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Abstract

One of the main incentives for deploying network functions on a virtualized or cloud-based
infrastructure, is the ability for on-demand orchestration and elastic resource scaling
following the workload demand. This can also be combined with a multi-party service
creation cycle: the service provider sources various network functions from different
vendors or developers, and combines them into a modular network service. This way,
multiple virtual network functions (VNFs) are connected into more complex topologies
called service chains. Deployment speed is important here, and it is therefore beneficial
if the service provider can limit extra validation testing of the combined service chain,
and rely on the provided profiling results of the supplied single VNFs. Our research
shows that it is however not always evident to accurately predict the performance of a
total service chain, from the isolated benchmark or profiling tests of its discrete network
functions. To mitigate this, we propose a two-step deployment workflow: First, a general
trend estimation for the chain performance is derived from the stand-alone VNF profiling
results, together with an initial resource allocation. This information then optimizes the
second phase, where online monitored data of the service chain is used to quickly adjust
the estimated performance model where needed. Our tests show that this can lead to a
more efficient VNF chain deployment, needing less scaling iterations to meet the chain
performance specification, while avoiding the need for a complete proactive and time-
consuming VNF chain validation.

Keywords: Network Function Virtualization (NFV), DevOps, NFV Performance
Profiling, Network function chain deployment

1. Introduction

With the advent of cloud and edge computing, an unseen deployment flexibility for
softwarized communication services is enabled. From the increasingly maturing field of
Network Function Virtualization (NFV), more and more implementations of Virtual-
ized Network Functions (VNFs) such as routers, load-balancers or firewalls are becoming5

available. The expected service performance is specified by a number of Key Performance
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Indicators (KPIs) with agreed limits in the Service Level Agreement (SLA). The SLA is
then the contract between a service provider and its customers, the service users. Typical
KPI metrics are for example packet loss, response time or processing latency. The perfor-
mance of these VNFs is determined by the amount of resources they are allowed consume10

in the cloud-based infrastructure where they are running. An example of such a resource
is virtualized CPU processing power (vCPU). This can be a number of multi-threaded
CPU cores, or a percentage of one or more physical CPUs. Other resources which can
be virtualized are for example memory, storage or network bandwidth. NFV technology
allows virtual resources to be allocated on-demand, growing or decreasing together with15

the workload demand. From a cost saving perspective, the service provider can tune the
amount of allocated resources, as long as the users do not experience service degradation,
specified in the SLA. But to efficiently control the service quality, the relation between
allocated resources and resulting service performance should be known. We define this
relation as the service performance profile. If such profile does not exists, the service20

provider must stepwise modify resource allocations, until performance is met. This more
like a trial-and-error method, which can take multiple iterations before an optimal point
is found. The performance profile must now help the service provider to estimate an
optimal amount of resources to allocate, in order to meet the SLA under the current
workload. If the workload is known or can be pro-actively predicted, then an adequate25

resource allocation can be estimated, resulting in less over- or under-provisioning.
In this paper we focus specifically on the performance profile of service chains, where

network traffic is traversing multiple VNFs. The research goal can be formulated as:

”Starting from a limited number of VNFs, whose performance profiles are known in30

advance through profiling, how accurate can we predict the chained performance when
those VNFs are combined.”

When VNFs are tested outside of the chain, we refer to them as stand-alone VNF profiles.
The relevance of this research question is justified by two main observations:35

• The service chain creation process is naturally based on stand-alone VNF profiling.

• The test time of service chains can be greatly reduced if we can rely on the perfor-
mance profiles of the stand-alone VNFs only.

The above statements are explained more in detail in the following subsections.

1.1. The Service Chain Creation Process40

Modern, DevOps-based, software development is also being adopted by the telecom
industry [1]. From a testing perspective this means that VNFs are first tested in a stand-
alone way, before they are handed over to the service provider for integration into the
service chain. This is displayed in Fig. 1. When a service chain is created, the stand-
alone VNF profile data is therefore likely to be already available. The usability of those45

stand-alone profiles is further increased by the use of a shared test infrastructure:

• Using cloud native design principles [2] [3], a virtualized network service can lever-
age a shared Infrastructure as a Service (IaaS). The IaaS can be used both for VNF
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testing as production environment. This enables a very representative staging en-
vironment for accurate VNF performance measurements and a base for multi-party50

service creation [1] [4].

• The service provider can source multiple VNF implementations from external sup-
pliers, and then combine those VNFs himself into a custom chain. This enables
an eco-system in which performance validation can be automated and delegated
to multiple VNF suppliers, before acceptance by the service provider [5]. On a55

broader scale this also leads to new ways of cooperation between service providers
and VNF developers [6] [7], where service performance management is a continuous
joint process between developers and operators [8].

Infrastructure (IaaS)

OpsDev Dev

Service provider

VNF ChainVNF 1 VNF n

Vendor nVendor 1

Figure 1: The development of a VNF chain is based on the stand-alone testing of the discrete VNFs by
multiple Vendors.

The above principles are illustrated in Fig. 1, where the service provider creates a
custom service chain, in cooperation with multiple VNF suppliers (Vendors). To alleviate60

the validation effort of the service provider, it makes sense to align the Dev testing at
the Vendors’ side as much as possible with the Ops environment. The use of a shared
IaaS environment can certainly help here. In the remainder of this paper, we assume
that stand-alone VNF profiling is done using a workload and environment aligned with
the operational context of the service provider.65

1.2. Gains in Profiling Time

In the previous subsection 1.1, we explained how the service provider can combine
existing VNFs into new service chains. However, due to time and resource constraints, it
is not always possible to fully validate the new VNF chain with every possible workload
and resource allocation combination; e.g. time to market is urgent, critical updates like70

a security patch must be quickly introduced or not enough resources are available in the
IaaS to completely duplicate the VNF chain for testing. Therefore it would be convenient
to derive a chained performance model, from the stand-alone VNF models. The difference
in total test effort can be simply shown by the example in Fig. 2. Let us assume each VNF
has n possible deployment combinations to test. Each combination can be an available75

resource flavor (e.g. reserved number of vCPUs and network bandwidth). If each VNF
is tested stand-alone (Fig. 2 a), the total number of combinations is additive. When
the VNFs are chained (Fig. 2 b), the total number of combinations is multiplicative.
The graph depicts the difference in test time between the two approaches. This simple
example motivates to investigate the possible gain in test effort, if we could use the test80

results from the stand-alone VNFs to predict the performance of the chained VNFs.
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Figure 2: (a) Each VNF is tested stand-alone. (b) The VNF chain is tested as a whole.
The total test time grows exponentially when considering all VNF chain combinations (illustrated for 3
VNFs).

1.3. Challenges in VNF Chain Performance Modelling

We start by profiling the performance of a limited number of stand-alone VNFs,
using similar techniques as in [9]. We extend this work by focusing specifically on the
performance profile of service chains, consisting of multiple VNFs. We combine the tested85

VNFs into service chains and verify if the combined performance is accurately predictable
from the stand-alone tests only. A logical assumption is that the performance of the VNF
chain matches the performance of the weakest link in the chain. The main contribution of
this paper lies in the investigation of the above assumption: Since we see large prediction
errors, we analyze why the prediction of chained VNF performance cannot rely solely90

on the stand-alone VNF profiles. We further propose a two-phased profiling workflow to
tackle this, as introduced in Fig. 3.

The outline of the paper is as follows. In Section 3 we explain the mathematical
models and notations which are used to create a performance profile for the total VNF
chain. Next in Section 3, we briefly introduce the VNFs used to test and validate our95

modelling approaches. A first test is conducted in Section 4, where we see that the
stand-alone VNF profiles can bootstrap the resource allocation of a VNF chain. This
results in a faster and more resource efficient service chain orchestration. We continue
in Section 5 to validate if the stand-alone VNF profiles can be generally used to predict
the VNF chain performance for all possible configurations of workloads and resource100

allocations of the chained VNFs. We see that care needs to be taken, since the chained
VNF performance cannot always be accurately predicted from the stand-alone profiles
only. This is more deeply investigated in Section 6, where a technical analysis is done
on the earlier anomalous VNF chain prediction results. Finally, in Section 7, we propose
a workflow to mitigate possible prediction errors, this online adjustment procedure is105

summarized in Fig. 3. In Phase 1, the profiled data from the stand-alone VNFs is used
to model an initially estimated performance trend of the chained service (as done in the
Dev environments in Fig. 1). When the actual chain is deployed in Phase 2, the selected
model is transferred and further re-trained with online gathered data (as done in the Ops
environment in Fig. 1).110

Using this approach, we investigate which modelling method needs a minimal range
of additional training data in Phase 2. Using this two-phased workflow, we can boot-
strap the resource provisioning for a VNF chain, using only data from stand-alone VNF
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Phase 1

(Dev)

Phase 2

(Ops)

• Stand-alone VNF profiling

• model weakest link in the VNF chain

• VNF chain profiling

• continuous retraining add new 

monitored data

Transfer initial performance model

Figure 3: Overview of the presented profiling workflow.

profiling. To add reliability that the estimated resource allocation will certainly achieve
the intended VNF chain performance, the second phase is added. In total, this approach115

is more time efficient than exhaustively testing all possible combinations as in Fig. 2.
Finally, we discuss the used modelling approach in Section 8.1, where we highlight several
learnings and ideas for further research.

2. Related Work

Our work builds further on previous learnings in the field of VNF profiling and the120

analysis of the resulting data. In the following paragraphs we highlight publications
which have reported similar performance measurements of profiled VNFs. In general,
our paper goes further by investigating deeper the predictability and characterization of
VNF performance trends.

Our experiments relate to work done in [10] and [11], where the performance of a VNF125

chain is investigated and related to the stand-alone VNFs. There it is shown that VNFs
can behave differently in a chained topology versus stand-alone, and also when the order
of the VNF chain is altered. In general, our tests also confirm this. Both papers conclude
that VNF chain performance is hard to predict from isolated VNF performances, and
prediction errors are likely. The authors in [11] provide a measurement campaign to show130

this, but without any root cause investigation or mitigation proposal. The preliminary
conclusion is that chained VNF performance can only be accurately predicted, if the
chain is profiled as a whole. Our work on the other hand, tries to mitigate the predicted
chain performance by online model retraining.

In [10], a deeper investigation is done why the performance of a single VNF changes,135

when placed in a VNF chain. The investigated VNF chain performance degradation
seems caused by network I/O bottlenecks in the underlying infrastructure, which is dy-
namically influenced if multiple VNFs are competing for the same network I/O resources.
We try to avoid this in our tests by carefully isolating all the used VNFs and traffic gen-
erating functions to separated vCPU cores. We investigate this further in Section 6 and140

also unmask several TCP optimization mechanisms in the Linux kernel as manipulators
of the chained VNF performance. We additionally propose a hybrid approach to mitigate
VNF chain prediction, in which stand-alone VNF profiling still provides useful informa-
tion, used to optimize the prediction of the VNF chain performance, both in profiling
time as in accuracy. We executed measurements on multiple VNF chains to validate this145

more broadly.
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An online adjustment of a VNF performance model is presented in [12] and [13],
based on analytical curve fitting. The reported test cases compromise however only
single dimensional workload spaces and monitor the service only directly in production,
without any prior profiling in a development environment. The methods investigated in150

our paper, can be easily extended to multi-variate input spaces for both workload and
resource configuration parameters. Moreover, we propose a proactive profiling phase to
determine an initial model which is adjusted in production afterwards.

In our tests, the VNFs are connected using normal TCP based links, forwarded
through standard Linux bridges in the kernel, this default network layer is not modified.155

There is however much room for optimization in the Linux network layer. IPv6 Seg-
ment Routing (SRv6) is for example a promising solution to support advanced services
which use Service Function Chaining, similar to the VNF chains in our tests. A profiling
framework for this routing architecture is presented in [14]. The research in this work
shows that not only the VNFs themselves are influencing the chain behaviour, also the160

data plane connecting the VNFs (implemented in the Linux kernel or underlying net-
work infrastructure), can have a determining effect on the overall chain performance. A
comparison is made between the performance of the Linux kernel implementation and
the VPP software router for service chaining on the traffic forwarding level. This related
work complements the analysis in Section 6, where the network layer in the Linux kernel165

is found to influence the overall VNF chain performance.
Modern communication networks require flexible, fast and reliable service deploy-

ments [15]. Together with the growing availability of cloud native deployment possibili-
ties [3], a trade-off between flexibility and deterministic performance emerges. Adequate
profiling can help to model this dynamic service performance, and this could be used170

as input to pro-actively predict service topologies’ performances [4] [16]. The referred
work in the following paragraphs exemplifies how VNF profiling, and the resulting VNF
performance model, could alleviate the VNF orchestration process.

In [17, 18, 19] it is illustrated how knowledge of the VNF resource usage can optimize
VNF chain deployment and calculate the VNF placement across distributed server nodes.175

In [17] the CPU consumption of an edge router device is profiled in function of multiple
parameters of the VNF chain traffic (e.g. packet size, rate, chain length). The profiled
router performance trends are used as input in an Integer Linear Programming (ILP)
problem to find the optimal deployment of a VNF chain across edge devices. In [18, 19]
also a cost function for the resource utilization is derived and minimized using proposed180

algorithms. Our paper could further complement the cost minimization problem, by pro-
viding a pro-active estimation of the needed resources of the total VNF chain. Similarly
in [20], a set of profiled, container based VNFs is proven to be light-weight enough to
be deployed on a variety of resource-limited edge devices. The work shows how profiled
VNF data can alleviate VNF chain orchestration. The profiled performance trends are185

however visually analysed for a single example use case only, so this method might not
scale well for other edge devices or VNFs. Our work focuses on more generic modelling
methods, which can be automatically applied to other chain topologies also. We mainly
highlight the preparatory process of estimating the chain performance trend, before it
can be used as input for other VNF orchestration processes.190

The work in [21, 22, 23] is a complement to the scaling algorithms used in Section 4.
But while the referenced works focus on supervised machine learning to drive the auto-
scaling, our approach uses linear regression-based techniques, which prove to need less
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training data and provide a better accuracy. A comparison with machine learning-based
methods is done in Section 5.2. As an alternative to the retraining of the model in Phase195

2 (see Fig. 3), another machine learning method called ”reinforcement learning” is used
in [23]. As explained in Section 7, machine learning-based methods are not capable to
extrapolate the learned VNF performance to untested VNF configurations. Our proposed
method can instead use linear regression to do this. This results in fewer training samples
needed compared to purely machine learning-based modelling methods.200

Another use case for profiled VNF data is anomaly detection in complex VNF topolo-
gies. In [24], an online cloud performance debugging system is based on a deep learning
model. The input values correspond to network queue depths, and the output values
to the probability for a given VNF to initiate a performance violation. To train the
model, a large amount of data is used (one week’s worth of trace data). Similarly in [8],205

a binary classifier is trained which predicts if a large VNF topology is operating within
saturated resources or not. It is assumed that a large set of pre-labeled training data is
gathered beforehand. However no KPI values are considered in the classifier, therefore
no quantitative link can be made to the SLA or resource allocation of the VNF chain.
To support anomaly detection mechanisms, our work can alleviate the creation of train-210

ing data by speeding up the profiling of the whole VNF chain in given configurations.
Additionally, in our tests, a trained regression model of the performance can predict
performance trends better, compared to a classification model. This leads to a better
quantitative assessment of SLA specifications.

3. Test Setup and Background215

In this section we introduce the test setup and VNFs which were used. We also
summarize the mathematical models and notation based on [9] and further used in this
paper. In our approach, the service chain is a linked set of modular functional blocks.
We consider a VNF as one distinct functional block, which has its own isolated resources.
In practice, the VNF is a single Virtual Machine (VM) or container in our tests. The220

profiling framework we use for automated workload generation and KPI monitoring is
described in [25]. While the workload is flowing through the chain, specialized probes
then export metrics related to resource usage, workload and performance. The monitored
data is recorded for later analysis. The profiled topologies are given below. Figure 4a is
the test setup used in Phase 1 of the profiling workflow in Fig. 3, Figure 4b is used in225

Phase 2.

VNF1 VNFn
clients server

VNFi
clients server

(a)

(b)

...

Figure 4: The used test topologies: (a) the stand-alone VNF and (b) chained VNFs.
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3.1. VNFs Under Test

The used test hardware are multiple equal compute nodes with 2x 8core Intel E5-
2650v2 (2.6GHz) CPU running Ubuntu 18.04 as operating system with the Ubuntu
Linux 4.18 kernel. Linux Bridge is used as the hypervisor switch for the VNFs. We230

do not change default OS options (e.g. we leave hyperthreading enabled). Depending
on the virtualization of the VNF (container or VM) we use the configuration options of
Docker resp. KVM to isolate the CPU cores between the VNFs under test, the clients
and server.

We generate the workload in the clients by continuously generating n concurrent file235

requests. This means at any given time, there are n clients with each one file request
ongoing. Locust.io [26] is the tool used to generate this workload. The traffic source is
generating file requests of varying filesizes. The traffic sink is a webserver, a Python based
implementation (Flask [27]) which serves a random file with the requested size back to
the clients. All clients request an equally large file. The workload is thus characterized240

by (i) the number of concurrent clients and (ii) the filesize of the requested files. These
are the two workload metrics used in the models.

The VNFs are first profiled stand-alone, meaning that traffic flows only through the
single VNF (Fig. 4a). We test the following VNFs:

Haproxy - Load Balancer [28]. An opensource, very fast and reliable solution offering245

high availability, load balancing, and proxying for TCP and HTTP-based applications.
We profile its baseline performance, enabling only round-robin load balancing. The VNF
version is v2.0.9, deployed as a Docker container.

Tinyproxy - Proxy Server [29]. An opensource, light-weight HTTP/HTTPS proxy dae-
mon. An ideal solution for use cases such as embedded deployments where a full featured250

HTTP proxy is required, but the system resources for a larger proxy are unavailable. We
profile the baseline default configuration as basic HTTP proxy server. The VNF version
is v1.10.0, deployed as a Docker container.

pfSense - Firewall [30]. An opensource firewall and router implementation (that also
features unified threat management, load balancing, multi WAN, and more). We profile255

its baseline performance as traffic forwarder (NAT is enabled) and the default, out-of-the-
box firewall configuration. As a side note, we noticed that the TCP offload mechanisms,
described in Section 6, are per default disabled for this VNF. The VNF version is v2.4.4-
p3, deployed as a VM under KVM. Due to license constraints, only up to one full vCPU
can be allocated to this VNF.260

Open vSwitch (OvS) - Switch [31]. An opensource production quality, multilayer virtual
switch, designed to enable massive network automation through programmatic extension,
while still supporting standard management interfaces and protocols. For maximum re-
source isolation, we use the same implementation as in [9]: Open vSwitch v2.10.1 installed
in a Virtual Machine based on Alpine Linux v3.9.1. We use the default standalone switch265

configuration, so a flow entry is inserted for every unique flow passing through, one per
unique TCP source-destination port pair. Note that to benefit from multi-core cpu al-
location, we must enable multiqueue virtio-net drivers in KVM. This enables packet
sending/receiving processing to scale with the number of available vCPUs of the guest.
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We must divide the available vCPUs over the specified number of queues in the virtio270

driver and the processing in the VM (OVS) itself. The VNF is deployed as a VM under
KVM.

3.2. Generic Performance Modelling

Our previous work in [9] and [25] focused on profiling the performance of single
VNFs. Now we consider the performance of VNF chains, but we can still apply the same275

performance model if we consider the total VNF chain as a closed system.

f(wl, res) = perf (1)

where:
wl = input workloads (e.g. concurrent requests, filesize)
res = resource allocations (e.g. allocated vCPUs for each VNF in the chain)
perf = service KPI metrics (e.g. response time)

Throughout the paper, we refer to the performance profile of :

• the stand-alone VNF i (cf. Fig. 4a): fi(wl, res) = perf

• the total chain (cf. Fig. 4b): fchain(wl, res) = perf

The performance model f in Eq. 1 predicts the performance at a given workload and280

resource allocation. In Section 5 we will analyse several methods to obtain f . In order
to use the model f to predict a suitable resource allocation, we need to rework Eq. 1
into the following optimization problem:

f(wl, res) ≤ perf SLA

wl ≥ wlSLA

minimize cost(res)

(2)

where:
cost(res) = a cost function for the resource allocation
wlSLA = the targeted workload, specified in the SLA
perf SLA = the upper performance limit, specified in the SLA

Note that f(wl, res) ≤ perf SLA is only generally true for performance metrics which
have an upper limit (e.g. maximum loss or response time). When the SLA defines KPIs285

with lower limits (e.g. minimal throughput or download speed), the opposite inequality
sign should be used. To find a solution for Eq. 2, we can use following heuristic, as also
proposed in [9]:

∀resi ∈ P : arg min
wl

|f(wl, resi)− perf SLA| = wlperfi (3)

9



where:

wlperfi = the workload which minimizes the equation, given resi and perf SLA

P = the set of all possible resource allocations, ordered by increasing cost
resi = a possible resource allocation

By iterating through the possible resource allocations in order of increasing cost, we find
the value of wlperfi , the workload which yields a performance closest to the SLA target,290

for a given resi. A possible strategy to solve Eq. 3 is for example to stepwise increment
wl. If we do this for each resi, eventually the cheapest resource allocation is found which
satisfies wl ≥ wlSLA in Eq. 2. For an optimal service deployment, we need to find the
minimal (cheapest) resource configuration which meets the workload and the performance
target (wlSLA, perf SLA), specified in the SLA. In a standard profiling workflow (e.g. [32]295

[25]), we first use monitored data from a profiling test, to train the model f in Eq. 1.
Once f is known, we can solve Eq. 2 to predict a suitable resource allocation. It can be
seen that the accuracy of Eq. 2 is largely determined by the accuracy of the performance
model f . We extend the work in [9] by investigating if we can derive the performance
profile of the total VNF chain fchain, from only the stand-alone VNF i models fi and a300

limited amount of extra data.

In our experiments, we use the following practical parameters for the metrics:

workload metrics (wl):
filesize = the requested file size
concurrent requests = the number of simultaneous ongoing file requests

resource metric (res):
vCPU i = vCPU allocation of VNF i tested as stand-alone or in a chain

performance metric (perf):
95% response time = the 95th percentile for response time of the file requests

3.3. Validated Modelling Methods

In this subsection we summarize the different methods we validate later in Section 5
and 7, to model fi or fchain in our obtained dataset. In the mentioned sections, it will be305

explained why some methods are preferable to others. The first three methods are able
to model complex, non-polynomial and multi-variate relations, and can be considered as
the most generic:

Interpolation. Put simply, to find a prediction, this method interpolates between sur-
rounding, profiled samples. The interpolant is constructed by triangulating the input310

data using Delaunay triangulation, and on each triangle performing linear barycentric
interpolation. This method also works multi-dimensional, so we can interpolate between
any number of input parameters (wl, res) to predict the performance of an intermediate
configuration. We use the method griddata implemented in the Python SciPy library
[33]. In [9] and [25], this method provided the best accuracy for profiling stand-alone315

VNFs. We validate it here again for our VNF chain modelling approach.
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Gaussian Process. Following a Bayesian approach to generic regression, a Gaussian Pro-
cess defines a prior over functions, which can be converted into a posterior over functions
using training data. This method is fully documented in [34]. The training and predic-
tion process is however quite calculation intensive, therefore this method becomes less320

convenient at large sample sizes and high dimensional models. Previous research [25],
[35]) shows that Gaussian Processes are well capable of modelling non-polynomial trends
of VNF performances. Therefore we also validate it here for our VNF chain use case.
The covariance between training samples must be given as a kernel function. For our
tests we use: Constant * (DotProduct + RBF) + WhiteNoise. This kernel function is325

capable of modelling approximately linear relations (as we expect from Fig. 7).

Artificial Neural Network (ANN). Neural Networks are typically good at complex func-
tion approximation and regression of multi-variate relationships. More complicated
trends require however larger layers and nodes in the model, needing more samples to
train the model. Here, we test a similar ANN model as used in [9]. We use one single330

hidden layer with 10 nodes as compromise for a simplified ANN model, easier to train,
while still allowing enough fitting capabilities.

The observed VNF performance trends in Section 5.3 suggest however that a more poly-
nomial or even linear relation might be dominant. Therefore we also evaluate a set of
linear regression based methods. In order to allow some curvature in the models, we335

do a polynomial expansion of the input parameters. For example, if the input met-
ric space is two dimensional and of the form [a, b], the degree-2 polynomial expansion is
[1, a, b, a2, ab, b2]. In our tests, the total input space is: [filesize, concurrent requests, vCPU i],
as explained in the beginning of this section. So the input parameter space is enlarged,
offering more fitting possibilities for following linear regression methods:340

Lasso. This is a well known regression analysis method that performs both variable
selection and regularization to prevent overfitting, in order to enhance the prediction
accuracy and interpretability of the model it produces. In our use case, when applying
polynomial expansion to the input parameters of the model, the Lasso method is capable
to shrink certain coefficients in the linear model up to zero, if that improves the overall345

accuracy. This is an effective form of feature selection and limiting the terms of the
polynomial expansion in the trained model. In the next sections we mention Lasso1,
Lasso2 and Lasso3, which represent polynomial expansion of the first, second and third
order respectively, before applying the Lasso method.

Elastic Net. This is a linear regression technique related to the Lasso method. While350

Lasso tries to shrink certain coefficients more aggressively, Elastic Net prefers to keep all
coefficients into the model, using a smoother form of coefficient regularization. This leads
to less feature selection power (more input terms of the polynomial expansion are kept
in the model). Our test show that this approach yields worse accuracy when applied to
our datasets. This indicates that in general only few terms of the polynomial expansion355

are correlated with the measured KPI trends. Similar to Lasso3, we apply polynomial
expansion of the third order to Elastic Net3.
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Multi Lasso. This customized procedure is based on the method which showed most
promising results in [9], used on the profiling of stand-alone VNFs. In our implemen-
tation, a Lasso model is trained separately for each profiled configuration, where only360

the number of concurrent requests is varying as input parameter for the model (and the
filesize and resource allocation is kept fixed). A prediction of a new workload value is
made by using the previously mentioned Interpolation method between the Lasso models
of surrounding nearby configurations. More details of this method are given in [9].

We implemented the above methods using the functions available in the Python based365

library Scikit-learn [36]. Throughout our validations, we will use several score types to
assess the prediction accuracy, and to validate which method works best:

• Mean Average Error (MAE): This is the mean value of the residual errors of the
predicted response time.

• Median Average Deviation (MAD): This is the median value of the residual errors370

of the predicted response time.

• Root Mean Squared Error (RMSE): When the residuals of the predicted values are
normally distributed, the RMSE depicts the standard deviation of the residuals.
But since MAE > MAD for most of the results, we suspect that the distribution
of the residual errors is right skewed and not centralized around the mean. As rec-375

ommended in [9], we use the RMSE to compare the accuracy of different methods.

• Mean Absolute Percentage Error (MAPE): The errors are expressed as the ratio of
the absolute residual error over the actual value.

4. Bootstrapped Service Chain Provisioning

In this section we experimentally validate how the knowledge of the stand-alone pro-380

files fi, optimizes the resource allocation of a VNF chain. This illustrated by comparing
two methods to optimize the resource allocation:

1. Using a greedy algorithm and no profiling info, a VNF chain is iteratively scaled
until the SLA is met (Section 4.1).

2. Using the data from pre-profiled stand-alone VNFs, the chain performance and385

according resource allocation is estimated pro-actively (Section 4.2).

The VNF chain under test is depicted in Fig. 5a. The service functionality is com-
posed out of the proxy features provided by Tinyproxy and the firewall capabilities offered
by pfSense. If one of those VNFs becomes the bottleneck, and no more resources are
available to allocate, a load balancer (Haproxy) is added and the traffic is balanced over390

multiple instances of the bottleneck VNF.

For our case study, we want to find the optimal resource allocation to meet following
exemplary SLA specification:

• wlSLA = max 400 concurrent requests

• filesizeavg = 1MByte average filesize per request395

• perf SLA = 95% response time < 5000ms
12



4.1. Greedy Scaling Algorithm

We first start from the situation where we have no stand-alone VNF profiles fi avail-
able. The workload is gradually increased and extra resources are scaled in whenever the
performance limit is reached. We exemplify this with Fig. 5, which shows how eventu-400

ally, after several resource scaling iterations, the SLA specification is met at the target
of 400 concurrent users.

Tinyproxy pfSense

Tinyproxy

pfSense

pfSense

pfSense
…

(iteration 1 - 4)

(iteration 5 - 11)

Haproxy

(a) the VNF chain topology
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Figure 5: While the workload is increasing, the VNF chain is scaled using a load balancer (Haproxy), to
stay under the KPI (response time) limit.

We follow a greedy procedure (Algorithm 1), which is a generic form of the default,
threshold based, scaling procedure implemented in most service platforms such as Open-
Stack or Kubernetes. When the response time is above the limit, the VNFs which have405

a vCPU usage above 90% of their allocated value, are scaled and receive a higher vCPU
share. We start from a 25% vCPU share for each VNF. The vCPU allocation is incre-
mented in steps of 25% until 1 vCPU (100%) is allocated, afterwards one full vCPU
is added per step (100%, 200%, 300%, ...). By using this procedure, we arrive at an
appropriate resource allocation after 11 iterations (Fig. 5b):410

• Iteration 1-4: Tinyproxy and pfSense start from a vCPU share of 25%. The vCPU
shares are iteratively incremented until pfSense becomes the bottleneck.

• Iteration 5: pfSense has reached its max vCPU allocation (100%), from now on-
wards, Haproxy is added to the chain to load balance the traffic over multiple
pfSense instances.415

• Iteration 5-10: the number of pfSense instances is incremented from two up to five.
Iteratively, also the vCPU shares of Tinyproxy and Haproxy is incremented if they
show CPU saturation.

• Iteration 11: the scaling procedure arrives at the specified SLA specification. The
final vCPU allocation is: Tinyproxy: 200%, Haproxy: 75%, pfSense: 100% x 5420

instances.
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Algorithm 1: Greedy scaling procedure

Data: wlmax, perf SLA

Result: res = chain resource allocation
1 res← minimal resources allocated;
2 wl← minimal workload started;
3 while wl < wlmax do
4 R← empty set;
5 KPI ← monitor chain performance;
6 foreach VNF i ∈ chain do
7 resi ← monitor VNF i resource usage;
8 R.append(resi);

9 end
10 if KPI ≥ perfSLA then
11 res← Scale (res,R) ;
12 end
13 increase wl;

14 end
15 return res;

16 Function Scale(res, R):
17 foreach resi ∈ R do
18 if resi ≥ 90% then
19 lookup current resource allocation of VNF i in res ;
20 res← allocate more resources to VNF i ;

21 end

22 end
23 return res;

4.2. Resource Allocation Estimation

For comparison with the greedy scaling in previous subsection, we now want to use
the profiled data of the stand-alone VNFs (Fig. 5a) to estimate a sufficient resource
allocation. We assume that each VNF i ∈ chain has been profiled before and a model425

fi(wl, res) = perf is available (using the methods selected later in Section 5.2). By using
Eq. 2 and 3 we can derive a performance trend for each of the VNFs as shown in Fig.
6a. Each point represents a profiled vCPU allocation. In each point we lookup the
maximum workload which could be served within the predefined SLA limit (response
time < 5000ms, for 1MB file requests). From the graph we can read that to reach430

400 concurrent requests, we would need following vCPU allocation: Tinyproxy: 200%,
Haproxy: 50%, pfSense: 100% x 4 instances (one pfSense can serve up to 130 concurrent
requests). We can see in Fig. 6 the measured performance of this estimated resource
allocation. The estimated vCPU allocation is a one-shot iteration, sufficient for the SLA.

In Table 1 we compare again the final resource allocations of the two investigated435

methods. It is remarkable that the second method, using profiled data, found a more
efficient resource allocation to reach the same performance. Moreover, in Fig. 5b we
saw that iteration 7, 9 and 10 did not improve the performance. After closer inspection,
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Figure 6: The predicted resource allocation for the chain meets the required SLA specifications.

vCPU allocation
Method Tinyproxy Haproxy pfSense
Greedy 200% 75% 5 x 100%
Profiled 200% 50% 4 x 100%

Table 1: The obtained resource allocation for the tested chain.

we found that these iterations coincide with the scaling of Tinyproxy from 50 to 100%
vCPU. In Fig. 6a we can verify that this does not improve the VNF performance a lot.440

These scaling iterations could be avoided by using the stand-alone profiled data.

4.3. The Need for Further Validation

The previous test indicates that stand-alone VNF profiles can indeed provide a better
initial estimation for the needed resource allocation, and thus a faster service provisioning.
The stand-alone profiles fi can be used to bootstrap the orchestration of the VNF chain,445

by limiting the number of scaling iterations, needed to reach the performance specified in
the SLA. However, this method is only reliable if the performance model fi does not alter
between the stand-alone VNF topology and the chained VNF topology. It is possible
that the stand-alone performance trends in Fig. 6a deviate, once the VNFs are placed
into a chain. There are situations where there is large mutual influence between VNFs450

in the chain (e.g. VNFs deployed on the same server may show resource contention). In
such cases, we cannot any more consider the VNFs to be isolated from each other.

A possible solution is to consider the VNF chain as a closed system, a black-box
with the resulting performance of the combined VNF i’s. Then we need to predict a
performance model fchain for the total VNF chain, in order to do a correct estimation of455

resource allocations. In the next section, we will investigate if fi can indeed vary when
VNF i is placed into a chain.
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5. From Stand-alone to Chained VNFs

To create a large pool of test data and possible VNF combinations, we test four
different VNF chains. It is the intention to check if the performance profile fi changes460

significantly, once the VNF is placed into a chain. We profile each VNF, described in
Section 3.1, stand-alone. Then we create chains with the VNFs grouped per two:

• Tinyproxy (VNF1) + Haproxy (VNF2), and vice-versa. These are Docker container
based VNF chains.

• pfSense (VNF1) + OvS (VNF2), and vice-versa. These are VM based VNF chains.465

5.1. Test Automation

Every stand-alone or chained topology is tested using the same parameter range. The
following table summarizes the settings to create our datasets. The values in Table 2
are chosen to reflect an operational space as large as possible, within the limits of the
available test hardware:470

parameters in fi or fchain values

input
workload conc. reqs. [1− 1000] ( 30 values, evenly along the log scale)
(wl) filesize (MB) [0.5, 1, 5, 10]

resource
(res)

vCPUi (%)

Haproxy = [25, 50, 75, 100, 200]
Tinyproxy = [25, 50, 75, 100, 200, 300, 400, 600]
pfSense = [25, 50, 75, 100]
OvS = [25, 50, 75, 100, 200]

output performance
(perf)

95% resp. time (ms) averaged over 5 repetitions of the input space

Table 2: The parameter space for fi and fchain models.

When considering all of the above mentioned configuration options (stand-alone and
chained), we arrive at a total of 14400 sample points. Moreover, each possible resource
and workload combination is profiled five times to filter measurement noise as good as
possible, without extending the profiling time too long. We build our models using the
averaged performance metric (response time) over these five repetitions. Each sample475

point can take up to 60s to ramp up and stabilize, yielding a total test time of several
weeks. We can gain some time by distributing the tests over multiple identical compute
nodes using our profiling tool described in [25].

The measured KPI is the 95th percentile of the response time, meaning that 95% of
the requests have a response time smaller than the reported value. Other publications480

[9] [11] use the mean response time as KPI. From the viewpoint of a service provider,
the mean value is not as interesting, as outliers may still deteriorate the overall service
quality. Our measurements also show that the distribution of the response time can be
quite skewed and long-tailed, hence the 95% response time provides a more realistic KPI
instead of the mean value. Since enough time is taken (up to 60s) to let each sampled485

input configuration stabilize, the monitored value of the 95% response time is taken over
a large pool of completed requests during this period, and we can assume that single
outliers are filtered.
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For each unique combination of vCPU allocation and filesize, we vary the number of
concurrent requests as specified. In order to automate the measurements, we build in490

some mechanisms avoid that too much time is spent measuring unuseful situations: It
can happen that a configuration could be not profiled up to 1000 concurrent requests: We
configure the automated test in such a way that a timeout occurs after 60s. If then the
KPI metrics have not stabilized, or the client/server containers are saturated, then the
measurement is not recorded and we move on the next workload to test. Also response495

times > 20s are not included in our data, as these are considered beyond useful service
performance. This filters about 20% of the sample points.

Figure 7 illustrates several subsets of each VNF chain the measured dataset.
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Figure 7: Example performance trends of stand-alone and chained VNFs. The vCPU allocation and
requested filesize is in the plot title. The maximum of both dashed curves is the expected chain response
time. In (a), (c) and (d) the chain performance deviates from the expected value.

5.2. Model Validation

We first check the modelling accuracy of the methods proposed earlier in Section500

3.3. In Table 3, we first test the accuracy of the model f (Eq. 1), trained with the
17



available data from chained and stand-alone VNF topologies. The reported score values
are averaged over the whole range of profiled input parameters (listed in Table 2). A
five-fold cross validation is done to asses the accuracy. This means that the dataset is
split into five equal parts. Each part (20% of the data) is once selected as test set, while505

the other 80% of the data was used as training set. The RMSE is averaged over those
five validation runs. The result is a baseline RMSE accuracy which can be used for two
things:

1. An indicator to compare which method would work best to model the typical trends
in our datasets. The bottom row in Table 3 is the average of the upper scores in510

each column. This allows us to compare the different methods to each other.

2. A baseline benchmark value for the RMSE, to compare with later, when we predict
fchain , using only data from fi.

tested topology
generic method RMSE linear regression RMSE

Interpo-
lation

Gaussian
Process

ANN Lasso3 Elastic
Net3

Multi
Lasso2

Haproxy-Tinyproxy 606 1129 1579 1447 3170 509
Tinyproxy-Haproxy 582 2260 1243 1293 3041 504

pfSense-OvS 993 2765 2678 1574 4505 1443
OvS-pfSense 868 2736 2376 1153 4413 1091

Haproxy 417 1743 1154 904 2859 367
Tinyproxy 690 939 1642 1195 3261 671

pfSense 1119 2554 2524 891 4082 808
OvS 525 1694 2089 1305 4026 644

average(ms) 725 1978 1911 1220 3670 755

Table 3: Averaged RMSE of the direct model f (Eq. 1) when trained by different methods (prediction
error on the 95% response time (ms))

In Table 3 we compare on the left more generic methods, capable of fitting non-
polynomial trends. When we repeat the calculation multiple times we see that the515

RMSE varies greatly for different tries of the ANN method, indicating that the training
procedure does not converge. ANN is the worst method here because we lack sufficient
samples to sufficiently train this model.

On the right side, we compare linear regression based methods, capable of modelling
polynomial trends. Elastic Net3 is performing worst here, probably because it has the520

least feature selection capability to filter only the most correlated terms from the third
order polynomial expansion. Lasso can regulate the coefficients more aggressively.

We see that linear regression based methods are providing better fits. We can conclude
from Table 3 that the Interpolation and Multi Lasso2 method are providing the best fit
to the actual measured data of the stand-alone and chained topologies. These methods525

are based on the ones which performed best in earlier research [9]. The averaged and
thus noise-filtered samples from the profiling seem to represent the linear character of the
trends witnessed in Fig. 7. This makes the Interpolation method a good candidate to
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provide a baseline truth model as benchmark. The cross-validation method also confirms
this, as Interpolation shows the best RMSE score.530

5.3. Chained VNF Performance Prediction

We make a distinction between the performance model for stand-alone VNFs (fi),
and the performance model of a complete VNF chain (fchain). Our goal is to find a
method F which is able to predict fchain from its stand-alone VNF models fi. Note that
a stand-alone model fi should be available for each VNF i in the tested chain. For the535

total chain we now validate following model:

fchain(wl, res) = F (f1, f2, ...) = max(f1, f2, ...) = perf (4)

As a starting point, we assume the most logical assumption, that the total chain perfor-
mance is limited by the weakest link in the VNF chain. If we assume that each VNF i

operates independently from the other ones, with no mutual influence, then the response
time of the whole chain matches the worst-case response time of the stand-alone VNFs.540

The response time of the total chain can then be estimated in Fig. 7 as the maximum
value of both stand-alone VNF i trend lines (the two dashed lines). At each input value,
the function F in Eq. 4 selects the maximum response time of fi of VNF i in the chain.

The validity of F in Eq. 4 as ’the weakest link function’, is first visually checked on
some random profiled chain configurations in Fig. 7. Moreover, we notice several devia-545

tions for the predicted chain performance: the weakest stand-alone VNF performance is
not always matching the performance of the VNF chain. In some cases the chained per-
formance is even better, outperforming the stand-alone profiling test with lower response
times.

As was mentioned in section 4.3, we have now proof that stand-alone VNF models fi550

change, when the VNFs are placed in a chain. These phenomena seem to confirm earlier
experiments done in [10] and [11], and we analyse this further in Section 6. The example
of Fig. 7a will be inspected more in detail in Section 6.2. But first, we want to get a
better idea how often these large errors occur. Since it becomes infeasible to visually
inspect all profiled configurations, we must revert to other methods to analyse the overall555

accuracy. In the next subsection we check how frequent and large the prediction errors
of fchain are, over all tested chains and configurations.

We now check further how accurate the prediction by F is ( in Eq. 4), when every
fi is modelled by the Interpolation method. Table 4 compares the prediction of fchain
to the baseline RMSE from previous table (we added the last three columns in Table 4560

for comparison). We see that the RMSE increases significantly when fchain is used as
prediction for the chained performance.

19



chain
fchain prediction directly trained

Interpolation chain VNF1 VNF2
MAE MAD RMSE RMSE RMSE RMSE

haproxy-tinyproxy 577 87 1242 606 417 690
tinyproxy-haproxy 630 168 1354 582 690 417

pfSense-OvS 1458 648 2417 993 1119 525
OvS-pfSense 1071 690 1924 868 525 1119

Table 4: Absolute errors of fchain (Eq. 4) when modelled by the Interpolation method (prediction error
on the 95% response time (ms))

The results in Table 4 suggest that the average absolute error is increasing substan-
tially, when the ’weakest link prediction’ in fchain is used. This is however an averaged
value over all tested workloads and resource allocations and it would be interesting to565

know if this large prediction error holds for all profiled configurations, or only a few out-
liers. Further tests are motivated by following assumption: In Table 4, the large deltas
between the mean (MAE) and median (MAD) indicate a right skewed, longer tailed dis-
tribution of the prediction errors. Moreover, large differences between the RMSE and
MAE often indicate that outliers are present in the residuals. This observation triggers570

further investigation to find out where the largest errors are occurring.
A possible application of the model fchain is as part a resource recommendation as

in Eq. 2. We discussed in Section 3.2 that this optimization problem could be solved by
iterating through all profiled resource and workload configurations. Therefore it makes
sense to check if the accuracy of fchain is fluctuating a lot over the different configurations575

of filesize and vCPU i. Additionally we also switch to the relative error (MAPE). This
provides a clearer interpretation how far the prediction is off. Therefore we plot in Fig.
8 the MAPE score. On the x axis, each point represents one possible configuration,
i.e. a unique combination of requested filesize and vCPU i allocation for each VNF in
the chain. As suspected from the selected measurements in Fig. 7, we also see large580

prediction error variations in Fig. 8. The MAPE is calculated using again a five-fold
cross validation of the profiled data. The given baseline chain and stand-alone accuracies
in Fig. 8 are modelled using the Interpolation method, as explained before. The predicted
chain depicts the accuracy of fchain, taking the max response time of the shown stand-
alone models.585

At first sight, the predicted chain performance can have large errors, and this seems
to be true for all tested chain configurations. In general, our results thereby confirm
the research from other authors in [10] and [11]. We will dive deeper in the causes of
these prediction errors in Section 6. To anticipate things, we can mention here that it
is very hard, if not impossible, to emulate all factors influencing the bandwidth in the590

chained VNF topology, during stand-alone testing. This leads to deviating performance
between tested topologies. It is also clear from Fig. 8 that the prediction errors of F are
not caused by any bad underlying models, as the stand-alone models fi show way better
accuracy. The depicted baseline chain performance is an Interpolation model trained
by the actual measurements of the chain’s response time. This is thus a baseline or595

best-case scenario, where training samples are very representative. Still in Fig. 8, the
predicted chain performance (fchain by F ) is under-performing. Which indicates that
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Figure 8: The predicted fchain performance by F (Eq.4) has room for improvement compared to the
baseline chain model and is significantly worse than the underlying stand-alone VNF models fi.

the training data here, being the max response time of the stand-alone VNF models, is
not guaranteed to be a good predictor. But we know that it can be improved up to the
baseline performance by taking new training samples. To improve the accuracy, and still600

profit from the stand-alone test data, we look for a method to adjust our initial chain
prediction with newly measured samples. In the Section 7 we will therefore analyze ways
to online adjust the predicted model F to reach a better fit for fchain. But first we
analyze in Section 6 why F is not a good predictor for fchain.

6. VNF Performance Variation Analysis605

In an attempt to understand the root causes of the prediction errors by F in the
previous section, we dive a bit deeper into the data path of chained VNFs. We suspect
that several optimizations and offload mechanisms implemented in the operation system’s
kernel, contribute to the unpredictability of VNF chain performance. Ths is the root
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cause why fi tends to vary when VNF i is placed into a chained topology. We provide610

some technical background here. There are several stages in the networking stack of the
Linux kernel as given in Fig. 9. The common processing path traverses following steps
[37]:

1. The VNF application creates socket buffers to read/write data to.

2. The kernel will then periodically write/read data to/from these socket buffers,615

taking care of the further data transmission and reception between the chained
VNFs.

3. This data is then sent to the next VNF in the chain, or recieved from the previous
one, over the TCP/IP protocol implemented in the network layer of the kernel.

4. The actual transmission/reception over the network’s physical layer is done by the620

hardware of the network card.

hard IRQ (RSS, RPS, RFS, IRQ coalescing)

DMA copy to ring buffer

packet processed by NIC (TSO, LRO)

socket buffers

layer 3&4 network protocol layers

‘skb’ structures passed through the network layer 

(GSO, GRO)

soft IRQ (ksoftirqd/n)

VNF application codeUser Space

Kernel

Hardware

TX

RX

Figure 9: Different processing stages of packets through the Linux kernel network stack.

6.1. Packet Coalescing Effects

The processing overhead in the kernel is mainly packet based (functions are called per
packet, irregardless of the packet size). To mitigate this, a whole range of optimization
mechanisms is implemented, which aim to coalesce packets as much as possible, creating625

larger packet sizes and thus less packet-based overhead (but also creating a trade off
regarding information corruption in case of packet reordering or loss). But the main
advantage is that less processing from the CPU is required, leading to an overall increase
in throughput. Note that this is not limited to virtual interfaces alone: also if the VNFs
are located on physically separate servers, the same offload mechanisms take place for630

traffic over physical interfaces. Of course, the configured Ethernet Maximum Transfer
Unit (MTU) should be respected, and packet segmentation is eventually offloaded to
the (virtual) network interface. Without diving into the exact implementation details,
we can briefly mention the following mechanisms which aim to optimize the standard
TCP/IP processing:635

• On layer 4, the kernel tries to estimate the bandwidth-delay product of each TCP
connection, in order to optimize receive and send windows [38] [39] [40]. This is
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done to maximize the amount of data being sent over the link, by minimizing the
time the TCP connection is idle, waiting for acknowledgements. Due to these larger
TCP windows, larger chunks of data are being sent.640

• The larger chunks of data, originated as explained in previous point, are not im-
mediately segmented into smaller packets. The kernel keeps the network packets
as large as possible by combining them, up to certain size and timeout thresh-
olds. Final packet segmentation happens as late as possible in the network stack,
preferably offloaded to the (virtual) NIC. TCP Segmentation Offload (TSO) is the645

NIC driver implementation and Generic Segmentation Offload (GSO) is the kernel
implementation of this mechanism.

• Similar to the previous point, Large Receive Offload (LRO) and Generic Receive
Offload (GRO) implement packet coalescing on the receiving path [41]. Packets
are combined as early as possible as they enter the network stack. These methods650

reduce the number of packets passed up the network stack, by combining “similar
enough” packets (in terms of header fields and timestamps), and thus reducing
CPU usage.

The command ethtool can be used to modify the offload settings for the VNF interfaces.
Note that large packet sizes (> MTU), are most likely to be monitored because the655

system has GRO/GSO enabled (by default). This happens because packet capture taps
are inserted further up the stack, after GRO/GSO has already happened. The effect of
the packet offloading can be seen in Fig. 10: As an example we show the averaged packet
sizes monitored in the Haproxy VNF, in the different tested topologies. There is a clear
difference in packet size between the stand-alone and chained configurations. At lower660

workloads on the x axis, large TCP windows enable GSO/GRO to create larger packets.
But at higher workloads, more concurrent TCP connections need to be maintained by
the VNFs, overloading the allocated vCPU (opening/closing sockets, transferring data in
user space between sockets, user/kernel context switches etc.). As each TCP connection
receives less CPU time, TCP congestion control dynamically lowers the windows, and665

thus smaller chunks of data are being sent. The packet sizes coalesced by GSO/GRO
are thus more limited at high VNF loads. In Fig. 10 we see the largest impact on
the ingress traffic, which is a result from a smaller TCP receive window, advertised by
the receiving VNF. When sniffing the traffic, we indeed witness occasional TCP Zero
Window messages. This means that a client is not able to receive further information at670

the moment, and the TCP transmission is halted until it can process the information in
its receive buffer.

We have also tested Layer 2 VNF chains (pfSense + OvS), In which TCP endpoints
only exist in the clients and server. These setups show large errors as well, when con-
sidering the stand-alone tests only to predict the performance of the chain. This can be675

explained because the bandwidth-delay product of the TCP connections increases, while
passing through highly loaded layer 2 VNFs. Thus the TCP windows in the sending and
receiving application (server, clients) are adapted dynamically, causing GRO/GSO to
lower packet sizes in the TCP endpoints. The chained topologies thus create a different
bandwidth-delay product as compared to the stand-alone topologies, causing different680

profiling results between the two environments.
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Packet sizes also seem influenced if the VNF order is changed or if more VNFs are
placed in the chain. This can be explained because each of the VNF’s ingress and egress
interfaces has their own GRO/GSO threads to modify packet sizes differently, for the
same bandwidth. For example, the same workload and bandwidth in a stand-alone and685

chained topology, can be transferred by different packet sizes and packet rates depending
on the VNF order or number of VNFs in the processing chain. The whole VNF chain
(including client and server applications) is thus a balanced system where the processing
delay and dynamic buffers such as window sizes of one VNF determine the processing of
the next VNF in the chain. This interdependency makes it very hard to predict overall690

chain performance.
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Figure 10: Variation of the Haproxy VNF ingress/egress packet size, in several profiled topologies.

Note that for multi-queue enabled NICs there are also other optimization mechanisms
available in the Linux kernel [42]. This is however not enabled in our experiments. In
short, we can mention that techniques such as:

• Receive Packet Steering (RPS) : A hash function is calculated over the header fields695

of each incoming packet, for example, a 4-tuple hash over IP addresses and TCP
ports of a packet. The goal is that packets belonging to the same flow are hashed
the same and processed by the same CPU. Spreading load between CPUs decreases
the queue length.

• Receive Side Scaling (RSS): The hardware implementation of the hashing function700

in the NIC, so it can be offloaded from the CPU.

• Receive Flow Steering (RFS): A more advanced form of RPS, but next to hashing
also ”application locality” is taken into account. The goal of RFS is to increase
datacache hitrate by steering kernel processing of packets to the CPU where the
application thread consuming the packet is running. RFS relies on the same RPS705

mechanisms to enqueue packets onto the backlog of another CPU and to wake up
that CPU. In RFS, packets are not forwarded directly by the value of their hash,
but the hash is used as index into a flow lookup table. This table maps flows to
the CPUs where those flows are being processed.
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The above mechanims complement the Linux networking stack to increase parallelism710

and improve performance for multi-processor systems. There are some caveats here
regarding VNF profiling: CPU allocation should again be carefully isolated, so traffic
forwarding in the kernel can be differentiated from VNF internal processing.

6.2. Stand-alone vs. Chained Test Context

We started our paper by visually inspecting the sample measurements in Fig. 7:715

performance trends seemed to vary whether tested in the context of either stand-alone
or chained topologies. Since the workload and resource allocation is the same, other
factors seem to influence the chained performance, which were not profiled in the stand-
alone tests. It proves to be very hard to mimic the same operational context of a chained
topology in a stand-alone setting, due to many influencing factors. We retake the example720

measurement of Fig. 7a and in Fig. 11 we illustrate the varying environment parameters
more closely. Our initial observation is Fig 11a, where we see that the performance as
measured in a stand-alone topology, can improve if the VNFs are placed in a different
order. In Fig. 11 b,c,d we look at how several parameters of the Haproxy VNF in
these chain configurations differ between tested topologies. The chain topology with the725

best performance (Tinyproxy+Haproxy) shows the least overhead in the figures. We
distinguish below list of indicators which show that the same workload and resource
allocations are loading the VNF in a different way, depending of the profiled topology:

The number of concurrent established TCP connections. The creation and closing of
TCP connections is mainly controlled from the VNF application itself. For example, the730

VNF can choose to limit the number of open TCP connections to have a more efficient
bandwidth usage [43]. In Fig. 11b we can see that the number of established TCP
connections differs, depending on the chain configuration (exemplified by the averaged
number of established TCP connections for Haproxy in different profiled topologies). This
indicates that the VNF operation is clearly different depending on the chain configuration.735

Network packet rates. As explained in previous subsection, offloading mechanisms (GSO,
GRO) dynamically change the packet sizes. In Fig. 10 we already saw that the packet size
reaches different equilibria depending on the chain topology . By sending or receiving
the same file requests using larger packets, the packet rate decreases, resulting in a
lower processing load of the ingress/egress network packets. If we look at the averaged740

combined packet rate per topology in Fig. 11c, we also see clear differences per tested
topology. This indicates that for the same workload, different packet sizes are being used.

VNF CPU usage breakdown. Sending and receiving packets through the network stack
generates a special type of interrupts in the Linux kernel: software interrupts (softirqs).
These interrupts point to certain queued tasks in the kernel, of which packet transmit745

and receive to/from (virtual) network interfaces is of interest here. Each CPU has its own
ksoftirqd/n kernel thread (where n is the logical number of the CPU). Each ksoftirqd/n
thread gets a share of pending softirqs scheduled and executes their functions [37]. These
kernel threads can be monitored and are reported as softirq cpu usage, the relative cpu
time spent executing softirqs. For networking intensive applications, high softirq cpu750

usage is thus an indication for high networking overhead [44]. The relative differences in
packet rate in Fig. 11c are reflected in the CPU usage breakdown in Fig. 11d. Although
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Figure 11: Comparison of Haproxy VNF performance, in different profiled topologies.

Haproxy was allocated a share of 50% CPU, we monitor a higher percentage usage of this
CPU in some cases. Deviations here can be explained due to Linux’s implementation of
softirq handling: resource isolation between VNFs (containers) on a single server is not755

perfect when it comes to networking . It seems the kernel is always able to schedule the
handling of softirqs to any CPU, even when this CPU is allocated to other processes [45].
But again we can conclude from Fig. 11d that the VNF is differently loaded, influenced
by the chained topology.

In the above analysis, deeper inspection showed that a VNF’s processing load can differ760

greatly for the same workload and resource allocation, but in a different chain topol-
ogy. One could consider to incorporate the above indicators in the profiled model, to
improve chain performance predictions. Profiling all of these factors is however an un-
realistic endeavour since they are not independent and are caused by hard to control
parameters such as delay, bandwidth availability, buffer sizes or specialized OS or VNF765

configurations. The possible configuration space would likely become infeasibly large to
profile. Secondly, we would enlarge the input dimensionality of the performance model
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which would require extra training samples and preferably a form of feature selection to
improve the model accuracy [46]. For accurate feature selection, the total chain would
need to be profiled also, to check which factors are most correlated to the chain KPIs,770

and rule out any collinear factors. So in total, we would not save any profiling effort by
including these extra factors in our model. Additionally VNF performance on different
cloud providers can also show large deviations [47]. So for accurate VNF performance
predictions across cloud providers, all of them should be profiled in advance. These rea-
sons all further advocate for an online adjustment system for the performance model,775

due to unpredictable factors only known at time of deployment.

7. Enhancing the Chained VNF Prediction

To avoid an expensive profiling phase of the total chain, we want to keep benefiting
from the stand-alone VNF profiles fi to obtain fchain. But it is now also clear that
the accuracy of F is not sufficient without further improvements. Once the total VNF780

chain is deployed by the service provider we propose that fchain is online re-trained,
starting from the initially predicted model by F . Despite fchain not being completely
accurate initially, we show that a relatively small amount of extra samples can raise the
accuracy to more acceptable levels. This online retraining phase is still more efficient
than a complete chain profiling test. Following subsections validate different strategies,785

to improve the chain model accuracy.

7.1. Align the Training Data

There are also other aspects which can improve the prediction accuracy. The goal
of the performance model fchain is to predict where the KPI limit (max response time
in the SLA) will be hit. So for good prediction accuracy, best chances are to include790

enough training samples in the neighbourhood of that targeted limit. By aligning the
training data more around the target response time, we have a higher chance that the
local performance trend is correctly modelled. Depending on the use-case, only a specific
KPI range may be of interest. For example, if we want to model where the response
time reaches 1000ms, workload samples reaching 1ms response time are less likely to795

contribute much to prediction accuracy at higher workloads and can even make this
prediction worse.

In Fig. 12 we investigate the accuracy of fchain in different buckets of the response
time (Note that the scale on the y-axis is logarithmic). Since we have test data in a large
workload span (up to 1000 concurrent requests), we also have a large range of response800

time values (from 1ms up the order of 10000ms). We can see in the figure that no
modelling method can achieve high accuracy in every KPI bucket. Our profiled dataset
is giving worse accuracy in the first two bins because:

1. Relatively less samples are available in those lower response time ranges. Our tested
workloads produce mainly response times in the higher ranges.805

2. As exemplified in [9], a different performance trend is likely predominant at low
KPI values (before resource saturation). Since in our dataset, more samples are
available at higher response times, only the main trend at higher response time
values is accurately captured by the model.
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Figure 12: The prediction accuracy is not good at low response times.

Since there are only few samples in the lower buckets, the bad prediction outliers810

of fchain in Fig. 8 cannot all be attributed to this effect. But nonetheless, it is clear
that the best prediction accuracy is obtained if enough training data is available in a
range around the KPI target. For our profiled dataset, we choose best a response time
target > 1000ms, as suggested by Fig. 12. Note that if lower response times need to
be modelled, we need to focus our training set more in this area, This can be done by815

filtering training data only in these bins and steer the profiling phase to generate more
workload samples which produce lower response times. Since a choice has to be made
for optimal prediction accuracy, for our further validations, we chose not to train our
prediction model for such low response times and we omit training data < 100ms, as
this is well below our wanted max response time target.820

7.2. Online VNF Chain Training

When retraining fchain using online production data, we cannot expect that all work-
load parameters are varying in the same range as generated during offline profiling. We
can make some assumptions: The online workload in the production environment will
only show variation in a smaller subset of the total space of profiled workloads. Typically,825

the generated workloads for VNF profiling span a broader range, including the bound-
ary values of the expected workloads in production. This ensures better interpolation
accuracy of the prediction model, as also explained in [25]. But during online retraining,
not all workload parameters can be controlled like in offline tests. In our experiments
for example, we have profiled requests for several filesizes (from 0.5 to 10MByte). But830

in production the average filesize could remain fairly constant on the long-term. On
the other hand, the number of concurrent requests is more probably a short-time vary-
ing workload parameter. This means that online retraining of a pre-profiled model will
probably only happen in a certain subspace of the model, namely in the parameter range
where short-term variations take place in the online workload. Using this assumption,835

we can filter the stand-alone VNF data and slim down the prediction model by keeping
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only the input parameters which are expected to vary on the short-term. In general, by
aligning the stand-alone VNF profiling data with the expected workload in production,
we can limit the number of input variables and thus simplify the model. This benefits
both the accuracy of the prediction model and the retraining speed, as exemplified in the840

next reported figures. We train models where only the number of concurrent requests
is a varying input parameter. We do this for each unique configuration of filesize and
vCPU i, and then plot the averaged accuracy over all configurations. This is similar to
averaging all points in Fig. 8 per different modelling method, in order to select which
method can provide the best overall accuracy.845

The offline, stand-alone VNF tests produced a first estimation for fchain by using
taking the maximum response time in each tested workload (Eq. 4). These initial
samples are taken to train fchain like the VNF chain is a stand-alone system on its own:

fchain(wl, res) = perf

It is the intention that the model fchain is now adjusted in an online way, by taking
extra training samples while the service processes production workload. In the previous
model validation, the Interpolation method seemed to be the best fit. This is no surprise,
as this method is also most prone to overfitting because every training sample is crossed
by the regression line. Online modelling methods should have at least some form of reg-850

ularization, which mitigates measurement noise and overfitting. To rule out large errors
in fchain due to overfitting, we should include other methods also in the forthcoming
validations where new online training data is used.

We therefore test in Fig.13a which modelling method for fchain reaches the best
accuracy while incrementally retrained with more online samples. The workload samples855

are generated randomly between 0 and 1000 concurrent requests. This is done to simulate
a fluctuating workload in production. In Fig.13a we incrementally train the predicted
chain model fchain, with samples generated by F in Eq. 4. On the other side in Fig.
13b, we use samples from the actual chain measurement to train the selected models. In
each point on the x axis, the accuracy is cross-validated over five different sets of random860

samples, and averaged over all four tested VNF chains. This to select which method can
model best the typical response time trends. The main conclusion from Fig. 13 is that
the same models perform equally in both graphs: The model working best on the data
of stand-alone profiled VNFs is also providing the best fit for the trend of the measured
VNF chain. This indicates that the trend predicted by F from the stand-alone tests865

and the chain’s actual performance trend are modelled best by the same method. This
brings extra confidence that the trend shape of the chain performance can be estimated
from the stand-alone tests, and efficiently retrained afterwards with actual data from the
chain.

7.3. VNF Chain Canary Training870

In the previous section, random workload samples were used to retrain fchain. This
assumes that in production, the workload should vary in a large range, which is not
necessarily happening in reality. Also sudden workload spikes can cause unpredicted
service performance, if the model was not yet accurately trained in that region.

In order to improve the online retraining procedure in a reliable way, we propose875

canary testing for a safer retraining phase in production environments [48]. In a canary
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Figure 13: Comparison of different models, online retrained with random samples.

test, a fraction of the total production workload (e.g. a small number of users) is pro-
cessed by the service under test. The advantage is that the service is tested using realistic
workload and that the possible impact of an underestimated service performance is kept
relatively small (e.g. since a smaller number of users are affected). By incrementally880

allowing more and more workload to the service under test, we can create a controlled
test environment similar to the offline profiling. Note that testing lower workloads does
not mean that only low response time values are being monitored. (Gathering samples
of too low response time was not preferable as explained in previous Section 7.1.) As a
compromise we could increase the workload until the measured response time is in the885

same order of magnitude as the maximum response time in the SLA, and thus samples
are taken past the worse bin values as was illustrated in Fig. 12.

When a sufficient range of canary samples is gathered, fchain would ideally predict
for higher workloads also. This requires however a model which can reliably extrapolate
to higher workloads, beyond the canary training data. This is tested in Fig. 14 on our890

selected modelling methods. On the x axis, we simply start from the minimal tested
workload and gradually increase by extra concurrent requests. We increase samples up
to half of the expected workload range (canary goes up to 500 concurrent requests, while
the profiled workload can go up to 1000). So the model is trained on the lower half
of the workload (the canary workload), while the reported accuracy on the y axis is895

tested on the upper half of the workload samples, beyond the canary training data. We
have left out ANN and Lasso3 models for better readability since those models had the
worst accuracy under canary training. The plots are a bit more noisy here compared to
previous figure, because we cannot cross-validate over multiple, randomly ordered sample
subsets. The order of samples is fixed during canary testing: Here, the samples are taken900

by ascending workload, incrementing the number of concurrent requests by five in each
sample.

The results show which method can predict best the total chain performance, using
only the canary workload samples. We see that the Lasso and Gaussian Process meth-
ods are providing the best extrapolation accuracy [49], at the lowest amount of canary905
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Figure 14: Retrained models using canary testing with increasing workload samples.

training samples. Other methods need more data before accuracy converges. This is not
totally surprising, as these are the regression methods explicitly aiming for a (quasi-)
linear trend , which we already assumed from Fig. 7. It can be intuitively imagined that
a linear trend is quite easy to extrapolate to untested workloads, because few parameters
need to be modelled (only intercept and slope for a one dimensional input). Other (more910

non-linear) fitting methods are easily overfitting the canary training samples, leading
to larger errors when extrapolating. For generic machine learning methods relying on
nearby training samples (e.g. nearest neighbours, neural networks or random forests),
the extrapolated accuracy converges at least more slowly, or cannot be guaranteed at
all. This is because most machine learning regression methods are optimized to fit non-915

parametric trends, and accuracy depends on the availability of nearby training samples.
Thus extrapolation outside the boundaries of the trained workloads is hard in this case.
Similar to the previous test, we see that the trend predicted by F from the stand-alone
tests (Fig. 14a) and the chain’s actual performance trend (Fig. 14b) are modelled best
by the same methods. This again indicates that the trend predicted by F , is a good test920

case to check which model works best for canary training of the actual VNF chain.

8. Discussion and Conclusion

Modern telecom services consist out of multiple chained VNFs. These services could
be deployed more efficiently if they had a performance model available. Moreover, a great
deal of profiling effort can be saved if the total chain performance were derived from pro-925

filing tests done on the stand-alone VNFs. We have experimentally shown that the major
benefit of this approach is a faster service deployment, needing less scaling iterations to
reach the required performance, specified in the SLA. However, other experiments on
chained combinations of four different VNFs (Tinyproxy, Haproxy, pfSense and Open
vSwitch) indicate that care must be taken when predicting VNF chain performance, as930

accuracy is not guaranteed.
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8.1. Discussion

In this section we discuss some learnings and rules of thumb we encountered during
our validations. In general, we noticed that machine learning-based methods need more
training samples. They are converging slower than linear regression-based methods. This935

is because the regression methods need inherently less training samples to fit the collection
of quasi linear trends we witness in our tests. There are also some other learnings we
can share:

8.1.1. Sensitivity of the Validated Modeling Methods

Regression methods based on interpolation are notorious for their risk of overfitting940

the sampled trend. When using profiled VNF data this risk is under control: In the offline
profiling environment (Phase 1), we maintain in control of the generated workload. For
example under a fixed workload, our profiling setup implements a ramp-up time until
performance stabilizes, after which the KPI is measured as an average over a moving
time window. This ensures that each taken KPI sample is a good representative value945

for the given input parameters of workload and resource allocation. Additionally, the
measurements can be repeated multiple times for extra confidence and noise filtering.
That is why we trust that interpolation based methods create a confident model from
offline profiled data.

On the other hand, during online monitoring in production, workload is probably950

less stable. KPI metrics cannot always stabilize as in the profiling environment. This
means that online gathered training data, is likely more noisy. Therefore, the used
modelling method should have some form of regularization built-in. In an offline profiling
environment on the other hand, regularization is built-in due to the way training samples
are being taken, as described above. In our opinion, interpolation methods are less955

advisable for online sampled training data, since they tend to overfit the measurement
noise. We saw in our validations that Lasso-based methods are a better alternative.

8.1.2. Multi-variate Performance Metrics

In this paper we only validated uni-variate performance trends for fi or fchain. Only
the 95% reponse time was considered as performance metric. It is however likely that960

multiple performance metrics need to be considered for a VNF chain. In this case, the
performance metrics are represented as a vector, and multi-variate modelling approaches
can be used. Example techniques include Multiple Linear Regression, Principal Compo-
nent Regression or Partial Least Squares to solve multi-variate linear regression problems
or neural networks for non-linear problems with a vectorized output. A discussion and965

comparison of these methods is beyond the scope of this article, but we can share our
thoughts on possible caveats when modelling multi-variate output parameters.

In our tests, using one performance output metric, it became already clear that neural
nets are not the most optimal method to use. This suggests that also for vectorized
outputs, accuracy would probably decrease, since we would use the same training data to970

learn the relation with even more output variables. Thus, more weights in the neural net
to train, with the same profiled workload data as input. During the profiled workloads, we
can always monitor a vector of performance metrics. But when training data is limited, it
makes more sense to keep the model as simple as possible and to create separate models,
for each distinct performance metric. Intuitively, this would yield more accurate models975
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which are easier to train, compared to one large vectorized model for all performance
metrics together.

8.1.3. Less Efficient Modelling Techniques

One could think of other ways to predict a resource allocation from the profiled data.
Opposite to Eq. 1, a generic machine learning approach could be used to recombine the
metrics, and directly predict res:

f̂(wl, perf ) = res

We chose not to train a model like f̂ because:

1. The parameters in res are often not continuous but categorical in nature. They980

represent a discrete value of a resource allocation such as the number of CPU
cores, or pre-defined resource flavours offered by the infrastructure provider. As a
consequence, a range of continuous wl and perf values can map to a single (integer
coded) value of res. For a generic, regression based, machine learning method, this
would mean that the training samples are following a step-like shape. We know that985

regression based methods are not good at modelling such discontinuities, certainly
when we strive to limit the number of training samples, as in our use case.

2. When considering classifier based methods, we could successfully train a model to
predict discrete classes of resi, but the predictable classes are limited to the ones
included in the training set. Trained classifiers can therefore not extrapolate to990

unprofiled resource allocations, which limits their ability to predict beyond pre-
profiled resource allocations.

8.2. Conclusion

We have investigated how the performance of VNF chains can be efficiently modelled,
starting from the stand-alone VNF performance models. To mitigate possible prediction995

errors, we propose an online adjustment procedure, summarized in Fig. 15, retaken from
the introduction for clarity and convenience. The profiled data from the stand-alone
VNFs is used to model an initially estimated performance trend of the chained service,
using the Interpolation modelling method. This estimated performance trend can be used
as test case, to check which modelling method would fit best. When the actual chain is1000

deployed, the selected model is transferred and further re-trained with online gathered
data. Polynomial expansion, together with the Lasso regression method, provided the
best modelling accuracy in our experiments. We have also demonstrated canary testing
to gradually retrain the performance model of the VNF chain. Using this approach, we
only need a small range of training samples to extrapolate the performance trend to1005

untested higher workloads. Other analysed methods from the machine learning field are
not able to extrapolate well in this use case.

We have experimentally shown that the major benefit of this approach is a faster
service deployment, needing less scaling iterations to reach the required performance,
specified in the SLA. However, other experiments on chained combinations of four differ-1010

ent VNFs (Tinyproxy, Haproxy, pfSense and Open vSwitch) indicate that care must be
taken when predicting VNF chain performance, as accuracy is not guaranteed. To miti-
gate possible prediction errors, we propose an online adjustment procedure, summarized
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Figure 15: Overview of the presented profiling workflow.

in Fig. 15. The profiled data from the stand-alone VNFs is used to model an initially
estimated performance trend of the chained service. This estimated performance trend1015

can be used as test case, to check which modelling method would fit best. When the
actual chain is deployed, the selected model is transferred and further re-trained with
online gathered data. Polynomial expansion, together with the Lasso regression method,
provided the best modelling accuracy in our experiments. We have also demonstrated
canary testing to gradually retrain the performance model of the VNF chain. Using this1020

approach, we only need a small range of training samples to extrapolate the performance
trend to untested higher workloads. Other analysed methods from the machine learning
field are not able to extrapolate well in this use case.

Further applications of our presented profiling workflow are situated around the de-
velopment and deployment of VNF chains. To optimize the time needed to validate1025

whole VNF chains, performance requirements for stand-alone VNFs can be delegated to
multiple developing parties, using a DevOps approach. When the service provider later
combines multiple VNFs into a chain, the stand-alone VNF profiles can be used to es-
timate an initial resource allocation (in function of the expected workload and specified
SLA). Finally, during operation, the SLA of the chain can be further assured by online1030

retraining of the chained performance model, derived from the stand-alone VNFs. This
additional online retraining mechanism ensures that the performance estimation of the
VNF chain can be corrected in production.
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