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OPTIMAL ONLINE ALGORITHMS FOR THE PORTFOLIO SELECTION
PROBLEM, BI-DIRECTIONAL TRADING AND -SEARCH WITH

INTERRELATED PRICES

Pascal Schroeder1,∗, Imed Kacem1 and Günter Schmidt2

Abstract. In this work we investigate the portfolio selection problem (P1) and bi-directional trading
(P2) when prices are interrelated. Zhang et al. (J. Comb. Optim. 23 (2012) 159–166) provided the
algorithm UND which solves one variant of P2. We are interested in solutions which are optimal from a
worst-case perspective. For P1, we prove the worst-case input sequence and derive the algorithm optimal
portfolio for interrelated prices (OPIP). We then prove the competitive ratio and optimality. We use
the idea of OPIP to solve P2 and derive the algorithm called optimal conversion for interrelated prices
(OCIP). Using OCIP, we also design optimal online algorithms for bi-directional search (P3) called
bi-directional UND (BUND) and optimal online search for unknown relative price bounds (RUN).
We run numerical experiments and conclude that OPIP and OCIP perform well compared to other
algorithms even if prices do not behave adverse.
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1. Introduction

The portfolio selection problem (P1) is one of the most prominent examples of making decisions which are
only optimal – in monetary terms – with knowledge about the future. The problem itself consists in allocating
wealth to a set of stocks in a capital market; for this allocation to be optimal, knowledge about the performance
of the assets in the next trading period – a year, a month, a day, or even a second – is needed. Since a correct
prediction about the behavior of the market is often not realizable, online (sometimes also written as on-line)
algorithms have been developed. Based on the past movements of the market, they attempt to maximize the
ratio of the value of the portfolio in the very last trading period n and the invested money in the very first one.

P1 is one of many problems in the field of the so called “online optimization”; this field in turn is an instance
in the much broader area of combinatorial optimization in dynamic environments (see [2]). The literature in
the field of online optimization focuses mostly on a competitive analysis, i.e. the design of algorithms whose
performance is guaranteed to be within a certain bound compared to the best solution. Sleator and Tarjan [17]
introduced the performance measure called “competitive ratio” in order to compare the competitiveness of such
algorithms. In simple terms, this ratio is the relative difference of an online algorithm and the optimal solution
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in a worst-case scenario. Solutions that incur the lowest ratio are called optimal. Recently, Gangolf et al. [8]
applied the concept of competitive ratio to automated credit rating prediction algorithms in order to evaluate
their performance in worst-case scenarios. Schroeder and Kacem [15] derived optimal online algorithms for the
cash-management problem with uncertain and interrelated demands.

One way of evaluating online portfolio selection algorithms is the comparison of the achieved value of the
portfolio in the last period using such an algorithm to the one of an offline benchmark like best constant rebalanced
portfolio (BCRP) and best asset (BA). While BA selects that asset with the relatively highest increase in value,
BCRP constantly selects that portfolio allocation vector which yields the highest increase in value when applied
constantly. Borodin et al. [3] define a third offline benchmark called OPT. OPT solves P1 optimally because it
invests all wealth in the best performing asset of each period. Clearly, it is not possible to perform better than
OPT. All three offline benchmarks have complete knowledge about the future, i.e. the input of the problem,
and they differ only in their feasible set of decision possibilities, i.e. the allowed output.

In the P1 literature, it is common practice to employ BCRP as an offline benchmark. A substantial number
of algorithms, like the universal portfolio (UP) [6] and exponential gradient (EG) [9] algorithm, provide a
performance guarantee with respect to BCRP. Further, they attempt to track the portfolio allocation vector
which BCRP employs.

Online algorithms that are capable of achieving a high empirical portfolio wealth like the passive aggressive
mean reversion (PAMR) [12] or Anticor (AC) [4] algorithm are denoted as heuristic algorithms. These online
algorithms are often capable of substantially surpassing the performance of BCRP (see [10]). However, they fail
to guarantee a non-trivial upper bound compared to any offline benchmark.

Closely associated with P1 is the bi-directional trading problem (P2). In literature, P2 is often referred to
as two-way trading problem. Here one trades (or converts) back and forth between two assets and aims at
maximizing the amount of units of one asset. Dochow [7] showed that P2 is a special case of P1. The achieved
wealth is the main performance measure in P1; in P2, however, it is the competitive ratio. In literature, there
are many optimal algorithms, when P2 is restricted to only one direction, i.e. when trading is uni-directional.
With this restriction, Chen et al. [5] and Zhang et al. [19] developed optimal online algorithms called UND and
DIV for P2 with interrelated prices. According to Zhang et al. [19], the motivation for modeling prices this way
can be found in the stock market of China mainland; here the prices of each stock are merely allowed to drop or
increase by 10% per day. Recently, Schroeder et al. [14,16] developed optimal uni-directional online algorithms
for selected variants of P2, notably the algorithm profit UND (PUND) and profit DIV (PDIV) that solve the
restricted P2 optimally with a profit function and interrelated prices. Another variant of P2 is the so called
bi-directional search problem (P3). P3 is a special instance of P2; here an investor is allowed to trade back and
forth between two assets; however, the trade is “all or nothing”. Recently, Schmidt [13] solved P3 to optimality
when global price bounds and number of price runs are given.

The motivation for this work is the following:

(1) The concept of interrelated prices has not yet been applied to P1. Consequently, there exists no optimal
online algorithm with given interrelated price bounds,

(2) even though there are some non-optimal solutions for P2 with unknown interrelated price bounds, there
exists no optimal solution for P2 with known or unknown bounds,

(3) there exists no optimal solution for P3 with known or unknown bounds.

In this work we develop a competitive portfolio selection algorithm called optimal portfolio for interrelated
prices (OPIP) with the offline benchmark being OPT. OPIP solves P1 optimally when maximal upward and
downward relative price changes of each asset are known. In order to derive OPIP, we first apply the concept
of competitive analysis to P1. OPIP is competitive and optimal. Based on the ideas of OPIP, we derive the
new online algorithm optimal conversion for interrelated prices (OCIP) which solves P2 optimally online when
an investor is allowed to be arbitrarily invested in two assets; note that OCIP can also be applied, when the
interrelated price bounds are unknown. Based on OCIP, we derive the bi-directional UND (BUND) and optimal
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online search for unknown relative price bounds (RUN) algorithm for P3. We then carry out a numerical testing
to evaluate the performance of these algorithms. The contributions of this work are the following:

(1) The portfolio selection problem with interrelated prices is optimally solved online,
(2) bi-directional trading with known or unknown interrelated prices is optimally solved online,
(3) bi-directional search with known or unknown interrelated prices is optimally solved online,
(5) numerical experiments indicate which online algorithm is best for P2 and given interrelated price bounds,
(6) numerical experiments confirm the good performance of OPIP for P1 compared to other online algorithms.

This work is organized in six sections. In Section 2 P1 and the concept of competitive analysis is presented.
The section closes with offline benchmarks for P1. In Section 3 we derive OPIP. Subsequently, we prove its
competitiveness and optimality. In Section 4 we present OCIP and demonstrate the competitive ratio and
optimality. We then present the BUND and RUN algorithm and provide detailed proofs for competitive ratio
and optimality. In Section 5 we conduct numerical experiments to show the performance of the proposed
algorithms. The paper ends with a conclusion in Section 6.

2. Preliminaries

2.1. The portfolio selection problem

P1 is described as follows. Consider a market of m assets with n trading periods with an arbitrary period
i = 1, . . . , n. Each asset j = 1, . . . ,m has a price pj,i at the end of period i, with pi = (p1,i, . . . , pm,i) denoting
the vector containing the price of every asset at the end of period i. The price vector p0 comprises the initial
prices of all assets before the first trading period. The relative price change xj,i of an asset j during period i
is denoted as xj,i = pj,i/pj,i−1; xi = (x1,i, . . . , xm,i) contains all relative price changes in period i. All relative
price change vectors of all periods are contained in the sequence x, formally x = x1, . . . ,xn.

The fraction of wealth invested in an asset j during period i is denoted as bj,i; bi = (b1,i, . . . , bm,i) is the
vector that includes all segments of the invested wealth in period i. The sequence which contains all portfolio
allocation vectors is b, formally b = b1, . . . ,bn. There are restrictions as to the instances of an arbitrary bi.
First, consumption of wealth is excluded over all trading periods, i.e. the investor is always invested in the
market with all her wealth. Second, short-selling of assets is prohibited; the investor is always non-negatively
invested in all assets of the market. Consequently, the allowed domain ∆m for all bi is

∆n =

bi ∈ Rn : bj,i ≥ 0, for ∀j and
m∑

j=1

bj,i = 1,∀i

 . (2.1)

The wealth after n periods with the market sequence x and the portfolio allocation sequence b is

Wn (x,b) = W0

n∏
i=1

n∑
j=1

bj,ixj,i, (2.2)

with W0 being the initial wealth at the start of the first period. As in the literature, we set W0 = 1.
One common objective in P1 is the maximization of Wn (x,b). One needs to decide on the allocation of

wealth at the beginning of period i; however, the needed information about xi is revealed at the end of that
same period, when it is no longer useful for optimization. Hence, a maximization of equation (2.2) is only
possible, if the sequence of price changes x is known in hindsight.

2.2. Competitive analysis

Sleator and Tarjan [17] designed the competitive analysis in order to evaluate the performance of an online
algorithm. There are two parameters that affect the competitive ratio cALG of an arbitrary algorithm ALG, one



562 P. SCHROEDER ET AL.

being the selected b, and the other being the feasible sequence x. The family of sequences we permit is denoted
as X with x ∈ X.

cALG = max
x∈X

Wn

(
x,bOPT

)
Wn (x,bALG)

· (2.3)

In this work we restrict X in the following way. For all x ∈ X it holds: the maximal (minimal) relative change
from price pj,i to pj,i+1 is bounded by uj (dj) for an arbitrary asset j (first introduced by Zhang et al. [19]). For
our setting we have

dj ≤ min
i=1,...,n

xj,i ≤ max
i=1,...,n

xj,i ≤ uj (2.4)

for all j = 1, . . . ,m.
One desired quality of an online algorithm ALG is the one of optimality, i.e. the fact that there exists no

other algorithm that guarantees a smaller competitive ratio than the one guaranteed by ALG for all x ∈ X.
Hence, if an online algorithm is optimal for a given P1 with arbitrary information about X, then it is optimally
solved online. Formally, an optimal algorithm ALG must always ensure that

cALG = min
b

max
x∈X

Wn

(
x,bOPT

)
Wn (x,b)

· (2.5)

2.3. Offline benchmarks

Borodin et al. [3] present three offline benchmarks that are optimally solving the portfolio selection problem
to a different extent. The first one is called Best Asset (BA); it invests all wealth into the one asset which will
have the highest relative price increase in sequence x, formally

bBA
i = arg max

b1∈∆n

b1

n∏
i1=1

x′i1 ,∀i. (2.6)

Note that x′i1 is the transposed vector of xi. BA yields the optimal solution over the vertex of ∆n. The Best
Constant Rebalanced Portfolio (BCRP) constantly invests all wealth into that allocation which will have the
highest relative increase in sequence x, formally

bBCRP
i = arg max

b1∈∆n

n∏
i1=1

m∑
j=1

bj,1xj,i1 ,∀i. (2.7)

BCRP yields the optimal solution over the full simplex ∆n. The benchmark OPT invests all wealth in every
trading period i into that asset which will have the highest relative increase in all xi, formally

bOPT
i = arg max

b1∈∆n

b1x′i,∀i (2.8)

and resulting bOPT = bOPT
1 , . . . ,bOPT

n . OPT yields the optimal solution over the vertex of ∆n in every period
i. Clearly, the terminal wealth incurred by OPT is the highest possible wealth and it is at least as high as the
one incurred by BCRP and that in turn is at least as high as the one of BA.

3. Optimal portfolio for interrelated prices (OPIP)

We first introduce a function F (xi,bi) which calculates the ratio of relative wealth increase gained by OPT
and the wealth increase incurred by an online player using bi. Formally, we have

F (xi,bi) =
max

j=1,...,m
xj,i

m∑
j=1

bj,ixj,i

· (3.1)
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Intuitively, we know that
n∏

i=1

F (xi,bi) =
Wn

(
x,bOPT

)
Wn (x,b)

· (3.2)

Therefore, maximizing F (xi,bi) in every period i is equal to selecting that market sequence x which achieves
the competitive ratio.

We are interested in maximizing the function F (xi,bi); this can be achieved by raising an arbitrary asset
j to the maximal feasible price (pj,i−1uj) and dropping all other assets j′ 6= j to the minimum feasible price
(pj′,i−1dj′). Now we only need to evaluate m relative price change vectors for the function, formally

Fj,i (bi) =
uj

bj,i (uj − dj) +
m∑

j′=1

bj′,idj′

, (3.3)

being the adapted function; since Fj,i (bi) does only depend on the selected bi, we erase the time component
and set Fj,i (bi) = Fj (bi).

Since there are many assets to choose from, we need to make sure, that we only consider those ones which
are not dominated by any other asset. We state that one asset j dominates an asset j′ (j � j′) if dj ≥ uj′ .
Clearly, OPT does not invest anything into j′ at any period. Therefore, we ought to first eliminate all assets
which are dominated in order to avoid unnecessary calculations.

Assume there is no dominated asset. We first need to prove the worst-case price changes for our selected bi.

Lemma 3.1. The worst-case relative price change vector xwc
i during i is

xwc
i = (d1, . . . , dj∗−1, uj∗ , dj∗+1, . . . , dn) , (3.4)

with
j∗ = arg max

j=1,...,m
Fj (bi) .

Proof. Assume that we select an arbitrary allocation bi at i. Using equation (3.3) for all m relative price change
vectors, that asset j∗ which maximizes Fj (bi) raises by the factor uj∗ and all other assets fall by the factor dj .
This finishes the proof. �

We now present the first new online algorithm optimal portfolio for interrelated prices (OPIP).
Algorithm OPIP. At each period of time, allocate the wealth according to vector bOPIP

i with

bOPIP
i = arg min

b1∈∆m

max
j=1,...,m

Fj (b1) . (3.5)

Theorem 3.2. For arbitrary uj and dj, OPIP’s competitive ratio is

cOPIP =
(

max
j=1,...,m

Fj

(
bOPIP

1

))n

. (3.6)

Proof. Assume we use bOPIP
1 for period 1. Thus, the ratio of OPT and us using bOPIP

1 is max
j=1,...,m

Fj

(
bOPIP

1

)
.

In i = 2 we use bOPIP
2 = bOPIP

1 and find the same ratio again (since nothing changed compared to period 1).
This repeats until n. Thus, the competitive ratio is

cOPIP =
(

max
j=1,...,m

Fj

(
bOPIP

1

))n

. (3.7)

This finishes the proof. �
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Theorem 3.3. The OPIP algorithm is optimal, i.e. there exists no other online algorithm which guarantees a
smaller competitive ratio than cOPIP.

Proof. Assume there exists an online algorithm ALG∗ which uses b∗i at every i and incurs a smaller competitive
ratio cALG∗ . Thus, we have

cALG∗ < cOPIP

<

(
max

j=1,...,m
Fj

(
bOPIP

1

))n

<

(
min

b1∈∆n

max
j=1,...,m

Fj (b1)
)n

.

(3.8)

This is not possible by definition. Hence, there exists no such algorithm ALG∗ and OPIP incurs the lowest
possible competitive ratio. This finishes the proof. �

We now consider the case that all assets share the same u and d. In other words, u1 = u2 = · · · = um = u
and d1 = d2 = · · · = dm = d. Fj (bi) then simplifies to

F̂j (bi) =
u

bj,i (u− d) + d
· (3.9)

Proposition 3.4. For u1 = · · · = um = u and d1 = · · · = dm = d, the competitive ratio of OPIP is(
m

1 + (m− 1) du−1

)n

. If u and d are unknown, then it is mn (as proven in [3]).

Proof. For u1 = · · · = um = u and d1 = · · · = dm = d, the following holds. All assets can increase by the factor
u and decrease by the factor d, in other words, they are identical. Therefore, the wealth must be uniformly
distributed among those m assets, formally

bOPIP
i =

(
1
m
, . . . ,

1
m

)
∀i. (3.10)

Using Theorem 3.2 we have

cOPIP =
(

max
j=1,...,m

F̂j

(
bOPIP

1

))n

=
(

max
j=1,...,m

u

bj,i (u− d) + d

)n

=
(

mu

u+ (m− 1) d

)n

=
(

m

1 + (m− 1) du−1

)n

·

(3.11)

For unknown u and d (notably, du−1 → 0), cOPIP is at most mn. This finishes the proof. �

4. Competitive algorithms for P2 and P3 with interrelated prices

We now turn to P2. In P2 we start with one asset (a Dollar (D)) and we are offered a price in the beginning
of period i. In the end of every period i with i = 1, . . . , n a price pD,i is announced which contains an amount
of another asset (a Yen (Y)). In the beginning of every period i with i = 1, . . . , n, we can trade fractions of D
for Y (receiving pD,i−1 units of Y for one D) and the other way around (pY,i−1 = pD,i−1

−1 units of D for one
Y). The allowed domain of P2 is ∆2. The goal is to maximize the wealth in D after the second to last period
n−1. In n we must again be fully invested in D and there is no price movement. Clearly, maximizing the wealth
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of a portfolio is equivalent to maximizing the obtainable amount of any asset. Thus, OPT still uses the same
portfolio allocation vector and invests all wealth in that asset which will rise highest during an arbitrary period
i.

Having used bALG
i−1 of an arbitrary online algorithm ALG, we denote the wealth of our portfolio in terms of

units of D at the end of period i− 1 as Di−1

(
bALG

i−1

)
. At the beginning of i, our wealth in D consists of

Di−1

(
bALG

i−1

)
= bD,iDi−1

(
bALG

i−1

)
+ (1− bD,i)Di−1

(
bALG

i−1

)
pD,i−1. (4.1)

At the end of period i, our wealth Di

(
bALG

i

)
changes to

Di

(
bALG

i

)
= bD,iDi−1

(
bALG

i−1

)
+ (1− bD,i)Di−1

(
bALG

i−1

) pD,i−1
pD,i

= Di−1

(
bALG

i−1

) (
bD,i + (1− bD,i)x−1

D,i

)
.

(4.2)

Consequently, after n periods, the amount of D is

Dn

(
bALG

n

)
= Dn−1

(
bALG

n−1

) (
bALG
D,n +

(
1− bALG

D,n

)
x−1

D,n

)
= D0

n∏
i=1

bALG
D,i +

(
1− bALG

D,i

)
x−1

D,i.

(4.3)

We now proceed to solve P2.

4.1. Optimal conversion for interrelated prices (OCIP)

As in P1, we restrict the price by the upward and downward factor u and d. P2 can be seen as an instance
of P1, in which the upward factor u of asset D is the inverse downward factor of asset Y; the downward factor
d of D is the inverse upward factor of asset Y, formally

uD =
1
dY

and dD =
1
uY
· (4.4)

For this special case, we denote the worst-case ratio Gi

(
bALG

i

)
of OPT and an online algorithm ALG in

terms of relative dollar increase as

Gi

(
bALG

i

)
= max

xD,i∈[dD,uD]

 max
(

1, x−1
D,i

)
bALG
D,i +

(
1− bALG

D,i

)
x−1

D,i


= max

 max
(
1, u−1

D

)
bALG
D,i +

(
1− bALG

D,i

)
u−1

D

,
max

(
1, d−1

D

)
bALG
D,i +

(
1− bALG

D,i

)
d−1

D


= max

 max
(
1, u−1

)
bALG
D,i +

(
1− bALG

D,i

)
u−1

,
max

(
1, d−1

)
bALG
D,i +

(
1− bALG

D,i

)
d−1

 ·

(4.5)

We simplify the notation by shortening uD to u and dD to d. Knowing that prices do not change in period
n, i.e. Gn

(
bALG

n

)
= 1, we find that

n∏
i=1

Gi

(
bALG

i

)
=

n−1∏
i=1

Gi

(
bALG

i

)
1

=
Dn−1

(
bOPT

n−1

)
Dn−1

(
bALG

n−1

)
= cALG.

(4.6)
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We observe that Gi

(
bALG

i

)
is independent of the current prices of the assets. Therefore, Gi

(
bALG

i

)
=

G
(
bALG

i

)
and we have

b∗1 = arg min
b1∈∆2

G (b1) . (4.7)

Considering equations (4.5) and (4.7), we can state the following: If d ≥ 1, then we set bD,i = 1; this minimizes
Gi

(
bALG

i

)
to 1. Along the same lines, we find that if u ≤ 1 then we set bD,i = 0 and minimize Gi

(
bALG

i

)
to 1.

We now consider all other constellations of u and d and their implications for bD,i. Notably, G
(
bALG

i

)
further

simplifies to

G
(
bALG

i

)
= max

 1

bALG
D,i +

(
1− bALG

D,i

)
u−1

,
d−1

bALG
D,i +

(
1− bALG

D,i

)
d−1

 · (4.8)

We equate both elements of the max function and receive

bD,i =
1− u−1

2− u−1 − d
· (4.9)

We now present the new online algorithm optimal conversion for interrelated prices (OCIP) for P2.
Algorithm OCIP. In n, select bOCIP

D,n = 1. In each period of time i = 1, . . . , n− 1, invest the fraction bOCIP
D,i in

D and the fraction bOCIP
Y,i in Y, with

bOCIP
D,i =


1 if d ≥ 1,
0 if u ≤ 1,

1− u−1

2− u−1 − d
else,

(4.10)

and bOCIP
Y,i = 1− bOCIP

D,i . We now proceed with the proof of the competitive ratio.

Theorem 4.1. For arbitrary u and d, OCIP’s competitive ratio is

cOCIP =


1 if u ≤ 1 ∨ d ≥ 1,(

1 +
1

1− du−1

)n−1

else.
(4.11)

For unknown u and d it is at most 2n−1.

Proof. The trivial if case has already been verified in equation (4.7) and the consecutive text. Hence, we focus
on the non-trivial else case. Applying the OCIP algorithm to equation (4.6), we have

cOCIP =
Dn−1

(
bOPT

n−1

)
Dn−1

(
bOCIP

n−1

)
=

D0

n−1∏
i=1

bOPT
D,i +

(
1− bOPT

D,i

)
u−1

D0

n−1∏
i=1

bOCIP
D,i +

(
1− bOCIP

D,i

)
u−1

=
1(

bOCIP
D,i +

(
1− bOCIP

D,i

)
u−1

)n

=
(

2− du−1

1− du−1

)n−1

=
(

1 +
1

1− du−1

)n−1

.

(4.12)
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We cannot prevent d, u−1 → 0 for unknown u and d. In this case, we have cOCIP = 2n−1. �

Theorem 4.2. The OCIP algorithm is optimal, i.e. there exists no other online algorithm which guarantees a
smaller competitive ratio than cOCIP.

Proof. Using Theorem 4.1, we find that cOCIP = 1 if u ≤ 1 ∨ d ≥ 1. Thus, OCIP is optimal for these
combinations because it is not possible to perform better than OPT. For all other parameter combinations,
OCIP provides that b∗1 which minimizes equation (4.7) and is thus minimizing the competitive ratio (see
Eq. (4.6)). This finishes the proof. �

We now shortly consider the case of unknown u and d. Notably, we cannot prevent that u−1 → 0 and d→ 0.
Using equation (4.10), we find bOCIP

D,i = bOCIP
Y,i = 0.5 for i = 1, . . . , n − 1. Thus, if u and d are unknown, then

OCIP suggests to be equally invested in both assets.

4.2. Bi-directional UND (BUND)

In P2 we have m = 2. We now restrict the allowed domain ∆2 in the following way (see Eq. (2.1)). We are
merely allowed to trade all D(Y) for Y(D), formally

∆2 = {bi ∈ {(1, 0) , (0, 1)} ∀i} . (4.13)

We will solve this variant of P2 (denoted as bi-directional search problem (P3)) with knowledge about u, d
and n. Clearly, according to Lemma 3.1, whenever we trade all D for Y in i for price pD,i−1 = pi−1, the price
will increase by pi−1u. Likewise, if we convert all of Y into D in i for price pi−1, then the price will decrease by
pi−1d. We now present the algorithm bi-directional UND (BUND).
Algorithm BUND. At n, bOCIP

D,n = 1. In periods i = 1, . . . , n− 1 be invested in D according to bBUND
D,i with

bBUND
D,i =

{
1 if 1 ≤ d ≤ u ∨ ud ≥ 1,
0 else.

(4.14)

We now prove the competitive ratio of BUND and its optimality.

Theorem 4.3. For arbitrary u and d, BUND’s competitive ratio is

cBUND =

{
1 if d ≤ u ≤ 1 ∨ 1 ≤ d ≤ u,
min

(
un−1, d1−n

)
else.

(4.15)

Proof. The trivial if case has already been verified in equation (4.7) and the consecutive text (bD,i = 1 and
bD,i = 0 are still within the reduced ∆2). Hence, we focus on the non-trivial else case. First, assume ud ≥ 1;
consequently, we do not convert at all, i.e. bBUND

i = (1, 0) ,∀i. According to equations (4.8) and (4.6), we have

cBUND =
n−1∏
i=1

G
(
bBUND

i

)
= max

(
1
1
,
d−1

1

)n−1

= min
(
un−1, d1−n

)
.

(4.16)

Now assume ud < 1; we trade all D for Y at i = 1 and all of Y to D at i = n, i.e. bBUND
i = (0, 1) for

i = 1, . . . , n− 1 and bBUND
n = (1, 0). According to equations (4.8) and (4.6), we have

cBUND =
n−1∏
i=1

G
(
bBUND

i

)
= max

(
1
u−1

,
d−1

d−1

)n−1

= min
(
un−1, d1−n

)
.

(4.17)
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Figure 1. Worst-case sequence pwc for the RUN algorithm.

Using equations (4.16) and (4.17), we have cBUND = min
(
d1−n, un−1

)
for the else case. This finishes the

proof. �

Theorem 4.4. The BUND algorithm is optimal, i.e. there exists no other online algorithm which guarantees a
smaller competitive ratio than cBUND.

Proof. For an arbitrary i we can only chose between the allocation vectors (1, 0) (completely invested in D) and
(0, 1) (completely invested in Y). Assume there exists an arbitrary algorithm ALG’ which proposes k times to
be fully invested in D, i.e. bi = (1, 0), and n − k − 1 times to be fully invested in Y, i.e. bi = (0, 1) (with
0 ≤ k ≤ n − 1). The order of the selected allocations is of no importance. Thus, we set bALG′ to contain k
consecutive times (1, 0) followed by n− 1− k times (0, 1) and bALG′

n = (1, 0). Thus we have

cALG′ =
∏k

i=1G
(
bALG′

i

)∏n−1
i=k+1G

(
bALG′

i

)
= d−kun−k−1

≥ min
(
d1−n, un−1

)
.

(4.18)

Thus, ALG’ is at best capable of achieving cBUND (when setting k = 0 or k = n − 1). However, a lower
competitive ratio is not obtainable. This finishes the proof. �

4.3. RUN

We now design an algorithm for the case of unknown u and d. The algorithm RUN solves this problem. The
main idea of RUN is to convert D(Y) to Y(D) right after a local price maximum (minimum).
Algorithm RUN. In i = 1, n set bRUN

i = (1, 0). For i = 2, . . . , n − 1: if pi < pi−1, then bRUN
i = (0, 1); else,

bRUN
i = (1, 0).
Figure 1 illustrates the worst-case price sequence pwc for u = 2 = d−1, n = 5, p0 = 10 and the output of OPT

and RUN. In i = 1 RUN selects bRUN
1 = (1, 0). OPT therefore sets bOPT

1 = (0, 1), and the price drops to p0d
for i = 1. In i = 2 we have bRUN

2 = (0, 1). OPT sets bOPT
2 = (1, 0) and the price increases to p0du. This pattern

continues until n− 1.
We now prove the competitive ratio of RUN and its optimality for the given P3.

Theorem 4.5. For arbitrary u and d (notably du−1 → 0), RUN’s competitive ratio is

cRUN = u

⌊
n− 1

2

⌋

d
−
⌈
n− 1

2

⌉

.
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Proof. The worst-case price sequence pwc starts with a local maximum p0, followed by a local minimum p1 = p0d,
followed by a local maximum p2 = p1u, etc.. We apply RUN and trade all D for Y in i = 2 and all of Y for D
in i = 3. We trade all D for Y in all local minimum and all Y for D in all local maximum; OPT trades all D for
Y in all local maximum and all Y for D in all local minimum. This forms the worst-case price sequence pwc,
formally

pwc = p0, p0d, p0du, . . . , p0d

⌈
n− 1

2

⌉

u

⌊
n− 1

2

⌋

(4.19)

and a corresponding xwc.
For odd n, OPT’s terminal amount of D is

Dn−1

(
bOPT

)
= d

1− n
2 , (4.20)

while we receive

Dn−1

(
bRUN

)
= u

1− n
2 . (4.21)

For even n, OPT’s terminal amount of D is

Dn−1

(
bOPT

)
= d

−n
2 , (4.22)

while we receive

Dn−1

(
bRUN

)
= u

2− n
2 . (4.23)

For arbitrary n, OPT receives

Dn−1

(
bOPT

)
= d
−
⌈
n− 1

2

⌉

, (4.24)

while we receive

Dn−1

(
bRUN

)
= u

−
⌊
n− 1

2

⌋

. (4.25)

The resulting competitive ratio is

cRUN =
Dn−1

(
bOPT

)
Dn−1 (bRUN)

= u

⌊
n− 1

2

⌋

d
−
⌈
n− 1

2

⌉

.

(4.26)

This finishes the proof. �

Theorem 4.6. The RUN algorithm is optimal, i.e. there exists no other online algorithm which guarantees a
smaller competitive ratio than cRUN.

Proof. We use algorithm ALG’ as described in Theorem 4.4. Notably, the competitive ratio of ALG’ is

cALG′ =
un−k−1

dk

= d−kun−k−1.

(4.27)
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We denote the ratio of cALG′ and cRUN as φ, formally

φ=
d−kun−k−1

d
−
⌈
n− 1

2

⌉

u

⌊
n− 1

2

⌋

= d

⌈
n− 1

2

⌉
−k

u
n−k−1−

⌊
n− 1

2

⌋

= d





n− 2k − 1
2




u





n− 2k − 1
2





= (ud)





n− 2k − 1
2



 ·

(4.28)

If RUN is not optimal, then φ < 1 must hold. However, without knowledge about u and d we cannot assure
that the selected k implies φ < 1. For instance, if we set k such that the exponent is at least zero, then we
cannot prevent that (ud) is smaller than or equal to one; this implies φ ≥ 1. Likewise, if we set k such that the
exponent is at best zero, then we risk (ud) ≥ 1 and thus φ ≥ 1. This finishes the proof. �

5. Numerical experiments

The OPIP algorithm is executed using IBM ILOG CPLEX 12.7.1 and illustrated in Matlab. The algorithms
OCIP, RUN and BUND are executed using VBA and also illustrated in Matlab. All experiments are tested on
a personal computer with an Intel Core i5-6300 2.4 GHz CPU and 16 GB of RAM. We also include the näıve
diversification (ND) which equally distributes the wealth between all assets, i.e. bi = n−1, . . . , n−1 for all i.

5.1. OPIP

In P1 it is common practice to compare the performance of an algorithm on several empirical datasets
containing daily prices in several stock markets. We use the four stock market datasets used in [4, 12] called
NYSE, TSE, DIJA and SP500; details concerning the different datasets are given in Table 1 (see also [12]).

We compare OPIP with the two offline benchmark algorithms BA and BCRP, the learning algorithms Uni-
versal Portfolio (UP) according to [11], Exponential Gradient (EG) with η = 0.05 as suggested by Helmbold
et al. [9] and Online Newton Step (ONS) with η = 0, β = 1 and γ = 0.125 as suggested by Agarwal et al. [1].
The wealth achieved by those five benchmarks in those four datasets can be found in [12]. We also add the so
called market method, i.e. at i = 1 we are equally invested in all assets and do not trade later on. The highest
terminal wealth achieved in each dataset by an online benchmark is highlighted in bold font. The terminal
wealth for the different methods on the datasets is shown in Table 2.

We see that OPIP is performing quite well compared to other learning algorithms. Except for the DIJA
dataset OPIP’s wealth always increases over time and is often capable of surpassing EG and UP (except for
SP500). One must note however, that while EG and ONS have their respectively best parameter setting in
terms of terminal wealth, OPIP does not influence its distinct parameters (they are given by the dataset itself);

Table 1. Summary of the four real datasets in our numerical experiments.

Dataset Region Time frame n m

NYSE US 7/3/1962 – 12/31/1984 5651 36
TSE CA 1/4/1994 – 12/31/1998 1259 88
SP500 US 1/2/1998 – 1/31/2003 1276 25
DIJA US 1/14/2001 – 1/14/2003 507 30
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Table 2. Terminal wealth achieved by various portfolio selection strategies on the four datasets.

Method/Dataset NYSE TSE SP500 DIJA

Market 14.50 1.61 1.34 0.76
BA 54.14 6.28 3.78 1.19
BCRP 250.60 6.78 4.07 1.24
UP 26.68 1.60 1.62 0.81
EG 27.09 1.59 1.63 0.81
ONS 109.19 1.62 3.34 1.53
ND 27.08 1.54 1.65 0.81
OPIP 74.62 1.95 1.05 0.93

Figure 2. APY of selected algorithms on four pairs of stocks tested by Cover [6], Helmbold et
al. [9] and Agarwal et al. [1].

also, UP does not use any parameter and its performance is therefore not depending on any knowledge about
the future input nor any parameter optimization. We must keep in mind that UP, EG and ONS are algorithms
that aim at tracking BCRP, while OPIP aims at minimizing its relative distance to OPT in worst-case input
sequences.

We now consider four pairs of assets in the NYSE dataset, that is Iroquois and Kin-Ark (Iro & Kin-Ark),
Commercial Metals Company and Kin-Ark (CMC & Kin-Ark), CMC and Meicco Corp. (CMC & MEI) and
IBM and Coca Cola (IBM & KO). Cover [6] used these pairs to illustrate the behavior of the UP algorithm
and later on Helmbold et al. [9] and Agarwal et al. [1] also used them to demonstrated the behavior of EG and
ONS. We compare the annual percentage yield (APY) of each algorithm on each pair; formally, the APY for a
period of 22 years is

APY = Wn (x,b)22−1

− 1. (5.1)

The respective APY of each algorithm is illustrated in Figure 2.
As we can see OPIP is never performing worse than all other algorithms. Except for the pair CMC & Kin-Ark,

OPIP’s APY is among the highest ones possible.
We conclude that OPIP is not only providing the lowest competitive ratio possible, but it is also performing

empirically well compared to other algorithms that have a worse performance guarantee.
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Figure 3. Median of OCIP, BUND,ND and RUN for various u and d on the experimental setting.

5.2. OCIP

In P2 it is not common to conduct numerical experiments. The main literature focuses on finding optimal
algorithms and rarely conducts any sort of performance testing. We consider P2 for n = 250, various u, d
and compare OCIP with ND, BUND and RUN. Our research question we want to answer is as follows. Given
a parameter combination of u and d, which algorithm performs best in terms of some selected performance
measures. These insights are particularly relevant for practitioners.

The sequence of all considered upward factors u starts at 1 and increases absolutely by 0.05, the last value
being 10. The decrease factor also starts at 1 and decreases relatively as much as u increases, the last value
being 0.1. For every pair of u and d we conduct 1000 experiments. In an arbitrary experiment we use the random
variable x ∈ X ∼ U (0, 1) which originates from the standard uniform distribution to derive future price changes
with

xD,i = u2 max(x,0.5)−1d1−2 min(x,0.5). (5.2)

The thereby constructed sequence x comes from the family of all feasible sequences that use u and d denoted
as X (u, d).

The parameter p0 is of no importance for the testing of OCIP (we therefore set it equal to 1). After all
experiments for a pair u and d have been calculated, we derive the median, the 0.5% (5 permille) and the 99.5%
(995 permille) of the incurred wealth in terms of D of each algorithm. While the median gives us an idea of
the general performance of the algorithms, the permille measures illustrate experimental worst and best-case
performance of each algorithm.

We proceed with the testing of OCIP, BUND, ND and RUN. In Figure 3 we see the median performance of
all four algorithms.

Starting with ND, we see that as u increases and d remains close to 1, ND looses wealth (for d = 1 and
u = 10 the wealth achieved is 3.20× 10−21). This is not surprising; when prices increase by far more than they
fall, a shifting from D to Y means that the accumulated Y tend to lose their value; since ND proposes to be
always equally invested, the amount of D in the portfolio diminishes, while the amount of Y increases. When
all wealth needs to be traded for D, the price for one unit of that asset is so high, the investor does hardly
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get any; this leads to a massive loss in wealth. OCIP also looses wealth (the lowest wealth being 1.88 × 10−7)
but recognizes that the wealth must be increasingly invested in D. As u→ 10 the wealth invested in D reaches
100%. The result of BUND is not surprising since all pairs of u and d with u ≥ d−1 lead BUND to not trade at
all. Thus the investor does never loose the invested D if this relation between u and d holds true. As d → 0.1
and u→ 10 we observe that OCIP and ND are well performing (with Dn (bn) = 3.16× 1021 for both). In this
area (especially around the space diagonal) often times ND wins, while OCIP is only insignificantly worse. Both
profit from the volatility of both assets. However, as this area is left, OCIP starts to outperform ND (left and
right side of the space diagonal) because it puts an increasing weight on the one asset which falls less strong
(and increases sharper). For all pairs u ≤ d−1, BUND trades all wealth for Y at the very beginning and trades
back at the very end. Therefore, as d→ 0.1 and u ≤ d−1, BUND starts to increase in wealth, until it surpasses
the wealth generated by OCIP. The highest possible wealth achieved by BUND is 5.35 × 1062 for u = 1 and
d = 10.00−1. Again, this is not surprising for BUND; when prices tend to fall extremely, then it is reasonable to
trade D for Y as soon as possible; the value of Y compared to D then increases intensely and the one Y is traded
back for a large amount of D. Fortunately, OCIP also recognizes that the portfolio must be shifted toward Y
and is thus able to stay close to the result of BUND. We note that ND also increases in wealth; this is because
of ND tending to trade Y for D at increasingly high prices. However, ND trades too many Y too early and
therefore fails to achieve a wealth close to OCIP. Concerning RUN, we observe that it is clearly outperformed
by all other algorithms. Only if d = 1 or u = 1, it performs as good as BUND and OPIP. For u = d−1 RUN has
a higher median performance than does BUND. We derive the following findings for the median experimental
performance of the considered online algorithms:

(1) ND outperforms all other algorithms when u ≈ d,
(2) BUND outperforms all other algorithms when u is close to 1 or d is close to 1,
(3) OCIP outperforms all other algorithms for all other parameter combinations,
(4) RUN never outperforms all algorithms at once.

This finishes the interpretation of Figure 3.
In Figure 4 we see the 5 permille performance of all four algorithms.
We first observe that the general level of terminal wealth dropped compared to Figure 3. Looking at the

space diagonal, we observe that left to it, OCIP still outperforms the other algorithms; however, ND achieves
a higher terminal wealth right to the space diagonal when prices behave adversely. Compared to OCIP, the
observed “too much too early” trading behavior of ND (see the interpretation of Fig. 3) is advantageous for
adverse prices. OCIP keeps more Y in the portfolio (betting on low prices) and suffers bigger losses when prices
are rising compared to ND. This advantage of ND over OCIP fades out as u→ 1 and d→ 0.1. Left to the space
diagonal, we observe that OCIP outperforms ND when prices show adverse behavior. This is because OCIP
does keep a higher fraction of the initial D in the portfolio, thereby reducing the potential value losses that can
occur when trading between D and Y. ND, on the other side, keeps too many units of Y in the portfolio and
suffers larger value losses when prices increase. Concerning RUN, we note that it performs better than BUND
for some pairs of u < d−1. Concerning BUND, we observe that it outperforms all other algorithms as long as
u < 2d−1; the amount of pairs of u and d left to the space diagonal for which BUND outperforms all other
algorithms increased. Right to the space diagonal, the amount of dominating combinations for BUND declined.
For all other pairs, we observe the prior findings of the median performance. We derive the following findings
for the 5 permille experimental performance of the considered online algorithms:

(1) ND outperforms all other algorithms when u ≤ d−1 and u ≥ (3d)−1 holds true,
(2) BUND outperforms all other algorithms when u is close to 1 or u > 2d−1,
(3) OCIP outperforms all other algorithms for all other parameter combinations,
(4) RUN never outperforms any algorithm.

This finishes the interpretation of Figure 4.
In Figure 5 we see the 995 permille performance of all four algorithms.
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Figure 4. 5 permille of OCIP, BUND, ND and RUN for various u and d on the experimental
setting.

Figure 5. 995 permille of OCIP, BUND,ND and RUN for various u and d on the experimental
setting.

We first observe that the general terminal wealth level surpassed that of Figure 3. More importantly, we
interpret Figure 5 to be the counterpart of Figure 4. In Figure 4, we observed that ND’s outperforming combi-
nations of u and d are right to the space diagonal; in Figure 5, we see that an equal-size area of outperforming
combinations for ND of u and d is left to the space diagonal. The same holds true for OCIP; its former out-
performing area of combinations moved from the left to the right side of the space diagonal. In addition, the
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small strip where OCIP is better than all other algorithms has moved from the right side to the left side of the
space diagonal. BUNDs large (small) area of outperforming combinations of u and d has moved from the left
(right) side of the space diagonal to the right (left) side. We derive the following findings for the 995 permille
experimental performance of the considered online algorithms:

(1) ND outperforms all other algorithms when u ≥ d−1 and d ≥ 3 (u)−1 holds true,
(2) BUND outperforms all other algorithms when d is close to 1 or u < (2d)−1,
(3) OCIP outperforms all other algorithms for all other parameter combinations,
(4) RUN never outperforms any algorithm.

This finishes the interpretation of Figure 5.
Summing up the results, we find that ND is performing well given the fact that it has no knowledge about

future price sequences (ND does not take u and d into consideration as opposed to BUND and OCIP). Fur-
thermore, there exist price sequences and parameter combinations for which it is more profitable to trade all or
nothing (which BUND does) than to trade fractions of the initial wealth. OCIP unites both the ability to trade
in fractions back and forward between D and Y as well as the knowledge about the bounds of the interrelated
relative price changes. RUN performs poorly in all three performance measures and is therefore not very suitable
for practical application. This concludes this section.

6. Conclusion

To the best of our knowledge, it is the first time that the portfolio selection problem has been optimally solved
online on markets where prices are interrelated. We developed OPIP, which solves this problem and provided
proofs for the competitive ratio and optimality. From this solution, we considered bi-directional trading and
used ideas of OPIP to solve the problem optimally online. This resulted in the new algorithm OCIP; from this,
we then developed the solutions for bi-directional search called BUND and RUN. All three algorithms address
currently unsolved cases in the field of online conversion problems; competitiveness and optimality were proven
for all three algorithms. We ran numerical experiments to gain further insights regarding their performance.
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