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A thermodynamic formulation for multiphase
compositional flows in porous media

F. Smaı̈

BRGM, 3 Av. Claude Guillemin, BP 36009, 45060 ORLEANS Cedex, France

Abstract

The main purpose of this work is to develop a practical and consistent model of multi-
phase flow in porous media. The thermodynamics of irreversible processes is applied
to the representative elementary volume of a porous medium filled with multiple com-
positional fluids. The entropy production is derived and analyzed in order to establish
phenomenological equations for the macroscopic fluxes and an equation of state for
the matrix-fluids-interfaces system at equilibrium. The entropy dissipation due to the
transformation of the interfaces is identified and its analysis gives a new model for
capillarity with two phases or more. The physical model is formulated in a well-posed
system of elliptic-parabolic differential equations based on a set of persistent primary
variables. The formulation encompasses a wide range of classical models and extends
them by handling an arbitrary number of phases and components.
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1. Introduction

The idea that thermodynamics can help in building macroscopic descriptions of
flows in porous media is explored since several decades [12, 18, 23, 24, 31, 33]. It led
to significant insights, like interpreting the empirical Darcy’s law [13] as the first order
approximation of a dissipative process [31]. The purpose of thermodynamic approaches
is to give theoretical foundations to the most used macroscopic equations and to develop
accurate models for less known processes. One of their strengths is consistency, in
opposition to a modelling strategy based on the analogy with phenomena in continuous
medium and the superposition of the corresponding equations.

Although the thermodynamic approaches are multiple, they have in common to
start with a thermodynamic description at the pore level, then to derive a macroscopic
description from them. The approaches can differ at both steps. Concerning the
transition from pore level to macroscopic level, the challenge is to properly relate the
quantities and relations used at the two levels. The notion of a length scale separating
between two levels of description appears independently in porous media and continuum
thermodynamics. For porous media, it corresponds to the representative elementary
volume [3] and it separates between coarse and smooth descriptions of the porous
medium. For continuum thermodynamics, it corresponds to the elemental volume on
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which the local equilibrium is valid [15, 28] and it separates between uniform and
non-uniform description of the continuum. These two volumes both have their own
length scale that depends on the structure of porous medium or the processes occurring
inside. The hierarchy between the two length scales is not known a priori, they can be
the same or one can be larger than the other. Nevertheless applying thermodynamic
principles to porous media involves both length scales and the way they compare has a
direct impact on the final macroscopic description.

One goal of modelling flows in porous media is the ability to perform numerical sim-
ulations, whose importance is constantly increasing in earth sciences and engineering.
The expected advances concern the speed and accuracy of the simulations [8] but also
their complexity by coupling multiple phenomena [27]. While improving the numerical
methods is an active topic, the models used for simulating flows in porous media are
generally not based on thermodynamics: Darcy’s law is initially an empirical law and its
extensions are mainly based on hydrodynamic arguments; the relative permeability that
adapts Darcy’s law for multiphase flow lacks theoretical foundations and satisfactory
agreement with experiment; heat transfer, diffusion or chemical reactions are generally
superimposed to the flow, using equations obtained by analogy with those governing
the same phenomena in a continuous medium. Thus these models are exposed to some
thermodynamic inconsistencies that can be the root of inherent biases and numerical dif-
ficulties. Concerning the coupling with other phenomena, the thermodynamic modelling
has proven its relevance for the interactions between poro-mechanics and flows [12].
Reactive transport is an other active topic that could exploit a proper modelling of
compositional flows [41]. Finally, numerous formulations [1, 5, 6, 10, 11, 22, 25, 37]
have been developed to address the particularities of multiphase flow, like appearance
and disappearance of fluid phases or switching between parabolic, elliptic and hyper-
bolic behaviors. They collectively show how to deal with multiphase flows but they are
ad hoc constructions, difficult to generalize. A mathematical formulation of flows in
porous media derived from thermodynamic principles would be more generic, ensure
consistency, hopefully also when properly coupled with other phenomena, and could
moreover benefit from the mathematical tools developed over times for thermodynamic
systems.

This work proposes a derivation of macroscopic equations for multiphase flow in
porous media. A strong assumption is that local equilibrium applies at the representative
elementary volume. This means there is a length scale at which the thermodynamic
quantities are uniform and the porous medium is seen as a smooth continuum. Although
it is mostly suited to slow flows that are close to equilibrium, this assumption proves
to be sufficient to recover most of the classical models. At first, the porous system is
divided into distinct parts and the classical relations of equilibrium thermodynamics
are reminded for each one. Next, the balance equation for entropy is derived from the
matter and energy conservation principles and the local equilibrium of each part of
the porous system. The entropy production is then analyzed to identify the different
processes and, with additional assumptions, phenomenological laws are formulated for
each processes. The resulting model describes an arbitrary number of phases, made
of an arbitrary number of components, flowing through the porous media, subject to
dissolution and to changes of phase, and constrained by capillarity. The analysis of
the entropy production additionally provides new definitions for the equilibrium of the
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system of interfaces and for the pressure-saturation relation that hold for systems with
two phase or more. These definitions avoid involving ambiguous quantities like average
interface curvature or average contact angle and they introduce new constraints for the
pressure-saturation relation. In order to demonstrate the practicality of the full model,
a mathematical formulation of the model is developed. It takes the form of a system
of elliptic-parabolic differential equations whose main properties are: a persistent set
of primary variables, a symmetric positive structure and a trivially associated entropy
equation.

2. Description of the porous medium system

This work adopts a description of the porous medium and its content as a continuum.
At each point of this macroscale continuum, the different parts of the porous system are
independently at local equilibrium and are governed by their own equations of state.
This section details the assumptions and the notations of that description.

2.1. Partitioning the system

Any volume,V, of the porous medium system is assumed to be divided between
the volume of the rock matrix (the solid phase),Vr, and the volume of each fluid phase
α ∈ P, Vα. Here, P denotes the set of indices for all the possible fluid phases. The
fluid phase α ∈ P is said missing in the system volume V when Vα = ∅. In the
following, the fluids are assumed to always completely fill the pores: V =

⋃
k∈P∪{r}Vk.

The measure of these volumes are denoted by V = |V| and Vk = |Vk | for k ∈ P ∪ {r}.
The interface area between two fluid or solid phases indexed by k and l is denoted by
A{k,l} = |∂Vk ∩ ∂Vl|. In the following, I(E) = {{k, l} | k ∈ E, l ∈ E, k , l} will denote the
set of all pairs of the given index set E; the index set of all interfaces is I(P ∪ {r}). For
a fixed system volumeV, the volumeVα of the fluid α ∈ P can change as the fluids
flow through the porous medium. However, the solid phase will be assumed rigid in this
work, meaning thatVr can not change whenV is fixed. According to these definitions,
the interfaces have no volume and

V = Vr +
∑
α∈P

Vα .

Each phase is made of one or more components and the same component can be found
in different phases. C denotes the set of indices for all the possible components and N i

denotes the total number of mole of the component i ∈ C in the system volumeV. In
this work, all the components are assumed to be exclusively in the fluid phases. This
means that components in the interfaces are neglected and that there is no exchange of
matter with the rock matrix. By denoting N i

α the number of mole of component i ∈ C in
the volumeVα of fluid phase α ∈ P, one get the relation

N i =
∑
α∈P

N i
α ∀ i ∈ C .

Let U denote the internal energy contained in the system volumeV. The internal energy
is defined as the total energy excluding the kinetic energy due to the motion of the whole
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system and the potential energy due to external force fields [15]. As such, the internal
energy of the system is the sum of the internal energy of its parts,

U =
∑

k∈P∪{r}

Uk +
∑

{k,l}∈I(P∪{r})

U{k,l} ,

where Uk denotes the internal energy in the volumeVk of the phase k ∈ P∪{r} and U{k,l}
denotes the internal energy in the surface ∂Vk ∩ ∂Vl of the interface {k, l} ∈ I(P ∪ {r}).

2.2. Equilibrium thermodynamics
For a given isolated thermodynamic system, the state of thermodynamic equilibrium

is the time-invariant state in which we see no further physical or chemical change in
the system [28]. Equilibrium thermodynamics describe the changes of state of the
system between successive equilibria. In particular, the state of the system is specified in
terms of state variables such as volume, mole numbers of components, internal energy
or entropy. The first law of thermodynamics, that expresses the principle of energy
conservation in term of total differential of functions of state, is the basis of the theory.
This section presents the assumptions and the relations that describe the thermodynamic
equilibrium of the different parts of the porous system.

2.2.1. Fluid phases
The first law of thermodynamics applied to a fluid phase gives

dUα = TαdS α − pαdVα +
∑
i∈C

µi
αdN i

α ∀ α ∈ P , (1)

where S α denotes the entropy of the fluid phase α in the volumeVα. The relation (1)
indicates that the internal energy of the fluid α is a function of the form Uα(S α,Vα, (N i

α)i).
It also provides the physical meaning for the derivatives of this function: Tα is the
temperature of the fluid α; pα is the pressure of the fluid α; and µi

α is the chemical
potential of the component i in the fluid α. Similarly to the volume Vα, the mole
numbers N i

α or the internal energy Uα, the entropy S α is an extensive variable whereas
the temperature Tα, the pressure pα and the chemical potentials µi

α are intensive variables.
Note that since the fluid in Vα is at equilibrium, its intensive variables have uniform
values across all the volume Vα. By applying the Euler’s homogeneous function
theorem on relation (1) one get

Uα = TαS α − pαVα +
∑
i∈C

µi
αN i

α ∀ α ∈ P . (2)

By taking the differential of equation (2) and subtracting equation (1), one derives the
Gibbs-Duhem relation

0 = S αdTα − Vαdpα +
∑
i∈C

N i
αdµi

α ∀ α ∈ P . (3)

Let Ωα denotes the grand (canonical) potential of the fluid α in the volumeVα defined
by

Ωα = Uα − TαS α −
∑
i∈C

µi
αN i

α ∀ α ∈ P , (4)
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from equation (1), its differential is

dΩα = −S αdTα − pαdVα −
∑
i∈C

N i
αdµi

α ∀ α ∈ P .

The extensive variables can be associated to volume quantities. Let ci
α be the molar

concentration of component i ∈ C in the fluid phase α ∈ P, uα the volume internal
energy of the fluid phase α ∈ P, sα the volume entropy of the fluid phase α ∈ P and ωα
the volume grand potential of the fluid phase α ∈ P. These volume quantities are linked
to theirs extensive counterparts by

N i
α = Vαci

α , Uα = Vαuα , S α = Vαsα , Ωα = Vαωα ∀i ∈ C ∀α ∈ P .

Using the volume quantities, the Gibbs-Duhem relation (3) can be written as

dpα = sαdTα +
∑
i∈C

ci
αdµi

α ∀α ∈ P . (5)

The volume of fluid α can be scaled to the volume of the whole system to define the
volume fraction φα by

φα =
Vα

V
∀α ∈ P .

The amount of internal energy of the fluid α per unit of system volume is Uα/V = φαuα.
According to equation (2), we have

φαuα = φαTαsα − φαpα +
∑
i∈C

φαµ
i
αci

α ∀α ∈ P ,

the differential of this relation gives

d(φαuα) = Tαd(φαsα) − pαdφα +
∑
i∈C

µi
αd(φαci

α) + φαsαdTα − φαdpα +
∑
i∈C

φαci
αdµi

α ,

which, using equation (5), reduces to

d(φαuα) = Tαd(φαsα) − pαdφα +
∑
i∈C

µi
αd(φαci

α) ∀α ∈ P . (6)

Similarly, the amount of grand potential of the fluid α per unit of system volume is
Ωα/V = φαωα. According to equation (4), its differential satisfies

d(φαωα) = d(φαuα) − d(φαTαsα) −
∑
i∈C

d(φαci
αµ

i
α) ,

which, using equation (6), reduces to

d(φαωα) = −φαsαdTα − pαdφα −
∑
i∈C

φαci
αdµi

α ∀α ∈ P . (7)
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2.2.2. Interfaces
The interfaces are assumed to only exchange heat and work but not matter. Moreover,

considering one kind of interface {k, l} ∈ P ∪ {r} in the system volumeV, we assume
that the set of the interfaces between phases k and l is at equilibrium as a whole. Then,
the first law of thermodynamics applied to the interface gives

dU{k,l} = T{k,l}dS {k,l} + γ{k,l}dA{k,l} ∀ {k, l} ∈ I(P ∪ {r}) , (8)

where S {k,l} denotes the entropy of the interface {k, l} in the volume V. The rela-
tion (8) indicates that the internal energy of the interface {k, l} is a function of the form
U{k,l}(S {k,l}, A{k,l}) and that its derivatives are the temperature T{k,l} and the surface tension
γ{k,l} of the interface {k, l}. According to the assumptions, all the interfaces between
phases k and l in the system volumeV have the same temperature and the same surface
tension. Applying the Euler’s homogeneous function theorem gives

U{k,l} = T{k,l}S {k,l} + γ{k,l}A{k,l} ∀ {k, l} ∈ I(P ∪ {r}) (9)

and the Gibbs-Duhem relation for the interfaces is obtained by subtracting the equa-
tion (8) to the differential of the equation (9)

0 = S {k,l}dT{k,l} + A{k,l}dγ{k,l} ∀ {k, l} ∈ I(P ∪ {r}) . (10)

Let Ω{k,l} denotes the grand potential of the interface {k, l} in the system volume V
defined by

Ω{k,l} = U{k,l} − T{k,l}S {k,l} ∀ {k, l} ∈ I(P ∪ {r}) , (11)

from equation (8), its differential is

dΩ{k,l} = −S {k,l}dT{k,l} + γ{k,l}dA{k,l} ∀ {k, l} ∈ I(P ∪ {r}) .

Surface quantities are introduced by scaling the extensive variables to interface area.
For each interface {k, l} ∈ I(P ∪ {r}), let u{k,l} be the surface internal energy, s{k,l} the
surface entropy and ω{k,l} the the surface grand potential. The surface quantities satisfy

U{k,l} = A{k,l}u{k,l} , S {k,l} = A{k,l}s{k,l} , Ω{k,l} = A{k,l}ω{k,l} ∀ {k, l} ∈ I(P ∪ {r}) .

Using the surface quantities, the Gibbs-Duhem relation (10) can be written as

dγ{k,l} = −s{k,l}dT{k,l} ∀ {k, l} ∈ I(P ∪ {r}) . (12)

The area of interface {k, l} can be scaled by the volume of the whole system to define
the density of interface area a{k,l} as

a{k,l} =
A{k,l}

V
∀ {k, l} ∈ I(P ∪ {r}) .

The amount of internal energy of the interface {k, l} per unit of system volume is
U{k,l}/V = a{k,l}u{k,l}. According to equation (9), we have

a{k,l}u{k,l} = a{k,l}T{k,l}s{k,l} + a{k,l}γ{k,l} ∀ {k, l} ∈ I(P ∪ {r}) ,
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the differential of this relation gives

d(a{k,l}u{k,l}) = T{k,l}d(a{k,l}s{k,l}) + γ{k,l}da{k,l} + a{k,l}s{k,l}dT{k,l} + a{k,l}dγ{k,l} ,

which, using equation (12), reduces to

d(a{k,l}u{k,l}) = T{k,l}d(a{k,l}s{k,l}) + γ{k,l}da{k,l} ∀ {k, l} ∈ I(P ∪ {r}) . (13)

Similarly, the amount of grand potential of the interface {k, l} per unit of system volume
is Ω{k,l}/V = a{k,l}ω{k,l}. According to equation (11), its differential satisfies

d(a{k,l}ω{k,l}) = d(a{k,l}u{k,l}) − d(a{k,l}T{k,l}s{k,l}) ,

which, using equation (13), reduces to

d(a{k,l}ω{k,l}) = −a{k,l}s{k,l}dT{k,l} + γ{k,l}da{k,l} ∀ {k, l} ∈ I(P ∪ {r}) . (14)

2.2.3. Matrix
The rock matrix is assumed to be a non deformable phase, it only exchange heat

but neither work nor matter. Under these assumptions, the first law of thermodynamics
applied to the rock matrix gives

dUr = TrdS r (15)

where S r denotes the entropy of the rock matrix in the system volume V and Tr its
temperature. A common way to describe a rigid solid is by using the concept of heat
capacity. Let cv be the volume heat capacity at constant volume of the rock matrix
defined as

cv(Tr) =
1
V
∂Ur

∂Tr

∣∣∣∣∣
V
. (16)

The grand potential of the rock matrix is defined by

Ωr = Ur − TrS r

and, from equation (15), its differential is

dΩr = −S rdTr . (17)

Let ur be the volume internal energy of the rock matrix and sr the volume entropy
that satisfy

Ur = Vrur , S r = Vr sr .

Besides, let φr be the volume fraction of rock matrix such that

φr =
Vr

V
.

Using φr, ur and sr, equations (15) and (16) give

φrur =

∫ Tr

0
cv(T )dT and φr sr =

∫ Tr

0

cv(T )
T

dT . (18)
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For a fixed system volumeV, one can derive from equations (15) and (17) that

d(φrur) = Trd(φr sr) (19)

and
d(φrωr) = −φr srdTr . (20)

2.3. Representative elementary volume and the continuum approach

Thermodynamics manages to describe systems with a large number of molecules
by abandoning the molecular level description in favor of a larger scale description. As
a consequence, there is a low limit on the size of a thermodynamic system. The same
idea lies behind the concept of representative elementary volume (REV) for porous
media [3]. At the pore scale, a porous medium exhibits a complex geometry and fluid
volumes are difficult to track. A volume V of the porous medium system could be
considered a REV if it is smooth enough at the pore scale (e.g. a sphere) and if it is
much larger than a single pore. For instance, regarding the porosity,V must be large
enough to minimize the fluctuations of the matrix volume fraction due to the random
pore size distribution, however V must also be small enough to lower the sensitivity
of the volume fraction to large scale inhomogeneity. The same reasoning holds for
other averaged quantities such as the content of mole of a component or the content of
energy. This work assumes the existence a common concept of REV which remains
relevant for all the considered averaged quantities. By introducing the concept of REV,
the continuum approach replaces the actual medium and its pore scale heterogeneity by
a fictitious continuum in which the averaged quantities have a value at any point of the
domain.

2.4. Local equilibrium

As heat and fluids flow through the porous medium, the thermodynamic equilibrium
can not be assumed for the porous medium system over the entire domain. Yet, thermo-
dynamic quantities such as temperature or pressure remain relevant locally. The local
equilibrium assumption states that equilibrium thermodynamic relations are valid for the
thermodynamic variables assigned to an elemental volume [15, 28]. As a consequence,
all intensive thermodynamic variables and volume quantities (densities) becomes func-
tions of position and time. The local equilibrium is an efficient approximation for a wide
range of hydrodynamic and chemical systems. The present work adopts this assumption
in the context of porous media by using the concept of REV (section 2.3) as elemental
volume.

In order to apply both the continuum approach and the local equilibrium to the
equilibrium thermodynamics presented in section 2.2, we only retain the equations
regarding intensive or averaged variables; namely equations (5), (6) and (7) for the
fluids, equations (12), (13) and (14) for the interfaces, and equations (18), (19) and (20)
for the matrix. According to the local equilibrium, all these equations are considered
locally valid.
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2.5. Equations of state of the parts of the system

An equation of state relates the state variables of a thermodynamic system such as
its pressure, its temperature or its volume. Equations of state cannot be derived from the
general relations of thermodynamics alone but require additional knowledge either from
experimental measurements or theoretical considerations on the microscopic structure.
An equation of state fully characterizes the thermodynamic behaviour of a substance
however it can take various equivalent forms depending on the subset of state variables
selected to express it.

Equation (18) is an equation of state for the rock matrix, provided that the function
cv(T ) is known. For each fluid phase α, the Gibbs-Duhem relation (5) suggests an
equation of state of the form

pα(Tα, (µi
α)i) .

Similarly, equation (12) suggests the form

γ{k,l}(T{k,l})

for the equation of state of the interface {k, l}. The proposed forms of equations of state
rely on the assumptions made in this section on each part of the porous medium system,
such as the matrix being non deformable or the interfaces not exchanging matter. It
should be noted that knowing the equations of states for each part of the system is not
sufficient to characterize the whole system. In particular, the volume fractions, φα, and
the densities of interface area, a{k,l}, remain uncontrolled.

3. Balance equations

The section 2 established a local description of the porous medium system. The
space and time evolution of the system will be derived from conservation principles.
Following the local description, the balance equations are expressed locally, in the form
of partial derivative equations, for each part of the porous medium system.

3.1. Conservation of components

The general balance of component i ∈ C in the the fluid phase α ∈ P is

∂φαci
α

∂t
+ divϕn,i

α = Λn,i
α

where ϕn,i
α is the molar flux of component i in the fluid phase α and Λ

n,i
α is the molar

production rate of component i in fluid phase α. The local production of component
i in phase α can come from other species of the phase α or from other parts of the
system (other fluids, matrix and interfaces). All these transformations can be described
as chemical reactions [15, 28], the local component production being expressed in terms
of reaction velocities v j and stoichiometric coefficients b j,i

α :

Λn,i
α =

∑
j∈ reactions

b j,i
α v

j .
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In the current work, we are not taking in account the full range of possible chemical
reactions but only component transfer from fluid phase to fluid phase. The local
production terms then find a simpler expression,

Λn,i
α =

∑
β∈P

Λ
n,i
α,β

where Λ
n,i
α,β is the molar rate of component i received by fluid phase α from fluid phase

β. By definition of the exchange term Λ
n,i
α,β, one have

Λ
n,i
α,β = −Λ

n,i
β,α ∀ i ∈ C ∀ α ∈ P ∀ β ∈ P . (21)

Furthermore, according to the assumptions of section 2, components are only present in
the fluid phases, thus the conservation of components is fully described by the balances
of component i ∈ C in fluid phase α ∈ P:

∂φαci
α

∂t
+ divϕn,i

α =
∑
β∈P

Λ
n,i
α,β (22)

Let Mi denotes the molar mass of the component i ∈ C, and ρα denotes the mass
density of the phase α ∈ P, they satisfy

ρα =
∑
i∈P

Mici
α . (23)

We introduce the notion of mass average velocity [3, 4] of the phase α, qα, defined by

ραqα =
∑
i∈C

Miϕn,i
α , (24)

where ραqα represents the momentum per unit volume of the phase α. The part of the
molar flux not due to the phase velocity is defined by

Jn,i
α = ϕn,i

α − ci
αqα . (25)

Jn,i
α is called the molar diffusive flux (relative to mass average velocity) of the component

i ∈ C in the fluid phase α ∈ P. From equations (23), (24) and (25), the diffusive fluxes
in the fluid α satisfy ∑

i∈C

Mi Jn,i
α = 0 ∀ α ∈ P .

The total balance equation for component i ∈ C is obtained by summing equa-
tion (22) over all the fluid phases. Using equations (21) and (25), we get

∂ni

∂t
+ div

∑
α∈P

ci
αqα + Jn,i

α

 = 0 ∀ i ∈ C (26)

with
ni =

∑
α∈P

φαci
α ∀ i ∈ C . (27)
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The continuity equation is obtained by multiplying the equations (26) by the molar mass
Mi then summing over the components:

∂

∂t

∑
α∈P

φαρα

 + div

∑
α∈P

ραqα

 = 0 .

3.2. Balance of internal energy

The principle of energy conservation does not apply to internal energy but to total
energy (sum of internal energy, kinetic energy and potential energy). Nonetheless a
balance equation for the internal energy can be obtained at the microscopic scale by
subtracting the balance equation of mechanical energy to the total energy conservation [4,
15]. Averaging the internal energy balance over the REV is non trivial, especially
because of the non linear contributions of the velocity, and several authors have proposed
macroscopic balance equations for the internal energy [3, 9, 21, 29, 44]. Unfortunately,
the various propositions are not equivalent, neither are they all compatible. Here, we
use a simplified balance of internal energy where the only remaining velocity-related
contributions are all linear. This is relevant for flow regimes where velocities at pore
scale are small enough to neglect high order contributions.

Considering the creeping flow regime [4] at the REV scale, we can neglect inertia
effects like kinetic energy and viscous dissipation against internal energy, compression
effects, heat diffusion and gravity work. According to this assumption and those of
section 2, the balance of internal energy for the fluid phase α ∈ P takes the form:

∂φαuα
∂t

+ div(hαqα + Ju
α) =

∑
p′∈P∪{r}∪I(P∪{r})

Λu
α,p′ + ραqα · g . (28)

Where hα is the volume enthalpy of fluid phase α, Ju
α is the heat flux through fluid phase

α, Λu
α,p′ is the volume rate of energy received by fluid phase α from the part p′ of the

porous system, and g is the gravitational acceleration. The volume enthalpy of the fluid
α is related to its internal energy and its pressure by

hα = uα + pα ,

meaning that the term div(hαqα) of equation (28) gathers two contributions: the internal
energy advection, div(uαqα), and the reversible compression work, div(pαqα). The last
term of equation (28), ραqα · g, is the reversible work of the force of gravity on the fluid
α.

As the rock matrix is assumed to be no deformable and to only exchange heat but
not work, its balance of internal energy is simpler to establish and take the form

∂φrur

∂t
+ div(Ju

r ) =
∑

p′∈P∪{r}∪I(P∪{r})

Λu
r,p′ . (29)

Where Ju
r is the heat flux through the solid phase, and Λu

r,p′ is the volume rate of energy
received by the solid phase from the part p′ of the porous system.

11



Since the transport by macroscopic displacement of the interfaces is not considered
here, the balance of internal energy for the interface {k, l} ∈ I(P ∪ {r}) take a similar
form

∂a{k,l}u{k,l}
∂t

+ div(Ju
{k,l}) =

∑
p′∈P∪{r}∪I(P∪{r})

Λu
{k,l},p′ . (30)

Where Ju
{k,l} is the heat flux through the interface {k, l}, and Λu

{k,l},p′ is the volume rate of
energy received by the interface {k, l} from the part p′ of the porous system.

In equations (28), (29) and (30), the terms Λu
p,p′ encompass all the energy exchanges

that occur between the parts p and p′ of the system P ∪ {r} ∪ I(P ∪ {r}). The origin of
these exchanges can be heat, work, matter or a combination of these. By definition of
the exchange terms, it holds that

Λu
p,p′ = −Λu

p′,p ∀ p ∈ P ∪ {r} ∪ I(P ∪ {r}) ∀ p′ ∈ P ∪ {r} ∪ I(P ∪ {r}) . (31)

Thanks to (31), summing the equations (28), (29) and (30) gives the following balance
of internal energy for the mixture

∂u
∂t

+ div

∑
α∈P

hαqα +
∑

p∈P∪{r}∪I(P∪{r})

Ju
p

 =
∑
α∈P

ραqα · g (32)

with
u =

∑
α∈P

φαuα +
∑

{k,l}∈I(P∪{r})

a{k,l}u{k,l} + φrur . (33)

3.3. Balance of entropy

When considering an arbitrary thermodynamic system with entropy S , the variation
of entropy dS can be written as the sum of the entropy supplied to the system by its
surrounding, deS , and the entropy produced inside the system, diS : dS = deS + diS .
The second law of thermodynamics states that diS ≥ 0 for any transformation, the
case diS = 0 corresponding to a reversible transformation. Following the continuum
approach, this can be expressed locally and the local entropy production by unit volume
must also be positive [15, 28]. For the porous medium system, the local form of the
second law of thermodynamics may be written as

∂s
∂t

+ divϕs = Ψ ≥ 0 (34)

where s is the total volume entropy of the system, ϕs is the total entropy flux, and Ψ

is the rate of local entropy production. The total entropy production Ψ includes the
dissipative processes occurring in each part of the system but also those resulting from
the interactions between the parts of the system; its expression is derived below.

Entropy being an extensive quantity, the total volume entropy of the system is the
sum over the parts of the system:

s = φr sr +
∑
α∈P

φαsα +
∑

{k,l}∈I(P∪{r})

a{k,l}s{k,l} . (35)

12



By taking the time derivative of the sum and using the relations (6), (13) and (19), we
get

∂s
∂t

=
1
Tr

∂φrur

∂t

+
∑
α∈P

 1
Tα

∂φαuα
∂t

+
pα
Tα

∂φα
∂t
−

∑
i∈C

µi
α

Tα

∂φαci
α

∂t


+

∑
{k,l}∈I(P∪{r})

[
1

T{k,l}

∂a{k,l}u{k,l}
∂t

−
γ{k,l}

T{k,l}

∂a{k,l}
∂t

]
.

By using the notationsτp ≡ −1/Tp ∀p ∈ P ∪ {r} ∪ I(P ∪ {r})

νi
α ≡ µ

i
α/Tα ∀α ∈ P ∀i ∈ C

(36)

and substituting the energy and mole balance equations (28), (30), (29) and (22), it
comes

∂s
∂t

= −
∑

p,p′∈P∪{r}∪I(P∪{r})

τpΛu
p,p′ −

∑
i∈C

∑
α,β∈P

νi
αΛ

n,i
α,β

+
∑

p∈P∪{r}∪I(P∪{r})

τp div Ju
p +

∑
i∈C

∑
α∈P

νi
α div Jn,i

α

∑
α∈P

τα div(hαqα) +
∑

i∈I(P∪{r})

νi
α div(ci

αqα) − ταραg · qα


+

∑
α∈P

pα
Tα

∂φα
∂t
−

∑
{k,l}∈I(P∪{r})

γ{k,l}

T{k,l}

∂a{k,l}
∂t

.

The equation can be simplified and written in the form (34) by using the divergence of
the scalar-vector product, the anti-symmetry of the Λ·p,p′ exchange coefficients and the
fact that the relation (5) is equivalent to

1
Tα

dpα = hαdτα +
∑
i∈C

ci
αdνi

α .

Finally, the entropy flux is given by

ϕs = −
∑

p∈P∪{r}∪I(P∪{r})

τpϕ
u
p −

∑
α∈P

∑
i∈C

νi
αϕ

n,i
α (37)

where
ϕu
α = hαqα + Ju

α

ϕu
{k,l} = Ju

{k,l}

ϕu
r = Ju

r ,

13



and the entropy production is given by

Ψ = −
1
2

∑
p,p′∈P∪{r}∪I(P∪{r})

Λu
p,p′ (τp − τp′ ) −

1
2

∑
i∈C

∑
α,β∈P

Λ
n,i
α,β(ν

i
α − ν

i
β)

−
∑

p∈P∪{r}∪I(P∪{r})

Ju
p · ∇ τp −

∑
α∈P

∑
i∈C

Jn,i
α · ∇ ν

i
α

−
∑
α∈P

1
Tα

qα · (∇ pα − ραg)

+
∑
α∈P

pα
Tα

∂φα
∂t
−

∑
{k,l}∈I(P∪{r})

γ{k,l}

T{k,l}

∂a{k,l}
∂t

.

(38)

The expression (37) of ϕs is similar to the usual form found in general literature [15,
28] while the equation (38) for the entropy production Ψ is very specific to flows in
porous media. The next section is devoted to the analysis of the differents terms of Ψ.

4. Entropy production: equilibria and linear regime

An expression (38) of the entropy production, Ψ ≥ 0, has been derived in the
previous section for a wide range of flows in porous media. The positivity of Ψ

constrains the set of acceptable phenomenological laws that can be chosen to model
flows. With additional assumptions, analysing the entropy production provides more
precise constrains. This section studies the consequences of two simple modelling ideas:
(i) the flow is slow enough to assume the different parts of the system are locally at
equilibrium; (ii) the flow is slow enough to assume the system is spatially close to
equilibrium and follows the linear regime.

4.1. The symmetry principle

The symmetry principle [15, 28] is helpful to split the entropy production in inde-
pendent terms. It is based on the idea that the causes cannot have more symmetries than
their effects. Applied to the entropy production, it suggests to group the terms of the
sum according to their symmetries and to impose the positivity for each group. For
equation (38), three kinds of term are involved, each with a different kind and amount of
symmetries: the terms with a scalar difference, the terms with a gradient and the terms
with a time derivative. Rewriting the entropy production with these three groups gives

14



the following decomposition:

Ψ = Ψdifference + Ψgradient + Ψtime derivative

Ψdifference = −
1
2

∑
p,p′∈P∪{r}∪I(P∪{r})

Λu
p,p′ (τp − τp′ ) −

1
2

∑
i∈C

∑
α,β∈P

Λ
n,i
α,β(ν

i
α − ν

i
β) ≥ 0

Ψgradient = −
∑

p∈P∪{r}∪I(P∪{r})

Ju
p · ∇ τp −

∑
α∈P

∑
i∈C

Jn,i
α · ∇ ν

i
α

−
∑
α∈P

1
Tα

qα · (∇ pα − ραg) ≥ 0

Ψtime derivative =
∑
α∈P

pα
Tα

∂φα
∂t
−

∑
{k,l}∈I(P∪{r})

γ{k,l}

T{k,l}

∂a{k,l}
∂t

≥ 0 .

(39)

4.2. The linear regime

The entropy production terms Ψdifference and Ψgradient of equation (39) have the
general form

Ψx =
∑
y

Jx
yF x

y ≥ 0

where Jx
y and F x

yz are respectively called flows and forces in a general thermodynamics
sense. At equilibrium, all the forces and the corresponding flows vanish. For a system
close to equilibrium, the flows can be expected to be linear functions of the forces [15,
28]. Accordingly, the following relation between the flows and the forces is assumed:

Jx
y =

∑
z

Lx
yzF

x
z .

Here the coefficients Lx
yz are called phenomenological coefficients and the matrix they

form, (Lx
yz)yz, is expected to be symmetric and positive definite [38]. The extra-diagonal

coefficients describe how pairs of processes interact, they vanish when the two corre-
sponding processes are assumed to be independent.

4.3. Phenomenological laws of transport processes

While the symmetry principle is a deep and general argument to motivate the
uncoupling of some processes, we can use more ad-hoc assumptions to simplify the
entropy production, especially the term Ψgradient from equation (39) that gathers all
the transport processes. Here we will assume that there is no interaction between
two transport processes occurring through different parts of the system. In addition,
considering a moving fluid α ∈ P, we will assume that the flow process (qα) and the
diffusive processes (Ju

α and (Jn,i
α )i∈C) are independent. These assumptions result in
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splitting the term Ψgradient in several independently positive sub-terms:

Ψgradient = ΨJ
r +

∑
{k,l}∈I(P∪{r})

ΨJ
{k,l} +

∑
α∈P

(
ΨJ
α + Ψ

q
α

)
ΨJ

r = − Ju
r · ∇ τr ≥ 0

ΨJ
{k,l} = − Ju

{k,l} · ∇ τ{k,l} ≥ 0

ΨJ
α = − Ju

α · ∇ τα −
∑
i∈C

Jn,i
α · ∇ ν

i
α ≥ 0

Ψ
q
α = −

1
Tα

qα · (∇ pα − ραg) ≥ 0 .

(40)

Under the assumptions of section 4.2, the following will establish and discuss the linear
phenomenological laws modelling the fluxes involved in the mass and energy balance
equations of section 3.

4.3.1. Fluid flow
According to the entropy production Ψ

q
α ≥ 0 of equation (40), the linear phenomeno-

logical law for the velocity of the fluid phase α ∈ P is

qα = −Lq
α (∇ pα − ραg) with Lq

α ≥ 0 . (41)

This equation corresponds to the Darcy-Muskat law [30, 35, 36] with Lq
α as the mobility

of the fluid α. The mobility is usually split between the absolute permeability of the
matrix, K, the relative permeability of the fluid in the matrix, kα, and the dynamic
viscosity of the fluid, µα:

Lq
α =

kα
µα

K .

This demonstrates that the Darcy-Muskat law is compatible with the principles of
thermodynamics, as already shown by Marle in [31].

4.3.2. Heat conduction in matrix
According to the entropy production ΨJ

r ≥ 0 of equation (40), the linear phenomeno-
logical law for the heat conduction through the matrix is

Ju
r = −Lu

r ∇ τr with Lu
r ≥ 0 . (42)

From the definition (36) of τr, this flux can be expressed with the gradient of temperature
by

Ju
r = −

1
T 2

r
Lu

r ∇Tr

which corresponds to the well-known Fourier’s law with 1
T 2

r
Lu

r as effective conductivity
for the matrix.
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4.3.3. Heat conduction in interfaces
According to the entropy production ΨJ

{k,l} ≥ 0 of equation (40), the linear phe-
nomenological law for the heat conduction through the interface {k, l} ∈ I(P ∪ {r})
is

Ju
{k,l} = −Lu

{k,l} ∇ τ{k,l} with Lu
{k,l} ≥ 0 .

This contribution to the total heat flow appears in some references [23, 31] but is
generally neglected. This approximation would correspond to Lu

{k,l} = 0.

4.3.4. Matter diffusion and heat conduction in fluids
According to the entropy production ΨJ

α ≥ 0 of equation (40), the linear phenomeno-
logical law for the diffusion and conduction through the fluid α ∈ P is

Ju
α = −Luu

α ∇ τα −
∑
j∈C

Lun, j
α ∇ ν

j
α

Jn,i
α = −Lnu,i

α ∇ τα −
∑
j∈C

Lnn,i j
α ∇ ν

j
α ∀i ∈ C

(43)

where the phenomenological coefficients form a symmetric positive definite matrix:

LJ
α =


Luu
α · · · Lun, j

α · · ·

... · · · · · · · · ·

Lnu,i
α · · · Lnn,i j

α · · ·

... · · · · · · · · ·


.

Like for the rock matrix, the coefficient Luu
α is related to the effective conductivity of

the Fourier’s law by 1
T 2
α
Luu
α .

The diffusion of components in the fluid phase are not described by a classical Fick’s
law like Jn,i

α = Di
α ∇ ci

α. Instead, the equation (43) introduces the matrix Lnn
α that links

all the diffusive fluxes, (Jn,i
α )i∈C, to all the gradients of the chemical potentials, (∇ νi

α)i∈C.
While the Fick’s law is a good approximation of some limiting cases, it does not satisfy
equation (40) in general [28]. Other models, like the Maxwell-Stefan equation or some
generalizations of the Fick’s law [4, 43], are fully compatible with the thermodynamics
of multi-component mixtures and can be described by the matrix Lnn

α .
Finally, the coefficients Lnu

α and Lun
α describe the cross-effects resulting from the

interactions between heat and matter flows: the Soret effect, where heat flow drives a
flow of matter; and the Dufour effect, where concentration gradients drive a heat flow.

Marle suggests in [31] that the flux Jn,i
α is not simply the average over the REV of

the molecular diffusion at pore scale but that it also includes dispersion effects due to the
difference between convection at pore scale and its average over the REV. However the
splitting assumed in equation (40) is not compatible with such cross-effect between qα
and Jn,i

α . Besides, dispersion appears to be a non-linear effect that is negligible at small
velocity, which makes the linear regime unable to correctly describe it. More suited
assumptions are needed to properly take into account the dispersion effect.
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4.4. Thermal and chemical local equilibria
According to the entropy production Ψdifference of equation (39), and neglecting all

the cross-effects, the linear phenomenological laws for local exchanges are

Λu
p,p′ = −ru

p,p′ (τp − τp′ ) , ru
p,p′ ≥ 0 ∀p, p′ ∈ P ∪ {r} ∪ I(P ∪ {r})

Λ
n,i
α,β = −rn,i

α,β(ν
i
α − ν

i
β) , rn,i

α,β ≥ 0 ∀i ∈ C ∀α, β ∈ P .

Here, the phenomenological coefficients r are inversely proportional to the characteristic
time of the corresponding exchange process.

When the flow through the porous media is slow enough, the exchange characteristic
times are negligible (r → ∞), then the different parts of the system can be assumed to
be locally at equilibrium at any time. As the phenomenological coefficients r degenerate
while the differences vanish, the above linear laws become unsuitable. Instead, under the
assumption of thermal and chemical local equilibria, they are replaced by the identities:

τ = τp ∀p ∈ P ∪ {r} ∪ I(P ∪ {r})

νi = νi
α ∀α ∈ P ∀i ∈ C

(44)

where τ and νi denote the common values for the different parts of the system. By
inverting the definitions (36), the equilibrium temperature and the equilibrium chemical
potential of component i are defined by

T =
1
−τ

and µi =
νi

−τ
∀i ∈ C . (45)

Since the exchange terms can no longer be retrieved, the total balance equations (26)
and (32) should be preferred over the partial balance equations (22), (28), (29) and (30).

4.5. Interface local equilibrium
When the thermal and chemical equilibria (44) is assumed, thanks to the equa-

tions (6), (13) and (19), and the definitions (27), (33), (35) and (45), the time variation
of the total internal energy of the porous system takes the form

∂u
∂t

= T
∂s
∂t

+
∑
i∈C

µi ∂ni

∂t
− ∆WI (46)

with

∆WI ≡
∑
α∈P

pα
∂φα
∂t
−

∑
{k,l}∈I(P∪{r})

γ{k,l}
∂a{k,l}
∂t

. (47)

This form is similar to that of a simple homogeneous system but corrected by ∆WI . Here,
pα∂tφα represents the rate of mechanical work given by the fluid α ∈ P and γ{k,l}∂ta{k,l}
the rate of mechanical work received by the interface {k, l} ∈ I(P ∪ {r}). Like so, ∆WI

summarizes the exchanges of mechanical work between fluids and interfaces. Thanks to
equation (39), this term is also directly connected to the entropy production:

∆WI = TΨtime derivative ≥ 0 .
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Thus ∆WI is a dissipation term, that counts for the mechanical deformations and dis-
placements of the interfaces. It is specific to multiphase flows since ∆WI vanishes when
there is only one fluid phase (Card(P) = Card(I(P ∪ {r})) = 1) with a not deformable
matrix. When ∆WI = 0, the interface transformations are reversible and the interfaces
are at equilibrium throughout the entire process. When ∆WI > 0, the transformations
are irreversible and the interfaces are out of equilibrium.

The assumption of local equilibrium for the interfaces means the system evolves
under the constraint ∆WI = 0 at any time. Since all the transformations of the system
satisfy this equality, the time derivatives of equation (47) can be converted into total
derivatives to give the following constraint:∑

α∈P

pαdφα =
∑

{k,l}∈I(P∪{r})

γ{k,l}da{k,l} . (48)

Equation (48) is an alternative definition of the local equilibrium of the interfaces.
The next section explores how it can help to understand capillary effects.

5. Capillarity

Capillary effects are complex, they arise from the surface interactions between, at
least, three phases: the matrix and two fluids. Their thermodynamic bases have been
explored in past decades [18, 24, 33]. These works rely on the Young-Laplace equation
that relates the pressure difference from either side of an interface to its curvature or, for
spherical meniscus, to the contact angle. The drawback of this mechanical approach is to
require some upscaling procedure to fully establish a model. Indeed, the Young-Laplace
equation is essentially a pore scale relationship and the interface curvature or the contact
angle have no meaning at REV scale.

The analysis developed here do not rely on such pore scale closure equation. Instead,
it studies the interface dissipation ∆WI ≥ 0 defined at equation (47) to show that the
capillary pressure curve (53) is a general consequence of the interface equilibrium as
expressed in equation (48). This result holds for system with more than two fluids and
gives constraints on what are compatible multiphase capillary curves. The case of the
dissipative interface transformations is then discussed and connected to more complex
behaviours like the dynamical capillary pressure or the drainage-imbibition hysteresis.

5.1. Grand potential of the fluid mixture

A useful quantity to carry out the analysis of ∆WI is the total volume grand potential
of the fluid mixture,

ω f =
∑
α∈P

φαωα +
∑

{k,l}∈P∪{r}

a{k,l}ω{k,l} .

Here, the name fluid mixture designates the whole system minus the matrix part, or
equivalently the subsystem composed by all the fluids and all the interfaces in the system
volume. Using the equations (47), (12), (7) and (14), the time variation of ω f follows

∂tω f = −sI∂tT −
∑
α∈P

φα∂t pα − ∆WI , (49)
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where sI is the total volume entropy of the interfaces

sI =
∑

{k,l}∈P∪{r}

a{k,l}s{k,l} .

Like for the total internal energy in equation (46), ∆WI appears as a dissipative term
that indicates the difference in the system evolution depending on whether the interfaces
follow reversible or irreversible processes.

5.2. Interface equilibrium and capillary pressure curve
Under the assumption of local equilibrium of the interfaces, ∆WI vanishes and,

thanks to equation (48), the variations of ω f follow an equation stricter than (49):

dω f = −sIdT −
∑
α∈P

φαdpα . (50)

This relation indicates that the grand potential of the fluid mixture is a function of the
temperature and fluid pressures: ω f (T, (pα)α). The interface entropy sI and the fluid
volume fractions (φα)α also become functions of the same variables, fully determined
by the derivatives of ω f (T, (pα)α):

sI(T, (pα)α) = −
∂ω f

∂T
(T, (pα)α) ,

φα(T, (pβ)β) = −
∂ω f

∂pα
(T, (pβ)β) ∀α ∈ P .

(51)

In other words, under the interface equilibrium assumption, sI and (φα)α are state vari-
ables and ω f (T, (pα)α) is an equation of state for the fluid mixture. This equation of state
is subject to some constraints. The first constraint is concavity. It is a consequence of
the equation (49) applied on small irreversible transformations between two equilibrium
states y1 and y2, which gives

ω f (y2) − ω f (y1) − ∂yω f (y1) · (y2 − y1) ≈ −
∫ 2

1
∆WI ≤ 0 .

For instance, the concavity implies that ∂φα
∂pα
≥ 0 : increasing the pressure of one fluid

against the others tends to increase its volume fraction. The equation of state ω f is also
subject to the constraint ∑

β∈P

∂ω f

∂pβ
(T, (pα)α) = −φ

where φ =
∑
α φα is the porosity, which is constant since the matrix is non deformable.

This constraint also reads as the directional derivative

f ′T,(pα)α = −φ with fT,(pα)α : x→ ω f (T, (pα + x)α) .

Which gives by integration, for any pressure value p0,

ω f (T, (pα + p0)α) = ω f (T, (pα)α) − φp0 . (52)
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Using this relation with a fixed p0 in equation (51) shows that

∀β φβ(T, (pα + p0)α) = φβ(T, (pα)α)

which means that the volume fractions do not depend on the absolute value of the
pressures but only on their relative differences.

In the two phase case, with P = {w, n}, the constraint (52) finds a simpler expression
by introducing the function F : x→ −ω f (T, 0, x)/φ. Equations (51) and (52) give the
relation φF′(pn − pw) = φn(T, pw, pn) which takes a more usual form as

pn − pw = pc(S n) with S n =
φn

φ
and pc = (F′)−1 . (53)

This is the well known equation of the capillary pressure curve [7, 30]. The functions ω f

and pc appears to be equivalent in the two phase case. This provides a thermodynamic
interpretation to the capillary pressure curve based on the interface equilibrium and the
non deformable matrix. Moreover, the thermodynamic approach naturally extends to
any number of fluids and establishes that only one function, ω f (T, (pα)α), is needed to
capture the capillary behaviour of the multiphase system.

5.3. On dissipation in capillary processes
When the interface transformations are irreversible, the interfaces can no longer be

considered at equilibrium during the system evolution. Interface equilibrium could still
be reached as steady state, entropy being dissipated during the process. Or interfaces
could be forced to jump between equilibrium states through irreversible transitions.
In the followings, two kind of processes are considered. First, the relaxation towards
equilibrium, where the system is out of, but still close to, equilibrium. In this case,
the linear regime can be applied and gives a behavior of dynamic capillary pressure.
Second, metastability at pore scale is discussed and linked to hysteresis behavior. In
both cases, the dissipation in capillary processes invalidates the traditional capillary
pressure curve (53) established under interface equilibrium and requires more elaborated
relationship.

5.3.1. Relaxation towards equilibrium
Let ω∗f , s∗I and (φ∗α)α denote the value of ω f , sI and (φα)α at steady state. If these

values appear to be functions of the state (T, (pα)α), then the steady state is considered
to be an equilibrium state and ω∗f , s∗I and (φ∗α)α are state functions that follow the
relation (50). In particular, the following equation holds

∂ω∗f (T, (pα)α)

∂t
= −s∗I (T, (pα)α)

∂T
∂t
−

∑
α∈P

φ∗α(T, (pα)α)
∂pα
∂t

,

while the quantities ω f , sI and (φα)α satisfy equation (49). Rearranging and subtracting
the two gives a new expression for the entropy production due to dissipation at interface:

−∂t(ω f − ω
∗
f ) − (sI − s∗I )∂tT −

∑
α∈P

(φα − φ∗α)∂t pα = ∆WI = TΨtime derivative ≥ 0 .
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The dissipation find here a form more compatible with the flow-force products discussed
in section 4.2. For a two-phase flow, P = {n, w}, it becomes

−∂t(ω f − ω
∗
f ) − (sI − s∗I )∂tT − (φn − φ

∗
n)∂t(pn − pw) ≥ 0 .

Assuming the system to be close to equilibrium and neglecting cross-effects, it suggests
the following phenomenological law

φn = φ∗n − A∂t(pn − pw) , A ≥ 0 .

This corresponds to an alternative form of the dynamic capillary pressure described
in [24, 26].

5.3.2. Metastability and hysteresis
When a system is driven by a cyclic variation of one external variable, the path

it follows in the thermodynamic state space depends on the processes involved. If
the transformations are reversible, the system state goes back and forth along a line
of equilibrium states that connects the two extremal positions. If irreversible trans-
formations occur, the path connecting the two extremal positions changes depending
on its direction, such that, on a full cycle, the two paths form a loop. The presence
of such loops is often referred as hysteresis but some distinctions are required. For
instance, relaxation processes, like for the dynamic capillary pressure, cause a loop
that is time-dependent: the slower is the transformation, the less it dissipates and the
smaller is the amplitude of the loop. At extremely slow changes, the back and forth
paths become indistinguishable: the loop disappears and the transformation can be
approximated as reversible. However, there are systems that exhibit time-independent
loop, like the drainage-imbibition cycle [34]. In this case, the paths are irreversible but
also stable and reproducible. The irreversibility is highlighted by the existence of the
scanning curves: at any point, reversing the changes on the system will not cause the
system to take its previous path backward but a new path instead. All states on the paths
are stable since the loop is time-independent. In particular, when stopping the external
change, the system stays indefinitely in the same state.

The domain theory [16, 17, 19, 20] proposes a general thermodynamics understand-
ing of the latter type of hysteresis, associated with time-independent loops. Two recent
overview articles [2, 40], dedicated on modelling capillary hysteresis in porous media,
develop its historical context and its extensions. The theory is general in the sense
that it is not restricted to porous media: the hysteresis phenomenon is explained as
the result of a large assembly of small metastable switches. Here, a system is said to
be metastable for some given control variables when it possesses two, or more, stable
equilibrium states at the same values of control variables. This is only possible if the
system have internal, uncontrolled, variables. When the control variables change, the
equilibrium states change too, each following its own branch. The metastable system
can evolve reversibly on an equilibrium branch as long as the equilibrium is stable. If
the equilibrium of a branch become unstable, the branch stops. A switch is a metastable
system whose at least one equilibrium branch stops. When the switch state reaches
a branch stop, it rapidly jumps to the remaining stable equilibrium state through an
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irreversible and dissipative process. The domain theory shows that a system made of a
large assembly of metastable switches, each slightly different from the others, presents
the properties of hysteresis, like time-independent loops and scanning curves. The
metastable switches contain elementary hysteresis, with discontinuous jumps, but the
averaging over their large assembly generates the smooth, stable and reproducible loops.

For the hysteresis of the drainage-imbibition cycle, several mechanisms at pore
scale have been considered as the main sources of hysteresis. The most regarded are
the “ink bottle” effect, the “rain-drop” effect and the “snap-off” effect. (i) In the “ink
bottle” effect [32], the only stable states for the pores are when they are filled with a
unique fluid. The fluid-fluid interfaces are blocked at the bottle-necks and when the
pressure difference around an interface reaches a threshold, the pore fills up rapidly
with new fluid. The pores act as metastable switches where the interfaces jump between
bottle-necks. (ii) The “rain drop” effect [14] designates the contact angle hysteresis
that appears at the solid-fluid-fluid triple line. It is named after the shape taken by a
drop flowing on a plate: the contact angles are different at the front and at the rear.
Here, the smooth and stable hysteresis loop is already present at pore scale, thus it is
expected to be also observed at large scale. The sources of the contact angle hysteresis
are found in metastability in the triple line, caused for instance by surface roughness or
adsorption. (iii) The “snap-off” effect [39, 42, 45] refers to the trapping of disconnected
fluid. The effect is difficult to describe and model. For instance, the fact that fluid phases
become disconnected weaken the assumption of one macroscopic pressure by phase.
The metastability comes from the additional states the trapped fluid can reach.

6. A formulation for multiphase compositional flows

This section draws an explicit model for multiphase compositional flows in porous
media from the developments above. First the existence of equations of state for the all
porous system is discussed along with its consequences. Then the formulation is written
as a system of partial differential equations.

The main assumptions of the model are: the matrix is inert and non deformable; no
chemical reaction occurs, only change of phase of the components (vaporisation and
dissolution); the porous system is always at local equilibrium; the molar and energy
balance equations are given by the equations (26) and (32); the fluxes are given by the
equations (41), (42) and (43). Here, the local equilibrium of the porous system means:
local equilibrium for each part of the system taken separately (see section 2.4); thermal
local equilibrium (see equation (44)); chemical local equilibrium (see equation (44));
interface local equilibrium (see equation (48)).

6.1. Equations of state of the porous system
Considering the equations of state ωr(T ), ω f (T, (pα)α) and (pα(T, (µi)i))α to be

known, the grand potential of the porous system is the state function given by

ω(T, (µi)i) = φrωr(T ) + ω f (T, (pα(T, (µi)i))α) .

According to equations (5), (20) and (50), its differential satisfies

dω = −sdT −
∑
i∈C

nidµi .
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Therefore, the total entropy of the porous is a function of the temperature and the
chemical potentials: s(T, (µi)i). Such an expression of the entropy is a first equation of
state for the porous system, derived from the equations of state of the different parts of
the system.

Some other equations of state are better related to the balance equations, thanks to
the change of variables (45):

τ =
−1
T

and νi =
µi

T
∀i ∈ C .

Indeed, with (τ, (νi)i) the Gibbs-Duhem relation (5) becomes

dpα = Thαdτ + T
∑
i∈C

ci
αdνi ∀α ∈ P

and (τω) satisfies
d(τω) = udτ +

∑
i∈C

nidνi .

Hence the transported quantities, (hα)α and (ci
α)α,i, and the conserved quantities, u

and (ni)i, of the balance equations (26) and (32) become conjugate with the intensive
variables (τ, (νi)i). More particularly, (τω) as a function of (τ, (νi)i) appears to be the
Legendre transform of the total entropy of the system:

τω − τu −
∑
i∈C

νini =
1
T

−ω + u +
∑
i∈C

µini

 = s

with
ds = −τdu −

∑
i∈C

νidni .

This provides a new equation of state for the system, s(u, (ni)i), expressed in term of total
averaged variables rather than intensive variables like with s(T, (µi)i)) or (τω)(τ, (νi)i).
An other consequence is the existence of a bijection between the sets of variables (τ, (νi)i)
and (u, (ni)i) when the equations of state are smooth.

While the equations of state must be convex, they are not necessarily smooth. In
particular, ω f will have non differentiable points when the associated capillary pressure
curve accepts a range of saturation values for the same capillary pressure. In this case,
the total derivatives should be replaced by subdifferentials, and the bijection between
(τ, (νi)i) and (u, (ni)i) should be replaced by the fact that (τ, (νi)i, u, (ni)i) belong to a
(1 + Card(C))-dimensional manifold.

6.2. Elliptic-parabolic differential equations
Let n = 1+Card(C) denote the number of unknowns of the problem and d = 1, 2 or 3

the space dimension. Now let v ∈ Rn be the vector of primary variables defined by
v = (vi)i∈{0}∪C with

vi =

τ if i = 0
νi if i ∈ C

.
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The balance equations for the internal energy of the system and the total number of
moles of each component can be written as a system of n elliptic-parabolic partial
differential equations:

∂Bi(v)
∂t

− div

 ∑
j∈{0}∪C

Ai, j(v)∇ v j −Ci(v)

 = Fi(v,∇ v) ∀i ∈ {0} ∪ C . (54)

Here B(v) ∈ Rn and F(v,∇ v) ∈ Rn are vectors of scalars, C(v) ∈
(
Rd

)n
is a vector of

vectors and A(v) ∈
(
Rd×d

)n×n
is a matrix of tensor. These coefficients are defined in the

following, where the dependency of the physical quantities to the primary variables, v,
is omitted to lighten the reading.

B(v) is given by the derivatives of the convex function (τω) with respect to v:

Bi(v) =
∂(τω)
∂vi

∀i ∈ {0} ∪ C . (55)

F(v,∇ v) is given by

Fi(v,∇ v) =

−g ·
∑
α∈P ραLq

α

(∑
i∈{0}∪C

∂pα
∂vi
∇ vi − ραg

)
if i = 0

0 if i ∈ C
. (56)

C(v) is given by

Ci(v) =
∑
α∈P

1
T
∂pα
∂vi

ραLq
αg ∀i ∈ {0} ∪ C . (57)

A(v) is given by

Ai, j(v) = Au
i, j(v) +

∑
α∈P

(
LJ
α,i, j +

1
T
∂pα
∂vi

∂pα
∂v j

Lq
α

)
∀i, j ∈ {0} ∪ C (58)

where the Au
i, j(v) are tensors given by

Au
i, j(v) =

Lu
r if i = j = 0

0 if i ∈ C or j ∈ C
.

The formulation (54)-(55)-(56)-(57)-(58) is fully characterized by the following
inputs: the equations of state of the matrix, ωr(T ), of the fluids, pα(T, (µi)i) with α ∈ P,
and of the fluid mixture, ω f (T, (pα)α) ; and the phenomenological coefficients for the
conduction in the matrix, Lu

r (v), for the conduction-diffusion in the fluids, LJ
α(v), and

for the fluid velocities, Lq
α(v). All other quantities involved in the formulation can be

retrieved from these inputs and the values of the primary variables v.
The formulation uses a persistent set of primary variables that does not depend

on which phases are locally present. This feature has already been obtained for two-
phase flows [1, 5, 6, 25, 37], but here it holds for an arbitrary numbers of phases and
components, and no preferential phase is assumed. Besides, the system of equations (54)
is well structured since the accumulation term B(v) derives from a convex potential,
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(τω)(v), and the elliptic operator A(v) is symmetric and positive. Furthermore, the
entropy equation (34) is directly retrieved by summing the products of the equations (54)
with the (vi)i. Among the others formulations [1, 5, 6, 10, 11, 22, 25, 37] that describe a
comparable range of physical behaviors, the majority lacks this level of generality and
none of them gather such structuring properties.

7. Concluding remarks

This paper applies the principles of the thermodynamics of irreversible processes to
the representative elementary volume of a porous medium filled with multiple composi-
tional fluids in order to model heat and mass transfers. A special attention has been taken
to treat the interfaces in a consistent way. The physical assumptions made are usual
and the resulting model does not present new macroscopic behaviors. Nevertheless, the
final formulation exhibits less common, but useful, properties such as a persistent set of
primary variables, a symmetric structure and an associated entropy equation.

One benefit of the thermodynamic approach is to avoid assuming specific processes
at the microscopic scale, only that the system is close to equilibrium. This general
framework turns out to be sufficient to justify macroscopic behaviors like the Darcy-
Muskat law and the capillary pressure curve. The proposed explanation of capillarity in
particular contrasts with the existing works that all rely on the Young-Laplace equation
at pore scale. Moreover, it provides new and strong constraints on capillary pressure
curve for three or more phases.

The physical assumptions made in this paper should be relaxed to include additional
processes. For instance, taking the reactive chemistry into account could be of peculiar
interest because chemistry has already a strong thermodynamic basis and the present
work gives a thermodynamic understanding of flows in porous media. Formulating
reactive transport on this common ground could help in properly solving this kind of
coupling.
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[25] Jaffré, J., Sboui, A., 2010. Henry’law and gas phase disappearance. Transport in
porous media 82 (3), 521–526.

[26] Kalaydjian, F. J.-M., 1992. Dynamic capillary pressure curve for water/oil dis-
placement in porous media: Theory vs. experiment. In: SPE Annual Technical
Conference and Exhibition. Society of Petroleum Engineers, p. 491.

[27] Kolditz, O., Görke, U.-J., Shao, H., Wang, W., 2012. Thermo-hydro-mechanical-
chemical processes in porous media. Vol. 86. Springer-Verlag Berlin Heidelberg.

[28] Kondepudi, D., Prigogine, I., 2014. Modern thermodynamics: from heat engines
to dissipative structures. John Wiley & Sons.

[29] Lake, L. W., 1989. Enhanced oil recovery. Old Tappan, NJ; Prentice Hall Inc.

[30] Leverett, M., 1941. Capillary behavior in porous solids. Transactions of the AIME
142 (01), 152–169.

[31] Marle, C., 1982. On macroscopic equations governing multiphase flow with diffu-
sion and chemical reactions in porous media. International Journal of Engineering
Science 20 (5), 643–662.

[32] Miller, E. E., Miller, R. D., 1956. Physical theory for capillary flow phenomena.
Journal of Applied Physics 27 (4), 324–332.

[33] Morrow, N. R., 1970. Physics and thermodynamics of capillary action in porous
media. Industrial & Engineering Chemistry 62 (6), 32–56.

[34] Morrow, N. R., Harris, C. C., 1965. Capillary equilibrium in porous materials.
Society of Petroleum Engineers Journal 5 (01), 15–24.

[35] Muskat, M., Meres, M. W., 1936. The flow of heterogeneous fluids through porous
media. Physics 7 (9), 346–363.

[36] Muskat, M., Wyckoff, R., Botset, H., Meres, M., 1937. Flow of gas-liquid mixtures
through sands. Transactions of the AIME 123 (01), 69–96.

[37] Neumann, R., Bastian, P., Ippisch, O., 2013. Modeling and simulation of two-
phase two-component flow with disappearing nonwetting phase. Computational
geosciences 17 (1), 139–149.

[38] Onsager, L., 1931. Reciprocal relations in irreversible processes. i. Physical review
37 (4), 405.

28
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