0.007). In addition, higher global strength was corre-
lated with better performance in NHPT (r = −0.42, p = 0.014) and
there was an inverse relationship between the global strength in
structural networks and disease duration (r = −0.52, p = 0.002).

We observed strong associations with global graph strength for
structural networks in the domain attention/processing speed specified
by SDMT (r = 0.46, p = 0.007) and spatial learning and memory
functioning specified by BVMT [Sum 1–3] (r = 0.55, p = 0.001) and
BVMT [recall] (r = 0.53, p = 0.002) (Table 4).

Notably, attentional capacities measured by TAP were highly cor-
related with almost all global graph metrics in HC (seen in

Supplementary Table S2). None of these associations were seen in pa-
tients. In contrast, we were not able to find any relationship between
the global functional graph metrics and any other neurological ex-
aminations, MRI volumes or neuropsychological tests neither in pa-
tients nor in HC.

The association between local graph strength/degree and neu-
ropsychological tests

As global graph metrics do not reflect the local functional organi-
zation of the human brain, we also investigated the association between
cognitive tasks on a nodal level and in context of their location in one of
seven functional networks as defined by Yeo et al. (2011). We observed
decreased structural connectivity in all subnetworks (p<0.001) in pa-
tients compared to HC (Fig. 2A). However, functional connectivity did
not differ between the groups (Fig. 2B). Exploring the association be-
tween structure and function, we found a significant correlation for 30
nodes either in patients or controls, mainly in the default mode and
visual network (Fig. 2C). Interestingly, the relationships between nodal
strength and nodal degree were quite homogeneous (i.e. higher
strength indicated higher degree) in controls; however, these relation-
ships were mostly reversed in patients.

To focus on altered connectivity, the findings obtained within the
patients are summarized for four cognitive domains of attention/pro-
cessing speed, verbal learning and memory, spatial learning and
memory and executive function.

Attention/Processing speed: In the domain of attention/processing
speed, better SDMT performance was associated with higher con-
nectivity of nearly all nodes in structural networks (see Fig. 3A). While
the SDMT showed a wide association pattern over all yeo networks,
further associations were mainly located in the default mode network
(Fig. 3D). On a functional level, we observed no association with SDMT.
Notably, poorer performances of TAP CSA valid and phasic alertness
tests were correlated with better functional connectivity (Fig. 3A) in
default mode network, while PASAT had positive correlation with
functional connectivity in limbic network (Fig. 3A and D).

Verbal Learning and Memory: A relationship in all Yeo networks
was observed between better performance in verbal learning and
memory and structural connectivity (Fig. 4A, B and D). The default
mode network was seen here again in a lead role followed by the limbic
network (Fig. 4B and D). Again, associations with nodal degree in
functional networks were fewer with most of them in the default mode
network.

Spatial Learning and Memory: In structural networks, BVMT
showed a similar wide spread association pattern as the SDMT (Fig. 5A,
B and D). Better performance was correlated with higher structural
connectivity in almost all nodes (Fig. 5A). For functional connectivity,
we observed a reduced association pattern with a predominance in the
default mode and visual network.

Executive functions: Few significant relationships were observed
between performance in executive function and structural connectivity

Table 3
Global graph metrics.

RRMS HC RRMS vs. HC
Structural weighted networks Gstruc n = 33 Gstruc n = 29 P

Graph strength 6447.407 (672.545) 7095.314 (356.813) <0.001a,b

Average shortest path length 1.207 (0.043) 1.190 (0.025) 0.057
Clustering coefficient 0.796 (0.027) 0.805 (0.025) 0.172
Functional binary networks Gfuncn = 30 Gfuncn = 29 P
Degree 3560.933 (2424.748) 3339.655 (2342.273) 0.723
Average shortest path length 2.733 (0.840) 2.870 (0.977) 0.568
Clustering coefficient 0.533 (0.081) 0.529 (0.074) 0.849

Abbreviation: Gstruc = weighted structural networks; Gfunc = binary functional networks; RRMS = Relapsing Remitting Multiple Sclerosis; HC = Healthy
Controls.
Data presented as mean (SD). Comparison of cohorts by Student t-test.

a p values below 0.05.
b False discovery rate–corrected p values below 0.05..

Table 4
Correlations between structural global graph strength and MRI volumes, neu-
rological ratings data and neuropsychological tests in patients (only significant
correlations are demonstrated). a p Values below 0.05.b False discovery rate–-
corrected p values below 0.05.

Graph strength
R P

Disease Duration −0.52 0.002 a,b

Gray matter volume 0.46 0.007 a,b

T2 lesion volume −0.52 0.002 a,b

NHPT [mean] −0.42 0.014 a,b

Attention/Information processing
SDMT 0.46 0.007 a,b

Spatial learning and memory
BVMT [Sum 1–3] 0.55 0.001 a,b

BVMT [recall] 0.53 0.002 a,b

Abbreviations: SDMT= Symbol Digit Modalities Test; VLMT = verbal learning
memory test; BVMT= Brief Visuospatial Memory Test.
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(Fig. 6). For functional connectivity, there was only one node located in
the limbic network.

Direct and inverse associations with the overall cognitive perfor-
mance

Next, we wanted to explore if correlation of functional connectivity
might indicate an adaptive or rather maladaptive phenomenon. To
address this aim, we extracted significant correlation coefficients for all
nodes, which were related to at least one cognitive test. As shown in
Fig. 7, structural connectivity always had a positive correlation with the
task (with one exception) (r>=0.4, FDR corrected), whereas func-
tional connectivity had mostly negative correlations. However, in ad-
dition to limbic and somatomotor networks, mainly the default mode
network had also a few direct or possible adaptive associations.

5. Discussion

We utilized an approach combining DTI, RS fMRI data and graph
theory to characterize the relation between cognitive profiles and
global and local network features in RRMS patients with mild to
moderate disability. We observed a closer association of structural
network metrics with cognitive abilities compared to standard MS MRI
outcomes and an interesting pattern of associations with a slight

predominance of nodes located in the default mode network. While
structural connectivity always showed a positive correlation with per-
formance, the number of functional connections of nodes was mostly
negatively correlated.

It has previously been shown that loss of structural connectivity
follows the topological organization of brain networks, with specific
patterns and seems to be associated with neurological and neu-
ropsychological impairment in MS (Charalambous et al., 2018;
Pardini et al., 2015; Stellmann et al., 2017). The closer association
between the disrupted structural connectivity and neurological ex-
aminations, lesion load and gray matter atrophy in our present study
are consistent with this notion and extend the evidence by applying a
wider range of clinical tests (He et al., 2009; Shu et al., 2018, 2011). In
addition to the robustness, the sensitivity of our approach is reflected
by the absence of correlations between standard MRI metrics and
cognitive tasks.

Unlike the relatively consistent findings with regard to structural
networks in MS, discordant results with both decreased and increased
functional connectivity have been reported in previous studies
(Faivre et al., 2012; Pantano et al., 2015; Rocca et al., 2012, 2018;
Tewarie et al., 2015). Here, we observed no associations between
functional connectivity and cognition on a global level and no

Fig. 2. Structural (A) and functional (B) connectivity for each one of seven subnetworks based on the Yeo atlas in patients (yellow) and healthy controls (blue). The
correlation of structural (based on the strength) and functional (based on the degree) connectivity for all nodes in each subnetwork (C) in controls (upper side of C)
and in patients (lower side of C).(For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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Fig. 3. The association of structural / functional networks and attention/processing speed functioning. (A) Boxplot displaying Pearson's correlation coefficients (r) for
all nodes and for all tasks in the domain of attention/processing speed. (B+ C) BrainViewer plots illustrate the localization of highly correlated (r>=0.4) nodes in
the brain. Size represents r, color their location in Yeo networks. (D) Correlogram of highly significant (r>=0.4, p<0.05 after FDR correction) nodes associated with
attention/processing speed performances. Nodes are grouped by their location in seven functional networks defined by the Yeo atlas.
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Fig. 4. The association of nodal structural / functional networks and verbal learning and memory functioning. (A) Boxplot displaying Pearson's correlation coef-
ficients (r) for all nodes and for all tasks in the domain of verbal learning and memory. (B + C) BrainViewer plots illustrate the localization of highly correlated
(r>=0.4) nodes in the brain. Size represents r, color their location in Yeo networks. (D) Correlogram of highly significant (r>=0.4, p<0.05 after FDR correction)
nodes associated with verbal learning and memory performances. Nodes are grouped by their location in seven functional networks defined by the Yeo atlas.
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differences between controls and patients. However, while functional
connectivity is constrained by the structural connectome, it has also
been proposed to contain information which is independent from
structural connectivity (Engel et al., 2013; Mišić et al., 2016). There-
fore, the absence of detectable or specific alterations in functional
connectivity on a global level might result from increased functional
connectivity caused by structural disconnection in concurrence with
decreased plasticity in mildly disabled RRMS. This interpretation is

supported by work from Patel et al. (2018), which suggested that
structural disruption causes increased rather than decreased functional
connectivity in MS.

On a global level, disrupted structural connectivity was pre-
dominantly associated with reduced performance in attention/proces-
sing speed and verbal learning and memory functions that are known as
the most common impairments occurring in the early stage of MS
(Schulz et al., 2006). Recently, Llufriu et al. demonstrated specific

Fig. 5. The association of structural / functional networks and spatial learning and memory functioning.(A) Boxplot displaying Pearson's correlation coefficients (r)
for all nodes and for all tasks in the domain of spatial learning and memory. (B + C) BrainViewer plots illustrate the localization of highly correlated (r>=0.4,
p<0.05 after FDR correction) nodes in the brain. Size represents r, color their location in Yeo networks. (D) Correlogram of highly significant (r>=0.4) nodes
associated with spatial learning and memory performances. Nodes are grouped by their location in seven functional networks defined by the Yeo atlas.
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structural networks like fronto-parietal networks to be involved in at-
tention and executive function impairments in patients advanced/long
standing RRMS (Llufriu et al., 2017). In addition, a correlation was
shown between impaired structural connectivity and the hippocampal-
related memory network in a large cohort of MS patients (Llufriu et al.,
2018). However, these studies have not systematically assessed the
relationship between cognitive performance and global structural net-
works of mildly disabled RRMS patients. Our study is supporting the
relevance of structural integrity for the preservation of cognitive

functions in MS and extends previous research to mild RRMS. This is in
line with the concept that neurodegeneration is not a feature of long-
standing MS but occurs without clinical manifestation from diseases
onset (Friese et al., 2014; Stys et al., 2012).

It has been suggested that the deterioration of structural con-
nectivity leads to a loss of diversity in large-scale cortical dynamics
(Hawellek et al., 2011) and is a potential biomarker for monitoring
cognitive dysfunction in MS (Shu et al., 2016). As reported here, at-
tention/processing speed, verbal and spatial learning and memory were

Fig. 6. The association of nodal structural / functional networks and executive functioning. (A) Boxplot displaying Pearson's correlation coefficients (r) for all nodes
and for all tasks in the domain of executive functioning. (B) Correlogram of highly significant (r>=0.4, p<0.05 after FDR correction) nodes associated with
executive functioning performances. Nodes are grouped by their location in five functional networks defined by the Yeo atlas. (C+ D) BrainViewer plots illustrate the
localization of highly correlated (r>=0.4) nodes in the brain. Size represents r, color their location in Yeo networks.

A.C. Has Silemek, et al. NeuroImage: Clinical 25 (2020) 102177

11



mainly related to changes in both visual and default mode networks.
The broad pattern of association between cognition domains and nodal
strength in different Yeo networks might indicate that cognitive per-
formance depends rather on general structural connectivity than on the
integrity of a specific sub-network in MS. This topology is not un-
expected: The visual network is active at rest even when no visual task
is performed and increased functional connectivity is associated with
structural impairment, for example, after optic neuritis in neuromyelitis
optica and MS (Backner et al., 2018; Finke et al., 2018).

The default mode network is defined as one of the functional brain
networks that uses the most direct structural links (Horn et al., 2014). It
is de-activated during cognitive performance, but active in the resting
state, and alterations of the default mode network have shown a link
with cognitive decline associated with aging, mild cognitive impair-
ment, Alzheimer and MS (Rocca et al., 2010; Sorg et al., 2007). How-
ever, as summarized in a review paper (Schoonheim et al., 2015), there
is a discrepancy in the literature as findings indicated both increased
and decreased DMN connectivity as potential substrates of cognitive
impairment. This might be caused by different diseases states (e.g. in-
flammatory vs. progressive MS) and different principles that were used
for the processing of MRI data. Recently, Rocca et al. suggested that
both increased and decreased functional connectivity might occur in
MS and accompany a wide range of clinical manifestations (Rocca et al.,
2018). Here, the misbalanced functional connectivity in DMN seems to
be associated mainly with verbal learning and memory performance in
RRMS. In addition, increased functional connectivity with poorer per-
formance is in line with the previous studies (Faivre et al., 2012;
Hawellek et al., 2011; Meijer et al., 2017). In light of the debate about
maladaptation and adaptation, comprehensive assessment of cognitive
functioning and combination of structural and functional analysis has
been proposed as a means to solve the discrepancy. Although the dis-
cussion will not be concluded without longitudinal studies with suffi-
cient sample size, in our study, increased functional connectivity in
relation to worse cognitive performance appears as a possibly mala-
daptive response to structural damage in most cases. Our findings in-
dicate that the discussion should probably focus more on network im-
balances to better understand the complexity of heterogeneous
activation patterns. Furthermore, longitudinal and task-based fMRI
studies may aid in solving the misbalanced managing function within
the default mode network. Several limitations of our study need to be
considered. Our sample was small, MS patients mostly had mild dis-
ability, and we used a cross sectional design. Although our study in-
cludes baseline assessment and we do not routinely apply PASAT in our

clinic, some patients might not have been naive to the PASAT.
There were technical limitations caused by our calculation strate-

gies. In our study, we threshold networks to keep only the strongest
15% of connections. This increases comparability of networks ac-
cording to Achard et al., 2012; Achard et al., 2006) but might have an
impact on network topology. However, applying different thresholds
between 1 and 50% had no major impact on the relative connectivity of
the nodes (data not shown). Similarly, weighted structural network was
defined by average FA along the tracts of two regions to reduce the
spurious connections (Besson et al., 2014b; Buchanan et al., n.d.).
However, it is still hard to accurately interpret weighted networks due
to the different diffusion characteristics in WM, both relevant and ir-
relevant, especially seen in long range tracks (Tsai, 2018). To solve the
ambiguity that limits the tractography, advanced diffusion micro-
structure modeling and multi-modality imaging is necessary (Maier-
Hein et al., 2017). In addition, we did not use advanced graph theo-
retical approaches and calculated mainly strength and degree as a
starting point. Since small word concept states that these networks are
circular in shape and do not have modules, our findings are limited and
further studies might improve the findings by advanced graph theore-
tical approach. Finally, our study might be limited by our statistical
model that used only t-test for comparisons. Generalized linear models
with age/sex/education as covariates were also possible; however, we
observed no differences between t-test and general linear models.
Therefore, we chose the simpler model.

In conclusion, cognitive performance in early RRMS is almost cer-
tainly related to a widespread disruption of structural connectivity. In
contrast, increased functional connectivity shows overall a reverse as-
sociations with few exceptions located in the default mode and limbic
networks. A longitudinal study with a wide spectrum of clinical dis-
abilities assed by weighted networks would be helpful to see the pattern
during the long term and different effect according to the degree of
clinical disability in MS. In particular, assessment of dynamic change
might completely explain the misbalanced associations in DMN.
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